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Abstract

Recently, there has been a rapid and wide spread of
non-traditional computing platforms, especially mo-
bile and portable computing devices. As applica-
tions become sophisticated and computation power
increases, the most serious limitation on these de-
vices is the available battery life. Dynamic voltage
scaling (DVS) has been a key technique to ex-
ploit the hardware characteristics of processors to
reduce energy dissipation by lowering the supply volt-
age and operating frequency. This paper presents a
novel on-line DVS algorithm called OLDVS that,
when coupled with the underlying OS task manage-
ment mechanism and real-time scheduler, can make
significant energy savings, while preserving timeli-
ness guarantees made by the underlying real-time
scheduling algorithm. While most existing DVS algo-
rithms are confined to periodic tasks only, OLDVS
does not assume task periodicity, nor does it re-
quire any a priori information on the task set to
be scheduled. OLDVS requires only O(1) compu-
tation on each task context switch, thus making it
fairly easy to be incorporated into a real-time op-
erating system. The OLDVS algorithm considers a
general task model which is very difficult, if not im-
possible, for the existing DVS algorithms to handle.
Our simulation results show that OLDVS achieves
great energy savings and outperforms the exist-
ing DVS algorithms when the ratio of the computation
requirement of aperiodic tasks to the total compu-
tation requirement is higher than 40%. The perfor-
mance advantage becomes much larger as the ratio
increases.

∗ This work was supported in part by the US AFOSR under Grant
No. F49620-01-1-0120.

1. Introduction

As the device technology approaches the limit of
scaling in CMOS circuits, power and heat dissipation
issues are becoming ever more important. Over the last
several years, computation and communication have
been steadily moving toward mobile and portable plat-
forms/devices with the increasing popularity of ubiq-
uitous applications. This is evident in the growth of
laptop computers and PDAs, but is also occurring in
the embedded world. The applications for these do-
mains are typically run on battery-powered embedded
systems. With continued miniaturization and increas-
ing computation power, we see ever growing use of
powerful microprocessors running sophisticated, intel-
ligent control software in a vast array of embedded
systems including digital camcorders, cellular phones,
and portable medical devices [24].

In the last decade, significant research and devel-
opment efforts have been made on Dynamic Volt-
age Scaling (DVS) for real-time systems to make
energy-savings by scaling the voltage and fre-
quency while maintaining real-time deadline guaran-
tees [1–6, 8, 12–17, 23, 25]. This is possible because
static CMOS logic, used in the vast majority of mi-
croprocessors today, has a voltage-dependent maxi-
mum operating frequency, so when used at a reduced
frequency, the processor can operate at a lower sup-
ply voltage. Since the energy dissipated per cycle
with CMOS circuitry scales quadratically to the sup-
ply voltage (E ∝ V 2) [4], DVS can potentially
provide a very large net energy savings through fre-
quency and voltage scaling. However, most of them
assume that the reference task model consists of pe-
riodic tasks, and with relative deadlines equal to
their respective periods. For a mixed task sys-
tem with both periodic and aperiodic tasks, researches
focus on how to improve the responsiveness of ape-
riodic tasks that do not have explicit deadlines by
minimizing their average response time, while meet-
ing the hard deadlines of periodic tasks. To sat-
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isfy these objectives, many scheduling algorithms
had been proposed based on the “server” con-
cept, without taking energy consumption into ac-
count [9, 18, 20, 22]. Recently, some algorithms have
been proposed for scheduling mixed task sets us-
ing DVS to make energy savings. Shin and Kim [16]
proposed DVS algorithms that guarantee the schedu-
lability of all periodic tasks with a “good” average
response time for each aperiodic task, while do-
ing the best to minimize the total energy consump-
tion. The energy/responsiveness tradeoffs involved
in scheduling mixed task sets on DVS-enabled pro-
cessors have been explored by Aydin and Yang [3].
They proposed the composite metric, energy × aver-
age response time, as a performance measure for the
energy-aware scheduling of mixed task sets.

The existing DVS algorithms assume the availabil-
ity of a priori knowledge of the release times and
deadlines of all real-time (i.e., periodic) tasks. With
this knowledge, they use the processor utilization for
schedulability analysis. They also assume that the rel-
ative deadline of each task is equal to its period. There-
fore, they are not on-line algorithms in a strong sense.
They just estimate the slack times on-line. By con-
trast, we present an on-line DVS algorithm for hard
real-time systems that attempts to minimize the en-
ergy consumed by each task set. The task model con-
sidered in this paper is very general in that each task
has arbitrary release time and deadline. While most ex-
isting DVS algorithms focus on periodic tasks only,
the proposed algorithm does not assume the periodic-
ity of tasks, nor does it require any a priori information
(such as periods, deadlines, and their worst-case com-
putation times) on the task set to be scheduled. The al-
gorithm is based on the earliest-deadline-first (EDF)
algorithm that is proven to be optimal even under this
generalized task model [10, 19]. Unlike the existing al-
gorithms, the proposed algorithm uses the notion of
“loading factor” as the feasibility criterion to scale the
frequency and voltage for energy savings. The pro-
posed on-line DVS algorithm requires only O(1) com-
putation on each task context switch, so it is fairly easy
to incorporate the algorithm into a real-time operat-
ing system. Our simulation results show that the pro-
posed algorithm outperforms the existing DVS algo-
rithms when the ratio of the computation requirement
of aperiodic tasks to the total computation requirement
exceeds a certain threshold. The performance gap be-
comes much larger as this ratio increases.

The paper is organized as follows. In the next sec-
tion, we present the system model considered in this
paper and introduce the notion of loading factor. Sec-
tion 3 presents details of our on-line DVS algorithm
and illustrates how it works. The simulation results are
presented in Section 4, and Section 5 concludes the pa-
per with a summary of our results and a discussion of
future directions.
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Figure 1. EDF schedule (with time over-
flow) of an example task set of three
tasks.

2. Motivation

2.1. System model

We consider a preemptive hard real-time sys-
tem in which real-time tasks are scheduled under
the EDF scheduling policy [10]. The target vari-
able voltage processor can scale its supply voltage
and clock frequnecy continuously within its op-
erational ranges, [vmin, vmax] and [fmin, fmax].
Associated with each task τi are the arbitrary re-
lease time ri, worst-case execution time (WCET)
Ci and deadline di. Tasks are assumed to be inde-
pendent. We define the start time, denoted by si, as
the time at which task τi gets the control of CPU
and starts to execute. For each task τi, the execu-
tion time ei is defined as the time spent by CPU
to complete the execution of the task when operat-
ing at the maximum frequency. Although real-time
tasks are specified for worst-case execution environ-
ments, they generally use much less than the worst
case (i.e., ei ≤ Ci). Let α() be a frequency scal-
ing function such that the frequency is scaled down to
α(t) · fmax at time t (0 ≤ α(t) ≤ 1, ∀t). Also, let αi

be the frequency scaling factor of task τi. If the fre-
quency is scaled down, the requested CPU time to
complete each task will increase. We define the effec-
tive execution time, denoted by e′i, as the actual time
spent by CPU to complete τi under a frequency scal-
ing α() (obviously, e′i ≥ ei).

2.2. The notion of loading factor

This subsection focuses on assessing task set fea-
sibility under EDF scheduling. Two general concepts
are used to analyze the feasibility of real-time task
sets: processor demand and loading factor. The pro-
cessor demand is a focused measure of how much
computation is requested, with respect to timing con-
straints, in a given interval of time, while the load-
ing factor is the maximum of the fraction of processor
time possibly demanded by the task set in any inter-
val of time. These two terminologies are originally de-
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fined based on the execution times (actually WCETs)
of tasks without frequency scaling [21]. In this paper,
however, we modify them based on the effective ex-
ecution times under certain frequency scaling as fol-
lows.

Definition 1. Given a set of real-time tasks and an in-
terval of time [t1, t2), the effective processor demand
of the task set during the interval [t1, t2) under a fre-
quency scaling, α() is

h′
[t1,t2)

=
∑

t1≤rk,dk≤t2

e′k.

That is, under certain frequency scaling α(), the effec-
tive processor demand during [t1, t2) represents the
amount of CPU time that is requested by all tasks with
releases time at or after t1 and deadlines before or at
t2.

Definition 2. Given a set of real-time tasks, its effec-
tive loading factor during the interval [t1, t2) is the
fraction of the interval needed to execute the tasks un-
der certain frequency scaling α(), i.e.,

u′
[t1,t2)

=
h′

[t1,t2)

t2 − t1
.

Definition 3. The absolute effective loading factor,
or simply effective loading factor, under certain fre-
quency scaling α(), is the maximum of all possible in-
tervals, that is,

u′ = sup
0≤t1<t2

u′
[t1,t2)

.

In other words, under frequency scaling α(), a task set
has an effective loading factor u′ if in each interval of
time [t1, t2) the maximum demanded CPU time is at
most u′ · (t2 − t1). For example, the task set of Figure
1 has an effective loading factor u′ = 10/9, as shown
in Table I. Note that only the computation of the effec-
tive loading factor during some intervals is shown. It
is easy to verify that the effective loading factor over
any other interval is less than those shown in Table I.

Intuitively, under frequency scaling, a necessary
condition for the feasibility of a task set under any
scheduling algorithm is that the effective loading fac-
tor is not greater than 1. In fact, not only is this claim
true, but the condition is also sufficient for the task
set feasibility under the EDF scheduling algorithm. In
the absence of frequency scaling (i.e., α(t) = 1,∀t),
Spuri [19] proved this based on the notion of load-
ing factor u which is the same as the effective load-
ing factor u′ when the task set is executed under the
worst-case execution scenario without frequency scal-
ing, i.e., ei = Ci and α(t) = 1,∀i, t. We can directly

u′
[3,18) = 4+4+6

15 = 14
15

u′
[5,12) = 4

7

u′
[5,14) = 4+6

9 = 10
9

u′
[6,14) = 6

8

u′ = 10
9

Table 1. Computation of the effective
loading factor for the task set of Figure
1.

apply the result of [19] to the case with frequency scal-
ing as follows.

Theorem 1. Under certain frequency scaling, each set
of real-time tasks is feasibly schedulable by the EDF
algorithm if and only if

u′ ≤ 1.

Proof: “If” part: Assume there is a deadline miss at
time t. The miss must be preceded by a CPU busy pe-
riod, that is, a period of continuous processor utiliza-
tion, in which only tasks with deadlines earlier than
t are executed. Let t2 = t and t1 be the last instant
preceding t such that there are no pending execution
requests of tasks released before t1 and having dead-
lines less than or equal to t. Both t1 and t2 are well de-
fined. See Figure 1 for example. In particular, after t1,
which must be the release time of some task, the pro-
cessor is allocated to tasks released after t1 and having
deadlines less than t2. Since there is a deadline miss
at t2, the amount of CPU time demanded in the inter-
val [t1, t2) must be greater than the interval itself, that
is,

∑

t1≤rk,dk≤t2

e′k > (t2 − t1).

It follows that

u′
[t1,t2)

> 1,

hence

u′ > 1,

a contradiction.
“Only if” part: Since the schedule is feasible, the
amount of CPU time demanded in each interval of time
must be less than or equal to the length of the interval,
that is,

∀[t1, t2),
∑

t1≤rk,dk≤t2

e′k ≤ (t2 − t1).

It follows that
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Figure 2. An example schedule under
EDF.

u′
[t1,t2)

≤ 1,

hence

u′ ≤ 1.

�

Note that the result shown above also confirms the op-
timality of the EDF algorithm for uni-processor sys-
tems under frequency scaling. An input task set Ψ is
called “feasible,” if the loading factor uΨ is less than
or equal to 1 under the worst-case execution scenario.
In the remainder of this paper, we assume that the load-
ing factor uΨ of task set Ψ is 1 in the worst-case exe-
cution scenario. In the case where uΨ < 1, the max-
imum clock frequency is assumed to be adjusted to
f ′

max = uΨ · fmax without violating any timing con-
straint. With f ′

max, the loading factor becomes 1, leav-
ing no idle intervals if every task takes the WCET for
its execution.

3. The On-Line Dynamic Voltage Scaling
(OLDVS)

3.1. The basic idea

Consider a set Ψ of real-time tasks whose load-
ing factor uΨ is equal to 1. Since uΨ = 1, there
is no slack time available on the EDF schedule in
the worst-case execution scenario in which every task
takes the WCET for its execution. Consider task τi

in the example schedule of Figure 2, where s̄i and c̄i

are the expected start and completion times of τi in
the worst-case scenario, respectively. Since we assume
preemptive scheduling, if τi is released before s̄i (i.e.,
ri < s̄i), task τj has higher priority than τi and is com-
pleted at s̄i (i.e., dj ≤ di and c̄j = s̄i). If ri = s̄i, τj is
completed at s̄i, or τj is a lower-priority task and pre-
empted by τi at s̄i. Also, tasks τα and τβ in Figure 2
are all higher-priority tasks and preempt τi upon their
release, respectively. So, the expected completion time
for each task τi under the worst-case scenario is calcu-
lated as follows:

c̄i = s̄i + Ci +
∑

s̄i<rk,dk<di

Ck.

calculate α(t){
if τi preempted τj then /* it means ri = si = t and di < dj */

Di = t + Ci;

Ri = Ci;

Rj = Rj −αj · (t− l); /* l: the previous ctx switch time */

else if τi resumes after some task τk then

Di = Di + Dk − tp; /* say τi was preempted at tp */

else /* it means τi starts execution after some task τk */

if (dk > di or Dk < t) then Di = t + Ci;

else Di = Dk + Ci;

Ri = Ci;

return (αi = Ri
Di−t

); /* return the scaling factor αi */

}

Figure 3. Computation of the frequency
scaling factor for OLDVS.

To guarantee the feasible execution of all the upcom-
ing tasks under the worst-case scenario, each task τi

must complete before or at c̄i. So, each task τi must
also start before or at s̄i. We define the worst-case
completion time of task τi, denoted by Di, as the latest
time to complete, that guarantees the feasible execu-
tion of all the upcoming tasks. If an on-line algorithm
estimates the worst-case completion time of each task
to be less than or equal to its expected completion
time under the worst-case scenario (i.e., Di ≤ c̄i,∀i)
and schedules it to complete before that, the algo-
rithm guarantees the feasible execution. For each con-
text switch to task τi, say at time t, its worst-case com-
pletion time Di can be calculated incrementally as fol-
lows: (i) if task τi preempted some task τj (i.e., si = t
and di < dj), then Di = t + Ci; (ii) else if τi resumes
right after the completion of some task τk (meaning
that τi was previously preempted by other task(s), say
at time tp), then Di = Di + Dk − tp; (iii) else (mean-
ing that τi starts after some task τk) if di < dk or
Dk < t, then Di = t + Ci, else Di = Dk + Ci. Ini-
tially, the worst-case completion time is set to 0 (i.e.,
D0 = 0). It is shown in the next subsection that the
worst-case completion time for each task estimated as
above is less than or equal to its expected completion
time under the worst-case scenario. If each task com-
pletes earlier than its expected worst-case completion
time, the next task can use this unused execution time,
effectively moving its start time ahead. These slack
times can be exploited for energy savings by lower-
ing the frequency and the supply voltage accordingly.
For each task τi, we define the worst-case remaining
time, denoted by Ri, to be the remaining CPU time
to complete the task when operating at the maximum
frequency under the worst-case scenario. At the start
time of each task τi, it is initially set to its WCET
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(i.e., Ri = Ci). When a task is preempted by an-
other task, its worst-case remaining time is reduced by
the amount converted into maximum-frequency CPU
time from the previous context switch. For example,
if task τj is preempted by another task at t, then its
worst-case remaining time Rj is recalculated such that
Rj = Rj −αj · (t− l), where l is the previous context
switch time. Each task τi must be completed before or
at Di to guarantee the feasible execution of all the re-
maining tasks, and it takes Ri to complete at the max-
imum frequency in the worst case. Therefore, at each
context switch to task τi at time t, we can set the fre-
quency scaling factor αi as follows:

αi =
Ri

Di − t
.

By scaling the frequency as above, each task is guar-
anteed to complete before or at its worst-case com-
pletion time, thus guaranteeing the feasible execution
of all the upcoming tasks under the worst-case sce-
nario. If each task τi takes the WCET for its execu-
tion, it completes exactly at Di. Note that αi ≤ 1,
since Ri ≤ Di − t, for all i and t. The complete al-
gorithm for calculation of the frequency scaling factor,
called calculate α(), is shown in Figure 3. It is called
on each context switch, and calculates both the worst-
case completion and the worst-case remaining times of
the task, then returns the value of the frequency scal-
ing factor for the task. Therefore, no more than two
frequency (and voltage) transitions can occur per task.
Since the time complexity of the algorithm is O(1),
we can calculate the scaling factor on-line at each con-
text switch time with negligible overhead. Using the
function calculate α(), next we present the on-line dy-
namic voltage scaling algorithm, called OLDVS.

3.2. The OLDVS algorithm

Although real-time tasks are specified with
worst-case computation requirements, they gener-
ally use much less than the worst-case values for most
of their invocations. To exploit this, the DVS mecha-
nism could reduce the operating frequency and voltage
when tasks use less than their worst-case time allot-
ment, and, if needed, increase frequency to meet the
worst-case needs. When a task is released, we can-
not know how much computation it will actually
require, so we must assume that it will need its speci-
fied worst-case execution time. In other words, at each
start time of task τi, we must set its worst-case re-
maining time to its worst-case execution time (i.e.,
Ri = Ci).

The OLDVS algorithm itself (Figure 4) is quite
simple. At each task context switch time, it first cal-
culates the frequency scaling factor using the func-
tion calculate α(), then it scales the voltage and fre-
quency. The algorithm is tightly-coupled with the op-

upon context switch to each task τi at time t:

αi = calculate α(t);

scale voltage and frequency(αi);

Figure 4. The algorithm OLDVS.

erating system’s task management services, since they
may need to reduce or increase frequency on each task
context switch. The main challenge in designing such
algorithms is to ensure that deadline guarantees are not
compromised when the operating frequencies are re-
duced. If the input task set Ψ is feasible, the algorithm
OLDVS guarantees the deadlines of all the tasks. This
is proved in the following theorem.

Theorem 2. Each feasible set Ψ of real-time tasks is
feasibly schedulable by OLDVS.

Proof: By definition, the loading factor uΨ of a fea-
sible task set Ψ is less than or equal to 1 under the
worst-case scenario, i.e.,

uΨ =

∑
t1≤rk,dk≤t2

Ck

t2 − t1
≤ 1, ∀[t1, t2).

Let the tasks be sorted by their deadlines, i.e., Ψ =
{τi|1 ≤ i, di ≤ di+1}. Also, let si and ci be the start
and completion times of each task τi, respectively, in
the schedule yielded by OLDVS. Assume there is a
deadline miss at time t while executing some task, say
τi. The miss must be preceded by a CPU busy period,
that is, a period of continuous processor utilization, in
which only tasks with deadlines less than t are exe-
cuted. Let again, as in the proof of Theorem 1, t2 = t
and t1 be the last instant preceding t such that there
are no pending execution requests of tasks released be-
fore t1 and having deadlines less than or equal to t. In
particular, after t1, which must be the release time of
some task, the processor is allocated to tasks released
after t1 and having deadlines less than t2, i.e., τk’s with
t1 ≤ rk and k ≤ j. Let τj be the task to be sched-
uled at t1, i.e., sj = t1. Then, by the algorithm calcu-
late α(), Dj = t1+Cj . Also each task τk following τj

has an effect of adding the amount of Ck on the com-
putation of the worst-case execution time Di of task
τi. Therefore, Di = t1 +

∑
t1≤rk,k≤i Ck. By apply-

ing the algorithm, task τi completes before or at Di

(i.e., ci ≤ Di). Since there is a deadline miss at t2, the
amount of CPU time demanded in the interval [t1, t2)
must be greater than the interval itself, that is,

∑

t1≤rk,dk≤t2

e′k > (t2 − t1). (1)

Since τi completes before or at its worst-case compu-
tation time Di, ci ≤ Di, i.e.,
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t1 +
∑

t1≤rk,dk≤t2

e′k ≤ t1 +
∑

t1≤rk,dk≤t2

Ck (2)

From Eqs. (1) and (2), we get

∑

t1≤rk,dk≤t2

Ck > (t2 − t1).

It follows that

u[t1,t2) > 1,

hence

uΨ > 1,

a contradiction. Therefore, the algorithm follows. �

The OLDVS algorithm presented above should be
fairly easy to be incorporated into a real-time operating
system, and does not incur any significant processing
cost. The dynamic schemes require O(1) computation,
and should not require significant processing for the
scheduler. The most significant overhead may be the
hardware voltage switching times. However, no more
than two switches can occur per task, so this overhead
can easily be accounted for, and added to, the worst-
case task execution times.

3.3. An illustrative example

Consider a task set Ψ composed of τ1(0, 4, 7),
τ2(6, 2, 9), τ3(3, 6, 15), τ4(10, 4, 18), τ5(20, 4, 26),
τ6(11, 7, 30), · · · , where each task is denoted by a
three-tuple τi(ri, Ci, di). Note that tasks τ1, τ4, τ5,
· · · are all periodic with the period of 10 but with ar-
bitrary deadlines. Figure 5(a) shows the EDF sched-
ule under the worst-case execution scenario in
which every task takes the WCET for its execu-
tion. Since uΨ is 1, there is no slack time available
on the schedule. Although real-time tasks are spec-
ified with worst-case execution environments, they
generally use much less than the worst case. Sup-
pose that actual execution times are e1 = 2, e2 = 1,
e3 = 5, e4 = 2, e5 = 2, e6 = 4, · · · . Then, the result-
ing EDF schedule is shown in Figure 5(b). We illus-
trate how the OLDVS algorithm works with this ex-
ample task set in Figure 6. At time t = 0, the
highest-priority task τ1 starts to run with α1 = 1,
since D1 = R1 = 4 (Figure 6(a)). At time t = 3,
task τ3 releases and starts to run with α3 = 6

7 , since
D3 = D1 + C3 = 10 and R3 = C3 = 6 (Fig-
ure 6(b). At time t = 6, task τ2 releases (Figure 6(c)).
Since it has higher priority than τ3, it preempts τ3,
and starts to execute with α2 = 1. At t = 7, τ3 re-
sumes with α3 = 24

35 since D3 = D3 + D2 − s2 = 12
and R3 = R3 − α3 · 3 = 24

7 (Figure 6(d)). In this
way, tasks τ4, τ5 and τ6 execute with their scal-
ing factors of 0.73, 0.72 and 1, respectively. The
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Figure 5. An example schedule under
EDF.
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Figure 6. An example of OLDVS.

complete schedule is shown in Figure 6(f). The al-
gorithm dynamically adjusts frequency and voltage
on each context switch, reacting to the actual com-
putation requirements of the real-time tasks, to
attempt to minimize the energy consumed while guar-
anteeing the feasible execution of all the upcom-
ing tasks under the worst-case scenario. Compared
with the schedule without voltage scaling (Fig-
ure 5(b)), using the OLDVS algorithm could save
energy by more than 30% for this specific exam-
ple.

4. Simulation Results

To evaluate the potential energy savings from volt-
age scaling in a real-time scheduling system, we have
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(c) 15 tasks.

Figure 7. Normalized energy consump-
tion with 5, 10, and 15 tasks.

developed a simulator for the operation of hardware
capable of voltage and frequency scaling. The simula-
tion assumes that a constant amount of energy is re-
quired for each cycle of operation at a given voltage.
This quantum is scaled by the square of the operating
voltage, consistent with energy dissipation in CMOS
circuits (E ∝ V 2). Only the energy consumed by the
processor is computed, and variations due to differ-
ent types of instructions executed are not taken into
account. With this simplification, the task execution
modeling can be reduced to computing cycles of ex-
ecution, and execution traces are not needed. The sim-
ulation also assumes a perfect machine in that (i) the

clock speed and the supply voltage can be varied con-
tinuously within its operational ranges [fmin, fmax]
and [vmin, vmax], respectively; (ii) a perfect software-
controlled halt feature is provided by the processor, so
idle time consumes no energy. To evaluate the energy
efficiency of the proposed OLDVS algorithm, we ex-
plored various RT-DVS algorithms proposed in [15]
that is shown to be close to optimal with periodic tasks
in real-time systems [7]. Pillai and Shin [15] observed
that, if the machine has a large number of voltage
settings like the machine considered here, the cycle-
conserving EDF algorithm (CC-EDF) outperforms the
others and very closely approximates the theoretical
lower bound over the entire range of utilizations. In the
following simulations, we compare our OLDVS algo-
rithm to CC-EDF and to a non-DVS system.

The periodic real-time task sets are specified us-
ing the period and worst-case execution time of each
task. The task sets are generated randomly as follows.
Each task has an equal probability of having a short
(1-10ms), medium (10-100ms), or long (100-1000ms)
period. Within each range, task periods are uniformly
distributed. Aperiodic task sets are also generated ran-
domly such that their worst-case computation require-
ments and deadlines are uniformly distributed in the
ranges. This simulates a varied mix of short and long
period tasks commonly found in real-time systems.
The computation requirements of the tasks are as-
signed randomly using a similar 3 range uniform dis-
tribution. For a fair and efficient comparison, for each
test with CC-EDF, all aperiodic tasks are converted
into a single periodic task such that its period and
worst-case execution time are chosen so as to mini-
mize the processor utilization while guaranteeing the
deadlines of all tasks in each period. We call the con-
verted task a periodic server that behaves like a peri-
odic task and is created for the purpose of executing
aperiodic tasks [11]. Finally, the computation require-
ments of the aperiodic tasks are chosen such that the
total processor utilization of the periodic tasks (includ-
ing the periodic server) becomes 1.

First, we have performed simulations while vary-
ing the aperiodic factor, the ratio of the computation
requirement of aperiodic tasks to the total computa-
tion requirement. Figure 7 shows the normalized en-
ergy consumption for tasks sets with 5, 10, and 15
tasks for our OLDVS algorithm and CC-EDF. All of
these simulations assume that the average actual com-
putation required by the tasks are 30% of their worst-
case computation requirements. As expected, when the
aperiodic factor passes a certain point (around 0.4 in
these simulations), the proposed on-line algorithm out-
performs CC-EDF in all simulations. The performance
gap becomes much larger as the factor increases. Since
the CC-EDF algorithm (as well as most other exist-
ing DVS algorithms) is focused on periodic tasks, the
energy efficiency deteriorates as the aperiodic factor
increases. On the other hand, since the OLDVS al-
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(a) Aperiodic factor = 0.5.
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(b) Aperiodic factor = 0.7.

Figure 8. Normalized energy consump-
tion with aperiodic factors 0.5 and 0.7.

gorithm does not assume the periodicity of real-time
tasks, the aperiodic factor does not affect its energy
efficiency. Instead, the simulation results show that
the energy efficiency of OLDVS becomes slightly bet-
ter as the aperiodic factor increases. This is because
the deadlines of the aperiodic tasks are uniformly dis-
tributed in the ranges, while the deadlines of the peri-
odic tasks are set to their periods for a fair comparison
with CC-EDF.

The proceeding simulations assumed that the aver-
age actual computation required by the tasks are 30%
of their worst-case computation requirements. To see
how well the OLDVS algorithm (along with CC-EDF)
takes advantage of task sets that do not consume their
worst-case execution times, we performed simulations
while varying the ratios of the actual computation re-
quired by the tasks to their worst-case execution times.
In these simulations, each task set is composed of 10
tasks. Figure 8 shows the simulation results for task
sets with the aperiodic factors of 0.5 and 0.7. In this
figure, we also include the result for a clairvoyant al-
gorithm, named Bound, that knows the exact actual
computation requirement of each task in advance and
adopts an optimal frequency accordingly. Although
Bound is not a practical algorithm (since no algorithm
can predict the exact computation requirement before-

hand), it is included as a yardstick in our simulations.
Clearly, no real DVS algorithm can offer a better per-
formance than that of Bound. In Figure 8, we can ob-
serve that both the OLDVS and CC-EDF algorithms
show great reductions in relative energy consumption
as the actual computation performed decreases.

5. Conclusions and Future Directions

In this paper, we have presented a novel algorithm
for on-line real-time dynamic voltage scaling that,
when coupled with the underlying OS task manage-
ment mechanism and real-time scheduler, can achieve
significant energy savings, while simultaneously pre-
serving timeliness guarantees. While most existing
DVS algorithms are designed for periodic tasks only,
the proposed algorithm does not assume the period-
icity of tasks, and thus, does not require any a pri-
ori information on the task set to be scheduled. The
proposed algorithm requires only O(1) computation
on each task context switch, so it is fairly easy to in-
corporate the algorithm into a real-time operating sys-
tem. The main contribution of this paper is that the
proposed on-line DVS algorithm considers a general
task model which is difficult to deal with by using
the existing DVS algorithms. The simulation results
show that the proposed algorithm achieves great en-
ergy savings and outperforms the existing DVS algo-
rithms when the ratio of the computation requirement
of aperiodic tasks to the total computation requirement
exceeds a certain point. The performance gap becomes
much larger as the ratio increases.

In future, we would like to expand this work be-
yond the deterministic/absolute real-time paradigm
presented here. In particular, we would like to in-
vestigate DVS with probabilistic or statistical dead-
line guarantees. We will also explore integration with
other energy-conserving mechanisms, including ap-
plication energy adaptation and energy-adaptive (both
real-time and best-effort) communication.
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