
Coordinated Aggregate Scheduling for Improving
End-to-End Delay Performance

Wei Sun and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

{wsunz, kgshin}@eecs.umich.edu

Abstract— We propose a novel coordinated aggregate schedul-
ing (CAS) algorithm that combines both EDF (Earliest-Deadline-
First) scheduling and rate-based fair queueing. CAS uses guaran-
teed rate (GR) scheduling [1] for traffic aggregates at the inter-
aggregate level, but employs EDF-like scheduling at the intra-
aggregate level. Computation of the deadline DN of a packet
at an intermediate node N is coordinated between the node
N and its upstream nodes, and DN is related to the packet’s
guaranteed rate clock (GRC) value at the flow-aggregation node.
CAS provides tighter end-to-end (e2e) delay bounds than the
“vanilla” GR aggregate scheduling that relies on FIFO queueing
within an aggregate. Our in-depth simulation results demon-
strate CAS’s superior performance. Moreover, as an aggregate-
based work-conserving scheduling algorithm, CAS incurs lower
scheduling and state-maintenance overheads at routers than per-
flow scheduling. These salient features make CAS very attractive
for use in Internet core networks.

I. INTRODUCTION

Real-time applications, such as voice-over-IP (VoIP) and
video conferencing, require the network to provide better
Quality-of-Service (QoS) than the currently dominant best-
effort service, in terms of delay, jitter, and loss rate. To
provide such QoS support, the IntServ architecture [2] has
been proposed, which supports QoS via per-flow resource
reservation (e.g., RSVP [3]) and packet scheduling. Numerous
scheduling algorithms (e.g., see [4] for an excellent survey)
have been proposed to support IntServ-like QoS, such as
fairness, bounded per-flow (per-node or e2e) delay and backlog
under a certain traffic model like the token bucket model.
One class of such scheduling algorithms are called guaranteed
rate (GR) scheduling algorithms [1], which include WFQ
(Weighted Fair Queueing), GPS (Generalized Process Shar-
ing) [5], VC (Virtual Clock) [6], etc. Since both its resource
reservation and packet scheduling are per-flow-based, and
hence, the routers in the network must keep a large number
of flow states, IntServ does not scale well for use in the core
of the Internet that carries millions of flows.

To solve the IntServ’s scalability problem, an aggregate
scheduling architecture has been proposed [7], [8], [9]. Its
main idea is to extend the IntServ architecture to support
traffic aggregation. This extension is made on the premise
that there are aggregation regions in the network, which “see”

only aggregated (not individual) flows. Resource reservation
and packet scheduling within an aggregation region are done
on a per-aggregate basis. Within an aggregation region, those
flows “bundled” together are treated as a single logical flow
at each router on the path. Like a traffic trunk—which is
defined as an aggregate of traffic that belongs to the same
class—in Multiprotocol Label Switching (MPLS) [10], [11],
a traffic aggregate can be created and terminated at any point
in the network, and can also be created recursively (i.e.,
flows are aggregated/deaggregated multiple times). The ingress
router that aggregates flows (using GR algorithms) is called an
aggregator, and the egress router that splits the aggregate is
called a deaggregator. The term “flows” (“traffic aggregates”
or “aggregates”) means the entities before (after) aggregation.

Similarly to the DiffServ architecture [12], this aggregate
scheduling architecture pushes the overhead to the edge of the
network and keeps the core network simple. The admission
control and resource reservation of aggregate scheduling can
be implemented by the extension of RSVP that supports traffic
aggregation [13]. The idea is to use aggregate Path and Resv
messages between the aggregator and the deaggregator, and
hide the e2e per-flow RSVP messages from the core routers
in the aggregation region. Aggregate Path messages are sent
from the aggregator to the deaggregator, and aggregate Resv
messages are sent from the deaggregator to the aggregator, thus
establishing the aggregate reservation on behalf of the flows
within the same aggregate. Per-flow RSVP messages trigger
the transmission of aggregate Path or Resv messages, but these
messages themselves are ignored inside the aggregation region.
This results in a smaller number of (aggregate) reservations
inside the aggregation region. To reduce the number of changes
to aggregate reservations, advance reservation or “bulk” reser-
vation is needed. For example, the authors of [8] examined
the issue of “bulk” reservation for traffic aggregates.

This paper focuses on packet scheduling for traffic aggre-
gates. We assume that IntServ’s GR algorithms are used in
this aggregate scheduling architecture. The edge routers (ag-
gregators and deaggregators) use per-flow scheduling, while
the core routers use per-aggregate scheduling.

Using aggregate GR scheduling algorithms, we [9] derived

0-7803-8277-3/04/$20.00 ©2004 IEEE. 77

deterministic e2e delay bounds under the assumption that all
incoming flows at an aggregator conform to the token bucket
model. Each aggregator uses a GR scheduling algorithm which
is either work-conserving or non-work-conserving. We showed
not only the existence of e2e delay bounds for each flow,
but also the fact that under certain conditions (e.g., when the
aggregate traverses a long path after the aggregation point)
the bounds are tighter than that of per-flow scheduling. The
simulation results have shown that aggregate scheduling is
very robust and can exploit statistical multiplexing gains, and
that it performs better than per-flow scheduling in most cases.

However, when work-conserving scheduling algorithms are
used at aggregators, the delay bound of a flow is dictated by
the burstiness of other flows in the same aggregate. Thus, if a
flow is aggregated with other bursty flows, it will suffer a long
e2e delay. The main culprit of this long delay lies in the fact
that packets within each aggregate are handled by the routers
using FIFO scheduling.

To remedy this problem, we propose a new aggregate
scheduling algorithm, which improves the e2e delay by re-
ordering the packets in an aggregate using EDF scheduling
based on their deadlines. The deadline of a packet at an
intermediate node is related to its guaranteed rate clock (GRC)
value at the aggregator. This new algorithm makes the delay
of a flow independent of the burstiness of other flows in
the same aggregate, yielding smaller e2e delays. Since the
algorithm uses EDF inside an aggregate and computation
of the deadline of a packet at each intermediate node is
coordinated between the node itself and its upstream nodes,
we call it coordinated aggregate scheduling (CAS). For the
purpose of differentiation, we call the aggregate scheduling
algorithms discussed in [9] that use FIFO queueing inside each
aggregate “vanilla” aggregate scheduling (VAS).

The rest of the paper is organized as follows. For self-
containment, Section II reviews the definitions of GR schedul-
ing and the delay bound results for per-flow scheduling in [1]
and aggregate scheduling in [9]. Section III introduces the
CAS algorithm, and proves that under the token bucket traffic
model CAS provides tighter e2e delay bound than VAS.
Section IV discusses the implementation issues of CAS, and
proposes a simple multi-queue structure and an adaptive queue
management algorithm. Section V presents evaluation results.
Simulation is used to compare the delay performance of
both coordinated and vanilla aggregate scheduling, confirming
the benefits of CAS derived from the analysis. Section VI
discusses related work on CAS, putting our results in a
comparative perspective. Finally, Section VII summarizes our
contributions.

II. GUARANTEED-RATE SCHEDULING ALGORITHMS

Before presenting the CAS algorithm, we first review the
definition of Guaranteed-Rate (GR) scheduling and the e2e
delay bound results for per-flow and aggregate GR scheduling.

A. GR Scheduling Algorithms

The authors of [1] defined a class of GR scheduling algo-
rithms. The delay guarantees provided by these algorithms are
based on the Guaranteed Rate Clock (GRC) value associated
with each packet.

Definition 1 (GR Clock Value): Consider a flow f associ-
ated with a guaranteed rate rf . Let pj

f and �j
f denote the

jth packet of flow f and its length, respectively. Also, let
GRCi(pj

f) and Ai(pj
f) denote the GRC value and arrival time

of packet pj
f at router Si, respectively. Then, the GRC values

for packets of flow f are given by:

GRCi(pj
f) =

0, j = 0

max{Ai(pj
f), GRCi(pj−1

f)} +
�
j
f

rf
, j ≥ 1.

(1)

Definition 2 (GR Scheduling Algorithm): A scheduling al-
gorithm at router Si is said to belong to the GR class for
flow f if it guarantees packet pj

f to be transmitted by time
GRCi(pj

f) + βi, where βi is a scheduling constant [7] that
depends on the scheduling algorithm and the router.

Many scheduling algorithms are shown in [1] to belong
to the GR class. For example, both Packet-level Generalized
Processor Sharing (PGPS) [5] and Virtual Clock (VC) [6] are
GR scheduling algorithms with βi = Li

max

Ci , where Li
max is the

maximum packet length seen by router Si and Ci the output
link capacity of Si.

B. End-to-End Delay Bound under Per-Flow Scheduling

We now review the e2e delay bound results for per-flow
scheduling. See [1] for the proofs of both Lemma 1 and
Theorem 1 stated below. In the following discussion, we will
call a router equipped with the GR scheduling algorithm a GR
server.

Lemma 1: Suppose routers Si and Si+1 are two neighbor-
ing GR servers on the path of flow f . If both routers guarantee
service rate rf for flow f , then

GRCi+1(pj
f) ≤ GRCi(pj

f) +
�max
f

rf
+ αi, (2)

where �max
f is the maximum packet size in flow f , αi =

βi + τ i,i+1, and τ i,i+1 is the propagation delay between Si

and Si+1.
Lemma 1 states the relationship between the GRC values

of a packet at two neighboring GR servers. Based on this
relationship, the authors of [1] derived an e2e delay bound.
Before introducing that delay bound, we define the token
bucket traffic model as follows: flow f is said to conform
to the token bucket (σf , ρf) if for any time instant τ and t
such that 0 ≤ τ < t, its traffic volume arrived in the time
interval (τ, t], denoted as Af (τ, t), satisfies:

Af (τ, t) ≤ σf + ρf · (t − τ), (3)

where σf and ρf are the burst size and average rate of flow
f , respectively.

Theorem 1: If flow f conforms to the token bucket model
(σf , ρf) and all the routers on its path are GR servers with

0-7803-8277-3/04/$20.00 ©2004 IEEE. 78

rate rf ≥ ρf , then the e2e delay for pj
f , dj

f , is bounded as
follows:

dj
f ≤ σf

rf
+

(K − 1)�max
f

rf
+

K∑
n=1

αn, (4)

where αi = βi + τ i,i+1 and K is the number of hops on the
path of flow f .

From Theorem 1, one can see that the delay bound is
inversely proportional to the flow’s guaranteed rate, but is
proportional to the number of hops (K), the size of packets,
and the burst size of the flow. In case of a large number of hops
and large-size packets, the delay can be substantially large. In
addition, the larger the burst size, the larger the delay bound
becomes.

C. End-to-End Delay Bounds under Aggregate Scheduling

In [9], we derived e2e delay bounds under aggregate GR
scheduling. When incoming flows at aggregators conform to
the token bucket model, the e2e delay is proven to be bounded.

Theorem 2: Suppose N flows share the same K hops of GR
servers inside an aggregation region, and they are bundled into
an aggregate A at a work-conserving stand-alone aggregator
S1 and split back at SK . Routers S2, . . . , SK−1 schedule the
packets of aggregate A. If flow k conforms to the token bucket
model (σk, ρk) and has the guaranteed rate rk ≥ ρk (1 ≤ k ≤
N) at S1 and SK , and A has the guaranteed rate R =

∑N
k=1 rk

at S2, . . . , SK−1, then for any flow f (1 ≤ f ≤ N), the e2e
delay of packet pj

f , dj
f , is bounded as follows:1

dj
f ≤ σf

rf
+ [

∑
k �=f σk

R
+

∑
k �=f θ1

k · rk + �max
f

R
]

+ (K − 3)
�max
A

R
+

�max
f

rf
+

K∑
i=1

αi, j ≥ 1. (5)

Comparing Eqs. (4) and (5), we can see that under aggregate
scheduling, the delay bound of a flow is not only dictated by
the burstiness of the flow itself (term σf

rf
), but also strongly

related to the burstiness of other flows in the same aggregate
that the flow f belongs to (term

∑
k �=f σk

R). This is easy to
see: since FIFO queueing is used inside each aggregate, a
packet of flow f has to wait behind not only its own preceding
packets, but also packets of other flows in the same aggregate.
This result suggests how flows should be aggregated—a flow
should not be aggregated with other flows with substantially
larger burst sizes.

Also, comparison of Eqs. (4) and (5) shows that, depending
on the burstiness of the constituent flows and the maximum
packet size in an aggregate, the delay bound under aggregate
scheduling can be tighter than that under per-flow scheduling.

III. COORDINATED AGGREGATE SCHEDULING WITH EDF
INSIDE AN AGGREGATE

As discussed above, the delay bound under aggregate
scheduling depends on the burst sizes of all the other flows

1The term θ1
k represents the latency of flow k at server S1. It is a parameter

of Latency-Rate (LR) server defined in [14]. In [9] we proved that for any
flow f , an LR server Si with latency θi

f is also a GR server with scheduling
constant θi

f .

Flow 1 packets Flow 2 packets

(b) packet order under vanilla aggregate scheduling

(c) packet order under CAS

(a) packets arrive at the aggregator

S1

S1

S1

S2

S2

S2

Fig. 1. Coordinated aggregate scheduling

in the same aggregate, mainly because at the downstream
nodes of the aggregator, the packets in the same aggregate are
handled with FIFO queueing, irrespective of which flows they
belong to. Thus, if a large burst of packets of a flow arrive at
an idle aggregator, the burst can traverse the aggregator very
quickly. If packets from other flows in the same aggregate
arrive immediately after the burst, they must wait behind
the burst in the FIFO queue at the remaining nodes of the
aggregate’s path. Figs. 1 (a) and (b) illustrate this scenario.
In Fig. 1 (a), a burst of flow 1 arrives at an aggregator
S1 immediately before the arrival of a packet from flow 2.
Suppose S1 is idle at that time, then the burst goes through
the aggregator very quickly, as does the packet from flow 2.
Since both flows share the same aggregate, the burst of flow
1 will be ahead of the flow-2 packet in the aggregate until the
aggregate is split later on the path. Suppose the next node S2

is the bottleneck, then the burst of flow 1 will be scheduled at
a slower speed, and the flow-2 packet has to wait behind the
burst of flow 1 in the FIFO queue, suffering a long delay. To
solve this problem, one may use a rate-controlled scheduler
at the aggregator S1, thus controlling the output rate for the
aggregate, and there will be no large traffic burst waiting at the
downstream nodes. However, rate-controlled schedulers work
in a non-work-conserving fashion, causing a longer average
delay.

We propose another method to solve the delay problem by
changing the order of transmitting packets in the queue of an
aggregate, such that higher-priority packets can be scheduled
earlier. In essence, we change the FIFO queue for an aggregate
used by vanilla aggregate scheduling (VAS) algorithms into an
EDF queue. The rationale behind this is that, if the aggregator
is relatively lightly-loaded, a large burst of packets can get
through it earlier than their expected finish times according to
their GRC values. If a downstream node becomes bottleneck,

0-7803-8277-3/04/$20.00 ©2004 IEEE. 79

this burst will stay ahead of some packets with smaller GRC
values in the queue of that node. By reordering the packets
in the queue based on their GRC values at the aggregator, if
multiple packets of an aggregate are waiting in the queue of
a downstream node, a packet with the minimum GRC value
will be scheduled first. In other words, the GRC value at the
aggregator plays the role of a packet’s deadline. Note that this
algorithm only reorders the packets in the queue of the same
aggregate; the scheduling of different aggregates remains the
same—the GR scheduling algorithms. This new algorithm is
called the coordinated aggregate scheduling (CAS). As shown
in Fig. 1 (c), after reordering the packets in the queue at S2,
the packet from flow 2 will be scheduled earlier.

Next, we give the details of the CAS algorithm and prove
that this algorithm improves the e2e delay bound of a flow.
Note that when using GR scheduling algorithms, we always
assume that the guaranteed rate for a flow is greater than, or
equal to, its average rate, i.e., rf ≥ ρf .

A. CAS Algorithm

For the downstream nodes to be able to reorder packets,
the packets have to carry some information about their GRC
values at the aggregator. The key idea of the CAS algorithm is
to insert a lag field in each packet, which contains information
on how much the packet was behind its “deadline” at the
previous hop. Then, at the next hop the server can adjust the
packet’s arrival time by subtracting its lag value. The order of
transmitting packets in the waiting queue of an aggregate will
be adjusted according to the new “virtual” arrival times.

Now, let us consider the scheduling algorithm at both the
aggregator and the downstream nodes. For simplicity, the
propagation delay between neighboring nodes is omitted in the
following discussion. At the aggregator (server Si), per-flow
scheduling is used. Thus, for flow f , GRCi(pj

f) is defined
based on its reserved rate rf according to Eq. (1). Let δi(pj

f)
and Di(pj

f) be the lag value and the departure time of packet
pj

f at Si, respectively. Then,

δi(pj
f) = Di(pj

f) − GRCi(pj
f). (6)

At the downstream nodes Si+k (k ≥ 1), the lag value
δi+k(pj

f) is defined differently:

δi+k(pj
f) = Di+k(pj

f) − V Ai+k(pj
f), k ≥ 1. (7)

The virtual arrival (VA) time V Ai+k(pj
f) is calculated recur-

sively as:

V Ai+k(pj
f) = Ai+k(pj

f) − δi+k−1(pj
f)

= Ai+k(pj
f) − (Di+k−1(pj

f) − V Ai+k−1(pj
f))

= V Ai+k−1(pj
f)

...

= GRCi(pj
f), k ≥ 1. (8)

We assume Ai+k(pj
f) = Di+k−1(pj

f) since the propagation
delay is omitted. From Eq. (8), the virtual arrival time of a

packet at downstream nodes is exactly the same as the packet’s
GRC value at the aggregator. Thus, at every node after the
aggregator, the packets are ordered in their GRC values at the
aggregator. (A simple implementation is to just store the GRC
value in the packet at the aggregator. However, to remove the
need for clock synchronization, we store the lag value and
adjust the virtual arrival time at each downstream hop, as is
done in the above algorithm.) Moreover, the algorithm also
preserves the order of packets in the same flow, since

V Ai+k(pj
f) = GRCi(pj

f) ≥ GRCi(pj−1
f) +

�j
f

rf

= V Ai+k(pj−1
f) +

�j
f

rf

> V Ai+k(pj−1
f). (9)

Also, the “deadline” of a packet is defined differently at
different nodes: at the aggregator, the packet’s deadline is its
GRC value, while at the downstream nodes, the deadline is
its virtual arrival time, not its GRC value (or expected finish
time) at those nodes. The reason for this is that we want to
re-adjust the order of packets in the same aggregate to keep
them in the order of GRC values at the aggregator. Using the
virtual arrival time achieves this goal.

Based on the above analysis, we can prove that CAS
provides tighter e2e delay bounds than VAS. Due to the lack
of space, the proof of the following theorem is omitted.

Theorem 3: Under the same conditions of Theorem 2, the
e2e delay bound of a packet under CAS is tighter than that
under VAS.

IV. IMPLEMENTATION

Theoretically, we have shown that CAS has very good
e2e delay performance. However, since CAS employs EDF
scheduling at core nodes, its implementation overhead can be
a concern. Therefore, we need to find an efficient algorithm
for packet sorting.

The calendar queue [15] has been widely used for packet
sorting. It is shown to have O(1) complexity. However, de-
pending on the number of packets in the queue, the calendar
queue has to do a lot of resizing and copying to maintain the
“optimal” calendar structure, i.e., not many packets in each
bucket nor many empty buckets. Resizing and copying incur
significant overhead. Moreover, the calendar queue does not
work well over “skewed” priority distribution.

Since in the CAS algorithm, fair queueing is used at each
aggregator, the virtual arrival (VA) time values of packets in
each aggregate are likely to be monotonically increasing. Thus,
one FIFO queue is almost enough to handle them. Only a few
more queues are necessary to handle those packets that have
smaller VA values (higher priority) than their predecessors.

Based on the observations above, we propose a simple
multi-queue structure that consists of a main queue and
multiple accessory queues. The number of accessory queues
varies with the VA values and actual arrival times of packets.
A newly-arrived packet is put at the end of the main queue as

0-7803-8277-3/04/$20.00 ©2004 IEEE. 80

Incoming packet

Main Queue

. . .

Accessory Queue 1 Accessory Queue K

Fig. 2. The multi-queue structure

long as its VA value is larger than that of the last packet in the
queue; otherwise, the VA value of the packet is compared to
that of the last packet in the first accessory queue. Similarly, if
its VA value is larger, the packet will be put at the end of the
queue; otherwise, its VA value is compared with that of the
last packet at the next accessory queue. The process continues
until either the packet is put at the end of an existing queue, or
(when its VA value is smaller than that of the last packet of the
last accessory queue) a new accessory queue will be created
where the packet will be placed. It is easy to see that the
VA values of the last packets in the queues are monotonically
decreasing—the one in the main queue is larger than that in
the first accessory queue; the one in the first accessory queue
is larger than that in the second accessory queue, etc.

When a packet from the aggregate needs to be transmitted,
the packet with the minimum VA value is chosen. It can be the
first packet of any of the existing queues. When an accessory
queue becomes empty, it will be deleted; on the other hand,
the main queue will always remain there, even if it gets empty.

Compared to the calendar queue, our simple multi-queue
scheme has the following advantages: (i) it is simpler, avoiding
the “copy” and “resize” operations of the calendar queue
when the calendar structure is adjusted; (ii) the clustering
problem (due to “skewed” distribution of packet priority) of
the calendar queue is avoided; and (iii) the number of queues
is independent of the total number of backlogged packets of
an aggregate.

In addition, there are several interesting properties asso-
ciated with the queue operations. First, since packets are
scheduled according to their VA values, the accessory queues
will be deleted in the reverse order of their creation. In other
words, the most recently created queue will be deleted first,
since its last packet has higher priority (a smaller VA value)
than all the last packets in other queues. In this sense the
accessory queues works as a LIFO stack. Second, the packets
of a given flow will keep their order. In other words, packets in
the same flow will never be reordered. Therefore, the number
of queues cannot be greater than the total number of flows in
the aggregate. Clearly, a new packet is put into a new queue
only when it belongs to a different flow from the last packets
in all the existing queues; otherwise, it will have a larger VA

TABLE I

PSEUDOCODE OF THE ADAPTIVE ALGORITHM

Nq : The current number of queues used by the aggregate;
δc: The default constant;
length[i]: The length of queue i;
VAmax[i]: The maximum value of VA in queue i;
VA(pj

A): The virtual arrival time of packet pj
A;

1. //Upon arrival of a new packet pj
A:

i = 0;
WHILE (VA(pj

A) < VAmax[i] - δ AND i < Nq)
i++;

IF (i ≥ Nq) THEN
Nq++;
δ += δc;

Insert pj
A at the end of queue i;

length[i]++;
IF (VA(pj

A) > VAmax[i]) THEN
VAmax[i] = VA(pj

A);

2. //Upon departure of a packet pj
A:

//Suppose pj
A is from queue i;

Remove pj
A from queue i;

length[i]--;
IF (i = Nq-1 AND length[Nq-1] = 0) THEN

Nq--;
δ -= δc;
VAmax[Nq-1] = 0;

value than at least one of them. Third, the packets in the same
queue are in increasing order of VA values.

To have small overhead, the number of accessory queues
should be small. In fact, the number of queues required is
related to several factors, such as the burstiness of flows,
network utilization, etc. We expect the average number of
queues to be small, since VA values of incoming packets tend
to be monotonically increasing.

To further reduce the number of accessory queues, the
following optimizations can be incorporated into the basic
multi-queue algorithm.

Optimization 1: if a queue is short (e.g., of length one/two or
shorter than the number of accessory queues), the new packet
will be inserted into it.

Optimization 2: a small discrepancy is allowed, so that if a
packet’s VA value is only a little bit (δ) smaller than that of
the last packet in the queue, it will be put behind that packet
in the queue without moving to the next accessory queue.

However, this optimization can be recursively done so that
the VA values of the packets in a queue may be in a reverse
order. To solve this problem, the algorithm is revised by
recording the maximum value of VA in each queue. A newly-
arrived packet compares its VA with this maximum value, not
the VA value of the last packet.

Then, the question is what value to use for δ. If it is large,
the number of queues will be small, but the delay performance
will suffer; if it is too small, then the number of queues will
increase. We design a simple adaptive algorithm, which uses
the number of accessory queues as a parameter in determining

0-7803-8277-3/04/$20.00 ©2004 IEEE. 81

the δ value. Suppose the current number of accessory queues is
Nq, then we set δ = Nq ·δc, where δc is a small constant. Thus,
if the number of accessory queues is large, we use a larger
δ to make the number of queues smaller; when it is small,
we use a smaller δ to make the ordering in each queue more
accurate, improving the delay performance. The pseudocode
of the adaptive algorithm is presented in Table I.

The δc value is directly related to the delay. When it is
0.01, for instance, the actual delay discrepancy would be in
the range of 0.01 – 0.1sec per hop, if the number of queues
is less than 10. In our simulation, δc is set to 0.01, 0.02, or
0.05.

With Optimization 2, the packets in a queue are no longer
in increasing order of their VA values. This fact leads to the
following optimization to reduce the overhead in choosing the
next packet to transmit.

Optimization 3: Suppose a packet from queue i is chosen
when a packet is to be transmitted from an aggregate, then
the next time a packet is to be transmitted from the aggregate,
another packet from queue i will be chosen (without searching)
as long as the VA value of the first packet in queue i is
smaller than that of the previous packet. This is because the
first packets in other queues must have larger VA values. This
can reduce the search effort during packet transmission from
an aggregate. This optimization has to be used together with
Optimization 2.

V. EVALUATION

To demonstrate the advantages of the CAS algorithm, we
conducted extensive simulations using the ns2 [16] simulator,
especially comparing the e2e delays of CAS and VAS.

A. The Simulation Setup

In the simulation, we used the topology shown in Fig. 3
where a number of “tagged” flows enter the network through
the ingress node S1, and traverse all the other nodes until they
reach the egress node Sn. The “tagged” flows are the ones of
interest to our study, and their e2e delays are checked by the
egress node. In order to simulate interferences by cross-traffic,
external traffic is injected at every node on the path. The cross-
traffic at each node shares the path with the tagged traffic for
only one hop before exiting the network at the next hop. For
the backbone links, we set the bandwidth to 160Mbps and the
propagation delay to 2ms, respectively, while for the incoming
and outgoing links, we set the bandwidth to 10Mbps and the
propagation delay to 10ms.

The tagged flows are generated by using a modified CBR
model with varying packet and burst sizes. Each tagged
incoming flow is shaped by a token bucket. The cross traffic is
generated by using the Pareto On/Off distribution [17], [18],
which can simulate long-range dependencies and is known to
be suitable for a large volume of traffic.

To verify the performance of CAS, we used two fair
queueing algorithms—WFQ (Weighted Fair Queueing) and
WF2Q (Worst-case Fair Weighted Fair Queueing) [19]. The

Tagged
traffic

Cross traffic

S1 S2 S3 Sn−1 Sn.
.
.

.

.

.

Fig. 3. Simulation topology

TABLE II

PARAMETERS AND THEIR DEFAULT VALUES

Parameters Values

Tagged flow packet size 400B

Cross traffic packet size 1500B

Tagged flow rate 32Kbps

Hop count 10

Burst size of tagged flows (red / blue) 2 / 8

Total number of tagged flows 128

Number of tagged flows in one aggregate 16

Link utilization 55%

ns2 versions of WFQ and WF2Q were used as the GR sched-
uler at each backbone node. Both algorithms were modified
to support VAS and CAS. For each simulation scenario, we
ran simulation to obtain two independent results using WFQ
and WF2Q. Each simulation run lasted 50 seconds.

In the simulation, the tagged flows were divided into mul-
tiple groups. In each group, one flow (called red flow) has
a fixed small burst size 2 2, while all the other flows (called
blue flows) have variable burst sizes (with the default value 8).
Each group of flows were bundled into an aggregate flow at
the aggregator. We focused on the e2e delay of the red flows to
see the delay performance of flows under different scheduling
schemes and network conditions. All the parameters used in
the simulation and their default values are summarized in
Table II.

B. Simulation Results

First, we compared the e2e delay of the red flows under VAS
and CAS. Fig. 4 shows the result of one red flow when WFQ
is used as the GR scheduling algorithm. As can be seen from
the figure, CAS yields not only a smaller worst-case delay but
also a very small delay variation. This confirms the analysis
results in Section III. We repeated the simulation using the
WF2Q algorithm, the results of which are plotted in Fig. 5.
As can be seen from this figure, the performance of CAS is
consistently superior.

Next, we compared the performance of the red flows under
different link utilizations and burst sizes of the blue flows. The
main performance metric is the worst-case e2e delay. For each
scenario, 36 independent runs were conducted. All the results
are plotted with the 95% confidence interval [20].

2Note that the burst size is a relative value: value k means that the burst
size is k times of the default packet size (e.g., if the packet size is 400B, then
burst size 2 equals 800B).

0-7803-8277-3/04/$20.00 ©2004 IEEE. 82

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500

e2
e

de
la

y
(s

)

packet number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500

e2
e

de
la

y
(s

)

packet number

(a) VAS (b) CAS

Fig. 4. End-to-end delay comparison: WFQ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500

e2
e

de
la

y
(s

)

packet number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500

e2
e

de
la

y
(s

)

packet number

(a) VAS (b) CAS

Fig. 5. End-to-end delay comparison: WF2Q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

e2
e

de
la

y
(s

)

link utilization

CAS+WFQ
VAS+WFQ
CAS+WF2Q
VAS+WF2Q

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2 4 6 8 10 12 14 16

e2
e

de
la

y
(s

)

relative burst size

CAS+WFQ
VAS+WFQ
CAS+WF2Q
VAS+WF2Q

(a) Varying link utilization (b) Varying burst size

Fig. 6. End-to-end delays under different conditions

To see the robustness of the performance of CAS, we
compared the performance of VAS and CAS under different
link utilizations. As shown in Fig. 6(a), as the link utilization
of the network links increases, the worst-case delay of the
red flow under VAS increases significantly faster than that
under CAS. This shows that CAS is more robust to high link
utilization and congestion than VAS.

To examine the performance of CAS for large burst sizes of

other flows sharing the same aggregate, we fixed the burst size
of red flow at 2, and increased the burst size of the blue flows
from 2 to 16. All the other parameters are set to the default
values in Table II. The e2e delay of the red flow is shown in
Fig. 6(b). As can be seen, with the burst size of the blue flows
increasing, the e2e delay of the red flow under VAS increases
very fast. By contrast, the e2e delay under CAS changes very
little, confirming the delay analysis in Section III. The results

0-7803-8277-3/04/$20.00 ©2004 IEEE. 83

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 100 1000

m
ax

. e
2e

 d
el

ay
 (

s)

number of sources in an aggregate

δc = 0
δc = 0.01
δc = 0.02
δc = 0.05

 0

 5

 10

 15

 20

 25

 100 1000

av
er

ag
e

nu
m

be
r

of
 q

ue
ue

s

number of sources in an aggregate

δc = 0
δc = 0.01
δc = 0.02
δc = 0.05

(a) maximum e2e delay (b) average number of queues

Fig. 7. The effectiveness of the adaptive algorithm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500

e2
e

de
la

y
(s

)

packet number

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500

e2
e

de
la

y
(s

)

packet number

(a) Per-flow scheduling (b) Core-stateless (GRCore)

Fig. 8. End-to-end delay comparison II: WFQ

under both WFQ and WF2Q algorithms are very similar and
thus consistent.

To examine the effectiveness of the adaptive algorithm,
we also ran simulations with hop count set to 3 and total
number of tagged flows set to 1024. Other parameters use the
default values in Table II. We varied the number of flows
in each aggregate and monitored the maximum e2e delay
and the average number of queues used by an aggregate
at the second backbone router. The results are shown in
Fig. 7. As can be seen from this figure, the adaptive algorithm
can reduce the average number of queues significantly while
almost maintaining the same maximum e2e delay (when δc =
0.01, 0.02, or 0.05).

VI. COMPARISON WITH RELATED WORK

A. Delay bound of aggregate scheduling

The delay bound problem of aggregate scheduling was
also studied by Cobb [7]. By using rate-based scheduling
algorithms and fair aggregators, he showed that the e2e
delay of an aggregate is bounded and the bound can be
smaller than the per-flow e2e delay bound. Our CAS scheme
differs from the schemes in [7] mainly in how and where the
burstiness of other flows in the same aggregate is controlled.
In [7], Cobb used non-work-conserving scheduling algorithms

at aggregators—both the basic fair aggregator and greedy fair
aggregator use rate-controlled schedulers. By contrast, our
scheme is work-conserving, allowing any work-conserving GR
scheduling algorithm to be used at aggregators. Burstiness is
controlled in a on-demand fashion, by reordering packets in the
same aggregate only at the congested downstream nodes of the
aggregator. The aggregator simply stores the lag information
in the packets. Our scheme is general since any GR scheduling
algorithms can be modified to become CAS algorithms.

B. Core-stateless scheduling

Recently, in an effort to solve the scalability problem of per-
flow scheduling, there have been some work on core-stateless
scheduling [21]. The key idea of core-stateless scheduling is
to use per-flow scheduling (rate-based or delay-based) only at
edge routers. At the same time, edge routers store some key
per-flow information in the packets. Therefore, the core routers
need not keep per-flow information; all the needed information
is carried in the packets themselves. Inside the network, core
routers can restore the per-flow information from the packets
and schedule them accordingly. By using this method, core-
stateless scheduling can achieve the same delay bound as per-
flow scheduling. The idea was first proposed by Stoica [21],
and was generalized later by Kaur [22] and Zhang [23].

0-7803-8277-3/04/$20.00 ©2004 IEEE. 84

Our CAS scheme is similar to the core-stateless scheduling
scheme in the sense that it also uses packets to carry schedul-
ing related information. However, it differs from core-stateless
schemes in the following aspects. First, core-stateless is totally
stateless in the core network. All the needed information is
carried in the packets themselves, from which the states of
flows can be restored. By contrast, by keeping the states
of traffic aggregates in core routers, CAS is still stateful,
but the number of states is significantly smaller than that
of per-flow fair queueing schemes (in orders of magnitude).
Second, since CAS keeps states of traffic aggregates at core
routers, it stores less information in the packets, with lag
time δ only. In contrast, core-stateless scheduling generally
needs to insert more information into packets. For example,
CJVC (Core-stateless Jitter Virtual Clock) [21] needs to store
four entries in each packet, with three of them relevant to
scheduling (including the reserved rate for the flow). Since
CAS stores less information in packets, the packet processing
overhead is also relatively lower. Also, since core-stateless
scheduling does not maintain any flow state at core routers,
the admission control at core routers has to be based on traffic
measurement or rate estimation [21], which has considerable
overhead. CAS can use RSVP’s extension for aggregation [13],
which incurs smaller overhead at core routers. Third, core-
stateless scheduling generally achieves the same delay per-
formance as its corresponding per-flow scheduling. By taking
advantage of multiplexing gains, CAS achieves tighter delay
bounds than per-flow scheduling. Thus, CAS offers better
delay performance. Finally, since CAS is not totally stateless
at core routers, it has the advantage of isolating different
traffic aggregates at core routers and confining the potential
hazard problems (such as malicious traffic or denial-of-service
attacks) within each aggregate, unaffecting other traffic aggre-
gates.

To compare the performance of core-stateless scheduling
with that of CAS, we repeated the first simulation in Section V
using per-flow WFQ and GRCore, a work-conserving, core-
stateless algorithm in [22]. The simulation was conducted
using the same network setup and parameters in Section V.
The results are plotted in Fig. 8. Comparison of Figs. 8 and 4
reveals a surprising result: GRCore performs worse than both
per-flow and aggregate scheduling. The main reason for this is
that under core-stateless scheduling, the packet deadline (such
as the GRCore value) is computed rather conservatively, based
on the flow’s reserved rate. The actual arrival time of a packet
at a core router is not considered in updating the deadline. At
each core router, if other flows have bursts, packets from low-
rate flows are pushed back in the queue and thus experience
delays close to their deadlines. The fact that they may arrive
earlier than other packets does not help, as long as the core
router is not idle. In this sense, core-stateless scheduling is
biased against low-rate flows.

We also ran the same simulation using WF2Q and the results
were similar. Interestingly, the delay results under GRCore
using WFQ and WF2Q are almost the same. This is because
under GRCore, the deadlines of each packet under WFQ

and WF2Q are the same, and delays mainly occurred at the
core routers. Thus, the difference in delay between WFQ and
WF2Q at the edge routers does not have much impact.

C. Coordinated scheduling

The idea of coordinating the scheduling of a packet at multi-
ple nodes has also been explored in the literature. For example,
the author of [24] proposed Coordinated EDF (CEDF) that
coordinates the deadlines of a packet at multiple hops and
yields a very small e2e delay. However, CEDF provides only
statistical delay guarantees, and does not provide a natural
way of assigning the deadline at each hop (the deadline at
the first hop is randomly assigned). CAS is similar to CEDF
in the sense that the scheduling inside an aggregate is based
on EDF, and that it requires coordination among multiple
nodes. However, by using the GRC value of a packet at the
aggregator as its deadline at later hops, CAS provides a natural
way of assigning deadline values to packets. In addition, CAS
provides deterministic e2e delay guarantees.

In a related paper, the authors of [25] defined a general
framework of Coordinated Multihop Scheduling (CMS), which
covers many scheduling algorithms (including core-stateless
algorithms [24], [21], [22]) exploring the coordination among
different nodes. CAS’s mechanism at the intra-aggregate level
is also an example of CMS.

D. Summary of CAS’s Features

The salient features of CAS are summarized as follows.

• Scalable architecture: by using traffic aggregation, CAS
can support a large number of flows in core networks.
Since CAS supports multiple aggregations, and the scale
of traffic aggregates (in terms of the number of flows in
each aggregate) can be flexibly set. The architecture of
aggregate scheduling also fits the Internet administration
architecture well.

• Superior performance: as our analysis and simulation
results have shown, CAS provides better performance
than both per-flow fair queueing and VAS.

• Low overhead: first, since CAS belongs to aggregate
scheduling, it has lower overhead than per-flow fair
queueing (e.g., lower state-maintenance overhead, sim-
pler packet classification and scheduling). Second, with
the optimization methods in Section IV, the extra over-
head it has beyond VAS is marginal. Compared to VAS,
CAS incurs a higher overhead at both the aggregator
(computing and inserting lag values into packet headers)
and core routers (packet sorting in each aggregate). For
the former, the overhead is less than that in core-stateless
fair queueing. For the latter, our simple multi-queue
structure and adaptive algorithm have shown the extra
overhead in packet scheduling to be marginal. Also,
Stoica [21] has shown experimentally that the overall
overhead of core-stateless fair queueing is not high—it
“adds less than 5 µs overhead per enqueue operation, and
about 2 µs per dequeue operation” on a 300MHz Pentium
II machine. CAS has even smaller overhead than this.

0-7803-8277-3/04/$20.00 ©2004 IEEE. 85

TABLE III

COMPARISONS OF THE QOS ARCHITECTURES

IntServ DiffServ Core-Stateless CAS

Service guarantee hard soft hard hard

Maintaining state at core routers per-flow state stateless stateless aggregate state

Storing state in packets no no yes yes (less state information)

Rate estimation at core routers no no yes no

Admission control at core routers per-flow RSVP bandwidth broker rate estimation RSVP with aggregate support

• Incremental deployment: CAS facilitates incremental de-
ployment. If some core routers do not implement CAS,
then the queue at those nodes for each aggregate is FIFO.
In other words, the scheduling at these routers becomes
VAS. The performance will suffer, but still better than
pure VAS. If the aggregator does not support CAS, as
long as it supports fair queueing, it is still an aggregator
of VAS. Then, the whole scheduling degrades to VAS,
since the field to hold the lag value will have the default
value for all packets, and the core routers will work in a
FIFO fashion for each aggregate.

In addition to the features mentioned above, CAS is work-
conserving and provides isolation between traffic aggregates.

Finally, we compare the four different schemes—IntServ,
DiffServ, core-stateless, and CAS—in Table III. Compared
to the other three schemes, CAS strikes a balance between
overhead and performance.

VII. CONCLUSIONS

In this paper, we proposed a novel coordinated aggre-
gate scheduling (CAS) algorithm, which uses EDF within
each aggregate and GR scheduling algorithms among traffic
aggregates. The EDF scheduling within each aggregate is
coordinated among multiple nodes. Under the assumption that
the incoming traffic to each aggregator conforms to the token
bucket model, we proved that CAS provides tighter delay
bounds for a flow than VAS. Moreover, CAS is shown to
have many other salient features, e.g., it is work-conserving
and incurs small packet processing overhead. We have also
shown by simulation that CAS is robust, performing better in
terms of worst-case e2e delay than VAS, per-flow scheduling
and core-stateless scheduling algorithms.

ACKNOWLEGEMENT

The work reported in this paper was supported in part by
Samsung Electronics and by the US Airforce Office of Sci-
entific Research under Grant F49620-00-1-0327. The authors
would also like to thank the anonymous reviewers for their
insightful comments.

REFERENCES

[1] P. Goyal, S. S. Lam, and H. M. Vin, “Determining end-to-end delay
bounds in heterogeneous networks,” in Proc. of NOSSDAV’95, Apr.
1995, pp. 287–298.

[2] R. Braden, D. Clark, and S. Shenker, “Integrated services in the Internet
architecture: an overview,” RFC 1633, June 1994.

[3] B. Braden, L. Zhang, S. Berson, et al., “Resource ReSerVation Protocol
(RSVP) — version 1 functional specification,” RFC 2205, Sept. 1997.

[4] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
Oct. 1995.

[5] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single
node case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, pp. 344–357,
June 1993.

[6] L. Zhang, “Virtual Clock: A new traffic control algorithm for packet-
switched networks,” ACM Trans. Computer Systems, vol. 9, no. 2, pp.
101–124, May 1991.

[7] J. A. Cobb, “Preserving quality of service guarantees in spite of flow
aggregation,” IEEE/ACM Trans. Networking, vol. 10, no. 1, pp. 43–53,
Feb. 2002.

[8] H. Fu and E. W. Knightly, “A simple model of real-time flow aggrega-
tion,” IEEE/ACM Trans. Networking, vol. 11, no. 3, pp. 422–435, June
2003.

[9] W. Sun and K. G. Shin, “Delay bounds for end-to-end traffic aggregate
under guaranteed rate scheduling algorithms,” Dept. of EECS, Univ. of
Michigan, Tech. Rep. CSE-TR-484-03, 2003.

[10] T. Li and Y. Rekhter, “A provider architecture for differentiated services
and traffic engineering (PASTE),” RFC 2430, Oct. 1998.

[11] D. Awduche, J. Malcolm, J. Agogbua, et al., “Requirements for traffic
engineering over MPLS,” RFC 2702, Sept. 1999.

[12] S. Blake, D. L. Black, M. A. Carlson, et al., “An architecture for
differentiated services,” RFC 2475, Dec. 1998.

[13] F. Baker, C. Iturralde, F. L. Faucheur, et al., “Aggregation of RSVP for
IPv4 and IPv6 reservation,” RFC 3175, Sept. 2001.

[14] D. Stiliadis and A. Varma, “Latency-rate servers: A general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Network-
ing, vol. 6, no. 5, pp. 611–624, Aug. 1998.

[15] R. Brown, “Calendar queues: A fast O(1) priority queue implementation
for the simulation event set problem,” Communications of the ACM,
vol. 31, no. 10, pp. 1220–1227, Oct. 1988.

[16] “ns2 simulator.” [Online]. Available: http://www.isi.edu/nsnam/ns/
[17] W. E. Leland, M. S. Taqqu, W. Willinger, et al., “On the self-similar

nature of Ethernet traffic (extended version),” IEEE/ACM Trans. Net-
working, vol. 2, no. 1, pp. 1–15, Feb. 1994.

[18] A. Popescu, “Traffic self-similarity,” in Proc. of IEEE Intl. Conf. on
Telecommunications (ICT2001), June 2001.

[19] J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair
queueing,” in Proc. of IEEE INFOCOM’96, Mar. 1996, pp. 120–128.

[20] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[21] I. Stoica and H. Zhang, “Providing guaranteed services without per flow
management,” in Proc. of ACM SIGCOMM’99, Sept. 1999, pp. 81–94.

[22] J. Kaur and H. M. Vin, “Core-stateless guaranteed rate scheduling
algorithms,” in Proc. of IEEE INFOCOM’01, Apr. 2001, pp. 1484–1492.

[23] Z.-L. Zhang, Z. Duan, and Y. T. Hou, “Virtual time reference system:
A unifying scheduling framework for scalable support of guaranteed
services,” IEEE J. Select. Areas Commun., vol. 18, no. 12, pp. 2684–
2695, Dec. 2000.

[24] M. Andrews and L. Zhang, “Minimizing end-to-end delay in high-
speed networks with a simple coordinated schedule,” in Proc. of IEEE
INFOCOM’99, vol. 1, Mar. 1999, pp. 380–388.

[25] C. Li and E. W. Knightly, “Coordinated multihop scheduling: A frame-
work for end-to-end services,” IEEE/ACM Trans. Networking, vol. 10,
no. 6, pp. 776–789, Dec. 2002.

0-7803-8277-3/04/$20.00 ©2004 IEEE. 86

	footer1:

