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Abstract- With the proliferation of Internet services, many 
solutions hare emerged to provide Quality-of-Service (QUS) 
guarantees when the demands for the hosted services exceed the 
server's capacity. In this paper, we take an analytical approach 
to answering key questions in the design and performance of 
application-level QoS techniques, especially those that are hased 
on the multi-threading or multi-processing abstraction. Key to 
our analysis is the integration of the effects of concurrency 
into the inleractions hetwren multi-threaded .services. TI, this 
end, we extend traditional time-sharing niodrls to develop the 
multi-threaded round-mhin (MTRK) serveps, a more accurate 
model of operation of typical multi-threaded Internet services. 
For this model, we first develop powerful, yet coniputationally- 
efficient, nrathematical relationships that derrihe the perfor- 
nianee (in ternis of throughput and response time) of niulti- 
threaded services. We then apply optiniization technique9 to 
derive the optimal allocation of threads given specific QoS 
ohjedive functions. Using realistic wnrkliruds on a typical weh 
server, we show the efficacy and accuracy of the propmed new 
niethodology. 

I .  INTRODUCTION 

Wide use and expansion of the Internet has led to the 
proliferation of diverse and oftentimes complex Internet 
services. These services, on the other hand. have created 
unprecedented demands on end-servers. each of which usu- 
ally hosts multiple services like Web. e-mail. and database 
services, The increased demands by end-users often out- 
pace the recent progress in enhancing server's processing. 
storage and networking capacities. hence easily overloading 
end-servers. The notion of Quality-of-Service (QoS) has been 
introduced to manage resources when user demands exceed 
resource supplies. Supporting QoS in  servers has been ad- 
dressed extensively in the literature. for example. in  12.4. 
6. 11.321. In particular. application-level QoS mechanisms 
are designed to provide the necessary QoS guarantees with 
little or n o  support irom the end-server's OS [2. 10. 13. 15. 
22.251. However. since the underlying OS enforces resource 
transparency (i.e.. hides resource management). application- 
level mechanisms have limited capabilities in  enforcing strict 
service guarantees and are often restricted to only providing 
proportional QoS differentiation. In this paper. we closely 

T h z  work reponed in Lis paper was suppwrsd in  pun by the Sationat 
Sciencs Foundation under Grunt CCR-0216977. 

examine and evaluate the extent to which application-level 
mechanisms can provide QoS support. 

One of the more popular application-level solutions is 
thread-based QoS inrdiunism [23.24.321 in which the al- 
location of threads or processes to each application or ser- 
vice is adjusted (either statically or dynamically) based on 
some target QoS ob.iectives (Figure 1). Two design principles 
motivate the use of thread/process allocation to provide QoS 
diiierentiation to multiple services: ( 1) increasing concurrency 
improves the performance of a single service. and (2) server 
capacity can he divided in proportion to the thread allocation. 
Unfortunately. the extent to  which thread-based mechanisms 
are effective depends heavily on the degree of interaction 
between the running threads. which further depends on the 
nature of the workload of incoming requests. This paper 
carefully examines each of the two design principles with the 
goal of providing deeper understanding of internal dynamics 
behind this QoS mechanism. 

When a service is allocated more threads. the advantages of 
increased concurrency are apparent in the resulting increase in 
throughput. This improvement is due to concurrent processing 
of requests. which allows the overlapping of long blocking 
I/O operations of one request with non-blocking operations of 
another. There is. however. a satirmtion point beyond which 
increased concurrency no longer yields any performance 
benefits. When multiple services use concurrency to improve 
their own performance. the interaction between their threads 
become more complex. In fact. we have found that as the 
system's load increases. the performance interaction between 
difiereni service classes. due to resource sharing. becomes less 
predictable. Furthermore. when different types of workloads 
(e.g.. 110-heavy and CPU-heavy) are sharing the system. a 
marginal improvement in the QoS of one service can cause 
a dramatic decrease in the QoS of the other services. Based 
on our measurements and observations, we show that multi- 
threading is ill-suited for providing application-level QoS 
support. On the other hand. it can be effectively used to 
provide QoS guarantees to different client groups. 

In this paper. we take an analytical approach to precisely 
characterize the interactions between threads and services in 
an Internet server. Crucial Lo the correctness of our analysis 
is the development of an accurate model that reflects the 
operation of the server. We introduce the multi-threaded 
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Fis. 1: Threud-hsed systsm nmdcl. Application A uses two sewice classes 
to g i w  preferantla1 ucntnicn; for requests in service class I than requzco 
in servim class 2. Application B uses one service class to enforce B certain 
QoS tu all incoming rqucsts. A controller (not shown) can ihcn adjust the 
allocation of system lhrsnds to different service dasszs. 

round-robin (MTRR) server model to capture the multi- 
threading and process-sharing abstractions of real systems. 
The MTRR model is an extension'of traditional round-robin 
servers. which are used in the analysis of polling and time- 
shared systems [19.20: 291. Unlike traditional approaches. 
our model incorporates the performance benefits of increased 
concurrency into the interaction between the running threads. 
Using this MTRR model. we are able to derive powerful. yet 
efficient. relationships that describe the internal dynamics of a 
typical multi-threaded server. Furthermore. these relationships 
allow us to address three important issues in the design 
and performance of application-level QoS differentiation: ( I )  
better-predict the impact of thread concurrency on client- 
perceived delay than traditional models. (2) estimate the 
expected performance of services for any thread allocation. 
( 3 )  find the thread allocation, i f  my. that guarantees certain 
response times to different client 'groups (e.g:. paying cus- 
tomers are given preferential treatment over the non-paying 
ones). 

This paper is organized as follows. We analyze. in-Sec- 
tion 11. the benefits of concurrency in multi-threaded appli- 
cations. We then establish the server and application models 
for our analysis in Section 111. Section IV presents a detailed 
.analysis of the MTRR server to provide the hasic relationships 
eoverning the performance of multi-threaded services. In 
Section V. we look at the effects of workload dependencies 
on the analysis of multiple services being hosted on a single 
server. We then provide. in Section VI. a computationally- 
efficient algorithm for determining the optimal allocation that 
meets various QoS nbjectives. We use real measurements on a 
typical Web server in Section VI1 to evaluate the correctness 
our derivations and effectiveness of our allmation algorithm. 
We review related work in Section VIII. Finally. in Section IX 
we conclude the paper with our final remarks. 

. L  

11. QUANTIFYING CONCURRENCY GAINS 

Using concurrency to improve server performance is one 
of the guiding principles for providing thread-based QoS 
support. This notion was explored in [?3.?4.3?] as an integral 
part of their feedback control mechanism that increases the 
allocation of threads to running applications when better 
performance is needed. Implicit to the effective operation of 
these mechanisms is the notion that increasing the number 
of threads improves the performance of the application. Par- 
ticularly. the performance gain due to  increased concurrency 
is normally split into three regions as shown in Figure 2: 
(I) a linear increase region due to overlapping blocking 
operations of some threads with non-blocking operations of 
the other threads. (11) flat or no-gain region due to threads 
contending for the bottleneck resource, and (111) sudden (or 
exponential) drop region due to memory thrashing. In this 
section, we establish this behavior for different workloads 
on a real system. T h i s  will set the stage for exploring the 
impact of concurrency on the controllability of multi-threaded 
applications. 

We define G,(rn) as the speedup (or gain) fitncfiori Lhat 
expresses the potential performance pain (or loss) when r n  
threads run concurrently. Because the expected speedup is 
workload-dependent. the function needs to be profiled for 
each specific workload. denoted by &e subscript k . ' T h e  
speedup function expresses the change in throughput rather 
than the change in response time. This is because increasing 
concurrency does not reduce the actual amount of work that 
each request needs. Instead. it increases the efficiency of the 
server. which can be captured by the improved throughput. 
To profile G'k(m). we first measured the maximum service 
throughput. f i s ( m ) ,  when m threads run concurrently. This 
is done by limiting the application-to have a maximum of 
in concurrent threads (for m = 1 1 2  ) 3nd configuring 
the arrival rate to he high enough to keep all threads busy 
processing incoming requests. The speedup function is. ihen. 
the throughput gain when nb threads are  allocated compared 
to when a single thread is allocated. Specifically. 

To illustrate the general characteristics of concurrency 
improvements. we configured il server machine (a 2.24 GHz 
Pentium 4 with I GBytes of RDRAM) to run Apache 1.3 
and receive " I T P  requests through ;1 high-speed FastEthernet 
link. Three Linux-based machines are used to generate the 
desired requests. Our load generator. Eve [17]. fnllows the 
same design principles provided by SPECWeb99 [I?]. a 
widely-used tool to evaluate the performance of Web servers. 
to test static and dynamic workloads.' The primary difference 

'?be static workload consists of only static ohjects. rascmhlin. wch pots 
and cmbcdded images. The dynamic wmklovd is similar to the sfatic one 
snccpt the requested ohjects are created on-the-Hy for each incoming request 
usins CGI scrips. 
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1 U&= of thr0.d. (rn) 

Fi:. 2. Shape of the ~pszdup function. Gkjm). 7hc function incrzases at a 
linear rate in region 1 up to the saturation p i n t .  ' lh~hl function. then. flattens 
out in rceion I1 and suddenly drops after the cdlilpse point in region 111. 

between the two load generators lies in our ability to sustain 
an arrival rate regardless of the progress of on-going requests. 
In contrast. SPECWeb99 sends a fixed maximum number of 
requests; once the maximum is reached. a new request is 
sent only after the completion of a previous one. We profiled 
Gk(i71) Tor three workloads: purely static. purely dynamic. 
and mixture of the two - mixed for short. Each workload 
adheres to the specification provided by SPECWeb99; in 
general. the requested files follow a Zipf distribution [8] 
regardless o i  whether they are statically or dynamically gen- 
erated. 

Figure 3 shows G'gjm) for the three workloads. with the 
abscissa drawn in log-scale. The first two regions outlined 
earlier are clearly depicted by the figure. where the linear re- 
gion is reHected by the sub-linear growth in the log scale. The 
combination of having a fast machine with large memory and 
running processes with small memory footprints prevented 
reaching the collapse point. This was the case even when a 
very large number of processes mn simultaneously. 

The width of the linear increase region (i.e.. region I) in 
Figure 3 and its slope depend heavily on the type of workload. 
We approximate the speedup function in region I by a simple 
linear function: 

O * ( m ) = c r k ( , n - 1 ) + 1  f o r m = l  . . . . .  in: 

where mi reHects the saturation point (defined later); and 
the slope. ah: retlect5 the speetlrrp rate- or alternatively. 
the efficiency of concurrency for workload I;. In  the ideal 
case. where each additional thread behaves as an independent 
server. ' tg  = 1 .  This is seldom the case. and therefore. 
ai, 5 1. The mixed workload. for instance, had a speedup 
rate iioLir z 0.14 and a linear increase region of :nt = 23 
threads. If the workload is piirely CPU-based or purely I/O- 
based. then one expects little performance gain since blocking 
and non-blocking operations are not overlapped. In that case. 
og = o .  

The transition point between regions I and 11. which we 
csll the sutrrmtion point (in'). is primarily due to threads 
conteiiding for the bottleneck resource - usually the disk. 
When a single class is being controlled. increasing the number 
of threads to be allocated beyond the saturation point provides 
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Fig. 3. Spezdup function. G k ( m ) .  fw static. dynamic. and mixed workloads. 

no performance advantage to the hosted service. But when 
multiple services are being controlled. recognizing the satu- 
ration point becomes more crucial since adding more threads 
to one service class reduces the second class' share o i  the 
system. This may cause the second class to increase its thread 
allocation and create a vicious cycle between the two cl 
rendering the underlying control mechanism inefiective. It 
is thus necessary for any dynamic control mechanism to 
ad.just the maximum thread allocation based on the observed 
throughput: when no throughput gain is observed. [hen no 
further threads should be allocated. This issue is explored 
closely in the remainder of the paper. 

I l l .  MODELING MULTI-THREADED SERVICES 

The complexity of today's servers presents a real challenge 
in building analytical models that fully describe the dynamics 
of the underlying server. Our goal is. thus. to create a model 
that is simple enough to allow f i x  mathematical tractability. 
yet accurate enough to reflect realism. Specifically, the created 
model must capture the effects of concurrency as well as the 
basic interaction between the various running threads. In this 
section. we give a detailed specilication of our system by 
describing the computing model. which details the assumed 
operation of a typical multi-threaded server. and the workload 
model. which specifies the arrival and service-time distribu- 
tion of incoming requests. 

A. Coiiiprrting Model 

Our computing model is based on a general understanding 
of the typical operation o i  current time-sharing OSs and 
Internet services. We use an MTRR server to model a general 
computing environment where a single processor is shared 
by multiple threads.' Threads are assumed to be the smallest 
allocatable unit of work and are distributed among t i  service 

'We use lhs I s m s  "threads" and "proccsse~" interchungcahly throughout 
this paper. 
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ally. each service class S k  

is allocated in: thrca independent buffer of size 
Bj; to hold the requests that cannot be prrxessed immedi- 
ately. We use the term "service classes" as opposed to just 
"services" to capture the situation where a.single service is 
configured to differentiate between multiple client populations 
(Figure I ) .  An example of this is Apache's Viinral Hosf (VH). 
where. for instance. clients from network 1 9 2  ,168. 1 0  .x 
are serviced using one VH and clients from the remaining 
IP address-space are serviced using another VH. Thus. our 
Apache service is said to have two service classes. In contrast_ 
i f  an application does not differentiate between clients, the 
entire application is represented by a single service class. 
Using the-notion of a service class. therefore. allows us to 
capture QoS differentiation between different applications and 
also between client groups within a single application. 

Beside having threads as a shared resource. dependencies 
'between service classes arise due to two possible-interactions: 
( I  j they share a bottleneck resource such as a disk and (2) 
.they are organized as a series of stages where an incoming 
request must be processed by multiple services in a particular 
order IlO.321. The complexities that are introduced hy the 
latter is akin to those in network of queues [9]. but with 
'dependent service distributions. In this paper. we restrict our 
analysis to single-stage services and focus on the dependen- 
cies due to resnurce sharing. Wc. thus. make the fillowing 
assumntions tiir the internal nncration of an MTRR server. 

consider the effects of hierarchical priority queueing. 
which is commonly used to age long-running threads. 
Since all requests are relatively short-lived and all threads 
have the same priority. a strict round-robin algorithm can 
be assumed. 

AS. Switching between different running threads is done 
instantaneously with no overhead. Similar to A2, we  
capture this overhead in the speedup function. and hence. 
this is not a limitation. Our decision is motivated by the 
fact that switching overhead is load-dependent. That is. 
as more threads are running. switching between threads 
will depend on whether the threads need to be swapped 
out of memory or not. The speedup function allows us 
to include load-dependent overheads in our analysis. 

A6. The system has a fixed (finite) number of threads. I17m"s, 

This corresponds to the maximum number of threads 
that a typical OS can support. Not all threads need to  
be allocated. but. the total number of threads that are 
allocated to all service classes cannot exceed this limit. 

One final point to make is that our analysis does not 
consider any particular server resource as the bottleneck 
resource. Instead, the server is limited by the rate at which i t  
can process requests and this rate is defined by the service- 
time distribution and speedup function of incoming requests. 

B. Workload Model 

In an Internet server. the workload model captures the AI.  A requcst is assigncd to :I working thread. Multiple 
.. requests can be processed simultaneously by arrival of requests and service that each request requires. 

Both have been studied extensively in the literature [3.5. multiple threads and time-sli:uinp the system. We assume 
that all threads are h o m o ~ c n c t ~ i ~ s . ~  cven though they 7.14.271. In general, they have been observed 'to follow 

heavy-tail distributions. In fact. we have observed similar can be assigned to different servicc classes. This is in 
line with actual os opera,ion as system threads can be behavior during our workload analysis (omitted for space 

considerations). Heavy-tail distributions are. unfortunately. created and removed easily with little overhead. 
A thread is either running, ready, or difficult to analyze even with very simple computing models. 
for a new incoming request, Basically, a ready thread is In order to provide better understanding of the dynamics 

processing o i  multi-threaded services. we assume that requests arrive 
a request, and a blocked thread is wailing for a new following a Poisson process and require exponential service 
request. we do not consider alternate states in which a limes. Section VI1 evaluates our model using realistic load 
thread is waiting for other operations to complete such distributions. 
as blocking for I/O. These are captured by the speedup We distinguish between service time and processing riirie of 
function. an incoming request. The former renecis how much work that 

~ 3 .   AI^ threads are of equal pfiority. service priorities have each request brings to the system. whereas the latter reflects 
been studied in both queueing and real-time systems [21_ how much time i t  spends in service as it shares the system's 
331. Including service priorities in  model will. un- resources with other requesrs. Thus. there are three parameters 
fortunately. complicate our analysis and is. thus. omitted associated with each service class Sk: 
from our midel. As: the mean request arrival rate of a Poisson arrival process. 

A4. Threads (in the ready state) are scheduled (by the under- iiLLk: the m e a  service time of each request. It is equal to 
lying OS) in a round-robin fashion. each for Q seconds the processing time only when the system is allocated a 
or until the thread finishes processing the current request. single thread. 
whichever happens first. The task of SerVlC!ng all ready G k ( r n ) :  the speedup function as defined in Section 11. Even 
threads once is called a service roimd. We do not though we use the subscript L to denote the service 

class. not the workload. the characterizatibn of Gk(in) 

i7hilt is. we do nof mix different t)Fes of threads such as application-level remains unchanged. For example. if GI = G1 = GStatic. 
it implies that both service classes have static workloads. 

for its share of the Server to 

and karncl-level threads. 
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A (i~l)a+l,ilpi-l f " r i = l :  . . . >  T i L  
(4) 

where a represents the speedup rate as described in Section I1 
and ,?a = min(m',  me)). Notice the change of indicies in 
Eq. (4) from m0 to rii since ~ ' ( ~ 1  remains unchanged for i 2 
fin. Let us define p = 

, ~ ~ , ~ l ~ a + l l , , p i - i  f o r i = i h + l  . . . . .  h-. { r  lh = 

x and also Q , ( i )  as follows: 

Fis. 4. Markov Chain rcprcscntation of M R R  server, 

We assume that Gl ( in)  only operates in regions I and 
I1 (Figure 2). The point where Gk(ni )  collapses is hard 
to predict a priori. but not very difficult to detect 126. 
31.321. For the purpose of our analysis, we assume that 
detectionlprevention from server thrashing is handled by 
il separate mechanism. Therefore. we define the speedup 
function as follows: 

where ai. is the constant reflecting the etfciency of 
concurrency and mi is the saturation point of service 
class k .  

IV. ANALYSIS OF MTRR SERVER 

We focus in this section on the single service class MTRR 
server. The analysis. however. rcyuires extension of some of 
the existing results from queueing theory and time-sharing 
systems [19.20.331 to include the effects of concurrency 
gains. This is done by introducing state-dependent service 
rates through the speedup function. We first consider an 
idealized model where the scheduling quantum is infinites- 
imal. i.e.. Q - 0. Under this assumption. we, are able 
to model the MTRR server using Continuous-Time Markov 
Chain (CTMC) [33]. Later we will estimate the resulting error 
from this assumption. 

Figure 4 shows the basic representation of the CTMC 
of the single-class MTRR server. The state here represents 
the number of requests in the system. and represents 
the state-dependent service rate: not the per-service class 
parameter. pk.  described earlier. Therefore. 

p( i '  = %(i): ( 2 )  
2 

where p and C ( ; )  are the parameters describing the single 
service class under study. We drop the subscript I; as there is 
only one service class. 

We start by writing the steady-state probabilities for the 
CTMC. which are based on the local balance equations: 

"&&, for i = 1.. . . , i n 0  

for i = l r zo  + 1. . . . ~ ri. p i  = {i. ( 3 )  

where d' is the number of allocated threads. and I< is the 
maximum number of requests thai can be admitted into the 
system. which includes requests both in queue and in service. 
Specifically. Ii = B + d .  Using Eqs. (1) and (2). we rewrite 
the expressions for probabilities as: 

for i = 0 

n i = l ( k a  + 1) otherwise. 
( 5 )  I , ( i )  = 

Now using simple substirution. we can rewrite the expres- 
sion of each as a function of PO. 

for I = 1.. . . . 7 n  

Pi = i (6) -(g) ~ ~ ~ i = ~ n + i . . . . ~ r < .  
K where C: = ( i j i -  l )a+ 1. Since Ci=Opi = 1. we can express 

as follows: 

Using these steady-state probabilities. one can numerically 
compute the expected number of requeso in the system. 
N = i . p i .  Little's formula [331. :V 5 X ( 1  - pri)v. 
can then he used to compute the total response time. v. 
which includes both the queueing and processing delays. The 
term (1 - p K )  is used to account for the probability that an 
arriving request finds a full queue and thus is dropped. 

Given specific values for the system parameters. computing 
the various results is straightforward and can he achieved 
in O ( l i )  operations. Our formulation of the MTRR server 
along with the introduction of the speedup function constitutes 
a superset of several well-studied systems. For instance. 
when c1 = 0. we observe no speedup. This reduces Io a 
Generalized Processor Sharing (GPS) without priorities 1181. 
If we further add the reslriction of id) = 1. then only a single 
thread is allowed to run. The system is further reduced to 
M/i\,I/l/B server. Finally. if a = 1. it implies ideal speedup 
or. effectively. i n @  servers running in parailel. The system 
then becomes Al/M/wi0/R. 

- - 

subsectioncomparison with Discrete Quantum Values 
The development so far umed an idealized case of 

Q - 0. Here we want to give a general idea of the expected 
crror that is introduced by this assumption. For simplicity. we 
consider the worst-case scenario where the service is heavily- 
loaded. i.e.. in is always equal to vi'. We also assume no 
speedup. i.e.. G(ni) = 1. When Q - 0. the mean processing 
time. f;. is just 

- ,,LO 
( 8 )  

Now. let Q he a positive real value - typical values are 

y = -. 
I' 
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0.01 sec. We want to derive an approximate expression lor 
Y. We consider the processing of a request by one of the ino 
threads that always run during any service round (assumption 
A4). Let S be an exponential random variable reflecting 
the service time of an arriving request. Upon admission of 
the request into service at the heginning of a service round. 
its corresponding thread must first wait for its service turn 
before it starts execution. When the thread is scheduled. if it 
completes servicing the request in less than a time quantum 
(i.e.. S 5 Q). its processing time is just the sum of S and the 
queueing delay before it starts service. On the other hand. i f  
S > Q. then we expect that after Q seconds, the remaining 
threads must run before the beginning of the next service 
round. where the given thread must wait lor its turn to run 
again. This process repeats until the request is completed. 

The time that a thread must wait for n1 other threads to 
be serviced. either beiore or aitcr it is scheduled, can be 
computed as follows: 

- 

where f.\-(:z) is the probability density function (pdfl of S. 
During each service round. we assume that the order of 

scheduling threads is completely random. That is. lor any 
given thread. its probability of being scheduled at the .&h 
position is l / d .  We can now compute Y using the so-called 
rqenerative formtlation: 

When Q - 0 in Eq. (10). we see that the results are 
consistent with FA. is). Furthermore. the error between the 
two equations is 

177 1 & +e'-"Q- $-,[ 2 -1 1 
I/%" 

L' 

%Error = - 

In the case of the mixed workload. where ! L  = 50 reqsls, the 
expected error is approximately 19%. We stress. however. that 
this is a worse-case scenario. In our experiments. we found 
that our derivations are within 10% ol  real measurements for 
a wide range of configuration parameters. 

We note that while using finite Q values to determine 7 
better approximates the real system behavior. it is mathe- 
matically tractable when G(n1) = 1. Wheri G(m) > 1, 
this method incorrectly reduces the processing times as i t  

1 10 100 

2oW - 
0 m 

1 10 100 
Thread Allocaficm (rn2 of Static Workload (threads) 

Workload mtzrdzwndcncics. ltop) homoqsneuus workloads. (hot- Fig. 5.  
lorn) hclcroqcncous workloads. 

underestimates the number of service rounds required for 
completing a single request. 

V. WORKLOAD DEPENDENCIES 

When multiple service classes run on the same host, their 
basic operation is similar to an MTRR server wih  a single 
service class. But instead of allocating all 1710 threads to one 
service class. there are n service classes. {SI, S2* . . . ~ S,,}. 
and each service class S, is allocated a fixed number of 
threads nif such that their sum does not exceed the system- 
wide thread limit (Assumption A6).. Each service class 
also has separate workload parameters: (Xi: pL>GG(ni)) .  With 
the introduction of multiple services into our model. the 
analysis must consider two interdependencies between service 
classes. The first. which we call direct interdependencies. is 
due to threads time sharing the system. The second. which is 
indirect inlerdPpendencies. is caused by the possible sharing 
of a bottleneck resource such as the disk. We examine how 
these inierdependencies affect the analysis. and hence the 
performance. of servers running multiple services. 

The distinction between direct and indirect inlerdependen- 
cies is important in the analysis and control of multi-class 
servers. Direct interdependencies have predictable behavior 
that can be accurately captured by an analytical model. An 
ideal time-sharing system. e.g.. [19.?0]. is a good example 
where a thread will run for its entire scheduling quantum. Q- 
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without blocking. Unfortunately. this is seldom the case for 
web scrvers. especially with the growing popularity of per- 
user customization. Therefore, when requests require many 
110 operations. the bottleneck is shifted from the CPU to the 
memory or to the disk; it becomes much harder to predict the 
impact of one service class on the other ones. 

In some cases. precise understanding of indirect interdepen- 
dencies may not be necessary. This occurs when requests from 
different service classes have similar resource requirements. 
The load on all of the resources (including the bottleneck one) 
will. thus. be proportional to the number of requests that are 
being concurrently processed in each service class. We refer to 
these workloads as honiugeneuits. For example. a server that 
wants to provide client-side differentiation can he configured 
with several service classes. me  for each group of clients. Wc. 
therefore. expect that these service classes will have similar 
service rates? wir and speedup functions. Gi.(m). but with 
possibly different arrival rates. Xi .  Alternatively. when very 
different workloads need ti) be managed on the same system. 
c.g., a web server and an FTP server. each incoming request 
may have very different resource requirements. In this case. 
we refer to the workloads as heterugeneurrs. 

We study the multi-class server in the context of our work- 
load categorization. Our goal here is to quantify the impact 
of increasing the concurrency of one service class on the 
performance of the other running services. We use a similar 
setup in Section 11. but now, we run two independent Apache 
services. Each service can be configured to receive requests 
for one of the three workloads: static. dynamic. and mixed. In 
particular. we test two configurations. The first configuration 
reflects the homogeneous workload. where incoming requests 
to both Apache services are for the mixed workload: the 
second configuration reflects the heterogeneous workload. 
where one service is designated as the static workload and the 
other service is designated as the dynamic workload. Finally. 
we measure the maximum throughput as a function of the 
number of threads that are allocated to each service class. 

Figure 5 reflects the throughput gain as the thread allocation 
of the first service class is increased while the allocation ofthe 
second class is held constant. Each line represents a different 
allocation for the second service class: the “No sharing” line 
indicates that there is only a single class running on the server. 

The homogeneous workload behaved as expected. where 
.the throughput of a service class is proportional to its thread 
allocation. Specifically. we can exprcss the service rate of any 
service class as a function of the number of the threads that 
are runniog: 

where mi is the class4 threads that are running. or equiv- 
alently. the number of requests that arc being concurrently 
processed by service class Si, 

The heterogeneous workload. on the other hand. did not 
exhibit the same hehavior. Here we fixed the number of 

threads that are allocated to the server with the dynamic 
workload (SRl~~y, tnmie  for short) and increased the thread 
allocation of the server with the static workload (SHI’st,li, 
for short). Based on our measurements. we observed three 
unexpected phenomena: 

PI. Even when SRVd,,,,,i, is assigned a single thread. its 
impact on the performance on SRVSfotic is significant. 
In fact. we observed an artificial ceiling that limited the 
maximum performance of the SRVs1,,,,. 

p?. When the thread allocation of SRl’&,,,,,,,i, is increased. 
but still helow its saturation point (5  16 threads), 

P3. After the thread allocation of SRV,,,,,,,, is increased 
beyond its saturation point. the SRValatic has a much 
greater performance drop. In hoth 
the perfnrmance drop is not proportional to the thread 
allocation of the two servers. 

The above example shows an important result. namely. 
without precise understanding of the resource requirements 
of different and heterogeneous workloads. using thread al- 
location to provide QoS differentiation is not an effective 
approach. F i n e - p i n  resource management must he used to 
provide effective QoS guarantees [6.25.3?]. Unfortunately. 
these techniques require suhstantial changes to the application 
or the OS. We. however. show that i f  services are configured 
with homogeneous workload to provide client-side differen- 
tiation. then multi-threading can be used as an effective tool. 

incurs a small decrcase in performance. 

VI. PROVIDING QOS GUARANTEES 

Providing QoS parantees is motivated by the need to 
protect certain - possibly high-priority - service classes 
from others overloading the server. As shown in Section V, 
this is very difficult without explicit OS support. where strict 
resource limits are allocated to each service. In this section, 
we describe the extent to which thread allocation can he used 
to guarantee specific service delays. We will continue to focus 
on homogeneous workloads: our proposed technique is aimed 
at providing QoS guarantees to different client groups. each 
represented hy a separate service class. 

We focus in this section only on providing worst-case 
QoS guarantees. Here. the protected service is allocated the 
minimum number of threads such that no matter how high 
the load increases for the other servicc classes. it can still 
(statistically) meet its QoS objective. We studied a more 
general case in the extended version of this paper [16]. where 
we also characterized the behavior of the system for multiple 

es for any thread allocation. The derivation was based on 
extending the Markov chain that was presented in Section IV 
to be multi-dimensiona1. where an additional dimension was 
necessary for each service class. We have found that when the 
systcm is lightly-loaded. thread allocation of a given service 

is minimally affected by the allocation of the other 
service classes. 
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Fig. 6. Dynamic programing algonlhm for finding the allocation that 
.minimires the worst-cas* COR of the system. The illustration is lirmlcd to 
three service dasszs. 

We start by considering the system that is heavily-loaded 
such that all classes are overloaded except for a single one. 
where the term "overloaded" implies that all threads are 

' continuously busy. Let k'he the non-overloaded service class 
and the other 1 1  - 1 classes have m j  xz my: for j # I;. Here 
we also consider Q - 0. Since only class k IS  not overloaded, 
the single class case in Section IV can be used. but with a 
different state-dependent transition rates pi. 

Going back to Figure 4. we can define p1 as follows: 

where ~r = C&ji; m::Here f i  is the same for all service 
.classes as the workload is assumed to  be homogeneous. The 
,ratio & reHects the fact that each thread has to share 
the system with i + - 1 other threads. The steady-state 
probabilities can be similarly defined: 

The remaining derivation is similar to the one in Section IV 
and is omitted. The computed %; = I . p i ) / A , ; ,  thus. 
reflect the worst-case response time when all but class k are 
overloaded. 

The expression 'for the wnrst-case response time can now 
be used to determine the thread allocation that can meet the 
desired QoS objective. We express the QoS here usine the 
notion of holding cost. Formally. let h k ( t )  be the cost of 
a request in service class k as a function of its response 
time t .  Using / i k ( f )  gives us flexibility in defining different 
QoS objectives. For example. it allows us to assign separate 
weights to different service classes. which can be used to 

K k  

provide different QoS levels to a multi-class QoS application.' 
The holding cost function can be arbitrary. however. with the 
restriction of being a monotonically non-decreasing function 

We now extend the notion of cost to any thread allocation 
M. We first define ck(M) as the worst-case cost for service 
class k in M. It is computed by assuming that all service 

oft ."  

ses except for class k are overloaded as: 

ck(M) = k k ( Y k ) !  

where 6; is just the worst-case response time as computed 
above. The sum of these costs c(M) = C j  q ( M )  is defined 
to be the cost for allocation M. The allocation that minimizes 
the worst-case cost is thus 

M,i,, = min[c(Ivl)}. (15) 

To efficiently compute M,,,in. we first observe that our 
definition of 71; in Eq. (13) does not distinguish between 
different thread allocations to the overloaded service classes. 
This allow us to use dynamic programming to solve for 
M,,,in. where in each step we group all overloaded classes 
together and then find the allocation that minimizes the cost 
of non-overloaded classes. 

The basic algorithm is outlined (graphically) i n  Figure 6. 
where the algorithm is divided into n steps. In the first step, 
I I  tables are created. one for each service class. Each table 
contains the expected cost for any thread allocation to its 
corresponding service class. given that all other service classes 
are overloaded. We only need i i tmas  entries to capture this 
expected cost. The next step combines the tahles for classes 1 
and 2 into a new table by finding the minimum cost for each 
allocation given all possible combinations from the tahles 
for classes 1 and 2. Each additional step then combines the 
resulting table from the previous'step with the table of an 
additional service class. At the end. the final table will contain 
the minimum cost and by tracing hack the allocation that 
produced it. we cia determine M,,i,,. 

1\11 

VII. EVALUATION 

A realistic server environment is used to verify the cor- 
rectness of our derivations with respect to our original as- 
sumptions and also demonstrate that the proposed scheme 
makes near-optimal allocation of threads using our proposed 
techniques. We used a similar experimental setup to that in  
Section I. However. we configured a second Apache server 
as shown in Figure 7 to act as a separate service class. Three 
parameters describe each service: the arrival rate. Xi. the 
listen queue length. Bi. and the thread allocation. id:. In the 
presented experiments. we set Bi. to 125 requests for i = 1: 2. 

'In this case. sach Qa9 level is defined in terms of worst-case response 

'?his restfiction uvoioids the situation where rcquesu with long response 
tirm. 

times have lower cost than thosz with shon response t i m s .  

- _  
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Load generating 
client machines 

I I 1 7  

Fig. 7. Exp"mental Setup 

We have evaluated the system for different buffer lengths; in 
all cases. our results were consistent with those presented 
here. 

Our cvaluation is based primarily on response-time mea- 
surements at the client machines. This response time is the 
total wait time before a request is completed. It is the sum- 
mation of three mostly independent components: connection- 
establishment latency. propagation delay. and processing de- 
lay. However. we are only interested in the eifects o i  thread 
allocation on the processing-delay component. Thus. by keep- 
ing the first two components constant. we are able to obtain 
an unbiased view of the performance of the different thread 
allocations. We take two measures to minimize the variation 
in these two components. First. we made sure that the client- 
to-server network path is bottleneck-free. We also reduced the 
connection-establishment timeout such that any packet drop 
during that phase will not skew our results. We estimated 
that the error introduced by the first two components to 
be less than 2 msec. Finally. because we need to conduct 
a large numbcr of experiments to cover the wide range of 
variable parameters, we limit each run to 5 minutes and each 
experiment was repeated 20 times. 

Our evaluation is split into two experiments: the first 
validates the correctness of our derivation and the second 
measures the effectiveness of our optimal allocation policy. 
In all cases. we assume that workload is homogeneous. and 
hence. we only focus on the extent that the thread abstraction 
can be used to provide client-side QoS guarantees. The 
effects of heterogeneous workloads were studied i n  Section V. 
Finally. due to space limit, we only present the results for the 
mixed workload as it is considered a realistic representation 
of real server workloads. 

A.  E.rperiirient I :  Moilrl Valirlarioii 

We compared our predicted values of the response time 
with the real measurements for the single-class server con- 
figuration. We used a single Apache service and varied the 
configuration parameters across two dimensions: arrival rate. 
A. and thread allocation, r n o ,  This is shown in Figure 8. where 
each line represents the response time for a fixed allocation 
as the arrival rate is increased. 
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Rg. 8. Single class m ~ n ~ r e m e n l l  

The figure shows that our derivations can accurately predict 
the expected performance of the underlying server for a wide 
range of configuration parameters. There is over-prediction 
for certain values of A. This. we believe, is due to the system 
being critically-loaded. In particular. we can split the graph 
into two distinct regions: underloaded and overloaded. These 
are presented by the upper and lower parts of the S-shape 
of each line. .respectively. The transition region between the 
underloaded and overloaded regions is very narrow and occurs 
when X N pG(ni ') .  where the system is critically-loaded. 

Our analysis clearly exhibits the bimodal behavior of 
system queue occupancy. Namely, when the arrival rate is 
slightly below the saturation point. incoming requests ,are 
admitted almost immediately into service with little queueing 
delay. However. a slight increase in arrival rate can cause 
the delays to increase many folds simply because the system 
cannot keep up with incoming requests which causes queues 
to fill up. But since queues have limited capacity. the service 
delay is limited by the maximum length of such queues. The 
bimodal behavior raises an interesting design decision issue 
when configuring a web server. namely. when the system is 
underloaded. only a small queue is necessary to avoid request 
dropping. The length of the queue depends on the burstiness 
of arriving requests. However. once Ihe system is overloaded. 
longer queues do not provide any performance advantage. hut 
they increase the response time of accepted connections. 

E. Experirwent 2 :  QoS Girarantees 

In Section VI. we described a dynamic programing al- 
gorithm to determine the thread allocation that can pro- 
vide worst-case QoS guarantees. To verify our model. we 
must. unfortunately. test all possible thread allocations. which 
is computationally-prohihitive even with only two service 
classes. In this subsection. we look only at a single step of the 
algorithm. namely. given a thread allocation for a low-priority 
service class. we want to predict the thread allocation ior a 
high-priority service class that can (statistically) guarantee a 
maximum response time. We will show that for each QoS 
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requirement. our predictions are close to the measured values. 
With this: we can conclude the robustness of ow algorithm 
in the general case. 

Figure 9 shows the required number of threads for the high- 
priority service when its arrival rate is X I  = 100 reqsis and 
the low-priority service is allocated a fixed number of threads. 
For instance. in the top plot where the low-priority service is 
allocated S threads. i f a  1-second delay guarantee is required. 
then the high-priority service should be allocated at least 10 
threads. The tigure (for the measured and predicted lines) 
is computed by first assuming that the low-priority service is 
overloaded. A table that-holds the thread allocation vs. worst- 
case response time for the high-priority service is then created. 
Finally. an inverse table. lookup is used to determine the 
minimum allocation that meets the response time requirement. 

The figure shows that our equation-based. optimization is 
able to predict, with high accuracy. the thread allocation that 
achieves the minimum cost. One can see that if a similar 
process is used to create the initial tables in  Section VI. then 
the resulting prediction will he close to the optimal value. We 
note that in this experiment we implicitly assumed a linear 
cost function where h h ( t )  = t. Other cost functions can still 
be used. 

Overall. the above results show that our moiiels are very 
robust. They capture the expected performance of a multi- 
threaded server as well as identify those instanccs where 
the modcl fails. Our approach can be used to improve the 
performance of existing QnS techniques. 

VIII. RELATED WORK 

The design and analysis of server QoS management tech- 
niques have been addressed extensively in the literature. for 
example. in [2.4.6. IO. 11, 13. 15.22.?5.3?]. In general, our 
work complements existing QoS techniques ,by providing a 
rigorous analysis of one particular approach. namely. using 
the thread absuaction. Our focus is on determining the effec- 
tiveness and limitations of using thread-allocation to provide 
QoS guarantees or differentiation. . 

Several studies [I: 13.22.24.251 have used thread alloca- 
tion to provide application-level QoS. Vasilipu [30] focused 
his thread-based approach on providing n simple method for 
creating new scheduling disciplines. Similarly. Pandey [?5] 
defined an object-oriented language to specify resource re- 
quirements for different client requests. Both [301 and [?51 
lack rhe translation between resource requirement and service 
quality. In this paper. we introduced the speedup function 
for this specific reason. We believe that it is a key element 
for determining .the true performance for any thread-based 
allocation. 

To handle changing load conditions. the authors of [ I ,  
22-24.321 proposed a feedback control mechanism to ad- 
just the allocation of threads to different service classes 
based on on-line measurement of QoS metrics. Particularly 
in [ N I .  a conuol-theoretic approach is used to implement a 

25 
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Fig. 9. Optimal allocation that suuarantees response time y a m t e e s  for 
high-pliority: (top) low-pnurily service is allowled 8 threads. and (bottom1 
low-pnority service is allocated 16 thr<ads. 

Proportional-Integrator (PI) controller that adapts to the load 
conditions on the server. Unfortunately, this type of analysis 
(linear control theory) is only suitable for steady request 
arrivals with predictable service demands. In this paper. we 
have shown the need for better monitoring techniques in the 
adaptation process. We have also shown when the dynamic 
adaptation will fail to provide the QoS differentiation. 

IX.  C O N C L U S I O N S  

In this paper. we have provided a rigorous analysis of the 
performance of thread-based QoS support. We also presented 
an efficient optimization algorithm for determining the thread 
allocation. if any. that minimizes the system's cost. based on 
our economic formulation. Through empirical validation in 
real server environmentsl we showed that the derived results 
are applicable to real-world systems. 

The results presented in this paper are essential to the 
design of any efficient thread-based QoS differentiation mech- 
anism. Three important conclusions can be drawn from our 
study. First. based on the shape of the speedup function. we 
argue that dynamic adaptation of thread allocation based on 
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the response-time measurements only is not sufficient to guw- 
antee the stability of the control mechanism. The controller 
must continuously monitor the saturation point. which may 
shift with changing workloads. Second. indirect interdepen- 
dencies between threads that arise from non-trivial sharing 
of system's resources can yield unpredictable performance 
interactions. We have shown that even with a small number of 
threads dedicated to IiO-heavy workloads. the performance of 
other running service can be affected significantly. Therefore. 
without accurate understanding of resource requirements. the 
thread abstraction alone cannot provide the necessary QoS 
guarantees. or even QoS differentiation. to running services. 
Finally. when similar or homogeneous services are being 
hosted on a single server to provide client-side differentiation, 
the thread abstraction can be used to provide effective and 
predictable statistical QoS guarantees. 
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