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Abstract

ROOM (Real-Time Object-Oriented Modeling) is an ar-
chitecture description language widely used in the telecom-
munications industry to develop embedded software. The
concepts of ROOM have been incorporated into the CASE
tool Rational Rose Real-Time (RoseRT) in the form of a
UML profile, commonly called UML-RT. However, UML-
RT itself does not provide any support for performing real-
time scheduling analysis and generating an implementation
that meets timing constraints. It is the job of the engineer
to map the software functional model to RTOS threads and
choose a scheduling discipline to satisfy timing constraints.
In this paper, we summarize existing approaches for imple-
mentation synthesis of UML-RT models, and describe real-
time schedulability analysis technique for the native imple-
mentation model of the RoseRT CASE tool.

1. Introduction

ROOM (Real-Time Object-Oriented Modeling) [10] is
an architecture description languagewidely used in the
telecommunications industry to develop embedded soft-
ware. The concepts of ROOM have been incorporated into
the CASE tool Rational Rose Real-Time (RoseRT) in the
form of a UML profile, commonly called UML-RT. As
shown in Figure 1, UML-RT has the following key con-
cepts:

• A capsule is an active object with its own logi-
cal thread of control, typically representing an active
unit of computation.. A capsule typically has a be-
havior description in the form of an object-oriented
version of Statechart calledROOMChart, which dif-
fers from conventional Statecharts by removing cer-
tain features that are difficult to implement in an
object-oriented framework, like instantaneous broad-
cast of data among parallel/concurrent state machines.

Figure 1. The basic model of computation for
UML-RT.

Instead, concurrent state machines are modeled as sep-
arate capsules communicating with buffered asyn-
chronous message passing. A capsule may contain
other capsules to form a structural hierarchy.

• Explicit representation ofports, protocolsandconnec-
tors enables construction of architectural models from
a collection of capsules.

• A runtime framework calledTargetRTS(Target Run-
time System) that serves as a virtual machine support-
ing the model of computation defined by the UML-RT
modeling language. It runs on top of a RTOS to hide
the vendor-specific details of execution platform and
present a uniform set of APIs to the engineer.

The runtime model of UML-RT follows theRun-To-
Completion(RTC) semantics for each capsule. Once trig-
gered by a message at its input port, the capsule must ex-
ecute the triggered action to completion before processing
the next message. Messages can be assigned priorities and
queued in priority order instead of FIFO order. This means
that each capsule is a mutually-exclusive shared resource,
and scheduled with thepriority-based non-preemptivedis-
cipline. One or more capsules can be grouped together and
assigned to OS threads. Each OS thread processes incom-



ing messages in a non-preemptive manner, consistent with
the RTC semantics of capsules assigned to it. However,
there can be preemptions between different threads/tasks in
a multi-threaded system. (We use the wordsthreadandtask
interchangeably in this paper.) A capsule executing in the
context of a higher-priority thread can preempt another cap-
sule executing in a lower-priority thread.

The main target application domain of UML-RT is
telecommunication systems, which are generally soft
real-time in nature. Perhaps due to this reason, the de-
signers of the RoseRT CASE tool have not put much
emphasis on real-time issues when implementing a
UML-RT model on the target platform. The default ex-
ecution model is single-threaded, that is, all capsules
are mapped into the same thread of execution. Mes-
sages are queued and scheduled non-preemptively in
priority-order. It is desirable to introduce more paral-
lelism and concurrency into the system to improve pre-
dictability by adopting a multi-threaded execution archi-
tecture. It is important to distinguish between the concepts
of design-level concurrency and implementation-level con-
currency [7, 8, 9]. At the design level, each capsule
conceptually contains its own logical thread of execu-
tion, but each logical thread does not necessarily have to be
mapped into an OS thread at the implementation level. Al-
though it is possible for each capsule to have its own OS
thread, it may incur too much context-switching over-
head if there are a large number of capsules, perhaps thou-
sands or more in a realistic application. A number of al-
ternatives have been proposed for mapping a UML-RT
design model into a multi-threaded executable. In this pa-
per, we discuss these alternatives, and our own approach to
schedulability analysis of the implementation model of the
RoseRT CASE tool. Note that the interaction style of ac-
tive objects communicating through asynchronous message
passing is very prevalent in real-time software, for exam-
ple, the Quantum Framework [6] advocates this program-
ming style without using expensive CASE tools. It makes
a lot of sense in terms of good software engineering prin-
ciples such as modularity, encapsulation, decoupling of
interactions, etc. Therefore, the issues discussed in this pa-
per has much wider applicability than just the RoseRT
CASE tool.

2. Implementation Alternatives for UML-RT
Models

Suppose we have a logical UML-RT model as shown in
Figure 2, consisting of three capsulesO1, O2, O3 and two
application scenariost1, t2. Scenariot1 is initially triggered
by a periodic timeout message with period 10m that trig-
gers an actiont11 in capsuleO1, which in turn sends a mes-
sage to capsuleO2 and triggers actiont12 in O2. Finally,

Figure 2. An example application scenario.
The system consists of three objects O1, O2

and O3, and two end-to-end scenarios t1 and
t2. Each scenario consists of multiple sub-
tasks, which are actions triggered at the ob-
jects. Scenario t1 consists of subtasks t11, t12
and t13, and scenario t2 consists of subtasks
t21 and t23.

O2 sends a message toO3 and triggers actiont13. We can
view this scenario as a logical end-to-end taskt1 consist-
ing of three precedence-constrained subtaskst11, t12 and
t13. Similarly, the scenariot2 is an end-to-end task consist-
ing of two subtaskst21 and t23 triggered by a 100ms pe-
riodic timeout message. There are multiple ways of imple-
menting this model on a multi-tasking RTOS, as discussed
in the following sections.

2.1. Capsule-Based Multi-threading, Capsule-
Based Priority-Assignment

This is the default implementation approach of RoseRT
CASE tool. As shown in Figure 3, one or more cap-
sules are grouped into threads with fixed priorities. Two ex-
treme cases are mapping all capsules into a single thread, or
mapping each capsule into its own thread. We call this ap-
proach Capsule-based Multi-threading, Capsule-based
Priority-assignment (CMCP). In addition to applica-
tion threads, additionalsystem threadsmay be used to im-
plement framework services such as a periodic timer. We
do not consider system threads in this paper.

2.2. Capsule-Based Multi-threading, Scenario-
Based Priority-Assignment

This is proposed by Saksena in [7]. As shown in Figure 4,
similar to the RoseRT CASE tool, one or more capsules are



Figure 3. Capsule-Based Multi-threading,
Capsule-Based Priority-Assignment (CMCP),
as implemented in the RoseRT CASE tool.
One or more capsules are grouped into a
thread with uniform priority. The figure only
shows one of many possibilities for grouping
capsules into threads. The classic rate mono-
tonic analysis technique [4] is not applicable,
and the algorithm described in this paper is
needed to perform schedulability analysis.

grouped together into threads. However, priorities are as-
sociated with the end-to-end scenarios, and the task priori-
ties are adjusted dynamically to maintain the scenario prior-
ities. We call this approachCapsule-based Multi-threading,
Scenario-based Priority-assignment(CMSP).

2.3. Scenario-Based Multi-Threading, Scenario-
Based Priority-Assignment

This is proposed by Saehwa Kim in [5]. As shown
in Figure 5, each application scenario is mapped into a
thread. Priorities are associated with the end-to-end threads,
with statically-assigned priorities. We call this approach
Scenario-based Multi-threading, Scenario-based Priority-
assignment(SMSP).

2.4. Discussions

Saksena’s and Kim’s approaches associate priorities with
application scenarios instead of capsules, which may be
more intuitive from the perspective of the application. How-
ever, depending on application characteristics, it may be
appropriate to adopt different implementation alternatives.
If there is very little interaction between different applica-
tion scenarios, then Scenario-Based Multi-Threading is ap-

Figure 4. Capsule-Based Multi-threading,
Scenario-Based Priority-Assignment
(CMSP), proposed by Saksena [7]. One
or more capsules are grouped into the same
thread. Thread priority is adjusted dynam-
ically to maintain a uniform priority across
each application scenario.

propriate. This is the case for Avionics Mission Comput-
ing software discussed in [2]. However, if there is intensive
interaction among different scenarios, then Capsule-Based
Multi-Threading is more appropriate in order to avoid ex-
cessive locking and unlocking of shared capsules.

Saksena’s approach requires the engineer to stick to a
programming discipline of dynamically adjusting capsule
priorities to reflect the priority of the currently executing
end-to-end transaction. This approach hurts the encapsu-
lation of capsules by mixing system-level concerns (sce-
narios) with component-level concerns (capsules). It also
involves runtime system-call overheads that may or may
not be acceptable to certain resource-constrained embed-
ded systems. Certain small RTOSes may not even pro-
vide APIs to dynamically change thread priorities. Kim’s
approach involves modifying the RoseRT runtime kernel
TargetRTSto have scenario-based instead of capsule-based
multi-threading. It creates shared data when multiple sce-
narios cut through the same capsule, and necessitates error-
prone concurrency control mechanisms, such as mutex,
semaphore and monitor. This breaks a key advantage of
UML-RT, which is to use buffered asynchronous message
passing as the main communication mechanism among cap-
sules instead of shared data in order to minimize the need
for concurrency control. Note that even in the native UML-
RT model, there arepassive objects, protected by mutexes,
that are used to encapsulate shared data in addition to the
capsules/active objects. The number of such passive objects



Figure 5. Scenario-Based Multi-Threading,
Scenario-Based Priority-Assignment
(SMSP), proposed by S. Kim [5]. Each
application scenario is mapped into a sep-
arate thread with uniform priority. This
eliminates the need for dynamic priority ad-
justments, but creates shared data and
necessitates error-prone concurrency con-
trol mechanisms.

should be minimized in relation to the number of capsules.

Even if Saksena’s or Kim’s approach were widely
adopted, there would still be a lot of legacy applica-
tions that are not likely to be changed. Therefore, in-
stead of modifying the computational model of UML-RT
design tools to fit real-time scheduling theory, we be-
lieve a better alternative is to adapt real-time schedul-
ing theory to fit the computational model of UML-RT
design tools. Specifically, we describe a schedulabil-
ity analysis technique tailored for the computational
model of Capsule-Based Multi-Threading, Capsule-based
Priority-Assignment(CMCP) shown in Figure 3. This tech-
nique can be used as a subroutine when assigning prior-
ities to capsules in order to achieve schedulability, or to
meet other design objectives while guaranteeing schedula-
bility.

For the CMCP aproach, the number of threads needs
to be carefully managed in order to strike a balance be-
tween context-switching overheads due to a large num-
ber of threads and blocking time due to insufficient paral-
lelism. We do not deal with the issue of grouping capsules
into threads or assigning priorities to threads in this paper;
rather, we focus on the problem of schedulability analysis
given a set of capsule-to-thread groupings and priority as-
signments.

3. Schedulability Analysis Techniques for
Capsule-Based Multi-Threading, Capsule-
Based Priority-Assignment

The task model of CMCP is very similar to the end-to-
end tasks with subtasks with varying priority as described
by Harbour, Klein, Lehoczky [3]. We call the schedulabil-
ity analysis algorithm introduced in [3] the HKL algorithm.
Due to space limitations, we do not provide the full details
of HKL algorithm, and refer the interested readers to [3]
for details. We only describe our adaptation of HKL algo-
rithm to fit the computational model of UML-RT by taking
into account extra blocking time caused by RTC semantics
and shared data objects.

Consider a UML-RT model consisting ofm capsules or
active objectsO1, O2, . . . , Om, andn end-to-end scenarios
or transactions, where each scenario is mapped into an end-
to-end virtual thread, forming the tasksetτ1, τ2, . . . , τn.
Each end-to-end virtual threadτi, i = 1, . . . , n cuts through
one or more capsules, and triggers an action within each
capsule, forming a chain of subtasksτi1, . . . , τim(i). We use
O(τij) to denote the capsule that the subtaskτij belongs to,
andO(τij) to denote the set of passive objects thatτij ac-
cesses. Each subtaskτij is actually an event-triggered ac-
tion within a capsuleO(τij). We use the wordvirtual thread
because each transaction actually consists of multiple seg-
ments of event/action pairs distributed over different oper-
ating system threads. Due to run-to-completion semantics,
a subtask may suffer a blocking time equal to the largest ex-
ecution time of other subtasks sharing the same capsule. A
capsule may also be involved in multiple sub-tasks within
one end-to-end virtual thread. Each subtaskτij is character-
ized by a set of parameters(Cij , Dij , Pij), where

• Cij is the worst-case execution time.

• Dij is deadline ofτij relative to the arrival time of task
τi, taking 0 to be its arrival time.

• Pij is the fixed priority level ofτij , equal to the prior-
ity level of the capsule thatτij belongs to.

In order to adapt the HKL algorithm to the UML-RT
model, we need to take into account additional blocking
timeB(i) caused by the RTC semantics of capsules and mu-
tually exclusive access to passive objects, as shown in Equa-
tion (1). We can add this term in the HKL analysis equations
to derive the Worst-Case Response Time (WCRT) for each
end-to-end task, and compare it against the deadline (typi-
cally the same as task period) to determine schedulability.

4. The Elevator Control Application Example

We use the elevator control system as an application ex-
ample, taken from [1]1. Figure 6 shows the 8 capsules and 1



B(i) =
∑

k,l,j,k!=i,Pkl<Pij ,O(τkl)=O(τij)

Ckl +
∑

m,n,j,m!=i,Pmn<Pij ,PO(τmn)∩PO(τij)6=φ

Cmn (1)

data object involved in a single-processor implementation.
According to the CMCP approach, each capsule is assigned
a fixed priority. There are three end-to-end scenarios con-
sisting of subtasks of varying priorities:

1. Stop Elevator at Floor. The elevator is equipped with
arrival sensors that trigger an interrupt to the capsule
arrival sensors interfacewhen the elevator approaches
a floor, which in turn sends a messageapproaching
floor to the capsuleelevator controller. The elevator
controller invokes a synchronous method call on the
passive data objectelevator status and planobject to
determine whether the elevator should stop or not. We
do not model method invocations to passive data ob-
jects as separate subtasks, since the passive object in-
herits the thread and priority from the invoking cap-
sule, and can be viewed as an extension of the invok-
ing capsule. But we do need to take into account block-
ing time caused by sharing of passive objects by mul-
tiple threads.

2. Select Destination. The user presses a button in the
elevator to choose his/her destination, which triggers
an interrupt to the capsuleelevator buttons interface,
which in turn sends a messageelevator requestto the
capsuleelevator manager. The elevator managerre-
ceives the message and records destination in the pas-
sive objectelevator status and plan, which is a shared
object protected by the priority ceiling protocol, and
causes blocking time to the higher priority subtask.

3. Request Elevator. The user presses the up or down
button at a floor, which triggers an interrupt to the cap-
sulefloor buttons interface, which in turn sends a mes-
sageservice requestto the capsulescheduler. The cap-
sule schedulerreceives message and interrogates the
passive objectelevator status and planto determine if
an elevator is on its way to this floor. If not, thesched-
uler selects an elevator and sends a messageelevator
requestto the capsuleelevator manager. The rest of
the sequence is identical to theselect destinationsce-
nario.

Consider a building with 10 floors and 3 elevators. All
end-to-end tasks are interrupt driven, not periodic. In order
to perform schedulability analysis, we estimate the worst-
case arrival rate of the interrupts and use them as approxi-

1 Note that the analysis technique described in [1] is not entirely accu-
rate, since it does not take into account precedence relationship among
subtasks. Also the original example is not based on UML-RT, but the
concepts are similar enough to be viewed as a UML-RT model.

mations for periods assigned to each task. For example, the
Request Elevatorscenario is assigned a period of 200 ms
by assuming that all 18 floor buttons (up and down buttons
for each floor, except the top and bottom floors) are pressed
within 3.6 seconds, which is likely to be the worst-case ar-
rival rate.

We can calculate Worst-Case Response Times (WCRT)
using the schedulability analysis algorithm in Section 3 for
the end-to-end tasks, as shown in the WCRT column of Ta-
ble 1. Note that we associate the WCRT of the end-to-end
task with the last segment of the task in the table. No dead-
lines are missed, and the system is schedulable.

5. Conclusions and Future Work

The RoseRT CASE tool provides a code generator that
generates functional code in C++ from UML-RT mod-
els, but does not take into account timing and schedul-
ing issues. Previous work has proposed to modify the run-
time model of UML-RT to make the classic Rate Mono-
tonic Analysis [4] applicable. Instead of modifying the run-
time model of UML-RT to fit the schedulability analy-
sis algorithm, we modify the schedulability analysis al-
gorithm to fit the native runtime model of UML-RT, i.e.,
Capsule-Based Multi-threading, Capsule-Based Priority-
Assignment(CMCP). This should make our approach more
acceptable to industry than previous work in the literature.
However, depending on application characteristics, it may
be appropriate to adopt different implementation alterna-
tives.

We believe our work bridges the gap between a logical
UML-RT model and its real-time implementation on the tar-
get platform by giving the engineer algorithms and tools for
assessing real-time properties of different ways of grouping
capsules into threads. It focuses on the nonfunctional/real-
time aspect of implementation synthesis, and is comple-
mentary to the existing code generator from UML-RT into
C++ code, which focuses on the functional aspect of imple-
mentation synthesis. As part of our future work, we plan to
implement the algorithm discussed in this paper, either as a
plug-in to RoseRT, or as a stand-alone tool that exchanges
data with RoseRT through the XMI interface.

One limitation of our approach is that it can only handle
linear task-chains, but not more general task-trees or task-
graphs. It is an open research issue as to how to extend the
HKL algorithm to deal with task-trees or graphs.

This paper has considered the problem of schedulability
analysis given a system configuration of capsule-to-thread
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Figure 6. The event sequence diagram for the single-processor elevator control system.

Task Period WCET Priority WCRT
t1: Stop elevator at floor
t11: Arrival Sensors Interface 50 2 9 -
t12: Elevator Controller 50 5 6 15
t2: Select Destination
t21: Elevator Buttons Interface 100 3 8 -
t22: Elevator Manager 100 6 5 22
t3: Request Elevator
t31: Floor Buttons Interface 200 4 7 -
t32: Scheduler 200 20 4 -
t33: Elevator Manager 200 6 4 46
t4, t5: Other Tasks
t41: Floor Lamps Monitor 500 5 3 58
t51: Direction Lamps Monitor 500 5 2 63

Table 1. The taskset of the single-processor elevator control system. Not shown in the table, is block-
ing time caused by the shared object ElevatorStatusPlan , which we assume to be 1ms. Also note that
it is a common practice to assign a higher priority to the interrupt handler task [4], that is, the Inter-
face subtasks here, in order to avoid losing any interrupts.

grouping and thread priority assignment, but it is still an
open issue as to how to arrive at such a configuration. Ex-
haustive search is not feasible in general because the size of
design space grows exponentially with the number of cap-
sules or priorities. There may be some guidelines to follow,
such as “assign higher priority to interrupt service routines
to avoid losing interrupts”. We plan to investigate applica-
bility of optimization techniques such as branch-and-bound,
simulated annealing and genetic algorithms to exploration
of the design space in order to achieve a close-to-optimal
design in terms of objectives such as minimized number of
threads or minimized response time for critical application
scenarios. The schedulability analysis algorithm discussed
in this paper can be used as a subroutine during the design
space exploration process for priority assignment and im-
plementation synthesis of UML-RT models.
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