
Change-Point Monitoring for
the Detection of DoS Attacks

Haining Wang, Member, IEEE, Danlu Zhang, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract—This paper presents a simple and robust mechanism, called Change-Point Monitoring (CPM), to detect denial of service

(DoS) attacks. The core of CPM is based on the inherent network protocol behaviors and is an instance of the Sequential Change Point

Detection. To make the detection mechanism insensitive to sites and traffic patterns, a nonparametric Cumulative Sum (CUSUM)

method is applied, thus making the detection mechanism robust, more generally applicable, and its deployment much easier. CPM

does not require per-flow state information and only introduces a few variables to record the protocol behaviors. The statelessness and

low computation overhead of CPM make itself immune to any flooding attacks. As a case study, the efficacy of CPM is evaluated by

detecting a SYN flooding attack—the most common DoS attack. The evaluation results show that CPM has short detection latency and

high detection accuracy.

Index Terms—CUSUM algorithm, DoS attacks, intrusion detection, protocol behavior.

�

1 INTRODUCTION

THE growing number of denial of service (DoS) attacks
impose a significant threat on the availability of

network services, and the vulnerability of the Internet to
DoS attacks has been witnessed by the frequent attacks on
Internet servers and their resultant disruption of services
[15], [21], [37]. Due to the readily available tools and its
simple nature, flooding packets are the most common and
effective DoS attack. While flooding tools have been
becoming more sophisticated, they have been getting easier
to use. An adversary without much knowledge of program-
ming can download a flooding tool and then launch a DoS
attack. The flooding traffic of a DoS attack may originate
from either a single source or multiple sources. We call the
latter case a distributed denial of service (DDoS) attack.
Briefly, a DDoS attack works as follows: An attacker sends
control packets to the previously compromised flooding
sources, instructing them to target at a given victim. The
flooding sources then collectively generate and send an
excessive number of flooding packets to the victim, but with
fake and randomized source addresses, so that the victim
cannot locate the flooding sources.

To foil DoS attacks, researchers have designed and

implemented a number of countermeasures. In general, the

countermeasures of DoS attacks can be classified into three

different categories: detection, defense (or mitigation), and

IP trace-back mechanisms. Detecting DoS attacks in real

time is the first step of combating DoS attacks. An
automated and fast detection is essential to the protection
against DoS attacks. Upon timely detection of a DoS attack,
more sophisticated defense mechanisms will be triggered to
shield victim servers or link bandwidth from DoS traffic
and block the prorogation of DDoS traffic at routers. At the
same time, we can perform more expensive IP trace-back to
single out flooding sources. Unlike defense and trace-back
mechanisms, detection itself should be an always-on
function with little overhead, causing minimal disruption
to normal operations and withstanding any flooding
attacks.

Basically, detecting DoS attacks belongs to network-
based intrusion detection. A network-based intrusion
detection system (NIDS) is based on the idea that an
intruder’s behavior will be noticeably different from that of
a legitimate user and that many unauthorized actions are
detectable. A commonly used detection approach is either
signature-based or anomaly-based. A signature-based NIDS
inspects the passing traffic and searches for matches against
already-known malicious patterns. In practice, several
signature-based NIDSs have been developed and deployed
at firewalls or proxy servers, such as Bro [41] and Snort [45].
By contrast, an anomaly based NIDS observes the normal
network behavior and watches for any divergence from the
normal profile. Most of DoS detection systems are anomaly-
based, like MULTOPS [17] and D-WARD [36]. However,
their normal traffic models are mainly based on flow rates.
Due to the diversity of user behaviors and the emergence of
new network applications, it is difficult to obtain a general
and robust model for describing the normal traffic
behaviors.

We have observed that the server-client or peer-to-peer
model of Internet applications demonstrates a unique
request versus reply protocol behavior, and the reliable data
delivery leads to the inherent data versus acknowledgment
(ACK) protocol behavior. Based on these distinct network
protocol behaviors instead of traffic rates, in this paper, we

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004 193

. H. Wang is with the Department of Computer Science, College of William
and Mary, PO Box 8795, Williamsburg, VA 23187-8795.
E-mail: hnw@cs.wm.edu.

. D. Zhang is with Corporate Research and Development, Qualcomm Inc.,
5775 Morehouse Drive, San Diego, CA 92122.
E-mail: dzhang@qualcomm.com.

. K.G. Shin is with the Real-Time Computing Lab., Department of Electrical
Engineering and Computer Science, The University of Michigan, 1301
Beal Avenue, Ann Arbor, MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript received 22 Jan. 2004; revised 5 Nov. 2004; accepted 12 Dec.
2004.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0001-0104.

1545-5971/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

propose a simple and robust mechanism, called Change-

point Monitoring (CPM), to detect DoS attacks. The rationale
behind CPM is that there exists a strong positive correlation
between requests (data) and the corresponding replies
(ACKs) in the Internet as the inherent protocol behaviors,
and DoS attacks easily destroy this strong correlation. In
particular, we employ the nonparametric Cumulative Sum
(CUSUM) method [6] to detect the cumulative effect of the
deviation from normal protocol behaviors caused by a DoS
attack. The key features of CPM include:

. CPM utilizes the inherent protocol behaviors for
DoS detection. Since the protocol behaviors are
determined by solely the protocol specifications
and the service models of Internet applications,
CPM is independent of traffic flow rates or specific
applications.

. CPM is insensitive to sites and traffic patterns due to
its reliance on the nonparametric CUSUM method
[6], thus making CPM robust, much more generally
applicable, and its deployment easier.

. CPM plays a dual role in detecting DoS attacks: the
first-mile (egress) CPM and the last-mile (ingress)
CPM. Due to its close proximity to the flooding
sources, the first-mile (egress) CPM not only alarms
on the ongoing DoS attacks, but also helps reveal the
origins of the flooding sources.

The simplicity (hence, attractiveness) of CPM lies in its
statelessness and low computation overhead—only a few
variables are introduced to record the protocol behaviors
with a few CPU cycles burned. Besides monitoring the
ongoing traffic at firewalls, CPM can be installed at a leaf
router that connects a stub network1 to the Internet, or at an
ISP edge router that connects a customer network to the ISP.
Moreover, CPM can work independently at either a leaf
(edge) router or a firewall, and it does not need any
coordination with other routers or end-hosts. The indepen-
dence of CPM determines that CPM can be incrementally
deployed and its implementation overhead is low.

As a case study, we use CPM to detect a SYN flooding
attack—the most common DoS attack. The efficacy of CPM
is evaluated by extensive trace-driven simulations. Traces
taken from different sites at different times are employed to
evaluate the sensitivity of CPM. First, our trace-based study
validates the coherence of TCP protocol behaviors, clearly
showing their independence of sites and sampling times.
Then, we inject SYN flooding traffic with different rates and
investigate the detection sensitivity of CPM at different
sites. The evaluation results show that CPM has short
detection latency and high detection accuracy.

The remainder of the paper is organized as follows:
Section 2 details our statistical detection methodology—the
proposed CUSUM algorithm for detecting abnormal proto-
col behaviors. Section 3 describes the CPM framework,
including the placement and structure of CPM and its dual
role in detection. Section 4 presents our case study for
detecting a SYN flooding attack. Section 5 evaluates the
performance of CPM using trace-driven simulations for

SYN flooding detection. Section 6 discusses related work.
Finally, Section 7 states conclusions and future directions.

2 STATISTICAL ATTACK DETECTION

Like most statistical anomaly detection systems, CPM
compares the observed sequence with the profile that
represents the user’s normal behavior and detects any
significant deviation from the normal behavior. The key
difference of CPM from others is that CPM exploits the
inherent network protocol behaviors, instead of traffic
patterns, for detecting network anomalies.

In general, for any associations among IP packets, TCP
segments, or application-level messages that are deter-
mined solely by protocol specifications, we regard them as
inherent protocol behaviors. For instance, according to the
specification of TCP/IP protocol [54], in its normal
operation, a FIN (RST) is paired with a SYN at the end of
data transmission. The other network behaviors, to name a
few, include TCP data segments and ACKs, ICMP requests
and replies, DNS queries and replies, etc.

After distilling the inherent protocol behaviors from raw
traffic flows, we can apply the CPM to detect an ongoing
flooding attack by observing the violation of normal
protocol behaviors. CPM can achieve more accurate detec-
tion with a shorter latency: The strong positive correlation
between requests (or queries) and the corresponding replies
enables CPM to detect abnormal behaviors quickly.

2.1 Change-Point Detection

The objective of Change-Point Detection is to determine if
the observed time series is statistically homogeneous and, if
not, to find the point in time when the change happens. This
has been studied extensively by statisticians. See [2] and [6]
for a good survey. There have been various tests for
different problems. They can be largely divided into two
categories: posterior and sequential. Posterior tests are done
offline where the entire data is collected first and then a
decision of homogeneity or a change point is made based on
the analysis of all the collected data. On the other hand,
sequential tests are done online with the data presented
sequentially and the decisions are made on-the-fly. Our
attack detection algorithm belongs to the Sequential Change
Point Detection [2].

We adopt the sequential test for quicker response when
an attack occurs. It also saves memory and computation.
One difficulty, however, is the modeling of requests’
arrival process. For instance, despite the existence of a
number of previous results on the modeling of TCP
connection request arrivals [9], [10], [43], [49], there is no
consensus on whether it should be modeled as self-similar
or Poisson. For dynamic and complex systems like the
Internet, it may not be possible to model the total number
of session request2 arrivals by a simple parametric
description. So, we seek robust tests which are not
model-specific. In fact, nonparametric methods fit this
requirement very well. Specifically, we use the nonpara-
metric CUSUM (Cumulative Sum) method [6] for the

194 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

1. A stub network only carries packets to and from local hosts.
2. A session request could be a TCP connection request, an ICMP

request, or a DNS query, etc.

detection of DoS attacks. This method enjoys all the
virtues of sequential and nonparametric tests, and the
computation load is very light. When the time series is
independent identically distributed (i.i.d.) with a para-
metric model, CUSUM is asymptotically optimal for a
wide range of Change Point Detection problems [2], [6].

2.2 The CUSUM Algorithm

For ease of presentation, we only show how it works in the
request (QST) versus reply (RLY) pair scheme, which is
similar to the data versus acknowledgment (ACK) pair
scheme except that the collection of QSTs and RLYs is
replaced with that of data and ACKs.

Let f�n; n ¼ 0; 1; � � �g be the number of QSTs minus that
of the corresponding RLYs collected within one sampling
period. To further alleviate its dependence on the time,
traffic pattern, and size of the network, f�ng is normalized
by the average number, �RR, of RLYs during each sampling
period. �RR can be estimated in real time and updated
periodically. An example of recursive estimation and
update of �RR is:

�RRðnÞ ¼ � �RRðn� 1Þ þ ð1� �Þ RLYðnÞ; ð1Þ

where n is the discrete time index and � is a constant,
whose default value is 0.01, lying strictly between 0 and 1
that represents the memory in the estimation. Let
Xn ¼ �n= �RR, then fXng is no longer dependent on the
network size or time-of-day. Its dynamics are solely the
consequence of the protocol specification. So, we can
consider fXng as a stationary random process. Under the
normal condition, the mean of Xn, denoted as c, is much
less than 1 and close to 0. fXng is assumed to satisfy the
following two conditions:

C1. fXng is -mixing, meaning that the ðsÞ parameters,
defined below, approach 0 as s! 1:

 ðsÞ ¼def sup
t�1

sup
A 2 Rt

1
;

B 2 R1
tþs;

P ðAÞP ðBÞ 6¼ 0

j P ðABÞ
P ðAÞP ðBÞ � 1j; ð2Þ

where Rt
1 is the �-algebra generated by fX1; X2; � � � ; Xtg

andR1
tþs is the �-algebra generated by fXtþs;Xtþsþ1; � � �g.

 ðsÞ is affected by the dependency among the fXng
samples: A highly dependent fXng has ðsÞ that decays
slowly as s! 0. In addition, the sup above means
supremum—the tightest upper bound of the variable in
the formula [46].

C2. The marginal distribution of fXng satisfies the follow-
ing regularity condition: 9t > 0 such that EðetXnÞ <1.

The details of these conditions can be found in [6]. Note
that -mixing is a much looser requirement than indepen-
dence, and Xn being -mixing only indicates that Xn is not
“extremely” dependent. In practice, both conditions are
mild and easily satisfiable, even for long-range dependent
arrival processes. In general, EðXnÞ ¼ c� 1. We choose a
parameter a that is an upper bound of c, i.e., a > c, and
define ~XXn ¼ Xn � a so that it has a negative mean during
normal operation. When a DoS attack takes place, ~XXn will
suddenly increase and become a large positive number.

Suppose, during an attack, the increase in the mean of ~XXn

can be lower-bounded by h. Our change detection is based
on the observation of h� c.

Let

yn ¼ ðyn�1 þ ~XXnÞþ;
y0 ¼ 0;

ð3Þ

where xþ is equal to x if x > 0 and 0, otherwise. The
meaning of yn can also be understood as follows: If we
define Sk ¼

Pk
i¼1

~XXi with S0 ¼ 0 at the beginning, it is
straightforward to show that

yn ¼ Sn � min
1�k�n

Sk; ð4Þ

i.e., the maximum continuous increment until time n. A
large fyng is a strong indication of an attack. Since (3) is
recurrent and much easier to compute than (4), we will use
it in making detection decisions.

Let dNð:Þ be the decision at time n: “0” for normal
operation (homogeneity) and “1” for attack (a change
occurs). Here, N represents the flooding threshold:

dNðynÞ ¼
0 if yn � N;
1 if yn > N:

�
ð5Þ

In other words, dNðynÞ ¼ IðYn > NÞ, where Ið:Þ is the
indicator function. The purpose of introducing a is to offset
the possible positive mean in fXng caused by network
anomalies so that the test statistic yn will be reset to zero
frequently and will not accumulate with time.

Let Pm and Em be the probability measure and the
expected value generated by f ~XXng with the attack occurring
at time m (change point at time m); let P1 and E1 be the
counterparts without any attack (no change point). There
are two fundamental performance measures for the
sequential change point detection.

False alarm time (the time without false alarm): the time
duration with no false alarm reported when there is no
attack.

Detection time: the detection delay after the attack starts.

One would want the second measure to be as small as
possible while keeping the first measure as large as
possible. However, they are conflicting goals and cannot
be simultaneously achieved. Therefore, the design philoso-
phy of a statistical change point detection is to minimize the
detection time subject to a certain false alarm tolerance. In
order to compare the performance of different detection
schemes, some criteria of false alarms must be specified,
like average time between two consecutive false alarms,
worst-case false alarm time, and so on. An algorithm is said
to be optimal with respect to a certain criterion if it
minimizes the detection time for an attack among all the
detection schemes subject to the false alarm constraint. The
CUSUM rule has been shown to be asymptotically optimal
with respect to the worst-case mean false alarm time in the
change-point detection problems involving a known para-
metric model and independent observations [2].

Due to the lack of a complete model for f ~XXng, it is
difficult to discuss optimality. The choice of CUSUM is
based on its simplicity in computation and nonparametric

WANG ET AL.: CHANGE-POINT MONITORING FOR THE DETECTION OF DOS ATTACKS 195

implementation, as well as its generally excellent perfor-
mance. It has been shown in [6] that, with the choice of a,
the upper bound in case of normal operation, and N , the
flooding threshold, as N becomes large, we have

sup
n

j lnP1ðdNðnÞ ¼ 1Þj � OðNÞ; ð6Þ

which is equivalent to

P1fdNðnÞ ¼ 1g � c1 expð�c2NÞ; ð7Þ

where c1 and c2 are constants, depending on the marginal
distribution and mixing coefficients of f ~XXng. In other
words, the time between consecutive false alarms grows
exponentially with N . The burstiness of traffic is reflected
by the mixing coefficients ðsÞ and, thus, does impact the
detection performance. However, the constants c1 and c2
only play a secondary role and can be ignored in practice.

In order to study the detection time, let us define

�N ¼ inffn : dNð:Þ ¼ 1g;

�N ¼ ð�N �mÞþ

N
;

ð8Þ

where m represents the starting time of the attack, �N
represents the normalized detection time after the occur-
rence of a change, and inf means infimum, or the greatest
lower bound [46]. In CUSUM, for any m � 1, if h is the
actual increase in the mean of f ~XXng during an attack, we
have

�N ! � ¼ 1

h� jc� aj ; ð9Þ

where h� jc� aj is the mean of f ~XXng when n > m (after an
attack starts). However, since h is a bound rather than a true
value, the above is a conservative estimation (an upper
bound) of the actual detection time. The exact choice of
parameters a, h, and N will be detailed in Section 4.4 when
we apply this method for detecting SYN flooding attacks.

3 THE FRAMEWORK OF CPM

In this section, we first briefly describe the placement of
CPM, then present the structure of CPM, and discuss the
dual role of CPM.

3.1 Placement of CPM

As has been done in most NIDSs, it is possible that CPM
could be placed on the link that connects a stub (customer)
network to the Internet by monitoring the bidirectional
traffic on that link. However, besides the extra specialized
equipment and manpower required, during high peak (near
saturation) flow rates, almost no event of any kind would be
logged by NIDSs—they either have to drop packets at a
very high rate or require a high-performance multi-CPU
architecture for packet state analysis.

Therefore, unlike the traditional NIDS that passively
monitors bidirectional traffic on network links, CPM is
transparently interposed at either a leaf router or an ISP
edge router and is implemented as a loadable module of the
router. In addition to its installation at leaf or ISP edge
routers, CPM can also be placed at the firewall or the proxy

server of a large organization which has only a single

connection to the external world. All packets of a session

must pass through the same CPM. However, we do not

recommend the CPM to be installed at core routers, mainly

because

1. it is close to neither flooding sources nor the victim,
2. packets of the same flow could traverse different

paths,
3. it is not always possible to accurately classify

different transport-layer packets at core routers due
to the possible use of IPSec, and

4. it cannot detect the reflected flooding attacks [42]
easily since malicious packets are diffused before
reaching the core router.

3.2 Structure of CPM

Installed at a leaf (ISP edge) router, CPM consists of two

sniffers, one at the in-bound interface and the other at the

out-bound interface of the router. We refer to the traffic

from the Internet to the stub (customer) network as in-

bound, and the traffic in the other direction as out-bound. The

in-bound sniffer (out-bound sniffer) monitors the incoming

(outgoing) traffic. Fig. 1 illustrates the structure of CPM

placed at a leaf router.
Both sniffers are software-based agents. Each sniffer

consists of three components: a packet classifier, a packet

counter, and a CUSUM detector. The packet classifier is

used to distinguish the targeted packets such as TCP

SYNs from the raw IP traffic. Large-scale packet classifica-

tion mechanisms [18], [30], [53] have been proposed and

implemented, making it possible for routers to differenti-

ate the targeted packets from others at a very high speed.

Therefore, the CPM’s capability to withstand any flooding

attacks depends on the ability of a leaf router in

classifying and forwarding packets, typically at the rate

of a million packets per second [30]. The packet counter

includes a few additional variables that are introduced to

record the number of targeted packets at each interface of

a leaf router. No per-connection state or state computation

is involved in CPM. Unlike the other NIDSs that maintain

state for each TCP connection, CPM does not have the

cold-start problem3 mentioned in [19]. The CUSUM

detector takes the variables of packet counter as its input

and executes the CUSUM detection algorithm given in

Section 2.2.

196 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 1. The structure of CPM placed at a leaf router.

3. A “cold start” refers to the situation when a network intrusion
detection system begins to run, or after it is restarted, it doesn’t know how
to deal with the incoming TCP traffic that belongs to the connections
established earlier.

3.3 Dual Role of CPM

Each leaf (ISP edge) router can be either the first-mile

(egress) or the last-mile (ingress) router, depending on the

direction of traffic between the stub (customer) network and

the Internet. The CPM at a leaf (edge) router, therefore,

plays a dual role in detecting flooding attacks:

. As the first-mile (egress) CPM, it detects the flooding
attacks originated from its local stub (customer)
network and traces the flooding sources inside the
local stub (customer) network.

. As the last-mile (ingress) CPM, it detects flooding
attacks on a server inside the local stub (customer)
network and issues a warning signal upon detection
of an attack.

The first-mile (egress) CPM plays the primary role in

sniffing a flooding attack, due mainly to its proximity to the

flooding sources. Once an ongoing SYN flooding attack is

detected, the first-mile (egress) CPM’s warning signal

automatically indicates the flooding sources to be inside

the stub (customer) network to which the CPM is con-

nected. However, the detection sensitivity of the first-mile

(egress) CPM may diminish as more flooding sources

participate and locate in different sites. In a large-scale

DDoS attack, the flooding sources can be orchestrated so

that each flooding source may cause only an insignificant

deviation from the normal traffic pattern.
In contrast, the last-mile (ingress) CPM can quickly

detect the flooding attacks as all of the flooding traffic

streams are merged at the last-mile (ingress) router.

Although it cannot provide any hint about the flooding

sources, upon receipt of the last-mile (ingress) CPM’s

warning signal for an attack, the defense system, like

SynDefender [34], can be triggered to protect the victim. To

bring down the victim under protection, the flooding

sources have to increase their flooding rates significantly,

but this will make it easier for the first-mile (egress) CPM to

detect the flooding attack and locate its source(s). So, the

last-mile (ingress) CPM plays an important complementary

role in detecting DoS attacks.
For ease of presentation, in the rest of the paper, we only

use the terms of leaf router, first-mile CPM and last-mile

CPM, and stub networks. However, they are exchangeable

with ISP edge router, egress CPM and ingress CPM, and

customer networks, respectively.

4 DETECTING SYN FLOODING ATTACKS

As a case study, we evaluate the efficacy of CPM by

detecting SYN flooding attacks. The recent research results

have shown that more than 90 percent of the DoS attacks

use TCP [37], and TCP SYN flooding dominates in the

available attacking tools and the number of DoS attacks

known to date [37]. TCP SYN flooding consists of a stream

of spoofed TCP SYN packets directed to a listening TCP

port of the victim. Not only the Web servers but also any

system connected to the Internet providing TCP-based

network services, such as FTP or mail servers, are

susceptible to TCP SYN flooding attacks.

4.1 SYN and Reflected SYN/ACK Flooding

SYN flooding attacks exploit the TCP’s three-way
handshake mechanism and its limitation in maintaining
half-open connections. When a server receives a SYN
packet, it returns a SYN/ACK packet to the client. Until
the SYN/ACK packet is acknowledged by the client, the
connection remains in half-open state for a period of up
to the TCP connection timeout, which is typically set to
75 seconds. The server has built in its system memory a
backlog queue to maintain all half-open connections.
Since this backlog queue is of finite size, once the backlog
queue limit is reached, all connection requests will be
dropped. If a SYN packet is spoofed, the victim server
will never receive the final ACK packet to complete the
three-way handshake. Flooding spoofed SYN packets can
easily exhaust the victim server’s backlog queue, causing
all the incoming SYN packets to be dropped.

While the conventional SYN flooding is an attack of
“system resource consumption,” the recent reflected SYN/
ACK flooding attacks [16] virtually “disconnect” a victim
server from the Internet by hogging the link bandwidth
between the victim and its ISP with an excessive number of
SYN/ACK packets (a.k.a. bandwidth consumption attack).
It is a kind of Distributed Reflection DoS (DRDoS) attacks
[42]. In reflected SYN/ACK flooding attacks, a large
number of innocent BGP routers (service port 179) and
well-known TCP servers are exploited as the reflectors. The
attacker “sprays” the spoofed SYN packets, whose source
IP addresses are falsified as the victim’s IP address, across a
large number of reflectors. Each reflector alone only
receives a moderate flux of spoofed SYN packets so that it
can easily sustain the availability of its normal service.
However, these innocent reflectors involuntarily reflect and
amplify the malicious SYN packets. Their SYN/ACK
responses, which are aggregated and flooded to the victim,
are excessive, exhausting the link bandwidth between the
victim and its ISP.

Note that in reflected SYN/ACK flooding attacks, all
malicious SYN packets from the attacker must traverse
the leaf router that connects the attacker to the Internet in
order to reach the Internet and then get sprayed across
the numerous reflectors. The CPM installed at this leaf
router can detect the flow of these malicious SYNs since
no SYN/ACKs return to the attacker and the total
number of malicious SYNs is still very large. So, the
same method for detecting SYN flooding attacks can be
applied to detect reflected SYN/ACK flooding attacks. To
CPM, the reflected SYN/ACK flooding attack is just a
variation of the conventional SYN flooding attack.

4.2 Detection Methods

Based on the inherent protocol behavior of TCP connection
establishment and teardown, we utilize two types of packet
pairs—SYN versus FIN and SYN versus SYN/ACK
pairs—to detect SYN flooding attacks. According to the
type of packet pairs used, we devise two different methods
for SYN flooding detection.

As shown in Fig. 2, which is borrowed from [54], SYN
and FIN packets delimit the beginning (SYN) and end (FIN)
of each TCP connection in the same direction. In contrast,
SYN and SYN/ACK packets signal the start of a TCP

WANG ET AL.: CHANGE-POINT MONITORING FOR THE DETECTION OF DOS ATTACKS 197

connection establishment in two opposing directions.
Under the normal condition, one appearance of a SYN
packet results in: 1) the eventual return of a FIN packet in
the same direction and 2) the corresponding transmission of
a SYN/ACK packet in the reverse direction within one
round-trip time (RTT). Thus, the difference between the
number of SYN and FIN (or SYN/ACK) packets can be
utilized to detect SYN flooding attacks.

4.2.1 SYN versus FIN Pairs

The first detection method utilizes the SYN versus FIN pairs.
Because a SYN packet and the corresponding FIN pass
through a leaf router in the same direction (i.e., the same
interface as shown in Figs. 1 and 2), the SYN versus FIN pair
can be monitored by the same sniffer. No coordination and
communication between these two sniffers are required. The
first-mile CPM employs only the out-bound sniffer, while
the last-mile CPM uses the in-bound sniffer only. Although
SYN packets can be distinguished from SYN/ACK packets,
there is no way to discriminate active FINs from passive
FINs since each end-host behind a leaf router may be either a
client or a server. So, the SYN versus FIN pairs refer to both
(SYN, FIN) and (SYN/ACK, FIN). In this detection method,
the SYN packets are “generalized” to include the pure SYN
and SYN/ACK packets.

Under a long-running normal condition, the TCP
semantics has the one-to-one correspondence between
SYNs and FINs. However, in reality, there can always be
a discrepancy between the number of SYNs and FINs.
Besides the small number of long-lived TCP sessions, the
other major cause of this discrepancy lies in the occurrence
of RST packets. A single RST packet can terminate a TCP
session without generating any FIN packet, which violates
the SYN versus FIN pair’s protocol behavior. RSTs are
generated for two reasons: 1) passive, or the RST is
transmitted upon arrival of a packet at a closed port and
2) active, or the RST is initiated by a client to abort a TCP
connection.4 Each active RST is associated with the SYN

from the same session, and both of them can be seen by the
same sniffer. In contrast, a passive RST cannot be associated
with any SYN seen by the same sniffer as the passive RST
and its corresponding SYN must go through different
sniffers. Furthermore, passive RSTs may even have nothing
to do with SYNs. For instance, late arrival of a data packet at
the port that has already been closed will trigger the
transmission of an RST. We treat passive RSTs as a
background noise.

In general, three types of SYN pairs are considered as the
normal behavior of TCP in the first detection method: (SYN,
FIN), (SYN/ACK, FIN), and (SYN, RSTactive). Unfortu-
nately, CPM cannot distinguish active RSTs from passive
ones. There are two simple but extreme ways to resolve this
problem: one is to treat all RSTs as active, and the other is to
treat all RSTs as passive. The first approach degrades the
CPM detection sensitivity, while the second raises the CPM
false alarm rate. To make a trade-off between detection
sensitivity and false alarm rate, it is necessary to set an
appropriate threshold to filter most of the background
noise. Based on our observation, under the normal condi-
tion: 1) SYNs and RSTs have a strong positive correlation,
and 2) the difference between the number of SYNs and that
of FINs is close to the number of RSTs. These imply that
passive RSTs constitute only a small percentage of the entire
RSTs. So, we set the threshold to 75 percent, i.e., three out of
four RSTs are treated as active. Moreover, for the following
reason, CPM can withstand the negative impact of passive
RSTs that are incorrectly classified as active ones: At the end
of each observation period, the CUSUM algorithm resets
any negative difference between the number of SYNs and
that of FINs (RSTs) to zero, so the spike of background noise
is confined to one observation period only, preventing its
cumulative effects.

The weakness of the SYN versus FIN pairs scheme lies in
its vulnerability to simple counter-measures. Once the
attacker is aware of the presence of such a detection
mechanism, it can paralyze the mechanism by flooding a
mixture of SYNs and FINs (RSTs). Although one can argue
that by doubling its flooding traffic, the attacker increases
the possibility of being traced back, one may still wonder if
there is a better way to overcome this shortcoming.

4.2.2 SYN versus SYN/ACK Pair

Fortunately, there is an alternative that is difficult for an
attacker to counter. In the normal TCP three-way hand-
shake, an out-bound SYN induces an in-bound SYN/ACK
within a round-trip time. In contrast, for the flooded SYNs,
because their spoofed IP source addresses are randomized,
most of the corresponding SYN/ACKs will never return to
the flooding sources and, hence, cannot go through the
same leaf router as those flooding SYNs as shown in Fig. 3
(mismatch part).

The second detection method makes use of SYN versus
SYN/ACK pairs to sniff flooding attacks. Since SYN/ACK
packets are generated by the victim server, it is much more
difficult for the flooding sources to evade the CPM.
Moreover, as compared to the SYN versus FIN pair scheme,
the interval between SYN and SYN/ACK is bounded by
one RTT, not by the duration of a TCP session that has
much larger variations.

198 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 2. TCP states corresponding to normal connection establishment

and teardown (from [54]).

4. Active RSTs are issued mostly by clients. In its own best interest, a
server rarely sends RST packets to clients once the TCP connection is
established.

On the other hand, there are two disadvantages of the
second detection method. First, unlike the first detection
method, the out-bound sniffer and the in-bound sniffer
must be coordinated. The out-bound sniffer maintains the
count of outgoing SYNs and the in-bound sniffer keeps
track of incoming SYN/ACK packets. At the end of each
observation period, the count information must be ex-
changed between the two sniffers. Second, the SYN versus
SYN/ACK pair scheme is restricted to be used by the first-
mile CPM only, which sniffs the flooding sources inside the
local stub network. It lacks the capability to issue a timely
last-mile flooding warning to the network administrator of
the local stub network that is under attack. The reason for
this is that: 1) each victim server generates a SYN/ACK in
response to each SYN it received, regardless whether it is
spoofed or not, and 2) the incoming SYN flood and the
outgoing SYN/ACKs pass through the same local leaf
router. This phenomenon is illustrated in Fig. 3 (match
part). So, there is no noticeable difference between the
number of incoming SYN packets and that of the outgoing
SYN/ACKs generated by the victim servers until the victim
servers are totally shut down and no more SYN/ACKs are
generated. Therefore, the last-mile CPM will still rely on
SYN versus FIN pairs for timely detection of an incoming
SYN flooding attack.

4.2.3 CPM in Detecting SYN Flooding

As mentioned earlier, CPM plays a dual role: one as the
first-mile CPM for sniffing flooding sources and the other as
the last-mile CPM for issuing attack warnings. To make
CPM robust and powerful in SYN flooding detection, both
SYN flooding detection methods are included in the CPM.
The SYN versus SYN/ACK pair method is employed by the
first-mile CPM to sniff flooding sources inside the local stub
network, while the SYN versus FIN pairs method is used by
the last-mile CPM to detect incipient flooding attacks and
issue a warning to the local network administrator.

4.3 Robustness against Network Anomalies

While there is no strict one-to-one match, under the normal
condition, a very strong positive correlation between the
numbers of SYNs and FINs (RSTs) or SYN/ACKs does
exist, as shown in Section 5.2. The discrepancy between the
numbers of SYN and FIN (RST) or SYN/ACK packets is
due to SYN losses and subsequent retransmissions. The
SYN losses are caused by various network anomalies,
including network congestion, routing loops, and link
failures. Clearly, these network anomalies reduce the
detection sensitivity of CPM.

Fortunately, these network anomalies are triggered by
unrelated events and, to date, there exists little evidence
indicating that these different network anomalies are
closely correlated. The recent Internet measurement studies
have shown that: 1) there is little congestion inside the core
of the Internet, where the bandwidth over-provisioning has
been widely used and the link utilization varies from 3 to
60 percent [5]; 2) the majority of routing loops last less than
10 seconds [22]; and 3) link failures are fairly well spread
even in the time scale of minutes [20]. Therefore, these
randomly occurring network anomalies can be treated as
white noise. To offset the effect of white noise, a safety
margin can be added when the normal upper bound, a, is
set, without jeopardizing the detection sensitivity. Only a
severe network congestion, long lasting routing loops, and
bursty occurrence of link failures—which rarely happen—
can confuse the CPM to issue false alarms.

4.4 Parameter Specification

To use the CUSUM algorithm for SYN flooding detection,
we only need to specify three tunable parameters: a, the
upper bound of c, which is the mean of fXng in normal
operation; h, the lower bound of the increase in f ~XXng ¼
fXn � ag during an attack; and, N , the flooding threshold.

The CUSUM algorithm requires Eð ~XXnÞ < 0 before the
change point and Eð ~XXnÞ > 0 after it, i.e., a > c and h > a.
Based on the discussion in Section 2.2, to ensure a long false
alarm time and make it independent of network size and
traffic pattern, we set h ¼ 2a in our design. As the last-mile
CPM that utilizes SYN versus FIN pairs for flooding
detection monitors the incoming traffic, all the SYN flood-
ing packets converge and, therefore, a large difference
between the numbers of SYN and FIN (RST) packets is
easily observable with h >> c. In this case, the detection is
not sensitive to the choice of a. With a large safe margin, we
can simply choose a ¼ 1 and h ¼ 2.

In contrast, as the first-mile CPM that employs SYN
versus SYN/ACK pairs for flooding detection monitors
the outgoing SYN and incoming SYN/ACK traffic, only
part of the flooding SYN packets can be seen by each
detector because an attack may be initiated from many
sites simultaneously. Thus, a proper choice of a is more
important. To balance the detection sensitivity and false
alarm rate, we set a ¼ 0:35 and h ¼ 0:7. Note that the
choices of a and h are insensitive to network size and
traffic pattern. In doing so, a universal false alarm rate
can be realized for easy implementability of our detection
mechanism. On the other hand, in practice, the network
administrator of the involved edge router can incorporate

WANG ET AL.: CHANGE-POINT MONITORING FOR THE DETECTION OF DOS ATTACKS 199

Fig. 3. Match and mismatch between SYN versus SYN/ACK pair at a

leaf router.

site-specific information so that the algorithm can achieve
higher detection sensitivity.

Based on a and h, the flooding threshold N can be
specified as follows: 1) assume c ¼ 0 and � can thus be
obtained from (9) and 2) specify a target detection time (i.e.,
the product of � and N) such that the flooding threshold N
is determined by (8). We choose t0 as the designed detection
time for the last-mile CPM, hence � ¼ 1 and N ¼ 1. In
contrast, we choose 3t0 as the counterpart for the first-mile
CPM, hence � ¼ 2:86 and N ¼ 1:05.5 Compared to the last-
mile CPM, the short detection time of the first-mile CPM is
not so crucial to the victim: the revelation of the flooding
sources is more valuable, although it may take longer time.
Note that the value of N is partially determined by the
designed detection time, so it may not be larger than the
value of h.

It is worth noting that our algorithm is to check the
cumulative effect of an attack. So, it can detect attacks
with the SYN flooding rate less than h at the expense of a
longer response time. The actual lower bound of detec-
tion sensitivity in terms of SYN flooding rate, fmin, can be
given as

fmin ¼ ða� cÞ �
�RR

t0
: ð10Þ

Furthermore, the detection capability is not sensitive to the
flooding pattern. It can detect the attacks with both constant
and bursty flooding rates. The effectiveness of CPM is
evaluated by trace-driven simulations.

5 PERFORMANCE EVALUATION

To evaluate and validate the CPM, we have conducted
trace-driven simulation experiments. The trace data we
used are collected from four different sites at different
times. The first trace was gathered at DEC’s (now HP)
primary Internet access point, which is an Ethernet DMZ
network. It contains an hour’s worth of all wide-area traffic
between DEC Western Research Lab and the Internet on
9 March 1995. The second trace was taken on 13 March 1997
on a 10 Mbps Ethernet connecting Harvard’s main campus
to the Internet, which is a half-hour trace. The third set was
obtained by placing network monitors on the high-speed
link (OC-12, 622 Mpbs) that connects the University of
North Carolina at Chapel Hill (UNC) campus network to
the rest of the world. The trace was collected on
27 September 2000. The fourth set was collected at the
Internet access link that connects the University of Auck-
land at New Zealand to the rest of the world. The tracing
ran from 14:36 to 17:47 on Thursday, 5 December 2000.

The traces used in our experiments are summarized in
Table 1. Note that the DEC and Harvard traces are mixed
traffic collections in both directions, but the UNC and
Auckland traces are unidirectional: UNC-in and Auckland-
in collected the traffic data from the Internet to the UNC
and Auckland campus networks, respectively, while UNC-
out and Auckland-out collected the traffic data from the

UNC and Auckland campus networks to the Internet,

respectively.

5.1 Data Sampling

We collect the numbers of SYN, SYN/ACK, and FIN (RST)

packets during every observation period t0, which deter-

mines the detection resolution. In order to relate the SYN

and FIN (RST) packets of the same connection, the sampling

time of FIN (RST) is delayed by td after SYN is sampled,

where td is so chosen that a significant portion of

connections requested during the SYN sampling period

terminate in the corresponding FIN (RST) sampling period.

Internet traffic measurements [56] have shown that most of

TCP connections last 12-19 seconds, so we set the sampling

delay td to 10 seconds. In contrast, since most RTTs are less

than 0.5 second, we start the collection of SYNs at the out-

bound sniffer and SYN/ACKs at the in-bound sniffer

simultaneously. To balance the detection resolution and

the algorithm’s stability and accuracy, we set t0 to

10 seconds. Note, however, that both parameters are

tunable and our algorithm is not very sensitive to this

choice.

5.2 Normal Protocol Behavior

The three sets of traces represent the normal protocol

behaviors at the exchange points between different stub

networks and the Internet at different times. We parse the

traces and extract the TCP SYN, SYN/ACK, FIN, and RST

packets from the TCP traffic.

5.2.1 SYN versus FIN Pairs

The dynamics of “generalized” SYNs that include SYNs and

SYN/ACKs, FIN and RST packets at the DEC site are

illustrated in Fig. 4a, and the corresponding result from the

Harvard trace is illustrated in Fig. 4b. Those from UNC-in

and UNC-out are plotted in Figs. 4c and 5a, and Auckland-

in and Auckland-out are shown in Figs. 5b and 5c,

respectively. They clearly show the consistent synchroniza-

tion between SYN and FIN (RST) packets. The consistency

indicates that the synchronization is an inherent protocol

behavior and independent of time and sites.
We have applied the CUSUM algorithm on all the

available traces without injecting flooding traffic. The test

statistics, fyng, for all traces are plotted in Fig. 6. For the

Harvard and UNC traces, yns are constantly zeros. For

the Auckland traces, more than 99 percent yns stay at

zero. The isolated bursts in yn are always much smaller

than the threshold N ¼ 1:05: The maximal spikes of yn in

200 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

TABLE 1
A Summary of the Trace Features

5. N may not seem to be large on the absolute term, but it is large relative
to normal fluctuations.

Auckland-in and Auckland-out are 0.32 and 0.27, respec-
tively. So, no false alarms are reported.

5.2.2 SYN—SYN/ACK Pair

The dynamics of SYN and SYN/ACK packets at the DEC
and Harvard sites are illustrated in Figs. 7a and 7b,
respectively. The outgoing SYNs and incoming SYN/ACKs
from the UNC and Auckland traces are shown in Figs. 8a
and 8b, respectively. As with SYN versus FIN pairs, these
figures clearly demonstrate a consistent positive correlation
between SYN and SYN/ACK packets. The consistency
indicates that the strong positive correlation is also a
distinct protocol behavior and independent of time and
sites. Note that in the figures of the DEC and Harvard
traces, SYNs and SYN/ACKs are collected from both
directions, instead of “Outgoing SYN” and “Incoming
SYN/ACK” as shown in the UNC and Auckland traces.

Also, we have applied the CUSUM algorithm on the
Harvard, UNC, and Auckland traces without adding
flooding attacks. The test statistics, fyng, for the Harvard
and UNC traces are plotted in Figs. 9a and 9b; that for the
Auckland trace is plotted in Fig. 9c. As expected, for all the
traces tested, yns are mostly zeros. Among the isolated
spikes of yn in the Harvard trace, the maximum is about

0.05; the maximal spike of yn in the Auckland trace is about
0.26. Both are much smaller than the flooding threshold
N ¼ 1:05. So, no false alarms are reported.

In summary, under the normal condition, the difference
between the collected number of SYNs and FINs (RSTs) or
SYN/ACKs is very small, as compared to the total
number of TCP connection requests. This observation
holds in spite of the fact that the total number of TCP
connection requests may be bursty on a small time scale
and slowly varying on a large time scale. In other words,
the correlation between the numbers of SYNs and FINs
(RSTs) or SYN/ACKs is not sensitive to the request arrival
process. The consistent synchronization between SYNs
and FINs (RSTs) or SYN/ACKs is independent of the sites
and time-of-day.

5.3 SYN Flooding Detection

With the appearance of Trinoo, which only implements
UDP packet flooding, many tools have been developed to
create DDoS attacks. Most of them, such as Tribe Flood
Network (TFN), TFN2K, Stacheldraht, Trinity, Plague, and
Shaft, generate TCP SYN flooding attacks and randomize all
32 bits of the source IP address [12], [13]. Although these
DDoS attack tools employ different ways to coordinate

WANG ET AL.: CHANGE-POINT MONITORING FOR THE DETECTION OF DOS ATTACKS 201

Fig. 4. The dynamics of SYN and FIN (RST) packets (part I). (a) DEC, (b) Harvard, and (c) UNC-in.

Fig. 5. The dynamics of SYN and FIN (RST) packets (part II). (a) UNC-out, (b) Auckland-in, and (c) Auckland-out.

attacks with the goal of achieving robust and covert DDoS

attacks, their flooding behaviors are similar in that the SYN

packets are continuously bombarded to the victim.
Under SYN flooding attacks, the flooding SYN traffic

has significant regularity and semantics that can be

filtered out. The experiments with SYN attacks on

commercial platforms [39] have shown that the minimum

flooding rate to overwhelm an unprotected server is

500 SYN packets per second. However, with a specialized

firewall designed to resist against SYN flooding, a server

202 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 6. CUSUM test statistics under normal operation. (a) Harvard, (b) UNC, and (c) Auckland.

Fig. 7. The dynamics of SYN and SYN/ACK packets at (a) DEC and (b) Harvard.

Fig. 8. The dynamics of SYN and SYN/ACK packets at (a) UNC and (b) Auckland.

can withstand an attack whose flooding rate is up to
22,000 SYN packets per second [39]. To bring down the
victim server for 10 minutes, for example, attackers must
collectively inject at least 300,000 SYN packets. During the
same time period, however, the numbers of counted FINs
(RSTs) and SYN/ACKs remain largely unchanged. There-
fore, there will be much more SYNs than FINs (RSTs) or
SYN/ACKs collected during the flooding period. The
difference between the numbers of SYNs and FINs (RSTs)
or SYN/ACKs will increase dramatically and remain large
during the whole flooding period, which typically lasts for
several minutes [37].

In the SYN flooding detection experiments, the UNC and
Auckland 2000 traces are used as the normal background
traffic. Among them, UNC-in or Auckland-in is used for
incoming background traffic, and UNC-out or Auckland-
out is for outgoing background traffic. The flooding traffic is
mixed with the normal traffic, and the CPM at the leaf
router is simulated, as shown in Fig. 10. Because the
nonparametric CUSUM method is used for detection of
flooding attacks, the flooding traffic pattern or its transient
behavior (bursty or not) does not affect the detection
sensitivity. Rather, the detection sensitivity depends only
on the total volume of flooding traffic. So, without loss of
generality, we assume that the flooding rate is constant.

In DDoS attacks, the flooding traffic seen by the first-mile
and the last-mile CPMs is quite different. The flooding
traffic passing through the last-mile CPM is the aggregation
of the flooding traffic from all distributed flooding sources,
allowing for much easier detection of an attack. However,

the flooding detection at the first-mile CPM is much more
difficult. In a large-scale DDoS attack, the flooding sources
can be so coordinated that the traffic from each flooding
source may not be noticeable at all. Suppose the minimum
SYN flooding traffic to bring down a TCP server is V packets
per second. Then, the flooding rate at the last-mile CPM is
V , but the flooding rate seen by the first-mile CPM may be
much smaller than this.

We assume that the flooding traffic is evenly distributed
among different flooding sources and there is only one
flooding source inside each stub network. The flooding rate
seen by the first-mile CPM, fi, equals the individual
flooding rate inside the same stub network. Therefore, fi
is determined by V

As
, where As is the total number of the

stub networks that contain flooding sources. This setting is
intended to “hide” the attack from the first-mile CPM. That
is, the less the flooding sources inside the stub network, the
less flooding traffic seen by the first-mile CPM and the
harder to detect the flooding attack. The flooding duration
in all experiments is set to 10 minutes, a typical attack
duration observed in the Internet [37]. The starting time of
flooding attacks in the UNC traces is randomly chosen
between 1 and 9 minutes, but the starting time in the
Auckland traces lies between 3 and 166 minutes.

We first examine the detection sensitivity at the last-mile
CPM, which employs SYN versus FIN pairs as its detection
method. To demonstrate the high sensitivity of last-mile
CPM to SYN flooding, the flooding rate V is set to its
minimum, 500 SYNs per second. The simulation results are
plotted in Figs. 11a and 11b, showing that the cumulative
sum yn exceeds the flooding threshold “1” in one observa-
tion period, i.e., the fastest response can be achieved, in the
Auckland and UNC trace cases, respectively. So, the last-
mile CPM of the Auckland case can detect the SYN flooding
attack less than 10 seconds and so does the last-mile of the
UNC case. Once the flooding attack is detected, a defense
system like SynDefender can be triggered to protect the
victim from the flooding attack. To paralyze the defense
system at the victim, attackers have to increase their
flooding rate, and the first-mile CPM will then be more
likely to detect and locate the flooding sources inside the
stub network.

WANG ET AL.: CHANGE-POINT MONITORING FOR THE DETECTION OF DOS ATTACKS 203

Fig. 9. CUSUM test statistics under normal operation at (a) Harvard, (b) UNC, and (c) Auckland.

Fig. 10. The trace-simulation flooding attack experiment.

To examine the detection sensitivity of the first-mile

CPM, which employs SYN versus SYN/ACK pairs to

detect attacks, we vary the flooding rate fi seen by the

first-mile CPM, i.e., the individual flooding rate inside the

stub network. As the last-mile detection is much easier

than the first-mile detection, we only study the detection

probability and detection time for the latter. We conduct

the SYN flooding detection experiments on the UNC and

Auckland traces.

5.3.1 The UNC Case

Using the UNC traces as the background traffic, we observe

the dynamics of yn. Figs. 12a, 12b, and 12c plot the dynamic

behaviors of yn when fi is set to 35, 60, and 80 SYNs per

second, respectively. The accumulative effects of SYN

flooding are clearly shown in these figures. In the cases of

60 and 80 SYNs per second, the first-mile CPM can detect

the SYN flooding attack in four and two observation

periods, respectively. However, in the case of 35 SYNs per

second, the first-mile takes a much longer time (about

24 observation periods, i.e., 4 minutes) to exceed the

flooding threshold of 1.05. The detection performance of

the first-mile CPM in the context of the UNC traces is

summarized in Table 2, which lists the detection probabil-

ities and detection times for different fi values. Note that

the units of detection time are measured in number of the
observation period t0, which is set to 10 seconds.

Clearly, larger flooding rates lead to faster and easier
detection of attacks. According to (10), the lower detection
bound is about 37 SYNs per second in this simulation
scenario. If we implement the same CPM at a smaller
subnet, �RR—the average number of incoming SYN/ACKs—
will be smaller, so we can achieve higher detection
sensitivity. This is confirmed by the study of the Auckland
traces, which is presented in the next section.

204 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Fig. 11. SYN flooding detection sensitivity at the last-mile CPM. (a) UNC case and (b) Auckland case.

Fig. 12. SYN flooding detection sensitivity of the CPM at UNC. (a) 35 SYNs per second, (b) 60 SYNs per second, and (c) 80 SYNs per second.

TABLE 2
Detection Performance of the First-Mile CPM at UNC

5.3.2 The Auckland Case

In the case of Auckland traces, the dynamic behaviors of yn
are illustrated in Fig. 13 when fi is set to 1.5, 3, and 4 SYNs
per second, respectively. In the case of 1.5 SYNs per second,
the first-mile CPM can detect the SYN flooding attack in
about 27 observation periods. In contrast, at the flooding
rate of 3 or 4 SYNs per second, the first-mile CPM takes a
much shorter time (three or two observation periods,
respectively) to detect the ongoing flooding. The detection
performance of the first-mile CPM for the context of
Auckland traces is summarized in Table 3. Since �RR of the
Auckland trace is much smaller than that of the UNC trace,
the lower detection bound is reduced significantly from 35
to 1.5 SYNs per second.

5.3.3 Discussion

From the detectable flooding rate, we can determine the
efficacy of CPM in detecting distributed flooding attacks.
To bring a protected server down, the aggregate flooding
rate V should be larger than 22,000 requests per second
[39]. In the UNC case, the lower detection bound is 35, and
As can be as large as 628 stub networks like the UNC case.
Considering the fact that the UNC stub network consists of
over 35,000 users [49], it clearly demonstrates the utility
and power of CPM. In the Auckland case, the lower
detection bound is 1.5 and, hence, As has to be as large as
14,666 medium-size stub networks like the Auckland case.
Source address spoofing requires that the attacking

software open a raw network socket, so the attacker must
have root access on end hosts. Although the attacker can
simultaneously initiate the flooding attacks from (possibly
many) machines in several ISPs, it is much harder to
launch attacks from hundreds or even tens of thousands of
stub networks due to access limit.

We set the parameters independently of network size
and traffic pattern, but the network administrator of the
involved leaf router can incorporate site-specific informa-
tion so that the CPM algorithm can achieve a higher
detection performance. For instance, in the UNC case, we
can reduce a, the upper bound in case of normal operation,
from 0.35 to 0.2 and N , the flooding threshold, from 1.05 to
0.6 without incurring additional false alarms. Then, the
lower detection bound fmin decreases from 35 to 15 SYNs
per second, and the detection sensitivity is greatly im-
proved. The dynamics of yn for the case fi ¼ 15 is shown in
Fig. 14.

In summary, CPM not only achieves fast detection and
high detection accuracy, but it is also easily implementable
and broadly applicable.

6 RELATED WORK

Over the past several years, a number of countermeasures
have been proposed and implemented to detect, defend,

WANG ET AL.: CHANGE-POINT MONITORING FOR THE DETECTION OF DOS ATTACKS 205

Fig. 13. SYN flooding detection sensitivity of the first-mile CPM at Auckland. (a) 1.5 SYNs per second, (b) 3 SYNs per second, and (c) 4 SYNs per

second.

TABLE 3
Detection Performance of the First-Mile CPM at Auckland

Fig. 14. Improvement of flooding detection sensitivity.

and trace-back DoS attacks. Defense mechanisms are
deployed either at routers to block the prorogation of DoS
traffic, or at victim servers to mitigate flooding attacks. The
router-based mitigation systems include Distributed Packet
Filtering (DPF) [40], Ingress Filtering [14], Pushback [25],
[35], Rate Throttling [61], and SAVE [33]. There are
commercial products, such as Mazu’s Enforcer [38] and
Arbor Network’s Peakflow [23], to block the DoS traffic at
either the enterprise-network perimeter or the ISP edge
routers. In parallel with these, many defense mechanisms
have been installed at victim servers or their proximate
firewalls to withstand DoS attacks, such as Client Puzzle
[27], [59], Defensive Programming [44], Escort [52], Hop-
count Filtering (HCF) [26], Path identifier (Pi) [60], Syn
cache [32], Syn cookies [4], and Synkill [48]. Also, there are
commercial products available to defend Internet servers
against the flooding attacks, such as CheckPoint’s SynDe-
fender [34] and Netscreen’s Syn proxying [24].

Since the source addresses of flooding packets are
spoofed, it is very difficult to uncover the origin of a
flooding source. To identify the compromised end-hosts
that directly generate flooding packets and the network
path that these packets take, various traceback techniques
[3], [7], [11], [47], [50], [51] have been proposed. By marking
packets at intermediate routers, IP traceback [47], [51] and
ICMP traceback [3] reconstruct the path to the flooding
source. The controlled flooding technique developed by
Burch and Cheswick [8] infers the attacking path by
observing the impact of selectively exhausting some net-
work links upon the victim. Using noisy polynomial
reconstruction, Dean et al. [11] proposed an algebraic
approach to performing IP traceback. A hash-based IP
traceback technique [50] can identify the origin of indivi-
dual packets with reasonable overhead through the use of
Bloom filters. Moreover, an overlay network with selective
rerouting has been used to track and prevent DoS traffic
[28], [55].

As the first step to thwart DoS attacks, an accurate, fast,
and lightweight detection mechanism is essential for the
defense and traceback systems. Based on traffic behaviors,
several DoS detection mechanisms have been developed,
including MULTOPS [17] and D-WARD [36]. Being
deployed at source-end networks, D-WARD [36] monitors
two-way traffic between the network and the rest of the
Internet. By comparing the monitored traffic with normal
traffic models, D-WARD detects and throttles the ongoing
flooding attacks. Its normal traffic models are simply based
on flow rates. In the design of MULTOPS [17], a tree of
nodes is built to keep packet-rate statistics for subnets at
different aggregation levels. Based on the observation of a
significant disproportional difference between the traffic
flowing in and out of the victim, routers use MULTOPS to
detect ongoing bandwidth attacks. However, the burstiness
of Internet traffic [31], [43] makes this detection of attacks
much harder, since there is no natural length of burst for
self-similar traffic. Furthermore, the normal Internet traffic
pattern is site- and time-dependent. With the diversity of
user behaviors and the emergence of new network applica-
tions, it is very difficult to build a robust and general model
for describing the normal traffic flow rates.

Within the scope of more general intrusion detection,
many different approaches have been proposed to detect
anomalies, such as machine learning, neural networks, state
machine models, and Markov-chain models. In this paper,
we detect the occurrence of a DoS attack as an instance of
sequential change-point, and apply nonparametric CUSUM
for detecting the change-point. Other change detection
methods, which directly apply to raw IP traffic without
deriving protocol behaviors for detecting network anoma-
lies, have also been introduced, e.g., wavelet-based [1],
spectrum-based [21], sketch-based [29], and signal proces-
sing approaches [57].

Unlike the above-mentioned schemes and commercial
products, CPM extracts the inherent protocol behaviors
from the raw IP traffic and detects DoS attacks based on the
protocol behaviors. Since the protocol behaviors are much
more stable than those of Internet traffic, CPM is much less
sensitive to site and traffic patterns than the other schemes.
Moreover, no per-flow state is required by the CPM. It only
keeps track of a few packet counts. By applying the
nonparametric CUSUM method, CPM can detect the flood-
ing attacks in a timely manner with low computational
overhead as shown in our trace-driven simulations. Overall,
the robustness of CPM results from its simplicity and
reliance on the protocol behaviors.

Note that all of the other detection, defense, and
traceback mechanisms deployed at routers or firewalls
were used solely for countering DoS attacks and do not
improve (some may even degrade) the end-to-end perfor-
mance of clients behind routers, thus giving little incentive
for wide deployment. In contrast, CPM is, in some sense, a
by-product of the router infrastructure that can provide
fine-grain packet classification and service differentiation
[58]. As CPM differentiates control packets (such as TCP
SYNs) from data packets, end-to-end performance can be
improved significantly as shown in [58]. Therefore, CPM
benefits not only victim servers but also the clients inside
the stub network, making it attractive for wide deployment.

7 CONCLUSION AND FUTURE WORK

We developed and evaluated a simple and robust mechan-
ism, CPM, to detect DoS flooding attacks. CPM utilizes the
inherent network protocol behaviors that are invariant
under various arrival models and independent of sites and
time-of-day. The distinct features of CPM include: 1) it is
stateless and requires low computation overhead, making
itself immune to any flooding attacks; 2) the nonparametric
CUSUM method is employed, making the detection robust;
and 3) it is insensitive to sites and traffic patterns. CPM can
be installed at either firewalls or leaf (ISP edge) routers.

As a case study, the efficacy of CPM is evaluated and
validated by detecting SYN flooding attacks. Traces from
different sites and collected at different times have clearly
demonstrated the SYN pairs’ behaviors. Then, we con-
ducted trace-driven simulations. The experimental results
show that the CPM achieves high detection accuracy and
short detection time. Moreover, once the first-mile CPM
detects the ongoing flooding traffic, this information can
help reveal the origin of flooding sources.

206 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

Recently, multihomed ASs became attractive to improve

availability, reliability, and load-balancing. In such a case, a

customer network is connected to the Internet by multiple

ISPs. As long as the packets that belong to the same session

go through the same leaf (ISP edge) router, CPM still works.

However, if the packets of the same session go through

different leaf routers, we need a loose synchronization

mechanism between the CPMs in these leaf (ISP edge)

routers, which is the subject of our future work.

ACKNOWLEDGMENTS

The authors would like to thank Dong Lin for Harvard

traces, Kevin Jeffay for UNC traces, and Klaus Mochalski

for Auckland traces. Also, comments from Cheng Jin at

CalTech are gratefully acknowledged. Finally, they thank

the anonymous reviewers for their constructive sugges-

tions. The work reported in this paper was supported in

part by the US Office of Naval Research under Grant No.

N00014-04-10726 and the US National Science Foundation

under Grant No. CCR-0329629.

REFERENCES

[1] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal Analysis of
Network Traffic Anomalies,” Proc. ACM Internet Measurement
Workshop, Nov. 2002.

[2] M. Basseville and I.V. Nikiforov, Detection of Abrupt Changes:
Theory and Application. Prentice Hall, 1993.

[3] S.M. Bellovin, “ICMP Traceback Messages,” Internet Draft: draft-
bellovin-itrace-00.txt (work in progress), Mar. 2000.

[4] D.J. Bernstein and E. Schenk,, “Linux Kernel SYN Cookies
Firewall Project,” http://cr.yp.to/syncookies.html, 1997.

[5] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft, “Pop-Level and
Access-Link-Level Traffic Dynamic in a Tier-1 POP,” Proc. ACM
Internet Measurement Workshop, Nov. 2001.

[6] B.E. Brodsky and B.S. Darkhovsky, Nonparametric Methods in
Change-Point Problems. Kluwer Academic, 1993.

[7] H. Burch and B. Cheswick, “Mapping the Internet,” Computer,
vol. 32, no. 4, 1999.

[8] H. Burch and B. Cheswick, “Tracing Anonymous Packets to Their
Approximate Source,” Proc. USENIX LISA Conf., Dec. 2000.

[9] R. Caceres, P.B. Danzig, S. Jamin, and D.J. Mitzel, “Characteristics
of Wide-Area TCP/IP Conversations,” Proc. ACM SIGCOMM
Conf., Sept. 1991.

[10] W.S. Cleveland, D. Lin, and D. Sun, “IP Packet Generation:
Statistical Models for TCP Start Times Based on Connection-Rate
Superposition,” Proc. ACM SIGMETRICS Conf., June 2000.

[11] D. Dean, M. Franklin, and A. Stubblefield, “An Algebraic
Approach to IP Traceback,” ACM Trans. Information and System
Security, vol. 5, no. 2, May 2002.

[12] S. Dietrich, N. Long, and D. Dittrich, “Analyzing Distributed
Denial of Service Tools: The Shaft Case,” Proc. USENIX LISA Conf.,
Dec. 2000.

[13] D. Dittrich, Distributed Denial of Service (DDoS) Attacks/Tools
Page, http://staff.washington.edu/dittrich/misc/ddos/, 2002.

[14] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks Which Employ IP Source Address
Spoofing,” RFC 2267, Jan. 1998.

[15] L. Garber, “Denial-of-Service Attack Rip the Internet,” Computer,
Apr. 2000.

[16] S. Gibson, “Distributed Reflection Denial of Service,” technical
report, Gibson Research Corporation, Feb. 2002, http://grc.com/
dos/drdos.htm.

[17] T.M. Gil and M. Poletter, “MULTOPS: A Data-Structure for
Bandwidth Attack Detection,” Proc. USENIX Security Symp., Aug.
2001.

[18] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proc. ACM SIGCOMM Conf., Sept. 1999.

[19] M. Handley, V. Paxson, and C. Kreibich, “Network Intrusion
Detection: Evasion, Traffic Normalization, and End-To-End
Protocol Semantics,” Proc. USENIX Security Symp., Aug. 2001.

[20] U. Hengartner, S. Moon, R. Mortier, and C. Diot, “Detection and
Analysis of Routing Loops in Packet Traces,” Proc. ACM Internet
Measurement Workshop, Nov. 2002.

[21] A. Hussain, J. Heidemann, and C. Papadopoulos, “A Framework
for Classifying Denial of Service Attacks,” Proc. ACM SIGCOMM
Conf., Aug. 2003.

[22] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C.
Diot, “Analysis of Link Failures in an IP Backbone,” Proc. ACM
Internet Measurement Workshop, Nov. 2002.

[23] Arbor Networks Inc., “Peakflow,” http://arbornetworks.com,
2003.

[24] Netscreen Inc., “Netscreen 100 Firewall Appliance,” http://www.
netscreen.com, 2001.

[25] J. Ioannidis and S.M. Bellovin, “Implementing Pushback: Router-
Based Defense Against Ddos Attacks,” Proc. Network and
Distributed System Security Symp., Feb. 2002.

[26] C. Jin, H. Wang, and K.G. Shin, “Hop-Count Filtering: An
Effective Defense Against Spoofed Ddos Traffic,” Proc. ACM Conf.
Computer and Comm. Security, Oct. 2003.

[27] A. Juels and J. Brainard, “Client Puzzle: A Cryptographic Defense
Against Connection Depletion Attacks,” Proc. Network and
Distributed System Security Symp., Feb. 1999.

[28] A.D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure
Overlay Services,” Proc. ACM SIGCOMM Conf., Aug. 2002.

[29] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-Based
Change Detection: Methods, Evaluation, and Applications,” Proc.
ACM Internet Measurement Conf., Oct. 2002.

[30] T.V. Lakshman and D. Stiliadis, “High Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching,”
Proc. ACM SIGCOMM Conf., Sept. 1998.

[31] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the Self-
Similar Nature of Ethernet Traffic,” IEEE/ACM Trans. Networking,
vol. 2, no. 1, Feb. 1994.

[32] J. Lemon, “Resisting SYN Flooding Dos Attacks with a SYN
Cache,” Proc. USENIX BSDCon Conf., Feb. 2002.

[33] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang, “SAVE:
Source Address Validity Enforcement Protocol,” Proc. IEEE
INFOCOM Conf., June 2002.

[34] Check Point Software Technologies Ltd., “Syndefender,” http://
www.checkpoint.com/products/firewall-1, 2001.

[35] R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S.
Shenker, “Controlling High Bandwidth Aggregates in the Net-
work,” ACM Computer Comm. Rev., vol. 32, no. 3, July 2002.

[36] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the
Source,” Proc. IEEE Int’l Conf. Network Protocols, Nov. 2002.

[37] D. Moore, G. Voelker, and S. Savage, “Inferring Internet Denial of
Service Activity,” Proc. USENIX Security Symp., Aug. 2001.

[38] Mazu Networks Enforcer, http://www.mazunetworks.com/
products/, 2002.

[39] R. Oliver, “Countering SYN Flood Denial-of-Service Attacks,”
Tech Mavens, Inc., Aug. 2001, http://www.tech-mavens.com/
synflood.htm.

[40] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet
Filtering for Distributed Dos Attack Prevention in Power-Law
Internets,” Proc. ACM SIGCOMM Conf., Aug. 2001.

[41] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” Computer Networks, vol. 31, nos. 23-24, 1999.

[42] V. Paxson, “An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks,” ACM Computer Comm. Rev., vol. 31,
no. 3, July 2001.

[43] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of
Poisson Modeling,” IEEE/ACM Trans. Networking, vol. 3, no. 3,
June 1995.

[44] X. Qie, R. Pang, and L. Peterson, “Defensive Programming: Using
an Annotation Toolkit to Build Dos-Resistant Software,” Proc.
USENIX Symp. Operating Systems and Design Implementation, Dec.
2002.

[45] M. Roesch, “Snort—Lightweight Intrusion Detection for Net-
works,” Proc. USENIX Systems Administration Conf. (LISA ’99),
Nov. 1999.

[46] K.A. Ross, Elementary Analysis: The Theory of Calculus, Fifth ed.
Springer-Verlag, 1980.

WANG ET AL.: CHANGE-POINT MONITORING FOR THE DETECTION OF DOS ATTACKS 207

[47] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
Network Support for IP Traceback,” Proc. ACM SIGCOMM Conf.,
Aug. 2000.

[48] C.L. Schuba, I.V. Krsul, M.G. Kuhn, E.H. Spafford, A. Sundaram,
and D. Zamboni, “Analysis of a Denial of Service Attack on TCP,”
Proc. IEEE Symp. Security and Privacy, May 1997.

[49] F.D. Smith, F.H. Campos, K. Jeffay, and D. Ott, “What TCP/IP
Protocol Header Can Tell Us About the Web,” Proc. ACM
SIGMETRICS Conf., June 2001.

[50] A.C. Snoren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tchakoun-
tio, S.T. Kent, and W.T. Strayer, “Hash-Based IP Traceback,” Proc.
ACM SIGCOMM Conf., Aug. 2001.

[51] D. Song and A. Perrig, “Advanced and Authenticated Marking
Schemes for IP Traceback,” Proc. IEEE INFOCOM Conf.,Mar. 2001.

[52] O. Spatscheck and L. Peterson, “Defending Against Denial of
Service Attacks in Scout,” Proc. USENIX Symp. Operating Systems
and Design Implementation, Feb. 1999.

[53] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
Scalable Layer Four Switching,” Proc. ACM SIGCOMM Conf., Sept.
1998.

[54] W.R. Stevens, TCP/IP Illustrated, vol. 1. Addison-Wesley, 1994.
[55] R. Stone, “CenterTrack: An IP Overlay Network for Tracking DoS

Floods,” Proc. USENIX Security Symp., Aug. 2000.
[56] K. Thompson, G.J. Miller, and R. Wilder, “Wide-Area Internet

Traffic Patterns and Characteristics,” IEEE Network, vol. 11, no. 6,
Nov./Dec. 1997.

[57] M. Thottan and C. Ji, “Anomaly Detection in IP Networks,” IEEE
Trans. Signal Processing, vol. 51, no. 8, Aug. 2003.

[58] H. Wang and K.G. Shin, “Layer-4 Service Differentiation and
Resource Isolation,” Proc. IEEE Real-Time and Embedded Technology
and Applications Symp., Sept. 2002.

[59] X. Wang and M. Reiter, “Defending Against Denial-of-Service
Attacks with Puzzle Auctions,” Proc. IEEE Symp. Security and
Privacy, May 2003.

[60] A. Yaar, A. Perrig, and D. Song, “Pi: A Path Identification
Mechanism to Defend Against DDoS Attacks,” Proceedings of IEEE
Symp. Security and Privacy, May 2003.

[61] D. Yau, J. Lui, and F. Liang, “Defending Against Distributed
Denial-of-Service Attacks with Max-Min Fair Server-Centric
Router Throttles,” Proc. 10th Int’l Workshop Quality of Service,
May 2002.

Haining Wang received the PhD degree in
computer science and engineering from the
University of Michigan at Ann Arbor in 2003.
He is an assistant professor of computer science
at the College of William and Mary, Williams-
burg, Virginia. His research interests lie in the
area of networking, security, and distributed
computing. He is particularly interested in net-
work security and network QoS (Quality of
Service) to support secure and service differ-

entiated inter-networking. He is a member of the IEEE.

Danlu Zhang received the BS degree in physics
from Beijing University, Beijing, China, in 1996,
the MS degree in electrical engineering from the
University of Minnesota at Twin Cities in 1998,
and the PhD degree in electrical engineering as
well as the MA degree in statistics from the
University of Michigan at Ann Arbor in 2002. His
PhD program was supported in part by the
Dwight F. Benton fellowship. Since May 2002,
he has been with Qualcomm, Inc., San Diego,

CA. His general research interests include wireless communications and
communication networks. He is a member of the IEEE.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Seoul, Korea, in 1970, and both the
MS and PhD degrees in electrical engineering
from Cornell University, Ithaca, in 1976 and
1978, respectively. He is the Kevin and Nancy
O’Connor Professor of Computer Science and
founding director of the Real-Time Computing
Laboratory in the Department of Electrical
Engineering and Computer Science, The Uni-

versity of Michigan, Ann Arbor, Michigan. He has supervised the
completion of 51 PhD theses and authored/coauthored around 600
technical papers. His current research focuses on QoS-sensitive
networking and computing as well as on embedded real-time OS,
middleware, and applications, all with an emphasis on timeliness and
dependability. He is a fellow of the IEEE and ACM and a member of the
Korean Academy of Engineering. He has received a number of best
paper awards, including the IEEE Communications Society William R.
Bennett Prize Paper Award in 2003, the Best Paper Award from the
IWQoS ’03 in 2003, and an Outstanding IEEE Transactions of Automatic
Control Paper Award in 1987. He has also coauthored papers with his
students which received the best student paper awards from the 1996
IEEE Real-Time Technology and Application Symposium and the 2000
UNSENIX Technical Conference. He has also received several
institutional awards, including the Research Excellence Award in
1989, Outstanding Achievement Award in 1999, Service Excellence
Award in 2000, Distinguished Faculty Achievement Award in 2001, and
Stephen Attwood Award in 2004 from The University of Michigan; a
Distinguished Alumni Award of the College of Engineering, Seoul
National University in 2002; and a 2003 IEEE RTC Technical
Achievement Award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

208 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2004

