
Component Allocation with Multiple Resource Constraints
for Large Embedded Real-Time Software Design �

Shige Wang, Jeffrey R. Merrick, and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

email:�wangsg,jmerrick,kgshin�@eecs.umich.edu

Abstract
Allocating software components while meeting multiple

platform resource constraints is crucial for model-based de-
sign of large embedded real-time software and automatic
design model transformation. In this paper, we propose a
new method for component allocation using an informed
branch-and-bound and forward checking mechanism sub-
ject to a combination of resource constraints. We have
implemented this method in the Automatic Integration of
Reusable Embedded Software (AIRES) toolkit — which has
been developed under the DARPA MoBIES Program — and
applied it to an automotive electronic throttle control (ETC)
system. Our evaluation based on randomly-generated de-
sign models has shown that the proposed method scales well
for large and complex embedded real-time software.

1. Introduction

Software in today’s large embedded real-time systems,
such as avionics mission computing and automotive vehi-
cle controls, demands a significant amount of system re-
source to meet increasing functional and performance re-
quirements. However, the availability of resources on a
platform is usually limited by physical and economic con-
straints. As embedded software becomes larger and more
complex, meeting multiple, sometimes conflicting, resource
constraints becomes a high-level design decision problem
rather than a low-level code optimization. Traditional ap-
proaches that resolve the constraints individually, one-by-
one, by tuning the code-level implementation are inade-
quate. Recent model-based software development has been
shown to be a promising approach to such high-level de-
sign decision problems. In this model-based approach, the

�The work reported in this paper was supported in part by DARPA un-
der the US AFRL contracts F30602-01-02-0527 and F3615-00-1706, and
by Ford Motor Company under a University Research Partnership grant.

embedded software is first modeled abstractly without con-
sidering its execution platform, and then transformed to a
model on the target platform. The component-to-platform
allocation, therefore, becomes a critical step in the trans-
formation. Further, the component-allocation method must
be scalable as the number of components in embedded soft-
ware can be very large. After completing the component
allocation, one can form OS processes, assign timing and
scheduling attributes to components, analyze the system
performance and perform the schedulability test.

In this paper, we present a scalable method to allo-
cate the software components in a design model to a given
platform that meets multiple platform resource constraints.
The method uses an informed branch-and-bound algorithm
to find an allocation for each component in the software
model. At each step, the candidate allocations are evalu-
ated using a competence function and are pruned using a
forward checking mechanism. Components are allocated to
a device in the platform in the order of their combined re-
source consumptions. As the method manipulates the infor-
mation at the model level, it is applicable during an early
design phase and supports design automation.

The rest of the paper is organized as follows. Section 2
defines the system models and the component-allocation
problem. Section 3 details the techniques used in our al-
location method. Section 4 demonstrates the method using
an example of automotive electronic throttle control system.
Section 5 evaluates the scalability and performance of our
method using a set of randomly-generated software mod-
els. Section 6 states related work. The paper concludes
with Section 7.

2. Software Model and Problem Statement

Meeting the resource constraints during component al-
location requires models of the software architecture and
the platform. In this paper, we model the software archi-

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 



tecture in a structural model, which contains a set of exist-
ing components with known resource consumptions. The
target platform with resource constraints is modeled in a
platform model. For simplicity, we consider only compu-
tation, communication and memory resources, although the
method can be extended to other resource types.

Definition 1 A software component Mc � �A� I�O�B� is a
port-based object, where A is a set of computations, called
actions, which implement a component’s functionality; I is
a set of input ports through which a component receives its
inputs; O is a set of output ports with I �O � /0, through
which a component exports its computation results; and
B � E�� I � A��O specifies a predefined behavior of
the component where E defines a set of events.

Definition 2 A software structural model Ms � �C�L�F� is
a weighted directed component graph, where

� C is a set of nodes for software components in Mc;

� L�
�

u�C Ou�
�

v�C Iv��u �� v� is a set of directed links
from the output ports of some component(s) to the in-
put ports of some other component(s); and

� F defines a set of resource consumption functions as:

Computation: Fc :
�

u�C A�u � Q� defines the com-
putation resource consumption by component u.
Q� is the set of non-negative rational numbers.
A�u implements a behavior of component u.

Communication: Fl : L � Q� defines the communi-
cation resource consumption.

Memory Fm : C � Q� defines the memory resource
consumption.

According to this definition, the computation and mem-
ory resource consumptions are modeled as the nodes’
weights, while the communication resource consumptions
are modeled as the links’ weights. These resource con-
sumptions must be specified in a platform-independent
form when used for component allocations. The platform-
independent form of resource consumptions can be ob-
tained by measuring resource consumptions on a reference
platform and converting them to platform-independent val-
ues using techniques such as scalar [1] or virtual resource
service rate [10]. The conversion function can be included
as part of component’s resource consumption function F .
The structural model definition also allows cycles in the
model in order to describe some control functions like
closed-loop feedback and multi-rate control. Such cycles
can be eliminated using the techniques in [10] for analyses
that require a directed acyclic graph. In this paper, we do not
perform the cycle elimination before component allocation
since the existence of cycles does not affect the correctness
and applicability of the allocation method.

Definition 3 A platform model Mp ��P�N�R� is a weighted
undirected graph, where

� P is a set of devices providing computation and mem-
ory resources;

� N is a shared communication link for all devices;

� R is a set of “availability” functions of the modeled
resources defined as:

Computation: Rc : P � Q� defines the computation
resource capacity of a device. Different Rc values
reflect the heterogeneity of computation devices.

communication: Rl : N � Q� defines the communi-
cation resource capacity of a link.

Memory: Rm : P� Q� defines the memory resource
capacity of a device. Similar to the computa-
tion resource, different Rm values reflect devices’
memory heterogeneity.

Given a structural model of designed software and a
target platform model, the task of allocating components
can be viewed as a process of grouping components in the
structural model such that (i) each group runs on one com-
putation device in the platform model with sufficient re-
sources, and (ii) the total amount of communication among
the groups is within the available capacity of the link in the
platform model. We call each component group a partition,
and the resultant model a partition graph.

Definition 4 The partition graph of a structural model
Mpn � �PN�LN�H� is a weighted directed graph, where

� PN is a set of partitions, containing components in Ms.

� LN � PN �PN is a set of links between partitions.
There exists a link �PNi�PNj� � LN if and only if there
are (i) components u � PNi and v � PNj and (ii) a link
�u�v� � L in Ms.

� H is a set of resource consumption functions for the
partition graph. For a partition PNi, its resource con-
sumptions of computation (Hc), communication (Hl),
and memory (Hm) can be derived as follows:

Hc�PNi� � ∑u�PNi
Fc�u��

Hl�LN� � ∑y�LN Fl�y��
Hm�PNi� � ∑u�PNi

Fm�u�
(1)

Our component-allocation problem can then be formally
stated as a model transformation problem as follows: given
a structural model in Ms � �C�L�F� and a platform model
Mp � �P�N�R�, the component-allocation problem is to find
a partition graph Mpn with

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 



Property 1: each partition PNi contains some components
in C such that (i) for all n partitions,

�n
i�1 PNi � C,

and (ii) for any i� j� i �� j, PNi
�

PNj � /0.

Property 2: there exists a one-to-one mapping g : PNi � Pi

such that (i) for any resource r of device Pi, Hr�PNi��
Rr�Pi�, and (ii) Hl�LN� � Rl.

Property 1 ensures every component in the structural
model to be allocated to one and only one partition. Prop-
erty 2 constrains every partition to be allocated to a distinct
device with sufficient computation and memory resources,
and the total communication resource consumption among
partitions to be no greater than the link’s capacity. The one-
to-one mapping implies that the total number of partitions
should be no greater than the number of computation de-
vices in the platform, i.e., �PN� � �P�.

In this paper, we ignore the execution dependencies of
components when the structural model is partitioned. This
makes the thus-generated results pessimistic. The real-time
constraints such as end-to-end deadlines are addressed indi-
rectly in this method by reducing the system resource con-
sumptions of the resource that may introduce longer delays.

3. The Allocation Algorithm

Our component-allocation algorithm is shown in Algo-
rithm 1, which subsequently invokes a recursive function in
Algorithm 2. The algorithm is based on informed branch-
and-bound. At each step, an unallocated component is as-
signed to a partition which runs on a distinct computation
device (branch step). For every unallocated component u,
the algorithm maintains a list of candidate partitions, called
the partition domain DM�u�, containing all partitions that
u can be allocated to, without violating any constraint. All
partitions PNi in DM�u� are ranked according to a compe-
tence function CF�u�PNi�. At each branch step, the algo-
rithm selects the best partition in DM�u� for allocation ac-
cording to the competence function values (informed). Af-
ter each assignment, the algorithm adjusts the partition do-
mains of every unallocated component and eliminates those
partitions that result in constraint violation (bound step).
This is achieved by applying a forward checking [2] mech-
anism after a minimum constraint violation depth (MCVD)
is reached. The process continues until either every com-
ponent is allocated to a partition without violating any con-
straint, or no allocation can be found for a component sub-
ject to all constraints.

A key component in this algorithm is the competence
function. It is designed and used to estimate the combined
effect of an assignment and to speed up the algorithm. For a
component u and a partition PNi in DM�u�, CF�u�PNi� can
be computed as follows:

Algorithm 1 Allocation subject to multiple constraints.

input: structural model Ms � �C�L�F�;
platform model Mp � �P�N�R�;

output: partition PN containing components.
BEGIN

MCVD is initialized to be ∞;
create partition PNi � /0 for Pi � P;
order u �C in descending order of the combinational

resource consumption w�u�;
foreach component u �C do

assign DM�u� to be P;
allocate�C�;
if (C is empty) then

return (succeed�PN);
else

return f ail;
END.

CF�u�PNi� � c1 �Cr�PNi�� c2 �Lr�PNi�� c3 �Mr�PNi�� (2)

where Cr, Lr and Mr are the computation, communica-
tion, and memory resource consumptions, respectively, af-
ter allocating u to PNi. Since the resource consumptions
in Cr�PNi�, Lr�PNi�, and Mr�PNi� are of different types
and usually are not comparable to each other, we normal-
ize them as follows:

Cr�PNi� �
Hc�PNi�

Cideal�PNi�
�1

Lr�PNi� � 1�
Hl�LN�

∑y�L Fl�y�

Mr�PNi� �
Hm�PNi�

Mideal�PNi�
�1

Cideal�PNi� is the ideal computation resource consump-
tion of PNi, which can be computed according to some pre-
defined strategy such as the one proportional to, or even
distribution of, total workload over the computation de-
vices. Allocating u to a partition PNi with the minimum
Cr�PNi� complies with the pre-defined strategy. Similarly,
we can determine the ideal memory resource consumption
Mideal�PNi� of PNi. The communication resource consump-
tion of PNi depends on the total communication in and out
of PNi. A smaller value of Lr�PNi� indicates less communi-
cation resource consumed if allocating component u to PNi.
Constants c1, c2 and c3 specify the weights of each resource
in the competence function. They make the competence
function a generic form of allocation strategies. Different
strategies can be implemented by choosing the values of
c1�c2, and c3. For example, choosing c1 �� max�c2�c3�
with Cideal�PNi� derived from even distribution of the total

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 



Algorithm 2 Allocate function

allocate�C�
BEGIN

if (C is empty) then return �success�PN�;
retrieve first u from C for allocation;
if (DM�u� is /0) then return f ail;
foreach (PNi � DM�u�) do

compute CF�u�PNi�;
sort DM�u� in ascending order of CF�u�PNi�;
while (u is unallocated) do

if (all PNi � DM�u� have been tried) then
put u back to C;
return f ail;

end-if
allocate u to PNi with min�CF�u�PNi�� that has not be tried;
if (no constraint is violated by this allocation) then

if (total allocated components = MCV D) then
forward checking�C�;

if (total allocated components � MCVD) then
minimized forward checking�C�;

if (any component x �C with DM�x� is empty ) then
return f ail;

allocate�C�;
if (function return with success) then

return �success�PN�;
else if (allocated components less than MCVD) then

reset MCV D to the number of allocated components;
end-if-else

end-while
END

workload implements the load-balancing allocation strat-
egy. Similarly, choosing c2 �� max�c1�c3� minimizes the
communication resource consumption.

The algorithm uses the competence function values to
assist selection of the possibly best allocation of a compo-
nent. After each allocation, the competence function values
are computed for all partitions in every unallocated compo-
nent’s partition domain. Since a smaller competence func-
tion value indicates less possibility of violating the con-
straints, the algorithm first chooses the partition with the
minimum competence value. If a future component alloca-
tion fails to meet any constraint, the algorithm backtracks
and chooses the partition with the next minimum compe-
tence value.

Another key component in our algorithm is the forward
checking, which is introduced to remove the partitions that
will result in any constraint violation. The goal of forward
checking is to reduce the size of the partition domains of
unallocated components. The effect of removing partitions
from a component’s domain is local, meaning that the parti-
tion domain of a component u will be restored to its original
one if the allocation of u or any component before u is back-
tracked. This ensures the completeness of the algorithm,

which guarantees a solution to be found if one exists.
The forward checking incurs additional computation

overhead as it must check and manipulate the partition do-
mains of all unallocated components after every allocation.
The overhead increases proportionally to the number of un-
allocated components in the system. Therefore, it is high
at early steps of the algorithm when most of the compo-
nents are unallocated and each component’s partition do-
main contains most of the partitions. This implies that the
forward checking can benefit only after allocating a cer-
tain number of components. We define such a number as a
minimum constraint violation depth (MCVD). The value of
MCVD is determined by the minimum number of allocated
components at which a resource constraint violation occurs.
We can further reduce the overhead of forward checking
by examining only those partitions whose components are
changed. Since one and only one component is allocated
at each step, there is only one partition change at each step.
We implemented a minimized forward-checking function as
in Algorithm 3.

Algorithm 3 Minimized forward checking

input: unallocated components C with:
partition domains PN for each u �C;
the most recently-assigned component v in PNv;
constraints on PN and LN.

output: reduced partition domains PN for each u �C.
BEGIN

foreach u �C do
if PNv � DM�u� and (Fc�u��Hc�PNv�� Rc�PNv� or

Fm�u��Hm�PNv�� Rm�PNv�) then
remove PNv from DM�u�;

if ∑�y��v�u���u�v���LN Fl�y��Hl�LN�� Rl then
remove all partitions but PNv from DM�u�;

end-foreach
END.

It is shown in [4] that a properly-selected initial order
of components can reduce, on average, the number of steps
required to find a solution. We, therefore, order the compo-
nents according to their combinational resource consump-
tions for initial allocation. The combined resource con-
sumption by component u, w�u�, is computed as follows:

w�u� � a1 �
Fc�u�

∑Rc�Pi�
�a2 �

∑y�u�Fl�y�

Rl�L�
�a3 �

Fm�u�

∑Rm�Pi�
(3)

where a1�a2 and a3 are constants defining the weights
of computation, communication, and memory resource;
Fc, Fm, and Fl are the component’s resource consumption
function for computation, memory, and communication re-
source, respectively; Rc, Rm, and Rl are corresponding re-
source constraints of a device; y�u� represents an incoming
or outgoing communication link induced by component u.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 



In our algorithm, the components are allocated in descend-
ing order of their combinational resource consumptions, im-
plying that a component requiring more resources be allo-
cated first.

4. An Example: ETC Servo Control

To demonstrate its usefulness and effectiveness, the pro-
posed algorithm is applied to an automotive electronic throt-
tle control (ETC) system. The details of the ETC software
model and its execution platform can be found in [5]. Due
to space limitation, we present only a small part of one sub-
system, servo control, with artificially-scaled resource con-
sumptions. The structural model of the subsystem consists
of components for fault detection (FD), mode switch (MS),
human control (HC), cruise control (CC), traction con-
trol (TC), limp home (LH), shutdown (SHDN), and merge
(MG), as shown in Figure 1 with labeled resource consump-
tions (Kilobytes for memory and Bytes for links). The plat-
form consists of 2 processors, P1 and P2, connected via a
shared link L. The available resources are 15 and 20 for
computation, 20 KB for the memory on each processor, 10
KB/s for the communication link.1

(2,10) (1,5)

(2,2)

(10,1)

(6,1) (2,4)
4

2

8

8

10

2

6

8

8(1,1)

(1,3)

FD MS MG

SHDN

LH

HC

CC

TC

Figure 1. The structural model of the servo
controller.

The components are first ordered according to their com-
bined resource consumption w�u� using Eq. (3) with all re-
sources weighted equally a1 � a2 � a3 � 1. The order of
allocation is then MS�w � 0�49�, CC�w � 0�45�, MG�w �
0�38�, TC�w � 0�36�, FD�w � 0�35�, LH�w � 0�23�,
HC�w� 0�13�, SHDN�w� 0�12�. Further, we would like to
allocate the total workload proportionally to the processors’
available computation resource, but equally on the memory
resource, with c1 � c2 � 10 and c3 � 1. Under this alloca-
tion strategy, we have Cideal�PN1� � 10�71, Mideal�PN1� �
13�5 and Cideal�PN2� � 14�29, Mideal�PN2� � 13�5, for par-
tition PN1 and PN2, respectively. Figure 2 shows the al-
location steps, the CF values, and the partitions with their
resource consumptions after each allocation.

Components are allocated individually, one-by-one, in
descending order of their w values. Initially, the partition

1In fact, the processors used for experiments have more resources than
specified here. We limited them to show the effectiveness of our algorithm.

domains of all components are assigned to be �PN1�PN2�
since every component consumes less resources than those
available on each processor. As can be seen in Figure 2,
we choose the partition with minimum CF in an examined
component’s partition domain for allocation. At step 6, al-
locating LH to PN2 violates the memory constraint. So,
MCVD is reset to 6, and forward checking is performed.
Since PN2 has reached its maximum available memory, no
other component can be allocated to it. The forward check-
ing therefore removes PN2 from the domains of all unallo-
cated components — LH, HC, and SHDN. This makes PN1

the only partition available for the unallocated components.
Hence, LH, HC, and SHDN are assigned to PN1 immedi-
ately. The resultant partitions of the servo control subsys-
tem are: the components CC, LH, HC and SHDN run on
P1; and FD, MS, TC and MG run on P2. All resource con-
straints are met with this allocation.

Besides the algorithm process, the example also shows
the effects of the constant selection in w and CF . Order-
ing components for allocation with a1 �a2 �a3 � 1 makes
the MS with the most communications allocated first in-
stead of CC with the most computation resource consump-
tions. Failure of the first attempt in allocating LH at step
6 is caused by the small value of c3 for memory in CF .
Similarly, assigning an equal weight on computation and
communication in CF makes the total computation resource
consumptions of P1 and P2 less proportional to their avail-
ability.

5. Evaluation
Our evaluation focuses on the scalability of the proposed

component-allocation method. The metrics used in the eval-
uation include the number of nodes visited in the design
space and the failure ratio. The number of nodes visited is
obtained by counting all allocations explored. This implies
the speed at which the algorithm finds a solution. The fail-
ure ratio is computed as the percentage of the number of
experiments that the algorithm fails to find a solution over
the total number of experiments conducted. To ensure all
experiments complete within a reasonable time, we limit
the algorithm’s exploration to be 1 million nodes.

We experimented with a set of randomly-generated mod-
els. In each generated component graph, the number of
components was selected from 100 � 1000 in increments
of 100. For each component, its link degree was randomly
generated between 1 and 5, with computation and mem-
ory consumptions ranging from 0.005 to 0.05. The com-
munication for each link was assigned randomly between
10 and 100. Similarly, the platform models were also gen-
erated randomly with the number of computation devices
ranging from 5 to 50 in increments of 5. Each device has
0�6 � 1 computation resource, and 0�3 � 1 memory re-
source. The communication network has the capacity of

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 



steps components CF : �PN1�PN2� allocation PN1�Hr PN2�Hr Hl�LN�

1 assign MS 0�3�0�07 PN2 /0��0�0� �MS���1�5� 0
2 assign CC 8�83�16�77 PN1 �CC���10�1� �MS���1�5� 8
3 assign MG 10�41��0�06 PN2 �CC���10�1� �MS�MG���3�9� 14
4 assign TC 10�43�4�06 PN2 �CC���10�1� �MS�TC�MG���9�10� 14
5 assign FD 8�18�4�71 PN2 �CC���10�1� �FD�MS�TC�MG���11�20� 14
6 assign LH 5�41�5�34 PN2 memory constraint violation

PN1 �CC�LH���11�2� �FD�MS�TC�MG���11�20� 32
7 assign HC PN1 �CC�LH�HC���13�4� �FD�MS�TC�MG���11�20� 32
8 assign SHDN PN1 �CC�LH�HC�SHDN���14�7� �FD�MS�TC�MG���11�20� 36

Figure 2. Steps for allocating the ETC servo control subsystem with multiple platform resource
constraints.

100 � 1000. For the purpose of comparison, we chose
the standard branch-and-bound (BB) algorithm as a base-
line. In each experiment, the component graph was par-
titioned and allocated to the processors in the platform us-
ing the standard BB, informed BB with component ordering
(IBB+O), and informed BB with both ordering and forward
checking (IBB+O+FC). In each case, we generated 3 struc-
tural+platform models, applied all selected algorithms for
each model, and took the average as the results. We chose
the load-balancing strategy for Cideal�PNi� and Mideal�PNi�.

5.1. Performance while varying the model size

We first evaluated the scalability of the algorithm while
varying the size of the structural model. The number of
components in the model is used to represent the size of
a structural model. In the experiments, we fixed the num-
ber of processors in the platform model to be 5. Since the
comparison of the visited nodes under different algorithms
is meaningful only when a solution exists, we reduced the
resource consumption by each component as the model size
increases, to ensure that the software can be fit in the 5-
processor platform. The generation was so tuned that not
every allocation meets all resource constraints.

Figure 3 shows the number of nodes visited in the de-
sign space before a solution was found. The algorithm
IBB+O+FC is found to outperform IBB+O slightly, while
both outperform the standard BB algorithm significantly.
This implies that IBB+O+FC chose a proper allocation at
its first trial, and hence, did not need to backtrack. Since
IBB+O and IBB+O+FC both performed significantly better
than BB but make minimal differences between them, one
can attribute the competence function to this. The small dif-
ference between IBB+O and IBB+O+FC is due to the for-
ward checking. as the platform contains a small number of
processors. Moreover, the difference between IBB+O+FC
and IBB+O decreases as the size of the structural model in-
creases. The reason for this can be the reduced resource
consumption by each component, resulting in the increas-

ing number of solutions and more likely to find a solution
in fewer steps.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

number of components (× 102)

vi
si

te
d 

no
de

s

BB
IBB+O
IBB+O+FC

Figure 3. The number of nodes visited for dif-
ferent model sizes.

Figure 4 shows different algorithms’ failure ratios for
different structural model sizes. We changed the resource
consumption parameters during system generation to make
it more likely to violate constraints. We observed that BB
fails in more cases than IBB+O. These results indicate that
IBB+O+FC can find a solution faster than IBB+O, which
finds a solution faster than BB. Since we applied all three
algorithms to the same structural model in each experi-
ment, the failure ratio with an unscalable algorithm may en-
counter more false positives, meaning that a solution exists
but the algorithm cannot find it within the specified number
of steps. We also observed that the difference between fail-
ure ratios of different algorithms increases as the number
of components increases. This may result from exploring
only a fixed number of nodes in an expanding design space.
The swings in the failure ratios for different graph sizes may
also result from the randomness of the resource consump-
tions generated for each experiment.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of components (× 102)

fa
ilu

re
 r

at
io

BB
IBB+O
IBB+O+FC

Figure 4. The failure ratios of different algo-
rithms.

5.2. Performance while varying the number of de-
vices in platform

The scalability of our algorithm is also affected by the
number of devices in the platform. In this case, we fixed the
number of components in the structural model to be 100.
Similarly, we set different graph-generation parameters for
both visited-node and failure-ratio experiments so that a so-
lution can be found before reaching the node-exploration
limit for the former case and unlikely to find a solution
within the exploration limit for the latter.

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

number of partitions

vi
si

te
d 

no
de

s

BB
IBB+O
IBB+O+FC

Figure 5. The number of nodes visited with
different numbers of devices.

The results, shown in Figures 5 and 6, are similar to
those for different model sizes. IBB+O+FC explored the
fewest number of nodes to find a solution, while BB ex-
plored the most. There was a significant difference between
the visited nodes of IBB+O and IBB+O+FC. This indicates
that the forward checking improved the solution search by
removing more partitions from a component’s domain as
the number of partitions increases. Similarly, BB experi-
enced the largest failure ratio, and IBB+O+FC experienced
the least. The results also show that different failure ratios

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

number of partitions

fa
ilu

re
 r

at
io

BB
IBB+O
IBB+O+FC

Figure 6. The failure ratios of different algo-
rithms.

appear only beyond a certain number of partitions (10 for
BB, and 25 for IBB+O). This implies that the competence
function and forward checking become helpful only when
there are a large number of partition domains. Similarly,
the swings of the failure ratios may also result from the ran-
domness of the models in each experiment.

6. Related Work

Many approaches have been proposed to address multi-
ple resource constraints during embedded software devel-
opment [3, 7, 9]. Most of them rely on the assumption of
independent resource constraints that can be handled indi-
vidually, one at a time. Since meeting a constraint may po-
tentially cause violation of other constraints, we need a so-
lution that considers all constraints together. Q-RAM [8] is
a framework supporting allocation multiple applications to
multiple resources using a utility function of multiple QoS
requirements. Although this approach is effective and scal-
able, the allocation in Q-RAM was concerned with how to
provide sufficient resource of each type at the application
level instead of considering the resource availability in in-
dividual devices and allocating them at the software com-
ponent level. Neema et al. [6] developed and implemented
a different approach based on OBDD in their tool called
DESERT. However, the OBDD is unsuitable for modeling
resource constraints. On the other hand, techniques for con-
strained search in the field of artificial intelligence, such as
forward checking [2] and arc consistency check [4], can be
used to improve the average-case performance of a guided
exhaustive search.

Our work here differs from all of the above in that mul-
tiple resource constraints are addressed by allocating com-
ponents to the platform using informed branch-and-bound,
which is both scalable and complete. Our allocation is static
and focuses on design-time decisions instead of runtime
adaptiveness.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 



7. Conclusions and Future Work

Allocating software components to a platform with mul-
tiple resource constraints is a crucial and challenging step
in automatic model transformation for fast and low-cost de-
velopment of embedded real-time software. We solved this
problem by proposing a new method based on an informed
branch-and-bound. Our algorithm uses a competence func-
tion to assist component allocation at each step, and uses
a forward checking mechanism to reduce the partition do-
mains of unallocated components. The overhead introduced
by the forward checking is minimized by turning it on only
after enough components have been allocated, and by ex-
amining only the partitions affected by the current alloca-
tion. Our evaluation results have shown that the algorithm
is more scalable than others known to date. The method
has been integrated into an embedded software design and
analysis toolkit, called AIRES tool, which has been devel-
oped as part of the DARPA MoBIES Program, for automat-
ing the design of performance-constrained large embedded
real-time software.

We have learned several lessons in this work. First, mul-
tiple resource constraints, sometimes inter-dependent and
conflicting, must be considered as a whole, resulting in
exponentially-increasing complexity. A simple technique
that deals with one resource at a time, is therefore inade-
quate. Second, the accuracy of resource consumption es-
timations on a candidate target, particularly their relative
values, has great impact on the accuracy of the final results
since the estimations determine the effects of the weights in
the competence function and combinational resource con-
sumption. Finally, it is highly desirable and beneficial to
build multiple allocation strategies in the design tool for a
designer to choose the most suitable one, or to test “what-
if” scenarios. Instead of implementing every strategy as
a stand-alone function, we use a function to make the al-
gorithm using different strategies by assigning different
weights in this function. Such an approach not only sim-
plifies the implementation, but also allows a combination of
strategies.

Our future work includes improving the algorithm to
deal with additional constraints and optimize the allocation
results. Although the algorithm can be used to meet various
types of resource constraints such as power, size, and cost,
in addition to those treated in this paper, it would be chal-
lenging and interesting to determine the competence func-
tions with such heterogeneous resource types. Particularly,
there may exist resources whose consumptions cannot be
modeled as a simple function. Additional criteria and mech-
anisms may be required to handle other types of resource
constraints. We would also like to investigate and improve
the optimality of the generated results. A key issue is to de-
fine a (possibly utility-based) function that can be used to
evaluate the optimality involving multiple resource types.

References

[1] D. de Niz and R. Rajkumar. Time weaver: a software-
through-models framwork for embedded real-tiem
systems. In Proceedings of the 2003 ACM SIGPLAN
Conference on Language, Compiler, and Tool for Em-
bedded Systems, pages 144–152, San Diego, CA.,
June 2003.

[2] M. J. Dent and R. E. Mercer. Minimal forward check-
ing. In Proceedings of the 6th IEEE International
Conference on Tools with Artificial Intelligence, pages
306–311, 1994.

[3] P. Gai, G. Lipari, and M. Di Natale. Minimizing
memory utilization of real-time task sets in single and
multi-processor systems-on-chip. In Proceedings of
the 22nd Real-Time Systems Symposium (RTSS 2001),
pages 73–83, December 2001.

[4] V. Kumar. Algorithms for constraint satisfaction prob-
lems: a survey. A.I. Magazine, 13(1):32–44, 1992.

[5] MoBIES Auotmotive OEP. Platform
mathematical models and controller code.
http://vehicle.me.berkeley.edu/mobies/, 2002.

[6] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts.
Constraint-based design-space exploration and model
synthesis. In Proceedings of the 3rd International
Conference on Embedded Software (EMSOFT’03),
volume 2855, pages 290–305, Philadelphia, PA, Oc-
torber 2003.

[7] B. C. Neuman and S. Rao. Resource management for
distributed parallel systems. In Proceedings of the 2nd
International Symposium on High Performance Dis-
tributed Computing, pages 316–323, July 1993.

[8] R. Rajkummar, C. Lee, J. P. Lehoczky, and D. P.
Siewiorek. Practical solutions for QoS-based resource
allocation problems. In Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS’98), pages 296–
306, Madrid, Spain, December 1998.

[9] R. Ramamoorthi, A. Rifkin, B. Dimitrov, and K. M. C.
Butts. A general resource reservation framework for
scientific computing. In Proceedings of the 1st In-
ternational Scientific Computing in Object-Oriented
Parallel Environments (ISCOPE) Conference, volume
1343, pages 283–290, December 1997.

[10] S. Wang and K. G. Shin. Early-stage performance
modeling and its application for integrated embedded
constrol software design. In accepted by 2004 ACM
Workshop on Software Performance (WOSP), Red-
wood, CA., January 2004.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04) 
1080-1812/04 $ 20.00 © 2004 IEEE 


	footer1: 


