
Stateful Distributed Interposition

JOHN REUMANN and KANG G. SHIN
The University of Michigan, Ann Arbor

Interposition-based system enhancements for multitiered servers are difficult to build because
important system context is typically lost at application and machine boundaries. For example,
resource quotas and user identities do not propagate easily between cooperating services that exe-
cute on different hosts or that communicate with each other via intermediary services. Application-
transparent system enhancement is difficult to achieve when such context information is obscured
by complex service interaction patterns. We propose a basic mechanism for sharing contextual in-
formation across the tiers of multitier computations to support system enhancement for multitier
servers and applications.

This article introduces generic, cluster-wide context as a new, configurable abstraction for the
OS. System administrator- or application-specified context tracking rules determine how context
is associated with system processes, sockets, messages, how it is relayed along the interapplication
communication channels, and how it is to be interpreted by system interpositions, thus realizing
Stateful Distributed Interposition.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.5.5 [Computer System Implementation]: Servers; D.4.m [Operating Systems]:
Miscellaneous

General Terms: Design, Management

Additional Key Words and Phrases: Distributed computing, component services, operating systems,
multitiered services, server consolidation, distributed context

1. INTRODUCTION

Monolithic network services of the mainframe era are quickly being replaced
with modular, lightweight multitier services. This trend is accelerated by
emerging standard components for modular application design, such as ap-
plication servers, servlets, CORBA, and .NET. For example, today’s Internet
services are composed of multiple service modules: front-end Web interfaces,
middle-tier application servers, name servers, back-end databases, and storage

The work described in this article was supported in part by a Graduate Research Fellowship from
IBM Corporation and by the National Science Foundation under grant CCR-0216977.
Authors’ present addresses: J. Reumann, IBM T. J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598; email: reumann@us.ibm.com; K. G. Shin, The University of Michigan, EECS
Dept., 1301 Beal Avenue, Ann Arbor, MI 48109-2122.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0734-2071/04/0200-0001 $5.00

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004, Pages 1–48.

2 • J. Reumann and K. G. Shin

Fig. 1. Context information is lost as requests r1 and r2 propagate across shared intermediaries.
Neither preferred processing nor effective access control can be implemented at the system level.

servers. Such modularity has brought great flexibility, reusability, and poten-
tial application logic sharing to service hosting environments and the service
design process.

Unfortunately, in this respect applications have advanced far beyond the
support of operating systems (OSs), thus leaving the implementation of impor-
tant OS functions, such as resource quotas, user identities, and environment
variables, to the applications. This increases the potential for errors. Moreover,
it complicates the implementation of typical state-dependent functionality for
multitiered systems, such as scheduling, access control, and tracing.

From our experience in resource management for multitier systems, prop-
agating information across middle-tier applications that are oblivious to the
fact that they are shared by multiple competing front-end services is a prob-
lematic issue (as shown in Figure 1). For example, to achieve performance iso-
lation between competing front ends in spite of shared back-end services, it is
necessary to propagate a resource context from the front end to the back-end
machines [Reumann et al. 2000b; Aron et al. 2000] and to enforce it in the back
ends’ resource schedulers. Virtual Services [Reumann et al. 2000b] associate
each incoming request with a Virtual Service (VS) structure, which defines a
number of resource limits. This VS affiliation propagates from the sender of a
message to its receiver, possibly across host boundaries, in a manner that is
transparent to the applications. To propagate VS resource descriptors, the OS
must be changed at numerous places, and the network stacks must be modified
to piggy-back VS IDs onto all communication messages between cooperating
services, thus demanding a substantial implementation effort to achieve a rel-
atively simple goal.

Other problems resulting from the loss of contextual information at tier
boundaries range from trivial but annoying problems to serious security is-
sues. We have all encountered the trivial, but nonetheless annoying problem
that telneting from a login machine to a remote host to execute a program,
the resulting X-Window is not automatically sent to the X-Server on the login
machine. To achieve X-forwarding, the DISPLAY environment variable must be
set appropriately on the remote machine. Of course, some login tools (e.g., ssh)

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 3

fix this problem using connection forwarding. However, it would be better if
the DISPLAY variable (or something equivalent) would automatically propagate
among tiers, even if the login session was relayed across several intermediary
login sessions.

Information loss at tier boundaries is far more serious when system security
and system integrity are to be preserved in a multitier system. For a single-tier
service, security problems are relatively easy to solve, because executions are
triggered by a user who is logged in at the local node. Consequently, access to
files, FIFO queues, executable programs, and hardware resources is controlled
by processes’ user and group IDs that are maintained by the local OS. If the
user decides to utilize remote services (second tier) instead of executing local
programs, then local security mechanisms fail. The remote server OS cannot
identify the user who sent the network packet that it received, and simply han-
dles it as raw data. Hence, it is up to the services to reconstruct security context
information and to enforce appropriate security policies. As a result, system ad-
ministrators must configure security mechanisms in many distinct applications
(e.g., Telnet, Ssh, Web, NFS, AFS, Samba, RPC, Corba, etc.), each in its own
peculiar fashion. Solutions like Flask [Spencer et al. 1999] and DTE [Badger
et al. 1995] attempt to address this dilemma by proposing distributed security
attribute propagation to manage system integrity and security in a consistent
and completely application-transparent fashion.

Despite substantial differences among DTE, Flask, and VSs, we observe sig-
nificant design similarities:

(1) introduction of a new separate OS-level resource/security/integrity abstrac-
tion,

(2) creation of associations between processes, messages, and the new abstrac-
tions,

(3) propagation of associations across host boundaries (e.g., between shell and
remote file server), and

(4) interposition of security and resource constraint enforcement functionality
on standard system interfaces.

This article generalizes the above observations into a generic, multitier con-
text service called Stateful Distributed Interposition (SDI). SDI addresses the
following requirements.

Keep State. Provides a customizable, distributed state abstraction allow-
ing queries and basic operations on state variables. State variables are stored
in a context object. It can be used to store security classification, monitoring
descriptors, resource constraints, and the like.

Generate Context. Provides a mechanism that automates the generation of
context, that is, a classification facility.

Propagate Context. Automates the propagation of context between cooper-
ating services and across system abstractions, for example, messages, sockets,
and processes. If necessary, state variables and context may need to be altered
during propagation to match site-specific requirements.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

4 • J. Reumann and K. G. Shin

Utilize Context. Uses dynamic contextual information to trigger interposi-
tions on standard system interfaces. Stateful interposition allows system be-
havior to be influenced by context. This is an important advancement from
prior interposition schemes, which operate only on fixed and existing system
state.

This article is organized as follows: We define our system model in Section 2
before outlining the overall approach and the system-level architecture of SDI
in Section 3. Section 4 argues for the high-level design and concepts of SDI.
Important implementation aspects and practical design issues based on our
experience in implementing SDI on the Linux OS are discussed in Section 5.
Implementation and usage examples of our prototype system are presented in
Section 6. Readers approaching SDI from an application-oriented angle may
want to jump to Section 6 after reading Sections 2 and 3, to obtain a feel for the
use of SDI before returning to the theory of operation and design in Section 4.
Section 7 evaluates the performance of our SDI prototype. Section 8 describes
how SDI generalizes previous approaches to system design by interposition
and how it generalizes previous domain-specific solutions that incorporate dis-
tributed context. The article ends with concluding remarks in Section 9.

2. SYSTEM MODEL

Our system design choices of SDI are based on the following assumptions. Mul-
titier systems consist of many servers, which are connected via a fast, reli-
able server area network (SAN), for example, switched gigabit Ethernet or
Myrinet [Boden et al. 1995]. Each individual server hosts an arbitrary set of ser-
vices, a number of which act as so-called front-end services. Front ends handle
requests received from the outside network. They typically depend on back-end
services within the server farm, such as DNS, DBMS, payment, and application
servers to implement their functionality. Back-end services may be utilized by
multiple independent front-end services simultaneously.

Cooperating front- and back-end services rely on OS communication primi-
tives to exchange requests and replies. In particular, back ends receive requests
as network or IPC communication messages. We assume that there are no com-
munication channels between front and back ends that are hidden from the OS.

As argued in Section 1, cooperating tiers must share contextual state to
achieve certain system management objectives. This can be accomplished with-
out application support only if one assumes that each kernel-level thread or pro-
cess executes on behalf of at most one request at any given moment. Otherwise,
the application’s user-level thread library or event-handler must be modified to
reveal when it switches between different requests, in order to allow the OS to
transfer correct contextual information along the interapplication communica-
tion channels. We assume that minor modifications to thread libraries can be
made, if necessary.

SDI assumes a typical layered OS design. This assumption allows the place-
ment of interception points for multitier computations at the junctions between
OS layers. These interception points are called taps. For example, a tap may
be installed at the transition from network to IP-layer processing or before and

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 5

after specific system calls. Taps are used by SDI to police, monitor, and redirect
processing to interpositions.

Some of the parameters passed into OS functions are called system objects.
What sets a system object apart from a simple parameter is that it does not
live in the current call stack and that it usually survives the execution of the
intercepted call. Typical system objects contain an OS-level context which is
fixed and restricted to low-level attributes that are necessary to implement
the system object. SDI adds a distributed context reference facility to system
objects.

3. ARCHITECTURAL OVERVIEW

3.1 The Context Abstraction

The SDI architecture provides a context abstraction that stores name-value
pairs that are similar to POSIX environment variables. Unlike environment
variables, which are embedded inside a process, context is provided as an in-
dependent system abstraction that can be configured to propagate with the
workload across multiple tiers. This allows each context object to be associated
with multiple system objects at multiple hosts simultaneously—a necessity in
distributed systems where multiple processes, sockets, and kernel threads may
work on the same request or request class simultaneously. To facilitate coordi-
nation of policies for distributed activities in a multitiered system, we provide
context, a flexible extension of the execution environment concept, as a network
object.

3.2 Managing Context Dynamically

Since context objects are separate from other system objects, it is necessary to
provide a mechanism by which system objects can be bound to a particular (new
or existing) context object, that is, tagging of system objects. The initial context
for “context-free” messages that are received from the outside of the network
are tagged using classifiers (Figure 2). Context classifiers parse incoming com-
munication messages to infer their appropriate context binding. This initial
classification is only preliminary, that is, it can be modified in later stages of re-
quest processing. Classifiers extract as much useful information from incoming
messages as is possible and use it in making a preliminary context determina-
tion. Processes may also be classified manually, by user-level scripts, or by the
applications themselves.

The context of a packet or a process may affect its processing throughout
the OS, at the system call interface, and, if applications use context attributes,
at the application layer as well. This is similar to the effect that environment
variables have on the behavior of an application. For example, the value of the
HOME environment variable affects an application’s interpretation of relative file
names. Context attributes affect OS behaviors at so-called tap points, which are
shown at layer transitions for the Linux OS in Figure 3. The layers may differ
slightly across OSs. However, equivalent features can be identified in all OSs
and wrapper layers may provide common interfaces [Ford et al. 1997].

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

6 • J. Reumann and K. G. Shin

Fig. 2. SDI provides mechanisms to associate additional state with incoming messages, and prop-
agates it according to SDI rules as request processing progresses.

Fig. 3. Architectural overview of SDI-Linux integration. The abbreviation GCF stands for Guarded
Context-Dependent Function, that is, a plug-in function that can be triggered by an SDI rule.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 7

Fig. 4. The structure of SDI rules.

Taps intercept the control flow of multitiered applications at the OS-layer,
and as is shown in Figure 2, can apply Stateful Distributed Interposition rules
(SDIs), to intercepted computations. SDIs are rules that are dynamically in-
stalled by the system administrator or the applications. The name “SDI” is
used for both the proposed framework as a whole and for the interposed rules
since the framework is named for its configurable rules.

SDIs tackle several important aspects of context tracking for multitiered
applications in a standardized syntactic format (Figure 4). SDI rules are trig-
gered if certain conditions that are specified in the guard clause of an SDI are
met. These guard clauses may refer to context attributes that are associated
with any of the intercepted system objects. For example, it would be possible to
specify an SDI that is triggered at the fork system call, if the contaminated at-
tribute in the calling process’ context is set. If an SDI rule is triggered, the rule
may modify context attributes or tag system objects with references to different
context objects.

The last feature of SDI rules is a means for policing intercepted multitier
computations. Policing is a recurrent theme across security, performance man-
agement, and fault isolation mechanisms. To this end, SDIs include an action
directive, which may apply a standard policy, such as DENY, to an intercepted
computation which caused the guard clause to become true. In addition to a
number of predefined standard actions, SDIs also permit the invocation of arbi-
trary system extension functions called Guarded Context-Dependent Functions
(GCFs), which execute after the guard and assignment have been executed. For
example, one could implement encryption and decryption GCFs that are called
upon arrival of messages whose respective contexts indicate MSG ENCRYPTED =
0 and MSG ENCRYPTED = 1. Context must be implemented as an OS-level ab-
straction, because it may be used by OS interpositions that are transparent to
the applications.

3.3 Application-Level Integration

Applications may use context as a substitute or in addition to traditional en-
vironment variables. Context is application-accessible via a simple library in-
terface (Figure 3), which allows them to query and set the values of context
attributes in a manner similar to the interaction between applications and
their POSIX environment variables. However, the similarities are only limited
because of access controls for context and context is extended to system objects
other than processes.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

8 • J. Reumann and K. G. Shin

Applications can rely on OS mechanisms to propagate context alongside
their communications with back-end hosts. They no longer need to imple-
ment their own context abstractions, which are incompatible across different
distributed computation frameworks (e.g., CORBA vs. JDK). Distributed com-
putation frameworks may take advantage of system-layer context by imple-
menting their internal context abstraction atop SDIs. Thus, applications will
benefit from fast OS-level context transfer mechanisms, context caching, and
configurable context translation across tiers.

An additional benefit of the design of context as a stand-alone OS service
as opposed to an application-level abstraction is that it creates potential cross-
layer synergies. For example, an application protocol that processes multimedia
data may not care if the packets that it sends are received 100% error-free, since
the data is not error-free to begin with. To indicate this fact, the application
could set the attribute FastPath = 1 in its sending socket’s context. At the same
time, it would provide an SDI that instructs the SEND tap to copy and attach
the socket context to every message that passes through it. If the receiving
host had an SDI at the IP IN tap that instructs the kernel to bypass error
checking for messages whose context indicates FastPath = 1, the multimedia
application would benefit from the realization of context-based efficiencies at
the OS layer and experience smaller latency. One could not have achieved this
objective if the FastPath attribute were implemented at the application level.
The FastPath example can be expanded to implement Active Messages [von
Eicken et al. 1992].

4. STATEFUL DISTRIBUTED INTERPOSITION CONCEPTS

4.1 What is Context?

Context is essentially an aggregate of attribute-value pairs, which can be as-
sociated with system objects to add additional state. Context attribute names
and values may be arbitrary bit strings, which can be created in, and deleted
dynamically from, context objects. Each context object can be made accessi-
ble to the entire cluster. They are used by OS extensions and applications to
save additional state. For example, a system security extension that filters net-
work packets sent by unprivileged users must associate an additional security
clearance with each process. Without recompiling or restarting the kernel, it
is possible to associate a context object that specifies the appropriate security
attribute with each process owned by the unprivileged user. Context should be
understood as dynamically extensible state for system objects.

To take advantage of context information in user programs or kernel modules
that may query the attributes of its process, sockets, and file descriptors, uni-
form attribute names are needed. For example, attributes such as user IDs
and security clearance need well-defined names. The naming problem mir-
rors the attribute naming problem for POSIX environment variables, the Win-
dows registry, SNMP monitoring attributes, and will most likely be resolved
in the same manner, that is, by naming conventions. For example, every UNIX

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 9

application interprets the value of the HOME environment variable as the current
process’ home directory. Similarly, a context attribute with name HOME should
be interpreted consistently across applications.

Naming Attributes. While numerous attribute naming schemes are imag-
inable, the following scheme is proposed. Any attribute prefixed with private.,
which can be encoded as a single bit, is considered to have a meaning that is
applicable only within a specific cluster or system deployment. Those private
attribute names have no meaning across installations and should therefore not
be used in generic applications or setup-independent policies.

Some attributes that are considered to be universally useful, for example,
security clearance and priority, are not prefixed. The University of
Michigan’s Real-Time Computing Laboratory (RTCL) will control this global
attribute name space until it is taken over by an independent standards orga-
nization. All other attribute names that are created either by other adminis-
trative bodies, concurring standard committees, hardware, or software vendors
are to be prefixed with the creators Internet domain name or their SNMP pre-
fix. This scheme reflects the effective decentralized naming schemes of Java
packages and that of SNMP attributes.

Addressing Context. In order to be able to identify a specific context ob-
ject whose attributes are to be queried, it is important for applications and OS
extensions to be able to correctly identify which context they are referring to.
Since context acts as a state extension for existing system objects, we propose
that it be primarily addressed relative to the system abstraction whose state
it extends. For example, during IP processing one refers to the DEADLINE at-
tribute of an incoming message as [msg DEADLINE]. Such relative references
give interpositions and applications a more manageable local scope of context
information.

Eventually it is always necessary to address context objects by absolute,
global context references as shown in Figure 5:

—Global references are needed when resolving relative references to actual
memory objects (possibly locations at remote hosts).

—Global references allow mapping multiple system objects to the same shared
context object.

—Template context objects must be referenced through global references be-
cause they are not associated with any system object.

Template context is important when individual per-request, per-message, or
per-user context objects only differ minutely (e.g., by a sequence number). The
template from which an individual context object is created must be addressed
using a global context pointer, since the template is not associated with any
particular system object.

The addressing mode requirements for context objects clearly distinguish
SDI context from local POSIX environments, which can only be evaluated rel-
ative to the current process. Context objects can be addressed from within an

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

10 • J. Reumann and K. G. Shin

Fig. 5. Context objects may be associated with multiple system objects (sockets, processes, etc.)
possibly on different hosts via global context references.

entire multitiered server cluster. This raises the question how to design its
distributed reference.

Distributed objects can be referred to directly [Birrell et al. 1993; OMG
1998], via broadcast [Carriero and Gelernter 1986], or by name via a name
service [Needham 1995]. Name-based references provide the highest degree
of flexibility in assigning and migrating (context) objects to arbitrary loca-
tions in a server farm. However, this flexibility is achieved by indirection,
which does not scale to provide context in today’s multitier environments
that are often driven by HTTP servers, where context objects may be cre-
ated at a rate of thousands of objects per second. In such scenarios, a name
service would quickly become the system bottleneck. Obviously, broadcast-
based context resolution causes similar scalability problems. Therefore, di-
rect addressing, that is, host ID in combination with a local context handle
is the only global reference method that scales to high-load multitiered service
deployments.

At this point, we have defined context as a network-addressable container
for attribute-value pairs that can be used to extend the state of existing OS
abstractions. The features of this container object are its addressing relative
to existing system objects and the fact that it allows extending system objects’
states on-the-fly. For example, by associating a context object with a socket, one

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 11

can easily extend the state that is maintained for each socket. Furthermore, it is
possible to share this additional state across system abstractions. For example,
it is possible to associate an incoming TCP connection that is headed for port 80
with the HTTP server’s context object. Thus, it becomes possible to process the
incoming message using the receiving application’s priority, resource quota, or
application ID.

Context Propagation. It is important to note that context propagation is not
essential to the nature of the context object itself, but it is fundamental to the
provision of a multitiered execution context based on the context abstraction.
As services interact with other services or system services that execute under
different kernel executives, context must be exchanged between the cooperating
kernels (Figure 2) to facilitate distributed priorities, access controls, and the
like.

Context propagation is also relevant when two applications on the same host
collaborate. It should be possible for a local daemon process to inherit all or
some of a client’s attributes without rewriting the applications by simply track-
ing the exchanged messages over IPC and other local messaging abstractions.
This would greatly enhance system management capabilities. Traditional OS
mechanisms do not address the system management problem of polcing a dae-
mon application that works only on behalf of other applications, for example,
the DNS cache. Within the daemon all requests are typically processed using
the context or environment of the DNS caching process.

To achieve context propagtion it is necessary to tag system objects, such as
messages, file descriptors, network packets, and processes with context refer-
ences. The context references can be decoded on the receiver side and appropri-
ate tagging rules specify how to tag the receiver of the message.

The default tagging rule should track the control and data-flow of a composite
service. For example, if a process, P1, that is associated with a context, X , writes
a message to an IPC message queue, the message receives the context of the
writing process, that is, X . After the message is consumed by a reading process,
P2, which, prior to reading the message from the message queue, was associated
with context Y , P2 may be associated with the context of the message that it
just consumed, X . If P2 communicates with another back-end process P3, then
P3 will also inherit the association with context X . This behavior is quite useful
for policing many multitiered applications.

Unfortunately, there are also many scenarios in which simply copying and
inheriting context alongside the data-flow between applications (from writer
to reader) is not appropriate. For example, a database process may not be per-
mitted to operate in the context of a client if the client process has some very
high privileges (e.g., super-user) noted in its context. In general, one needs a
conditional, selective propagation mechanism that allows transferring some
attributes from the front-end process, for example, the remote client’s IP ad-
dress, while discarding others. This requires a more flexible context rewriting
framework, which handles context at control-flow and data-flow intersections
between the multitiered applications and the OS. SDI serves this dynamic con-
text management purpose.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

12 • J. Reumann and K. G. Shin

Fig. 6. The structure of SDIs: a context-dependent guard triggers attribute value remapping,
context rebinding, interpositions, that is, guarded context-dependent functions (GCFs), and policies.

4.2 Stateful Distributed Interposition

The name “SDI” is used for both the framework presented in this article as
well as for the individual SDI rules that allow for dynamic context rewriting,
binding, policing, and interposition. This section discusses the SDI rules.

SDIs (Figure 6) are simple rules for the modification of contextual state
based on previous contextual state and the interactions of computations with
and within the OS. First, they provide a general mechanism to update context
attributes and context bindings to system objects based on the OS operations
that multitiered computations invoke and their prior context classifications.
Second, SDIs allow the invocation of interpositions depending on intercepted
contexts’ attributes. These features will greatly simplify the implementation of
prior stateful distributed mechanisms like Active Messages [von Eicken et al.
1992], SPKI [Ellison 1999], Virtual Services [Reumann et al. 2000b], and future
system enhancements for multitiered systems.

The guarded clause structure of SDIs (see Figure 6) leads to the definition of
the SDIµ-language of Figure 7, which implements the features needed for prop-
agating context across system interfaces and across tier boundaries. Moreover,
this grammar features context rewriting capabilities and the ability to trig-
ger actions when specific context-dependent conditions are met at interception
points (a.k.a., taps).

First, Figure 7 shows that each SDI clause is applicable to a specific system
interface, that is, a tap. Second, SDI rules execute sequentially in rank order
because each SDI may have side-effects that may interfere with, or build on
other interpositions. Third, specific contexts and attributes may not be usable
at all hosts, and therefore, must be mapped to meaningful values before they
are used. Moreover, intercepting specific activities within a previously inferred
context may lead to its modification or replacement with a different, more appli-
cable context. Such functionality is implemented in the map clause of an SDI.
Finally, one may specify policing activities and user-defined interpositions.

The implied interposition programming model of SDI is similar to the pro-
gramming models of Erlang [Armstrong et al. 1996] and Linda [Gelernter 1985].
This similarity is not surprising, since SDI, Erlang, and Linda are all designed
to tackle distributed programming problems in a simple, extensible manner.

Tap Points specify where in the kernel a rule is applicable. Tap point im-
plementations interpret the entire SDI rule and resolve relative references to
context objects that are used in the rule language with respect to the context ob-
jects that are associated with the actual system objects that are intercepted at
the tap point. Tap point implementations glue the SDI framework into the OS.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 13

Fig. 7. Abridged SDI grammar: duplicate first and last letters of a system call name specify event-
interception taps before and after the execution of the default system action, respectively. The
word ε is the empty word. A completely empty guard always evaluates true. Context holders, for
example, socket, always refer to the canonical object at the tap. For example, socket would refer
to the sending socket in an SDI that is interposed on send.

The high degree of OS-dependence in each tap point implementation raises
the question of whether their implementation is too difficult, thus rendering
SDI impractical for real world OSs. Fortunately, this not the case because all
tap point implementations follow a generic implementation skeleton. In fact,
the only tap point-specific functionality is to identify the intercepted system
objects, which is a straightforward exercise, and to interpret action codes. The
actual interpretation of SDI rules takes place in the tap point implementations,
but it is largely tap-point-independent. It is done by generic guard checkers and
generic context mapping operators. Tap point implementations are merely a
“glue layer” adapting a generic SDI interpreter to the specifics of an intercepted
system call or system function.

Guards determine whether or not an SDI is applicable, thus making con-
text rewriting and interposition context-dependent. Guards are conjunctions of
atomic conditions, which are evaluated at tap points relative to the contexts of
the intercepted system objects. The SDI:

SSEND TCP 1 [proc clearance] < 5 : : gcf check tcp send perm.

is one of the first SDIs to be evaluated whenever an application attempts to send
a message through a TCP socket. More specifically, it is executed right before
the send functionality executes. The final term gcf in the above rule repre-
sents Guarded Context-Dependent Function and instructs the SDI interpreter
to jump into the specified function. This function is typically implemented as

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

14 • J. Reumann and K. G. Shin

a plug-in module for the kernel. Such interception of a specific system func-
tionality and redirection of the OS’s control flow is typical of all interposition
approaches. However, SDI’s ability to restrict the interposition to execute only
if the calling process’ security clearance, a runtime-specified attribute, is below
5 is unique to SDI. This is a clear advantage over previous models of interpo-
sition [Bershad et al. 1995; Jones 1993; Ghormley et al. 1998], which provide
little control over the conditions under which a specific interposition should be
invoked.

The second key element of SDIs is attribute value remapping and the re-
binding of context. As mentioned earlier, this is necessary because of the po-
tentially heterogeneous, multitiered computing infrastructure in which SDI-
based system enhancements may be deployed. For example, the priority levels
assigned on a front-end machine may have to be remapped to different values
on the back-end machines [Aman et al. 1997]. Another typical example would
be the remapping of user IDs from a web server environment to user IDs known
to a back-end DBMS, as is done in application servers.

Value remappings permit assignment and the + =,− = operators. The rea-
sons for including these operators in the grammar are that they are atomic and
that assignment and counters are frequently used in system management tasks
(e.g., in counting the number of packets sent, assigning user IDs, etc.). More
generic arithmetic expressions that could have subsumed those operations were
not used because each atom of a nonatomic arithmetic expression could be eval-
uated at different times due to the distributed nature of context. This means
that some atoms’ values could change during evaluation, thus generating phan-
tom results that do not reflect the system state at any time. Furthermore, com-
plex expressions could encourage users of SDI to specify expressions that look
concise but are difficult to evaluate. Should some SDI-based solution require
complex arithmetic expressions, they can and should be implemented within
plug-in gcf actions.

The term, context rebinding, refers to the fact that it may be necessary to,
for example, bind a process to a different context depending on the context of
the connection that it accepted most recently. The rebinding feature is typically
used to track distributed activities.

The third and final key component of an SDI is its action. Standard actions
that are part of the SDI language are designed to simplify the policing of inter-
cepted computations. The four parameter-free actions, dc, accept, deny, error,
are easily understood. The dc (don’t care) action simply states that the tap
implementation should continue checking guards. An accept policy indicates
that the tap point implementation should terminate further guard checks and
continue by executing the functionality upon which the tap is interposed. This
action allows administrators to optimize rule sets. For example, by installing
catch rules for interactions that should not be policied, the checking of SDIs
can be terminated faster. The accept shortcut action is especially useful when
interactions between the applications and the OS that are not to be policed
can be described in a very concise manner (with one or two rules). When a
deny action is encountered, the tap point must interrupt the propagation of
work immediately. For example, if an incoming packet triggers a deny action,

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 15

the packet is simply dropped. Among other things, deny can be used to im-
plement load-shedding under overload, to construct security policies, and to
confine untrusted applications. Obviously, tap points have to be crafted care-
fully to interpret deny in a manner that is compatible with the intercepted OS
behavior.

Whether and when the deny action is almost impossible for the system ad-
ministrator to determine. The needed feedback feature is provided by the error
action. In addition to a plain deny, error also logs tap-specific information about
the intercepted computation, including the intercepted context values that were
matched in the guard, the SDI itself, and potentially information about the in-
tercepted system objects before denying the intercepted functionality.

The parameterized versions of deny and error deal with the problem that a
denied system call cannot simply die but must report to the caller of the failed
call. Since applications may only be capable of interpreting certain error codes,
the system administrator may explicitly specify an error that is understood
by the applications. If the error code remains unspecified, the deny and error
actions will return a general failure (e.g., EINVAL on UNIX).

The action codes defined so far only permit static (admit, deny) system con-
trol policies. A large class of performance-related system solutions, such as load
control and load sampling, require rate-based policies. To this end, we define
the actions shape and smooth. First, the shape action oscillates between dc and
deny. The shape action will return dc as long as it is matched at a rate below
the specified upper bound. If the bound is exceeded, it behaves like deny, either
failing with EINVAL or a system administrator-specified error code. Second, the
smooth action differs slightly from shape in that it does not return error when
its rate limit is exceeded but defers the current interaction until it is eligible to
return dc. Each tap point may limit the number of deferred actions. Once this
limit is reached, smooth behaves exactly like shape. The reason for the intro-
duction of these conditioning actions is that many proposals for performance
management in network servers rely on admission control. Combining guards
and the accept, deny, shape, and smooth actions makes sophisticated, class-
based admission control schemes without much programming effort possible.
For example, the SDI:

NET TO IP 1 [msg svc-cl] = 2, [msg type] = NEW CONN REQ : : shape 2 10000.

would shape incoming connection request packets of service class 2 to a rate of 2
per 10 milliseconds. Since SDIs can be specified dynamically, one can instantiate
SDIs whenever a specific traffic class requires admission control.

Finally, the gcf action achieves unrestricted extensibility for the SDI frame-
work. Whenever the generic action codes are not powerful enough to force mul-
titier services to behave in a certain manner or to infer the correct context
or attributes to be applied to intercepted system objects, generic interposition
code may be invoked. For example, if the context of a sender carries a signature
flag, its communication with other services should pass through a digital sig-
nature layer. Such a complex operation cannot be accomplished without special
interposition code. However, the signing function may be generic and applica-
ble at multiple tap points, for example, network in, pipe write, and file write.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

16 • J. Reumann and K. G. Shin

The directives

HOST A -> IP TO NET 1 [msg sign] = yes : [msg sign] := x, \
[sock sign] := 1 : gcf sign { key x }

HOST B -> NET TO IP 1 [msg sign] = x : : gcf check sig { key x }
may be used to check signatures of packets that are exchanged between hosts.
The sample GCFs sign and check sig would have access to the same system
objects that are available to the tap point implementations (IP TO NET and
NET TO IP). Their return value may indicate that the message under consid-
eration should be processed further or that it should be discarded immediately.

Since GCFs may require their own private data for each instantiation, for
example, encryption requires key management information, GCF-specific con-
figuration data, specified between the parentheses of a GCF action specifier, is
passed to GCFs every time they are invoked from an SDI rule.

4.3 Initial Context Creation and Association

One difficulty within SDI that we have not addressed thus far is the creation
of context for incoming requests that are not already associated with a context.
The introduced language is capable of tracking context, modifying context, and
taking action based on the contents of context objects. The question as to how
one would set context attributes for incoming requests remains to be addressed.

Classifiers extract and interpret intercepted packet information in accor-
dance with system administrator-specified context binding and creation direc-
tives. For example, a system administrator may direct that all requests coming
from address 10.*.*.* must be associated with a duplicate of the template con-
text representing intranet clients. The state created by a classifier is always as-
sociated with the intercepted packet. The created context object can, of course,
be modified and replaced as the computation spawned by an incoming request
progresses.

Classifiers are similar to firewalls. They reside in the bottom layers of the
OS’s networking stack, in order to ensure that all OS layers (including SDI)
can rely on some preliminary context being already associated with an incom-
ing message. They also parse packets for specific patterns to infer a context tag
for the message. A classifier may evaluate an incoming packet’s source address,
destination address, protocol, and destination port. Based on these, the classi-
fier consults a map and associates the incoming packet with an existing context
or creates a new context object for it. More sophisticated classifiers may scan
incoming messages for more information, for example, for the URL contained
in an HTTP GET request. Since there is no conceptual limit as to what infor-
mation classifiers may access to determine an incoming message’s context, we
provide only a schematic grammar for network-based classifiers:

〈CLASSIFIER〉 ::= 〈matches〉 −→ 〈map〉
〈matches〉 ::= 〈match〉, 〈matches〉
| 〈match〉

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 17

〈match〉 ::= 〈packet-property-name〉 〈operator〉 〈value〉
〈map〉 ::= new

| dup 〈context-ref 〉
| 〈context-ref 〉
〈operator〉 ::= ’<’
| ==
| . . .
〈value〉 ::= 〈string〉
| 〈integer〉
| 〈regexp〉
〈packet-property-name〉 ::= source IP

| source port

| . . .
| TCP data

The “packet-property” in the above grammar is used to capture protocol at-
tributes that are specified inside a network packet, such as source address,
presence of specific bit patterns, and the like. For example, the classifier

SOURCE = 10.0.1.0/24 −→ CTXT SVC CLASS 1

binds incoming packets from 10.0.1.* to a context that identifies service class 1.
SOURCE would be considered a packet property. The purpose of intercepting
packet properties is to record the state that is expressed in network protocols,
and therefore, only visible between client and server, inside a context that will
be tracked as the work spawned by the request propagates across multiple tiers.

Oftentimes, one will force a default classification for an incoming request
simply to remember some key request attributes or to execute it within an ap-
plicable default context. Upon receiving a user ID, a password, or other request-
specific markers, an application process may modify this default context to bet-
ter reflect a request’s personality. For example, assuming the above example
classification rule is specified for a server, one may also specify the following
SDIs

ACCEPTT 1 : proc := msg : dc.

CCONNECT 1 [proc svc-cl] = 1 : proc := MTIER OP1 ; msg := MTIER OP1 : dc.

The above SDIs instruct the server to bind the receiving process to the received
message’s context, which is derived by the classification specified earlier in this
section. Furthermore, if the process connects to a back end, it will be labeled as
a multitier process, thus implementing multi-step classification.

Other typical classification operations can be inserted at other locations in
the kernel. For example, it is possible to associate specific process IDs, binaries,
or files with a context object. These classification operations require simple ad-
ditions to the kernel (explicit tagging of processes) or tables that map system

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

18 • J. Reumann and K. G. Shin

Fig. 8. The relationship between primary context, its proxies, and references from system objects.

call attributes to context objects for the calling process and the other intercepted
system objects. For example, a classifier at open is configured to match a file-
name and possibly the open mode to a context reference for each the returned
file descriptor and the calling process.

4.4 Handling Distributed Context Efficiently

The language encourages the use of context for the policing of system func-
tionality regardless of where the actual context object was created. Since the
context attributes that SDIs refer to may be located remotely, repeated ac-
cesses to the same context can incur high latency penalties. The standard rem-
edy for this problem is caching, which has already been addressed in a rich
body of work in distributed and multiprocessor shared memories [Eggers and
Katz 1989; Lenoski et al. 1992]. In line with these earlier results—especially
Birrell et al. [1993]—distributed access to context attributes proceeds through
a caching proxy object (see Figure 8).

The second efficiency problem is that it is difficult to determine when it is safe
to discard a context object, which affects memory efficiency. Various garbage
collection mechanisms [Plainfossé and Shapiro 1995] have been introduced to
address this problem effectively. In our case, the garbage collection problem
reduces to a two-level reference counting scheme. First, one must determine
whether a context or a proxy is still needed locally. Second, for each primary
context object, that is, the originally created context object, one must count how
many proxies refer to it. Proxies are removed when there are no local references
to them. Upon removal of a proxy, the corresponding primary context object is
informed. This simple and frequently used reference counting-based garbage
collection scheme has one major problem: front-end servers typically access
back ends repeatedly without keeping back ends completely busy. Thus, back-
end servers would frequently discard and reinstate proxies for regularly used
context objects.

To illustrate the caching problem caused by repeated back-end accesses, sup-
pose that a certain percentage of HTTP requests require access to a back-end
database. Whenever the database is idle, it will expunge all proxies that it may

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 19

have, thus incurring a remote context access penalty for the next HTTP request
that requires the database. To account for this access behavior, it is necessary
to delay proxy removal by a configurable amount of time.

The third inefficiency is memory leakage due to host failures. In large multi-
tier server networks, it is likely that a host that is still holding proxies to re-
mote context fails or is brought down for maintenance. The problem of a back-
end server becoming unresponsive without releasing its context references is
addressed by using heartbeats, that is, each host periodically announces its
liveness to those hosts that hold primary context objects for its proxies. Com-
munication messages between hosts act as implicit heartbeats. This requires
the primary context object to record which remote proxies are referring to it
(see Figure 5). Upon detecting a failed host, the context management subsys-
tem reduces the reference count for each primary context object. The reverse
problem, the failure of the host that hosts a primary context, is discussed as a
failure mode in Section 5.6.

Finally, one must also allow for context to be exempted from garbage collec-
tion. Otherwise, it would be impossible to set up persistent or template context
objects.

4.5 Context Security

As in all OS mechanisms, security is an important concern. Context is a shared
network object and may be used in critical system management tasks, such
as user identification and scheduling operations. Up to this point, we have not
discussed any mechanism that would prevent applications from creating or
modifying critical context attributes on their own, such as a security clearance,
or that would prevent a host that masquerades as a primary context host from
delivering bogus context attributes to back-end servers. The mechanisms intro-
duced here focus on controlling context access on the local hosts, while leaving
the integrity of the communiction links up to link or more specifically IP layer
security protocols.

To assure local access integrity, attribute access is controlled on a per-
attribute basis since some attributes may contain important system informa-
tion, while others may be informational, user-defined attributes. Two security
principals are distinguished: the kernel, which is believed to be uncompro-
mised, and potentially faulty applications. Attribute operations are controlled
with respect to “read,” “write,” “add,” and “delete.” To prevent faulty applica-
tions from binding to an existing, potentially more privileged context, context
binding is also controlled by binding permissions. Applications are prohibited
from binding those context objects that are specified to be bound only by the
kernel or super-user. This security scheme is analog to the UNIX filesystem.
Each attribute should be considered the counterpart of a file in the filesystem.

Specifying access rights for each context and attribute is a tedious task, and
sometimes applications and system administrators may forget to specify appro-
priate access permissions. Therefore, the default is to enforce the most restric-
tive access policy for each context and attribute: application-created context and
attributes can be modified by their creator or the superuser, and kernel-created

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

20 • J. Reumann and K. G. Shin

context attributes, including those created by classifiers and SDIs, can only be
accessed by the kernel. An exception to this default is made when an attribute
name is found in a system level attribute-name-to-permission-map, which spec-
ifies the default access permissions for a specific attribute name.

The above mechanism is secure as long as the root, superuser, or adminis-
trator accounts of the individual hosts have not been compromised. If the root
account on any host has been compromised, then an intruder may tamper with
context. The values that the compromised host supplies to its applications or
other hosts are no longer trustable. However, the ability to tamper with context
attributes gives intruders little additional power compared to a system with-
out the proposed context abstraction as they can already replace any service on
the compromised host with hacked versions, and take over any IP address in a
server cluster, thus bringing the cluster to a halt. It seems reasonable to expect
that the hosts within one cluster are secured against such attacks and that the
power of the SDI framework will give an intruder negligible additional power.

Another concern at the host level is the installation of SDI rules into the
kernels. Since SDIs modify kernel behavior, we adopt the usual security policy
for making kernel modifications. This means that superuser privileges are re-
quired for the installation of SDIs on any individual host. For more centralized
control, one can easily build a daemon process that executes on every host of
the multitiered system under the local root’s user ID and acts as a proxy for
an accepted remote administrator. Control over who can install SDIs is very
important because SDIs are essentially miniature kernel modules. Like faulty
kernel modules, faulty SDIs can cause a host to fail and are therefore kept out
of the normal user’s reach—only the superuser can install them.

If an attacker gains access to a data center’s network infrastructure, the
attacker gains the ability to fabricate messages and to snoop on message ex-
changes. In particular, it becomes possible to tag messages with context refer-
ences that illegitimately increase a message’s privileges. Second, the attacker
can disrupt the exchange of context information between hosts by fabricating
false replies to client queries and by invoking operations on remote context
objects.

The threat posed by illegal network access is potentially large. Instead of
addressing this problem by our own security scheme, we believe that it can and
should be addressed by using IPSec [Kent and Atkinson 1998], which ensures
network authenticity and privacy regardless of the message traffic. A system
administrator who assumes that hosts may illegally connect to a multitiered
system, should not only be concerned about protecting context but also about all
other traffic between applications, which would be subject to tampering. IPSec
addresses both of these problems.

4.6 Context at the Application-Level

Different context abstractions have been invented for distributed application
frameworks, such as CORBA [OMG 1998], J2EE [Sun Microsystems 2001],
and WebSphere [IBM Corp. 2001], thus emphasizing the need for a generic
distributed context abstraction. Each of these frameworks for distributed

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 21

application development creates some form of context that can be passed as
an optional parameter with an RPC. The problems of their context notions are
that they do not integrate information relevant to other frameworks or OSs.
Since they are application-oriented, they hide contextual state that could be
useful in the OS. Context is lost if an intermediary service does not propagate
this application-level context. Moreover, the context abstractions of the differ-
ent frameworks waste communication resources since context is transferred by
value between hosts, regardless of whether it is used or not. We export system-
level context to the applications, to improve the efficiency of application-level
context implementations and to promote the integration of application and
system-level context to realize synergies among kernel and applications.

Applications can refer to their processes’ context in very much the same
way as they refer to environment variables. If applications must access the
context objects associated with file descriptors and IPC abstractions within
their address space, they simply refer to the the context via a system object
key.

The default propagation of a process’s context alongside its communication
(i.e., from a process to a message, from the message to its recipient) generates
a miniature version of a distributed thread, thus satisfying the requirements
of many simple sequential applications, for example, the propagation of user
IDs. More complex applications that require remapping (e.g., if certain front-
end users are mapped to different back-end users) may instantiate SDI rules
for this purpose. Instead of relying on SDI, applications could also manually
remap context attributes before invoking other services.

Another reason for the proposed application-level context integration is that
one cannot solve all context propagation problems without application coop-
eration. For example, if a particular service is implemented using an event-
driven architecture or a user-level thread library, the OS cannot infer the correct
context-to-process-bindings automatically. The solution is to allow applications
to specify explicitly which context objects are currently applicable. To this end,
the system allows processes to export a request ID, which is tracked by SDI
like a process descriptor, that is, it has its own request ID-to-context-binding.
SDIs that refer to the context of a process will retrieve the context of a request
ID if the application exports it. In order to avoid memory leaks, applications
must add and delete request IDs explicitly. To guard against faulty applica-
tions, the kernel should only allow up to a maximal number of request IDs per
process.

5. IMPLEMENTATION

We designed an SDI prototype for the Linux 2.2.14 kernel. A base module pro-
vides context objects and implements Context/IP, which is the communication
protocol for remote context access (Figure 9). A second module provides clas-
sifiers and ensures that context associations propagate across hosts. Generic
SDI parsing, including guard evaluation, attribute remapping, binding and SDI
management functionality, is implemented in a third SDI kernel module. This
SDI module is the basis for SDI administration and several tap point and GCF

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

22 • J. Reumann and K. G. Shin

Fig. 9. Detailed architecture of the Linux-based prototype.

implementations. Tap points and GCFs are usually implemented as individual
kernel modules, which are interposed at runtime.

When all of the prototyped modules are loaded, the kernel grows by a lit-
tle more than 2 MB, most of which is allocated for the context index table.
Each additional tap point, such as TAP NET IP, consumes approximately 2–
5 KB to implement the required hooks and glue. GCFs which build on the tap
point implementations require 2–3 KB. These numbers for GCFs are only rough
estimates, based on our experience with performance management and some
security applications. Since there are no restrictions on what can be done in a
tap point, GCFs may require arbitrary amounts of memory.

5.1 The Context Abstraction

Each context object contains a hash table of attribute—value pairs, a hash table
of remote referrals, and a reference count for local references. It can be used
as both primary and proxy. Proxy contexts mirror primary context objects and
implement location-transparent context access for interpositions through its
attribute access functions. Usually, the proxy mirrors the attributes contained
in the primary context. To allow the system to work on small-size memories,
proxy context objects may be evicted according to the LRU algorithm. Subse-
quent accesses to an evicted context will stall until its proxy is reloaded from the
primary, while possibly evicting another context in the process. In practice, this
feature may be unnecessary because today’s servers are equipped with large
memory, and the context objects are only minor consumers of host memory.

Operations on proxy context objects always propagate to the primary. On
receipt of an update message, the primary simply invalidates all other proxy
objects. The invalidated proxies will need to fetch the values from the primary

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 23

Fig. 10. Context is maintained using pre-defined message formats. The message formats leave
implementors freedom to deploy and experiment with caching, consistency guarantees, and various
reference management strategies.

on their next attribute access. Future implementations should also feature up-
date propagation to improve context access latencies when several hosts are
simultaneously processing each request. The invalidation-based approach per-
forms better when context accesses are largely sequential.

We propose Context/IP for the execution of remote context operations
and state transfer functionality. Context/IP’s datagram formats are shown in
Figure 10. The protocol is purposely designed in such a way that different proxy
behaviors (e.g., update propagation vs. invalidation) are left configurable at
runtime. This allows customization of the operation of SDI to the specifics of a
particular installation. For the same reason, authentication, which may cause
significant processing and communication overheads, is made an optional part
of the message format.

Hosts usually answer attribute requests with reply packets that contain
a complete context snapshot. There are two principal reasons for this design
choice. First, context objects tend to contain only a few attributes, which can
be transferred quickly. Second, if one attribute is accessed, it is likely that
another attribute will be accessed soon. However, if a context does not fit into a
single IP datagram or if the attribute request was a batch request for multiple
attributes from different contexts, due to the protocol implementation’s goal
to reduce communication overheads, the reply is sent via a FYI packet. FYI
packets contain only the requested attributes (see Figure 10).

Disposal of context objects and transmission of heartbeat messages are con-
trolled by a periodic kernel thread which deletes context objects whose reference

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

24 • J. Reumann and K. G. Shin

count has reached 0. If the context to be removed is a proxy context, it notifies
the primary context object of the release of the proxy.

In addition to passive attribute manipulation and access functions, we imple-
ment context-change triggers. Context-change triggers actively initiate or wake
up computations on context change. This is a useful feature because it avoids
having interpositions poll for context changes. For example, if one implements
a resource quota mechanism using a context-based counter, one must provide
a mechanism to wake up computations when exhausted resource quotas are
replenished. This is easily done using a context-change trigger on the resource
quota attribute. Without the trigger, one would have to poll the resource quota
frequently.

The attribute values provide only soft-state. Even though transactional se-
mantics are relatively easy to implement [Gray and Cheriton 1989], they would
inevitably increase context access latency. Strict transactional semantics re-
quire distributed locks and multiphase commit protocols, which require multi-
ple network round trip times to complete. Any interposition utilizing consistent
state would cause intercepted computations to slow down significantly. A soft-
state approach gets around the latency problem without significantly limiting
context usability. Soft-state is not problematic because most uses of context will
only propagate attribute values along with distributed computations with few
or no attribute updates during a context’s lifetime. This assumption is backed by
the usage patterns of environment variables and prior examples of distributed
context in the literature (see Section 8.3).

The context abstraction must consider an important trade-off to allow many
short-lived context objects and those that are long-lived with numerous at-
tributes to coexist. The ultimate goal is to provide index structures with min-
imal setup overheads and fast attribute lookup. Fast lookup for potentially a
large number of context objects requires index structures. However, index struc-
tures typically require memory allocation and substantial initialization costs
(see Section 7). In SDI, memory allocation overheads are reduced by using
a LIFO queue of deallocated context objects. Instead of using the OS’s mem-
ory management functions, disposed context objects are placed into this LIFO
queue, which queues reusable context objects up to a certain administrator-
specified memory limit. Most context object allocation requests can be honored
from this queue without the need to run the kernel’s slow generic memory al-
locator. LIFO allocation increases memory reference locality, thus boosting the
hardware cache’s efficiency.

The problem of possibly high initialization costs is addressed by lazy ini-
tialization, which amortizes context initialization costs over an extended time-
frame. Lazy initialization works as follows. Instead of immediately initializing
the hash indices for attributes and remote referrals in newly-created context
objects, only doubly-linked lists of attributes and remote referrals are set up.
The newly-created context object is marked semi-initialized and queued for
later initialization by a deferred initialization kernel-thread. In the meantime,
attribute access proceeds by traversing the linked attribute list. After 1 second
(our threshold for a long-lived context) the context is indexed by the deferred ini-
tialization thread and marked as completely initialized. Successive attribute

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 25

accesses will proceed using the hash index. Thus, short-lived context objects
incur only negligible setup overheads. Nevertheless, a long-lived context will
be indexed eventually, thus eliminating the penalty of increased attribute ac-
cess overheads for long-lived contexts. The optimizations for dynamic context
creation increase tenfold the number of possible context creations per second
compared to eager initialization.

The kernel needs to be modified in numerous places to accommodate ad-
ditional state for system objects. All basic system abstractions, for example,
sk buffs, processes, IPC message queues, sockets, and the like, are extended
by a void * context pointer. Although it would have been possible to create an
indirect, table-based association between system objects and their context, it is
more efficient to use embedded context references. This modification does not
make SDI any more invasive than it already is, since all system objects’ destruc-
tors, which are part of the core kernel, must already be modified to decrease
the reference counts of the context objects to which they refer. Fortunately,
the required OS changes are small and readily implemented by experienced
programmers.

5.2 Dynamic Context Creation and Propagation

The classification module manages the dynamic association of incoming IP
packets with context references. The classifier hooks into Linux’s firewalling
layer and intercepts packets before they enter the incoming IP stack and, thus,
before any interposition executes.

The classifier’s mode of operation resembles a typical firewall [Brenton
1998] The only difference between the implemented classifier and an IP firewall
is that the classifier associates a context object with the intercepted sk buff
instead of policing it.

Classification rules match the protocol ID, source address, source port, des-
tination address, and destination port of an incoming packet against user-
specified classification rules. For each match, it is possible to specify whether
the intercepted sk buff should be associated with an existing context (via a
context pointer) or a new context should be created for it.

The following command installs an example classification rule, which causes
a matching incoming packet from 10.0.0.0/255.255.255.0 destined for TCP port
80 to be bound to a duplicate of context 2 on host 10.0.0.2.

sdi-classifier -p TCP --syn --dp 80 --sa 10.0.0.0 --sam 255.255.255.0 \
--home 10.0.0.2 --id 2 --dup

The IP-based classification should not be considered final, since each clas-
sified message object may have its context subsequently altered by numerous
SDIs. For example, assume a special HTTP interceptor had been implemented,
which can be interposed at the socket or TCP receive message taps. This inter-
ceptor is configured with a string to be matched in the incoming request and a
resulting classification. For example, the SDI

TTCP RECVMSG [MSG SVCTYPE] = HTTP-INTRANET : :
gcf HTTP INTCPT { "/research/", 10.0.0.2, HTTP-RESEARCH }

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

26 • J. Reumann and K. G. Shin

Fig. 11. Senders may push context ahead of data packets to initialize a proxy before packet receipt.

could force the context binding of a message that was previously bound to a
context of service type HTTP-INTRANET by the classifier, to be refined to context
HTTP-RESEARCH if research data is being accessed. Furthermore, context-aware
user applications may inquire of context bindings and remap a request’s con-
text or attributes within a request’s context upon verifying an application-level
password, secret, or the like.

Context propagation proceeds as follows: Whenever an sk buff with a con-
text association arrives at the outgoing IP layer, the context association is writ-
ten into a new ContextRef IP option (see Figure 11) in the sk buff’s data area.
Thus, the receiving host can reconstruct the association between the incoming
packet and its context.

Whenever a receiver obtains a context reference with an object that it can-
not resolve locally, context is retrieved remotely via Context/IP. Since remote
context access is a relatively slow operation (100 µs for Fast Ethernet), an in-
coming packet can be deferred for some time before being processed. To ensure
fast processing of incoming packets, a packet’s context is pushed ahead of it, un-
less the sender knows that the receiver has already established a proxy for the
message’s context (see Figure 11). Thus, incoming datagrams can be processed
without interruptions.

One may wonder why this two-pronged approach of an additional IP option
and the new Context/IP protocol is chosen over an additional wrapper layer be-
tween IP and UDP or TCP. The disadvantage of a wrapper layer is that smart
network infrastructure, such as load-balancing switches and firewalls, could
no longer be used. These devices peek directly into the packet content beyond
the IP header to make decisions about packet forwarding and policing. Since
smart network devices are basic building blocks of high-performance multitier
server installations—with or without the endorsement of end-to-end argument
advocates—their smooth operation should not be disturbed by the propaga-
tion of context alongside messages. The proposed combination of Context/IP
and the ContextRef IP option is friendly to [TCP,UDP]/IP and layer-3+ load-
balancing switches. The only potential problem with load-balancing switches
and Context/IP is that the push mechanism will not work correctly unless the
load-balancer’s firmware is updated to send the Context/IP packet preceding
a message with a context reference to the same host as the context-tagged
packet. Without such an update, the back end may sometimes need to retrieve
the context from a front-end server before servicing an incoming request, thus
incurring a 100–200 µs context access penalty (Fast Ethernet).

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 27

Fig. 12. A sketch of the prototype’s tap at the in-bound IP interface. The tap links into the Linux
firewall call in chain. Most other taps are of a similar structure.

The second advantage of our two-pronged approach to context propagation
is that hosts and routers that are unable to participate in the Context/IP pro-
tocol are not disturbed. In accordance with to the IP specification [Postel 1981],
routers and hosts simply ignore unknown IP options.

Many researchers categorically reject the use of IP options for any purpose
because the presence of IP options causes packets to be forwarded over the
slow path in today’s standard routers. While this argument is valid for today’s
routers, it should not prevent us from advancing network infrastructure for
server farm environments since it is possible to update router OSs for server
farm deployments to process (or ignore) the ContextRef IP option on the fast
path. Moreover, SANs are often switched, not routed, networks. Therefore, the
presence of an IP option will have only negligible impact on packet forwarding
times.

5.3 Tapping the OS’s Control Flow

Before evaluating a guard for a registered SDI, the tap point first attempts
to resolve the context references of the intercepted objects (see Figure 12). If
this fails, the tap records its current state in a continuation structure [Draves
et al. 1991], requests the nonlocal attributes, and defers its execution until
the attributes arrive from the primary context or the operation fails. In the
case of TAP NET IP (see Figure 12), the continuation stores the intercepted
sk buff, the SDI under consideration, and the index of the guard condition
or substitution at which execution stalled. The tap point returns control to
the standard network interrupt handler, indicating that it will process the

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

28 • J. Reumann and K. G. Shin

Fig. 13. Modular structure of taps, SDIs, and GCFs in the current prototype.

intercepted packet later. Evaluation of the SDI continues when the requested
attributes or contexts arrive.

The structure of system call interpositions is much simpler than that of the
depicted interrupt interposition in TAP NET IP, since they execute within a full-
fledged thread abstraction. Therefore, deferral can be implemented by putting
the current thread to sleep until all necessary attributes for guard evaluation
and attribute value remapping are available.

Typical tap points are placed at layer transitions in the control flow of mul-
titier services. Tap points must intercept all communication activity (send,
recv, read, write) and the creation of new system objects (fork, socket,
open). Additional tap points are optional but can be very helpful in system
management tasks.

Figure 13 shows an architectural overview of typical tap point implementa-
tions. The tap point module registers itself with interception hooks inside the
kernel, which call the tap point implementation every time the hook is reached
in the OS’s control flow. The tap point implementation then uses generic func-
tions to check the registered SDIs (SDI1−SDIλ). For each SDI, it first evaluates
its guard conditions in linear order. This check is done by generic functions.
Then the tap point implementation applies the substitutions or assignments
of the mapping clause in sequential order. Finally, it applies the action. The
action interpretations are actually part of the tap point implementation, as is
shown in the tap point data structure of Figure 13. If an applicable SDI specifies
a GCF, the tap point implementation calls the GCF and interprets its return
value as an action specifier.

GCFs are programmed replacements for standard actions (see grammar in
Figure 7). If a tap point encounters a GCF directive, it transfers control to the
GCF by calling it directly. The return code of a GCF may specify an action, which

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 29

is then interpreted by the calling tap point, or it may indicate that the GCF has
taken charge of the intercepted computation. GCFs are invoked with the same
arguments that are supplied to the tap point for which they are registered and to
an additional tap point ID. Hence, it is important to specify at which tap points
each GCF can be registered. This is expressed in a GCF descriptor structure,
which is read when a GCF module is inserted into the kernel (Figure 13 bottom
right).

5.4 The Command Line Interface

The command line interface provides commands to create (ctxt create), ma-
nipulate (ctxt attr add, ctxt attr set, ctxt attr del), and delete per-
sistent context objects (ctxt remove). The association of context with an in-
coming message is controlled by the sdi-classifier command, which binds
an incoming packet to a context object based on its [TCP,UDP]/IP properties.
Context bindings are further manipulated by SDIs. These SDIs are specified ac-
cording to the grammar of Figure 7 and passed to a parser (sdi-config), which
translates the expressions into data structures that can be checked efficiently
by the TAP point implementations.

As the SDI grammar of Figure 7 shows, GCFs may accept arbitrary additional
arguments, which sdi-config cannot interpret on its own. To check the argu-
ments passed to a GCF, sdi-config supports GCF-specific DLL plugins that
parse the argument list passed to a GCF and translate it into a GCF-specific
data structure. This plug-in for sdi-config and the GCF implementation itself
are provided as a unit.

To ensure that context propagates properly across system layers, applica-
tions, and network connections, the system administrator must specify appro-
priate SDIs. SDIs for specific tap points can only be submitted after the specific
tap point kernel module is loaded using Linux’s modprobe.

In order to feed back information from the installed SDIs to the adminis-
trator, the error action is redirected to the user-level via the /proc file sys-
tem. A generic fault-handling daemon reads error messages from /proc/sdi
and invokes error-handling functions that catch specific error codes. The er-
ror handler is read from a DLL, which is specified in a special error code to
DLL mapping file, /etc/sdi-error.conf. The DLL’s error handler receives the
entire error data structure and may take arbitrary actions. For example, in
one case, we designed an error handler that responds to back-ends’ receiving
packets from untested front-end services by installing a replica of the back-end
service and redirecting to it future requests from untested front-end services
(Section 6.3).

5.5 Application Integration

Applications typically communicate indirectly with the SDI framework us-
ing a function call API, libcontext, which interfaces to the native /proc/sdi
interface. This interface allows user-space applications to inquire of their own
context bindings, create context, read attribute values, and adjust attribute
values of user-space writable attributes.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

30 • J. Reumann and K. G. Shin

User-level threads and event-handling libraries can take advantage of
SDI by explicitly declaring their current internal thread or request ID
in a registered memory location (ctxt register thread id location). Re-
quest IDs are added and removed using the ctxt add thread id and
ctxt remove thread id functions, respectively. This simple feature reveals
enough of the application’s internal structure for SDI to police the application
and to automate the forwarding of its context between tiers.

5.6 Failure Modes

The main cause of faults is the absence of context or attributes that are expected
by SDIs. If a guard attempts to match a nonexisting attribute, its value is
assumed to be NULL. If a context and attribute remapping directive attempts to
assign a value from a nonexistent attribute to another context attribute, only
that substitution clause is skipped; subsequent clauses are unaffected. Finally,
GCFs may request nonexistent contexts or nonexistent context attributes, in
which case SDI’s attribute retrieval function would indicate a fault. It is up to
the GCF implementations to handle such errors.

Internally, SDI may suffer from sporadic packet losses even though this is
rare because SANs are highly reliable. Our switched Fast-Ethernet testbed,
which features commodity Intel and SMC networking hardware, is found to
experience error rates of less than 1 per 30 million. To mask occasional packet
losses, SDI retransmits requests for which an answer has not been received
within a specified timeout (default 10 ms). Update operations are acknowledged
periodically. Acknowledgments are cumulative for all update operations that
were initiated by a specific host.

Because of the low error rates of the underlying network infrastructure, SDI
acts optimistically with respect to transmission failures, that is, the control
flow of SDIs or applications does not wait for the acknowledgment of a context
attribute change, which is possible due to soft-state. This choice keeps latencies
for update operations low.

To guard against machine failures, heartbeats are to be exchanged at a min-
imal rate, r (r = 1 Hz). If some context’s home machine detects a silence of
duration 3/r, it expunges all remote referral entries from the failed remote
host, assuming it has died.

In the event of a failure of a machine that hosts primary context, the prox-
ies must recover. The failure is detected when access to its primary context
objects times out (three unanswered request retransmissions). On timeout, a
host is considered dead, and the requesting host invalidates all references to
any context object that resides on the failed host. Processes, sockets, etc., that
are bound to a context of the failed host are unbound to refer to the NULL context.

6. THREE EXAMPLES OF USING SDI

6.1 Context Propagation via Local IPC

In this example scenario, we show how context can be transferred within one
application or two applications that communicate via local IPC message queues.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 31

IPC mechanisms are often used to bypass TCP/IP when two communicating
tiers are colocated. For example, message queues are used in DB2 to connect
the listener to the back-end server process.

As an example of SDI over machine-based IPC, we demonstrate how the IPC
message queue mechanism is opened up to SDI.

The two system calls used to send and receive messages are msgsnd and
msgrcv, respectively. The purpose of enabling context-transfer and SDI at this
layer is that it allows to track a processing context as control is passed from one
process to another. Furthermore, by allowing SDI policies to be submitted for
taps in the communication flow between application that are linked via IPC, one
can easily add security, scheduling, and redirection mechanisms. For example,
a process could be denied access to an IPC message queue if it is executing on
behalf of a remote client who is connected via the Internet while being allowed
to access the same message queue as long as it is working on behalf of a local
client. Such policies cannot be configured using stateless system configuration
mechanisms that are currently at the system administrator’s disposal.

In enabling SDI on the IPC message queue, it is necessary to deal with four
entities: the message, the message queue, the sender, and the receiver. IPC
message queues are an asynchronous relaying mechanism, so that one only
needs to deal with three entities in the taps for msgsnd and msgrcv.

A default SDI that one would like to declare is:

iipc msgsnd 1 [sender priority] = high : msg := sender : dc.

This SDI copies the sender’s context to the message if the sender’s priority
is high. As the duplicate initial letter shows, this command is executed before
the message is actually enqueued in the message queue.

When this context-tagged message is received, and one would like to copy
the message’s context to the receiver, then one would install the following SDI.

ipc msgrcvv 1 : receiver := msg : dc.

In fact, this SDI always copies the received message’s context to the receiver,
thus forcing the receiver to process using the same context attributes as the
sender. Note that any previous context affiliation of the receiver process is
discarded/overwritten once it is bound to the new context. This SDI executes
after the message has been removed from the message queue. A step-by-step
illustration of the tap points behavior is shown in Figure 14.

6.1.1 Implementation Steps. The implementation steps required for SDI
to enable the IPC message queue abstraction are most likely a superset to those
required for SDI-enabling almost all OS abstractions.

First, it is necessary to add a context reference pointer data field to the mes-
sage and message queue data structures to allow recording of context references
for each system object. It would have also been possible to transparently keep
this reference through an intermediary message-to-context mapping table, but
it would have also incurred greater overheads.

The second step is to define the interception points TAP IIPC MSGSND, TAP -
IPC MSGSNDD, TAP IIPC MSGRCV, and TAP IPC MSGRCVV. These definitions,

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

32 • J. Reumann and K. G. Shin

Fig. 14. This figure shows the process of context propagation through the SDI-enabled IPC mes-
sage queue mechanism: (a) the sender is associated with context object 1 prior to sending the
message, the queue with context 2, and the receiver with context 3; (b) the created message in-
herits the sender’s context binding through the specified SDI rule; (c) the message queue’s context
binding remains the same; (d) when the message is ready for delivery to the waiting process (P2),
the recvmsg SDI rule instructs the framework to change the receiving process’ context binding to
context 1 instead of its prior binding context 2.

among accounting-related issues, include the implementation of a tap-point
handler function that is inserted as a kernel module if interposition on the IPC
interface is needed. This interposed tap-point handler takes as its argument a
reference to both the intercepted message and message queue. The process con-
text is implicitly given. The tap-point handler dereferences the context pointers
that are recorded for the calling process, the message, and the message queue
and passes those to the generic SDI matching module, which evaluates if there
is an SDI registered that applies to the observed call given its context attributes.

Once the SDI check returns a list of SDIs that are applicable to the current
interception, the handler passes through the SDIs, applying their attribute
mapping and context binding rules and interpreting the action code.

The only steps that are truly specific for SDI-enabling the IPC message queue
interface are the creation of functions that bind a message or message queue to a
context object, and the interpretation of SDI’s error codes (Figure 15), which is a
simple operation. For example, the SDI action code DENY is translated by erasing
the message and pretending it was delivered in the iipc msgsnd interposition.
In contrast, in the the interposition of ipc msgrcvv the DENY action causes the
offending message to be discarded and the search for a deliverable message to
be continued.

This skeleton consisting of a glue layer that ties the tap point to generic
context processing functions, allows the previously-defined tracking of context
from sender to receiver. To implement more elaborate rewriting or redirection
of IPC messages, for example, to a remote message queue on a different host,
one would insert a redirect GCF. An example of a redirection GCF is given in
Section 6.3.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 33

Fig. 15. This figure shows most of the work that is required inside the kernel for the invocation
of the SDI framework from IPC msgsnd.

6.2 Prioritized Request Handling

The first example illustrating the use and functionality of SDI, VS-SDI, is a
greatly simplified implementation of Virtual Services [Reumann et al. 2000b].
The purpose of this example is not to reimplement VSs but to show how
a new layer of OS functionality for a multitier system can be implemented
atop SDI.

The example setup consists of a 3-tier service implementation. The front end
implements a Web interface (Apache), while the middle-tier application server
is simulated by an FCGI application, which occasionally contacts a back-end
database (Postgres) to process update and select operations. About a half of all
requests require access to the middle-tier service, and 10% of those requests
requiring access to the middle-tier service also require access to the database.
The Web server executes on its own front-end host, while the FCGI middle-
tier and the back-end database share one back-end host. Our objective is to

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

34 • J. Reumann and K. G. Shin

Fig. 16. VS-SDI consists of a scheduler and accept extension. The classifier labels incoming re-
quests with system administrator specified priority attribute mappings, which are enforced by the
scheduler and the accept of pending connections.

prioritize request handling throughout the server farm, that is, requests from
high-priority clients should be expedited at all tiers of the system.

Prioritized processing is impossible to achieve in the back-end servers, if
their incoming requests are not tagged with a priority attribute. As far as the
back end is concerned, all requests originate from the front-end service. Thus,
high-priority clients can find themselves waiting either in the accept, network,
or scheduler queue of a heavily loaded back-end service or server because of
low-priority requests.

The easiest part of the problem is to represent high- and low-priority clients
by two context objects (see Figure 16). Using the command-line interface as
root, we create and initialize the two context objects as follows:

ctxt create -p

context home = 10.0.0.100 id = 1 created

ctxt create -p

context home = 10.0.0.100 id = 2 created

The commands

ctxt set attr 1 PRIO := 1 and
ctxt set attr 2 PRIO := 2

set up the first context to represent low-priority work and the second to repre-
sent high-priority work. PRIO is an integer representing the priority attribute
as the current prototype only supports name and value bit strings of length 32.

The next important step is to bind incoming workload to the contexts. For
simplicity, we prescribe a simple binding based on the incoming IP address.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 35

Fig. 17. Code snippet of our context-aware scheduler interposition.

To bind incoming workload from clients 10.0.1.* to the low-priority context
and the workload submitted by clients 10.0.2.* to the high-priority context,
we invoke the following commands:

sdi-classifier --sa 10.0.1.0 --sam 255.255.255.0 --home 10.0.0.100 --name 1

and

sdi-classifier --sa 10.0.2.0 --sam 255.255.255.0 --home 10.0.0.100 --name 2.

Two interpositions are implemented to take advantage of the priority at-
tribute: an interposition for the scheduler function and a selection function
that chooses the next pending socket to accept. Their implementation is gen-
erally not the system administrator’s responsibility. They should be created by
experienced system programmers who have a good understanding of the kernel
and the impact that their interposition may have. Warnings aside, as the code
snippets in Figures 17 and 18 show, creating multitier-aware interpositions is
in many cases straightforward.

After installing the interpositions and the ACCEPTT and CCONNECT tap in the
kernel using modprobe, we set up the taps to propagate context at all servers.

echo "ACCEPTT 1 : PROC := MSG : dc." | sdi-config -a

echo "CCONNECT 1 : MSG := PROC : dc." | sdi-config-a
ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

36 • J. Reumann and K. G. Shin

Fig. 18. Code snippet of our context-aware interposition for the selection of pending connections.

After setting up the system, we verify that this configuration implements
QoS differentiation for high-priority requests. To this end, we run two instances
of the SpecWeb99 benchmark against the same Web server. As Figure 19
shows, high-priority clients suffer little from an increase in the workload
of low-priority clients until the system capacity limit is reached. This fig-
ure clearly shows that without prioritization high-priority clients are affected
by the low-priority clients even before the system’s capacity is reached. The
reason for the rapid response time increase beyond the system’s capacity is
that queues that build up at the database server propagate to the front-end
server by blocking processes. This effectively reduces front-end processing ca-
pacity, thus causing the observed increase in response times and a 30% drop
in total throughput. To avoid this throughput drop, one would have to shed
load at the front end once the system’s capacity is reached [Reumann et al.
2000a].

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 37

Fig. 19. The performance of a multitier server farm serving high- and low-priority clients with
and without the SDI-based priority mechanism.

It is important to note that context caching is vital to maintaining good ser-
vice throughput with SDI. Without context caching, each network-level mes-
sage would have to be accompanied by its context, which would tax the com-
munication subsystem, thus increasing delays and reducing total throughput.

6.2.1 Increasing Classification Complexity. Instead of differentiating be-
tween high- and low-priority clients at the Web server, one may decide to treat
all clients equally except for those high-priority clients whose requests re-
quire back-end database transactions. Those requests that require database
access receive a priority boost. This could be used to reduce the difference in
response times for requests that require database access and those that do
not.

This means that the binding between high-priority clients and their priority
class must be deferred until they actually trigger a database transaction. How-
ever, this cannot be controlled by the HTTP server since the middle-tier FCGI
server, that is, the application server, decides whether to contact the back-end
database. Unfortunately, the middle-tier cannot correlate its requests with the
original HTTP requests that were submitted by the network clients. SDI solves
this problem.

This example configuration requires the creation of three context objects
($x,$y,$z) which are configured as follows:

ctxt set attr $x PSEUDO-PRIO := 1

ctxt set attr $y PSEUDO-PRIO := 2

ctxt set attr $z PRIO := 2

The classifiers, the accept differentiation, and the scheduler interposition of
the previous example are installed. Note, however, that the context objects $x
and $y only carry priority marker variables that do not affect scheduling.

All hosts are configured with the following SDI:

ACCEPTT 1 : PROC := MSG : dc.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

38 • J. Reumann and K. G. Shin

Fig. 20. Back end request redirection based on the requester’s untested attribute.

In order to allow modified back-end request bindings to propagate back from
the back-end server to the front end, we configure the SDI

TTCP SEND 1 [PROC PRIO] = 2 : MSG := PROC : dc.

at the back-end server. The front end is configured using

TCP RECEIVEE 1 [MSG PRIO] = 2 : PROC := MSG : dc.

Finally, one must configure the back end to boost the priority of incoming re-
quests belonging to PSEUDO-PRIO 2 as follows:

NET-IP-IN 1 [MSG PSEUDO-PRIO] = 2 : MSG := (10.0.0.100 z) : dc.

The above configuration maps messages from PSEUDO-PRIO 2 to the persistent
context object residing on host 10.0.0.100 with ID z, which represents high-
priority clients.

6.3 Protecting Back-End Service Integrity

One of the concerns when services are co-hosted in a shared services infras-
tructure is that new services may corrupt existing ones. Therefore, server farm
administrators often install new services on dedicated hardware running their
own instances of standard services. Once a dedicated setup has been chosen,
administrators typically do not consolidate the setup because consolidation re-
quires reconfiguration.

To simplify the transition from experimental configurations to consolidated
deployments, we provide a simplified example application that allows config-
uring the experimental setup as if it were configured for final deployment.
Our extension replicates back-end services automatically if a request from an
untested front-end service is received. Subsequent requests by an untested
front-end service are redirected to the replica (see Figure 20). Once the new
service has proven reliable, the system administrator simply deletes SDI clas-
sification rules, and requests submitted by the recently tested service are pro-
cessed by the shared back-end setup. Replicas that are no longer needed can be
deleted. This example is a variant of Flask’s [Spencer et al. 1999] interference
avoidance mechanism. Flask enables the administrator to restrict services from
accessing certain system calls and from interacting with other services.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 39

Whenever a new service is installed in the system, the administrator binds
its processes to a context with untested = 1. This is accomplished by a sim-
ple command line script that tells the SDI kernel module to bind each of the
untested service’s processes to a specific context (sdi-classify-proc <pid>
--home <ip> --id <id>). Back-end services are configured in the same manner
with the only difference being that their context’s untested attribute is set to
zero. Context propagation is configured as it was in the previous example.

We use the error directive to detect when an untested front end tries to access
a specific back-end service. For each back-end service we configure the following
rule:

ACCEPTT 1 [msg untested] = 1, [proc untested] = 0 : : error {ECONNABORTED}.
The client and server will have to recover from an aborted connection.

The error directive is interpreted by the accept tap, which passes a message
containing the applicable SDI and information about the incoming connection
(i.e., destination port and source address) to an error daemon via /proc/sdi.
This daemon checks for each violation, if it has a rule that allows it to replicate
the service listening on the destination port. If it finds an installation script,
it creates a service replica that listens on a different port and automatically
specifies a new SDI of the form

NET-IP-IN 1 [msg untested] = 1 :

: gcf REDIRECT {$ORIGINAL PORT $REPLICA PORT}.
to redirect accesses by untested front-end services to replica back-end services
for experimentation. The $ORIGINAL PORT and $REPLICA PORT are determined
at replication time.

The redirection GCF is implemented in a 91-line “C” kernel module. The
daemon plug-in responsible for creating redirections consists of an 83-line C
program, and an 8-line Perl script consults a replica setup file (a simple ASCII
text file) to automate the replication process.

7. EVALUATION

The objective of our evaluation is to determine whether SDI is an efficient mech-
anism for system extension. This requires fast access to context attributes,
fast rule interpretation, and minimal overheads for policing multitiered
applications.

Our performance study of the SDI prototype for the Linux OS indicates
that SDI can be implemented efficiently. We present both micro- and macro-
benchmark measurements of our prototype and discuss their implications. The
measurements lend further support to crucial implementation choices that are
likely to become important in future instantiations of SDI.

7.1 Micro-Benchmarks

The first set of measurements is taken on a single 450-MHz Intel Pentium II
computer. The results, shown in Figure 21, demonstrate the relevance of the

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

40 • J. Reumann and K. G. Shin

Fig. 21. Base overhead for context operations and comparison of the performance optimizations
for fast context creation described in Section 5.

performance optimizations for dynamic context creation. Using both lazy ini-
tialization and a LIFO queue filled with disposed context objects, the minimal
cost of context creation and destruction is reduced to 850 Pentium II cycles
from over 6000 cycles for a straightforward implementation using the kernel’s
memory management and eager initialization.

As expected, lazy initialization increases the cost of attribute lookup. How-
ever, the penalty is in the low hundred cycles, whereas the number of cy-
cles saved by not completely initializing the context object is in the range of
5000 cycles. Hence, it will take a large number of context accesses to wipe out
the benefits of lazy initialization. Since the contexts of long-lived requests are
eventually indexed, the performance penalty for attribute accesses lasts only
for 1s.

One may have noticed in Figure 21 a seemingly odd performance impact of
using the alternative context object (de)allocation queue; attribute lookups are
accelerated. The reason for this “anomaly” is that context’s memory locations
are more likely to be cached if they are taken from the most-recently disposed
context object. Hence, the execution time of context operations will suffer less
from L1 and L2 cache misses.

We also measured SDI’s network base performance in a small cluster of
seven Intel Pentium-III 550 servers connected by a 100 Mbps Fast-Ethernet,
SMC Tiger switch. Since server clusters are migrating to Gigabit-Ethernet and
even faster servers, the reported latencies are likely to be larger than what
could be achieved on the best available hardware platforms. However, the per-
formance numbers indicate that Context/IP and the context service, even in its

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 41

Fig. 22. Micro-benchmark results.

current prototype implementation, will add only negligible additional latencies
to multitier services.

Figure 22(a) shows the delay that a context-dependent module, such as a
GCF may experience in accessing remote context attributes. As expected, delay
grows with the number of attributes per context, but for most context applica-
tions it will remain within a range between 100 µs (0 attributes) and 200 µs
(100 attributes). This remote access cost will be incurred only if a local context
proxy either has out-of-date information or has not yet been set up. Subse-
quent attribute accesses that can be served from the context proxy take only
130 Pentium II cycles.

Since attribute access will contribute little to application latency, we inves-
tigate the performance of SDI rule evaluation at the tap points. To assess the
worst possible latency effects of SDIs, a UDP-based server was set up to do
nothing but bounce any incoming datagram back to its sender. A single client
was set up to send requests of 1 KB size to the server and time how long it takes
for the packet to return. Both client and server machines are SDI-enabled.

The measured end-to-end delay is linearly increasing in number of context-
dependent guards that are interposed (see Figure 22(b)). Each additional SDI
adds approximately 3 µs of latency. These delays are too small to noticeably
increase the response times of complex cluster services. End-to-end service de-
lays in the Internet are typically above 50 milliseconds. Nevertheless, to support
thousands of simultaneously installed SDIs, future versions of SDI should im-
plement guard checks in decision trees instead of the linear lists of guards that
are registered at tap points in the current prototype.

The performance impact of guard interposition at the system call layer varies,
depending on the complexity of the system call in relation to SDI complexity.
This has been noted in earlier interposition-based research projects [Ghormley
et al. 1998; Reumann et al. 2000b]. System calls’ performance can deteriorate
as much as 40% for simple system calls like open and as little as 2% for a
complex call like fork. Fortunately, low-overhead system calls, for which the
impact of interposition is the worst, contribute only little to most applications’

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

42 • J. Reumann and K. G. Shin

Fig. 23. Througput comparison between a system without SDI (baseline), binding incoming re-
quests to existing context and to newly created context.

total processing time [World Wide Web Consortium 2002]. Services spend most
of their time executing application code and heavy-weight send, read, recv, and
write system calls.

7.2 Macro-Benchmarks

To obtain a more realistic assessment of SDI’s impact on true server
performance, we evaluate SDI’s effect on a Web server executing the
SPECWeb99 [Standard Performance Evaluation Corporation 2001] bench-
mark. SPECWeb99 generates a mix of dynamic and static request loads—an
approximation of the request load found on a realistic server. The response
times and throughput numbers shown in Figures 23(a) and 23(b), respectively,
are reported for a 450 MHz Pentium II-based server with 448 MB RAM. We use
Apache 1.3 as a web server. The SPECWeb99-supplied Perl scripts are used to
handle all dynamic workload except advertisement service, which is done in a
FastCGI server.

The macro-benchmarks compare the performance of Apache on a server with-
out any SDI support against the performance of Apache on an SDI-enabled sys-
tem. The overhead of SDI is assessed for two scenarios. First, in a low-overhead
scenario, two classifiers are set up to bind incoming requests to one of two per-
sistent context objects. The command lines,

sdi-classifier -p TCP -y --sa 10.0.1.0 --sam 255.255.255.0 \
--home 10.0.0.1 --name 1

sdi-classifier -p TCP -y --sa 10.0.2.0 --sam 255.255.255.0 \
--home 10.0.0.1 --name 2

implement this binding directive.
In a second scenario, we attempt to approximate the maximal overhead

caused by the association of workload with context by creating a new context
object for each incoming request. Such a configuration is typical of an environ-
ment in which each request is managed with respect to its own performance,

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 43

security, and monitoring goals. The command lines

sdi-classifier -p TCP -y --sa 10.0.1.0 --sam 255.255.255.0 \
--home 10.0.0.1 --name 1 --dup

sdi-classifier -p TCP -y --sa 10.0.2.0 --sam 255.255.255.0 \
--home 10.0.0.1 --name 2 --dup

configure SDI for the target scenario. The newly-created context automatically
propagates up to the accepting socket and later to the processes that read from
the so-classified socket. Our measurements show that neither response time
(see Figure 23(b)) nor throughput (see Figure 23(a)) of an HTTP server is af-
fected by the presence of SDI. The lines labeled “context bind” and “context
create” in Figures 23(a) and 23(b) represent the binding of incoming requests
to existing context and the creation of a new context object for each incoming
request, respectively.

8. RELATED WORK

The proposed SDI mechanism is the first to integrate extensible, distributed
system state with interposition into a highly extensible system management
and extensibility framework. While context and its management in distributed
systems have appeared in numerous applications (e.g., security, resource man-
agement, and monitoring), each domain-specific solution only manages a few
concrete contextual attributes, for example, security classes. Context has not
yet been proposed as a separate generic service for the design of system support
for distributed systems.

The LINDA tuple-based computation and communication model [Gelernter
1985] shares some similarities with SDI and other interposition schemes.
LINDA proposes a computation model in which persistent processes post data
tuples into a distributed tuple-space. Computation progresses as executions
are triggered by conditional receives of these posted tuples. Additional contex-
tual state can simply be integrated into distributed computations by extending
the tuples. Unfortunately, LINDA’s distributed state abstraction, tuples, are
transient, so that propagation of additional attributes still requires program-
mer intervention. In particular, computation rules must preserve the unused
state of their input tuples by adding it to their output tuples. SDI, like LINDA,
achieves extensible state and state-directed processing. Moreover, SDI man-
ages per-computation state, while preserving the traditional invocation-based
programming model, processes, existing service APIs, and the communication
abstractions found in today’s OSs.

8.1 Application Frameworks

CORBA [OMG 1998], J2EE [Sun Microsystems 2001], and WebSphere [IBM
Corp. 2001] are environments for the design of multitiered applications. Each
of these application environments provides its own notion of context, primarily
for the implementation of access control mechanisms. CORBA uses context

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

44 • J. Reumann and K. G. Shin

primarily in the implementation of CORBA Security. J2EE and WebSphere use
context to map the application server’s user IDs to back-end user IDs before
accessing a back-end database.

In CORBA context is implemented as an optional parameter for every remote
method invocation. To have any effect, the CORBA context abstraction must be
unpacked by the server object. Without active intervention by the server appli-
cation, context does not propagate across the tiers of multitiered computations.
Since the applications are responsible for configuring and maintaining their
context attributes, one cannot rely on their availability at the system layer and
across application frameworks. SDI solves this problem. Moreover, SDI also
addresses numerous inefficiencies of context abstractions in application frame-
works, which result from the fact that context was typically introduced as an
afterthought to fix certain problems (e.g., security). In contrast, SDI proposes
context as a primary system abstraction.

8.2 Interposition

Since its proposal as a generic system extension mechanism by Jones [1993],
interposition has gained significant support. The SPIN OS [Bershad et al. 1995;
Pardyak and Bershad 1996] effectively promotes interposition as the standard
way in which system functionality is to be achieved. SLIC [Ghormley et al.
1998] pursues similar goals for commodity OSs. The basic objective of inter-
position can be summarized as calls to existing system and service interfaces
that are intercepted and redirected to interposed wrapper layers that improve
or augment the intercepted interface’s semantics.

The above approaches adopt an event-based dispatcher scheme [Pardyak and
Bershad 1996] in place of the traditional function call interfaces for OS layer
interactions. SPIN, for example, maps all interactions between system layers
to events which can be intercepted by interpositions. The default interpositions
are the standard OS handlers. The event language is fixed at the time of OS
design. Interpositions alone cannot create their own additional state and events.
SDI addresses this shortcoming.

The lack of state integration in previous single-host interposition approaches
is not an oversight. On a single host, necessary state information can simply
be preserved in process or in socket descriptors or even reproduced on-demand.
Hence, state is typically implicit in the variables of the OS layers or interpo-
sitions. This is why previous approaches work well despite their disregard for
state. A solution for interposition in multitier systems cannot assume that state
is always local; it must be stateful.

8.3 Domain-Specific Context Solutions

Active Messages [von Eicken et al. 1992] are a domain-specific incarnation of
SDI. Active messages propagate pointers to the receivers’ packet processing
functions with every message that is exchanged in a distributed system, thus
possibly short-circuiting unnecessary checks. Besides the shared packet recep-
tion pointers, there is no shared or extensible state that is transferred between
tiers.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 45

A rich body of work in network security [McIlroy and Reeds 1992; Badger
et al. 1995; Ellison 1999; Abadi et al. 1993; Minear 1995] includes some of the
basic features of SDI with respect to security attribute propagation, attribute
remapping, and policing. However, these papers fail to abstract from the con-
crete problem of, say, user ID propagation, to a more abstract concept of at-
tribute propagation, and from the problem of security policy enforcement to
generic policing of distributed computations. SDI makes these abstractions.
Readers familiar with research in system security will quickly realize the syn-
ergies between SDI and the implementations of network security mechanisms.

For example, the Domain and Type Enforcement (DTE) architecture
[Badger et al. 1995] stresses the need for flexible security attribute propaga-
tion along the path of interapplication communication. To address this need,
this approach provides a rich policy framework supporting security attribute
inheritance, remapping at tier-boundaries, and propagation in IP datagrams.
We believe that much of DTE’s functionality is not necessarily security-specific
but should be captured by a generic service like SDI instead. Flask’s policy-
controlled integrity [Spencer et al. 1999] mechanism—featuring sender-based
packet redirection—is also a highly specialized instance of state maintenance,
state propagation and label-based interposition on system interfaces. Similar
functionality can be implemented using SDI almost effortlessly (Section 6).

The need for propagation of state information has also been noted in re-
cent work on resource management. The Scout OS [Spatscheck and Peter-
son 1999] and Lazy Receiver Processing [Banga and Druschel 1996; Banga
et al. 1999] emphasize the importance of processing incoming workload in the
right resource context. To this end, they provide proprietary resource-binding
mechanisms. Scout provides a processing path abstraction, which automati-
cally propagates resource reservations across traditional OS abstractions. LRP
binds incoming requests to a Resource Container [Banga et al. 1999], which
can be utilized by arbitrary system objects. Both approaches fail to provide
proper resource isolation when competing processes relay work to shared, re-
mote processes. Virtual Services [Reumann et al. 2000b] solve this problem by
propagating explicit resource reservation handles along with all interapplica-
tion message exchanges. Cluster reserves [Aron et al. 2000] provide similar
functionality at the application-layer by using Resource Containers in com-
bination with application modification and a resource management daemon
application.

9. CONCLUDING REMARKS

We have introduced SDI as a generic, low-overhead improvement of OSs for
hosting multitier services. SDI associates state with multitier computations
and propagates state as computations spread to multiple machines and sub-
services without mandating application modification. SDI achieves the same
extensibility and customizability for multitier, component-based systems that
has been achieved by interposition for single-host OSs. Thus, component ser-
vices and OSs can be fixed up to perform well in server farms, under constraints
that were not anticipated at the time of their design.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

46 • J. Reumann and K. G. Shin

Since contextual information significantly simplifies communication across
software layers, auxiliary system management and application support
mechanisms that integrate across several software layers can be built more
easily. Context-based access control, for example, can be enforced at the net-
work layer while application-layer information (e.g., a user password) may still
be taken into account. Other mechanisms that will benefit from SDI include for-
tification of previously unsafe service protocols, server-site monitoring mecha-
nisms, integrity assurance, context-aware load-balancing, distributed resource
management, and creation and propagation of transaction contexts in nested
server activities [Haskin et al. 1988].

The current prototype demonstrates that a distributed context propagation
and interposition framework can be built in a manner that is independent of
the applications without excluding them from using and improving context se-
mantics. In already-built example applications, SDI has significantly reduced
implementation complexities. We believe that SDI can generally simplify the
design of system software enhancements for multitiered systems. We are cur-
rently exploring more example applications of SDI.

Despite the prototype’s promising performance, there is still ample room for
future research. Some obvious extensions of SDI, such as chains of SDIs and
hierarchically-nested context, have to be evaluated with respect to their addi-
tional expressive power, performance benefits, and their overheads. One may
also wish to provide context security in the absence of secured network links. In
this case it is necessary to generate private, unforgeable context reference tags
that are placed inside IP packet headers and to secure the exchange of context
data between hosts.

A concrete improvement target is the performance of SDI’s guard matching,
which is sequential in the current prototype. Therefore, runtime overheads for
each system interface tap are linear in the number of registered SDIs. Instead
of matching each guard clause of SDIs in a static, linear order, a minimized
finite state machine checker representation should be generated automatically.
While this would not change linear time worst-case complexity, the average case
could experience a significant speed-up, since common guard conditions could
be eliminated across SDIs. Guard checks should also be reordered automatically
so as to minimize the average number of comparison operations executed, that
is, check the most selective guard conditions first. This would allow a greater
number of simultaneously installed SDIs.

Finally, it is important to note that the proposed SDI is not intended to
be a final standard for distributed context. It should rather be viewed as the
beginning of a standardization process that will replace other existing Inter-
net standards that provide narrower abstractions of context (e.g., identd and
CORBA). In order to provide the next generation context service for IP-based
multitier systems, it will be necessary to consider and address the main points
raised in this article.

ACKNOWLEDGMENTS

We want to thank the referees for their helpful suggestions that have signifi-
cantly improved this article.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

Stateful Distributed Interposition • 47

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in dis-
tributed systems. ACM Trans. Program. Lang. Syst. 15, 4 (Sept.), 706–734.

AMAN, J., EILERT, C. K., EMMES, D., YOCOM, P., AND DILLENBERGER, D. 1997. Adaptive algorithms for
managing distributed data processing workload. IBM Syst. J. 36, 2, 242–283.

ARMSTRONG, J., VIRDING, R., WILKSTRÖM, C., AND WILLIAMS, M. 1996. Concurrent Programming in
Erlang. Prentice-Hall International, Herfordshire, U.K.

ARON, M., DRUSCHEL, P., AND ZWAENEPOEL, W. 2000. Cluster reserves: A mechanism for resource
management in cluster-based network servers. In Proceedings of ACM SIGMETRICS (Santa
Clara, Calif.). ACM, New York.

BADGER, L., STERNE, D. F., SHERMAN, D. L., WALKER, K. M., AND HAGHIGHAT, S. A. 1995. A domain
and type enforcement UNIX prototype. In Proceedings of the 5th USENIX Security Symposium.
(Salt Lake City, Utah).

BANGA, G. AND DRUSCHEL, P. 1996. Lazy receiver processing (LRP): A network subsystem archi-
tecture for server systems. In Proceedings of the 2nd ACM Symposium on Operating System
Principles. ACM, New York.

BANGA, G., DRUSCHEL, P., AND MOGUL, J. 1999. Resource containers: A new facility for resource
management in server systems. In Proceedings of the 3rd USENIX Symposium on Operating
Systems Design and Implementation. 45–58.

BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FIUCZYNSKI, M., BECKER, D., EGGERS, S., AND

CHAMBERS, C. 1995. Extensibility, Safety and Performance in the SPIN Operating System. In
Proceedings of the 15th ACM Symposium on Operating System Principles. 267–284.

BIRRELL, A., NELSON, G., OWICKI, S., AND WOBBER, E. 1993. Network Objects. In Proceedings of the
14th ACM Symposium on Operating System Principles. ACM, New York. 217–230.

BODEN, N. J., COHEN, D., FELDERMAN, R. E., KULAWIK, A. E., SEITZ, C. L., SEIZOVIC, J. N., AND SU, W.-K.
1995. Myrinet: A gigabit-per-second local area network. IEEE Micro 15, 1, 29–36.

BRENTON, C. 1998. Mastering Network Security. Sybex, Alameda, Calif.
CARRIERO, N. AND GELERNTER, D. 1986. The S/Net’s Linda Kernel. ACM Trans. Comput. Syst. 4,

110–129.
DRAVES, R. P., BERSHAD, B. N., RASHID, R. F., AND DEAN, R. W. 1991. Using continuations to imple-

ment thread management and communication in operating systems. In Proceedings of the 13th
ACM Symposium on Operating System Principles. ACM, New York. 122–136.

EGGERS, S. J. AND KATZ, R. H. 1989. Evaluating the performance of four snooping cache coherency
protocols. In Proceedings of the 16th Annual Internation Symposium on Computer Architecture.
ACM, New York. 2–15.

ELLISON, C. 1999. The nature of a useable PKI. Comput. Net. 31, 8, 823–830.
FORD, B., BACK, G., BENSON, G., LEPREAU, J., LIN, A., AND SHIVERS, O. 1997. The flux OSKit: A

substrate for OS and language research. In Proceedings of the 16th ACM Symposium on Operating
System Principles (Saint Malo, France). ACM, New York.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1,
80–112.

GHORMLEY, D., RODRIGUES, S., PETROU, D., AND ANDERSON, T. 1998. SLIC: An extensibility system
for commodity operating systems. In USENIX Annual Technology Conference.

GRAY, C. G. AND CHERITON, D. R. 1989. Leases: An efficient fault-tolerant mechanism for dis-
tributed file cache consistency. ACM Oper. Syst. Rev. 23, 5, 202–210.

HASKIN, R., MALACHI, Y., SAWDON, W., AND CHAN, G. 1988. Recovery management in quick-silver.
ACM Trans. Comput. Syst. 6, 1, 82–108.

IBM CORPORATION. 2001. http://www-4.ibm.com/software/webservers/appserv/whitepapers.html.
JONES, M. B. 1993. Interposition agents: Transparently interposing user code at the system

interface. In Proceedings of the 14th ACM Symposium on Operating System Principles. ACM,
New York, 80–93.

KENT, S. AND ATKINSON, R. 1998. Security architecture for the internet protocol. IETF RFC
2401.

LENOSKI, D., LAUDON, J., GHARACHORLOO, K., WEBER, W., GUPTA, A., HENNESSY, A., HOROWITZ, J., AND

LAM, M. 1992. The Standford dash multiprocessor. IEEE Comput. 25, 62–79.

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

48 • J. Reumann and K. G. Shin

MCILROY, M. D. AND REEDS, J. A. 1992. Multilevel security in the UNIX tradition. Softw. Pract.
Exper. 22, 8 (Aug.), 673–694.

MINEAR, S. E. 1995. Providing policy control over object operations in a mach based system. In
Proceedings of the 5th USENIX Security Symposium.

NEEDHAM, R. M. 1995. Distributed Systems, 2 ed. Frontier Series. ACM, New York, Chap. 12,
315–327.

OMG, ED. 1998. The Common Object Request Broker Architecture and Specification 2.2. OMG.
PARDYAK, P. AND BERSHAD, B. 1996. Dynamic binding for an extensible system. In Proceedings of

the 2nd USENIX Symposium on Operating Systems Design and Implementation (Seattle, Wash.).
201–212.

PLAINFOSSÉ, D. AND SHAPIRO, M. 1995. A survey of distributed garbage collection techniques. In
Proceedings of the International Workshop on Memory Management (Kinross, Scottland).

POSTEL, J. 1981. Internet protocol DARPA internet program protocol specification. IETF RFC
791.

REUMANN, J., JAMJOOM, H., AND SHIN, K. G. 2000a. QGuard: Protecting internet servers from over-
load. Tech. Rep. CSE-TR-427-00, The University of Michigan.

REUMANN, J., MEHRA, A., SHIN, K., AND KANDLUR, D. 2000b. Virtual services: A new abstraction for
server consolidation. In USENIX Annual Technical Conference.

SPATSCHECK, O. AND PETERSON, L. L. 1999. Defending against denial of service attacks in scout. In
Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation.
59–72.

SPENCER, R., SMALLEY, S., LOSCOCCO, P., HIBLER, M., ANDERSEN, D., AND LEPREAU, J. 1999. The flask
security architecture: System support for diverse security policies. In Proceedings of the 8th
USENIX Security Symposium.

STANDARD PERFORMANCE EVALUATION CORPORATION. 2001. SPECWeb99 (White Paper). Standard Per-
formance Evaluation Corporation, http://www.spec.org/osg/web99.

SUN MICROSYSTEMS. 2001. Java(TM) 2 Platform, Enterprise Edition.
VON EICKEN, T., CULLER, D., GOLDSTEIN, S., AND SCHAUSER, K. 1992. Active messages: A mechanism

for integrated communication and computation. In Proceedings of the 19th Annual International
Symposium on Computer Architecture. ACM, New York.

WORLD WIDE WEB CONSORTIUM. 2002. Simple test of amount of system calls in jigsaw.
http://www.w3.org/Protocols/HTTP/ Performance/System/SysCalls.html.

Received September 2001; revised July 2002 and July 2003; accepted August 2003

ACM Transactions on Computer Systems, Vol. 22, No. 1, February 2004.

