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Abstract—The lack of service differentiation and resource isolation by current IP routers exposes their vulnerability to Distributed

Denial of Service (DDoS) attacks [12], causing a serious threat to the availability of Internet services. Based on the concept of layer-4

service differentiation and resource isolation, where the transport-layer information is inferred from the IP headers and used for packet

classification and resource management, we present a transport-aware IP (tIP) router architecture that provides fine-grained service

differentiation and resource isolation among different classes of traffic aggregates. The tIP router architecture consists of a fine-

grained Quality-of-Service (QoS) classifier and an adaptive weight-based resource manager. A two-stage packet-classification

mechanism is devised to decouple the fine-grained QoS lookup from the usual routing lookup at core routers. The fine-grained service

differentiation and resource isolation provided inside the tIP router is a powerful built-in protection mechanism to counter DDoS

attacks, reducing the vulnerability of Internet to DDoS attacks. Moreover, the tIP architecture is stateless and compatible with the

Differentiated Service (DiffServ) infrastructure. Thanks to its scalable QoS support for TCP control segments, the tIP router supports

bidirectional differentiated services for TCP sessions.

Index Terms—Distributed Denial of Service (DDoS) attacks, layer-4 differentiation, resource isolation, packet classification.
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1 INTRODUCTION

DENIAL of Service (DoS) attacks in the Internet are well-
known to be difficult to defend against, and the recent

occurrence of Distributed DoS (DDoS) attacks make it even
more difficult for victims to block and trace back the
attacking sources. To thwart DDoS attacks and provide
service differentiation at victim servers, sophisticated
resource management schemes at end-servers have been
proposed, such as Resource Containers, WebQoS, and
Escort [1], [2], [6], [23], [37]. Like the computing resources
of an end-server, there is only a limited amount of network
resources—such as bandwidth, buffer, and processing
power of routers—available to Internet users. The vulner-
ability of the Internet to DDoS attacks roots in its best-effort
model that provides no resource isolation among different
IP flows, making it easy for attacking traffic to hog network
resources. Having sufficient service differentiation and
resource isolation at IP routers is essential not only to
provide network Quality of Service (QoS) to end-users, but
also to counter DDoS attacks as a powerful built-in
protection mechanism inside the Internet.

To support network QoS, the Differentiated Service
(DiffServ) infrastructure [5] has been proposed as a
promising solution due mainly to its scalability and
robustness. Based on the DS field in the IP header, IP flows
are classified into different Behavior Aggregates (BAs).
Services are provided for aggregates, not for individual

flows, and defined by a small set of Per-Hop Behaviors
(PHBs), which are the forwarding behaviors applied to
different aggregates at IP routers. According to the three
different services provided by DiffServ, three types of PHBs
are specified: Expedited Forwarding (EF), Assured Forwarding
(AF), and Best-Effort (BE). Although EF traffic is strictly
policed and conditioned at edge routers, which protects the
rest of the network resources from the flooding EF traffic,
the violated AF traffic is only remarked without strict
policing at network edges. More importantly, no condition-
ing is applied to BE traffic, which is the main component of
the Internet traffic. Compared with the best-effort service
model, DiffServ is more resilient against DDoS attacks, but
it is still susceptible to DDoS attacks, especially the BE
flooding traffic.

In the current DiffServ architecture, the QoS classifica-
tion at core routers depends solely upon the DS field in the
IP header,1 yielding only coarse-grained service differentia-
tion and resource isolation. No further service differentia-
tion and resource isolation are provided among different
transport-layer protocols within a BA. On the other hand,
UDP and TCP are two dominant transport-layer protocols
in the current Internet, but their services and traffic
behaviors are quite different. Furthermore, UDP and ICMP
flooding attacks have been widely used for stealing network
bandwidth and disabling a victim server. It is necessary to
provide resource isolation among TCP, UDP, and ICMP
traffic and the resource consumption of UDP and ICMP
traffic should be bounded. Besides meeting the requirement
of the bidirectional service differentiation to TCP sessions,
which the current DiffServ fails to achieve [28], [45], there
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are three reasons for differentiating TCP control seg-
ments—SYNs, FINs, ACKs, and RSTs—from data segments,
especially in the best-effort service model.

R1. Usually, TCP control segments have much smaller
packet size than data segments, so they consume much
less network bandwidth than data segments.

R2. The loss of a TCP control segment, especially SYNs,
incurs more serious performance degradation than the
loss of a data segment.

R3. DDoS attack tools usually utilize TCP control segments
for generation of DoS attacks, such as TCP SYN and ACK
flooding attacks.

In other words, the coarse-grained service differentiation
and the lack of resource isolation on metadata packets not
only degrade the assured service of TCP sessions, but also
expose the vulnerability of Internet to DDoS attacks [12].

In this paper, we propose a transport-aware IP (tIP)
router architecture to provide fine-grained service differ-
entiation and resource isolation among thinner aggregates
without compromising scalability. The basic concept em-
ployed is layer-4 service differentiation and resource
isolation in which the transport-layer information is
inferred from the IP headers and used for packet classifica-
tion and resource management at IP routers. To support
layer-4 service differentiation and resource isolation, we
present a fine-grained QoS classifier and an adaptive
weight-based resource manager with which the tIP router
infrastructure is built. The fine-grained QoS classifier
divides each BA into thinner aggregates and the adaptive
weight-based resource manager provides service differen-
tiation and resource isolation among these thinner aggre-
gates. At core routers, we employ a two-stage packet
classification mechanism to decouple the routing lookup
from QoS lookup. The first stage performs the routing
lookup at the input port and the second stage performs the
fine-grained QoS lookup at the output port after the packet
is routed through the switching fabric.

The performance of the tIP router architecture is
evaluated by simulation. The simulation results show that
1) the resource isolation provided by the tIP router
significantly throttles the flooding traffic received by the
victim server, 2) most of the flooding traffic is dropped close
to the attacking sources, thus confining flooding damage
and saving network resources, and 3) the flooding traffic
has little impact on the normal traffic that belongs to a
different transport protocol, e.g., the UDP flooding or ICMP
flooding traffic cannot interfere with the transmission of
normal TCP traffic. Therefore, it can be utilized as a built-in
protection mechanism of IP routers to counter DDoS
attacks. Moreover, the tIP router provides better end-to-
end TCP performance to applications: A high-tiered TCP
session is guaranteed to have lower ACK loss rate and
higher effective throughput than a low-tiered one.

Note that tIP routers do not require the support of DiffServ
infrastructure and they also work under the best-effort
model. Actually, the best-effort model can be viewed as a
simplified case of the DiffServ model in which only single BA
(best-effort) exists. To make our work more general and
applicable in the future, we investigate tIP routers with a

more sophisticated DiffServ model. The subset of our results,
which is based on the study of best-effort aggregates, can be
directly applied to the current Internet.

While some network attackers attempt to subvert the
service of a victim using a few specially-crafted packets,
most of DDoS attacks are conducted by flooding a large
number of bogus packets to the victim. In this paper, only
the flooding DDoS attacks are considered. The remainder of
the paper is organized as follows: Section 2 presents the
background of our work, including our initial motivation,
the brief description of DDoS attacks, and the related work.
Section 3 describes a fine-grained QoS classifier and an
adaptive weight-based resource manager, the key compo-
nents of the tIP router architecture. Section 4 evaluates the
performance of the tIP router architecture. Finally, the
paper concludes with Section 5.

2 BACKGROUND

There are three parts of background behind our work. First,
we present our initial motivation. Second, we briefly
describe the working mechanism of DDoS attacks and
some available attack tools. Third, we give a short survey of
previous router-based DDoS defense mechanisms.

2.1 Initial Motivation

Our work was initially motivated by the desire of providing
preferential treatments to TCP ACKs and achieving
bidirectional differentiated service for each TCP session.
By default, the current DiffServ architecture treats TCP
ACKs from different user classes as BE traffic, sharing the
same FIFO queue with BE data packets. The congestion
caused by BE data packets results in buffer overflow at
routers and, hence, bursty ACK losses. Especially, under the
condition that the TCP sender’s congestion window size is
small, the TCP sender is more vulnerable to ACK losses in
the backward path and its data transmission is interrupted
by retransmission timeouts. Therefore, providing service
differentiation for ACK flows is essential to TCP-based
applications.

One simple way to achieve this is that end-hosts mark
each ACK as a premium, assured, or best-effort packet,
corresponding to the class of the data packet being
acknowledged, but no enhanced mechanisms implemented
at IP routers to distinguish ACKs from data segments. If the
network resources are overprovisioned, the validity of this
simple marking scheme has been confirmed by the authors
of [28]. However, without proper resource provisioning and
traffic conditioning for ACK aggregates, the ACKs and data
segments that share the same queue could interfere with
each other. Our simulation results in Section 4.3 show that
the simple ACK marking scheme provides insufficient
service differentiation and isolation to ACK flows when
network resources are under-provisioned.

Furthermore, there are two serious drawbacks with this
simple marking scheme: 1) The best-effort TCP traffic,
which will continue to be the dominant load in the Internet,
will not receive any performance improvement with the
simple marking scheme; and 2) DDoS attacks in the Internet
make the simple marking scheme much less attractive since
it is more vulnerable to various TCP flooding attacks. The
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simulation results in Section 4.2 confirm this claim. There-
fore, to achieve better network QoS and counter DDoS
attacks, we need to differentiate the TCP control segments
from data segments and provide resource isolation between
them at IP routers.

In the previous work [3], in order to improve the TCP
performance in the context of network asymmetry, the acks-

first scheduling scheme has been proposed, giving TCP
ACKs priority over TCP data segments. So, the router
always forwards ACKs before data segments. However,
this acks-first scheme could cause starvation of data packets
and violation of traffic profiles, especially under ACK
flooding attacks. Also, no ACK identification scheme at
routers was provided there.

This initial motivation makes our very different from the
previous work for countering DDoS attacks because it is not
a pure security mechanism. It can significantly improve the
end-to-end TCP performance for clients, justifying the need
for the wide deployment of tIP router architecture.

2.2 Description of DDoS Attacks

A DDoS attack system can usually be described as a
hierarchical model in which an attacker controls a handler
(master) that, in turn, dictates the hordes of agents (slaves)
to flood the bogus packets to the victim. The communica-
tion between the attacker and the handler and between the
handler and the agents is called the control traffic, while the
communication between the agents and the victim is called
the flooding traffic. To hide the attacker from its detection,
the control traffic is encrypted and its channel is covert and
password protected. The recruitment of agents is achieved
by employing automatic scanning and propagation techni-
ques, which search for security holes and inject the
attacking instructions into the subverted machines.

The mechanism of DDoS attacks works as follows: The
master sends control packets to the previously compro-
mised slaves, instructing them to target a given victim. The
slaves then generate and send high-volume streams of
flooding messages to the victim, but with fake or
randomized source addresses so that the victim cannot
locate the attackers. DDoS attacks are difficult to defend
against, as they do not target specific vulnerabilities of a
computer system, but rather, the very fact that it is
connected to the network. With the appearance of Trinoo,
which only implements UDP flooding attacks, many tools
have been developed to create DDoS attacks. These readily
available attacking tools, such as Tribe Flood Network
(TFN), TFN2K, Trinity, Plague, and Shaft, generate various
flooding attacks [9].

While the conventional flooding attack is a system
resource consumption attack, the recent Distributed Reflec-
tion DoS (DRDoS) attacks [14], [30] virtually “disconnect” a
victim server from the Internet by hogging the link
bandwidth between the victim and its ISP with an excessive
number of response packets (also known as. bandwidth
consumption attack). The DRDoS attacks masquerade the
source IP address of each spoofed request with the victim’s
IP address and spray the spoofed requests to a large number
of Internet servers, which are exploited as reflectors. The
reflectors will then send combined replies to the victim,
redirecting and amplifying the flooding traffic.

2.3 Related Work

As the observed prevalence of DDoS attacks in the Internet
[24], many router-based defense mechanisms have been
proposed, including router filtering [11], [29], router
throttling [13], [46], Pushback [19], [17], traceback [4], [33],
[35], [36], [40], and detection mechanisms [15], [29], [43].
However, most of them are used solely for security
purpose. The Internet Service Providers (ISPs) usually do
not have strong incentive to embed these security mechan-
isms into their routers since no direct benefit is brought to
their own clients.

Ingress filtering [11] configures the internal router
interface to block spoofed packets whose source IP
addresses do not belong to the stub network. This limits
the ability to flood spoofed packets from that stub network
since the attacker would only be able to generate bogus
traffic with internal addresses. Given the reachability
constraints imposed by the routing and network topology,
the route-based distributed packet filtering (DPF) [29]
exploits routing information to determine if a packet
arriving at the router is valid with respect to its inscribed
source/destination addresses. The experimental results
reported in [29] show that a significant fraction of spoofed
packets are filtered out and the spoofed packets that
escaped the filtering can be localized into five candidate
sites which are easy to trace back.

Yau et al. proposed a router throttle mechanism [46]
which is installed at the routers that are close to the victim.
These routers proactively regulate the incoming packets to a
moderate level, thus reducing the amount of the flooding
traffic toward the victim. The key idea of pushback is close
to that of router throttle, and it identifies and controls high
bandwidth aggregates in network [17], [19]. The router
could ask adjacent upstream routers to limit the amount of
traffic from the identified aggregate. This upstream rate-
limiting is called pushback and can be propagated recur-
sively to routers further upstream.

Since the source addresses of flooding packets are faked,
various traceback techniques [4], [33], [35], [36], [40] have
been proposed to find out the origin of a flooding source.
Probabilistic packet marking [33] was proposed to reduce
the tracing overhead at IP routers, which was refined by
Song and Perrig in the reconstruction of paths and the
authentication of encodings. Snoeren et al. presented a
hash-based IP traceback, which can track the origin of a
single packet delivered by the network in an efficient and
scalable way. Stone [40] built an IP overlay network for
tracking DoS floods, which consists of IP tunnels connecting
all edge routers. The topology of this overlay network is
deliberately simple and suspicious flows can be dynami-
cally rerouted across the tracking overlay network for
analysis. Then, the origin of the floods can be revealed.

A data-structure called MULTOPS [15] is a tree of nodes
that keeps packet-rate statistics for subnets at different
aggregation levels. Based on the observation of a significant
disproportional difference between the traffic flowing into
and out of the victim, routers use MULTOPS to detect
ongoing bandwidth attacks. To detect TCP SYN flooding
attacks, a simple and robust detection mechanism has been
proposed [43]. Based on the distinct protocol behavior of
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TCP connection establishment and teardown, the SYN
flooding detection is treated as an instance of the Sequential
Change Point Detection. A nonparametric Cumulative Sum
method is applied, making the detection mechanism
insensitive to sites and access pattern.

3 TRANSPORT-AWARE IP ROUTER ARCHITECTURE

To provide layer-4 service differentiation and resource
isolation, we propose a fine-grained QoS classifier and an
adaptive weight-based resource manager, both of which are
essential to the tIP router architecture. The granularity of
the classifier is still based on aggregates, not individual
flows, and the resource manager is stateless, thus preser-
ving the scalability and robustness of the original DiffServ
or current Internet infrastructure. Moreover, at core routers,
the QoS lookup is decoupled from the routing lookup by
employing a two-stage packet classification mechanism.
The set of QoS filtering rules is small and has the same/
similar size at both edge and core routers. In contrast to
routing lookup, QoS lookup is independent of network size
and does not cause any scalability problem in packet
classification. The tIP router architecture is detailed in the
remainder of this section.

3.1 Two-Stage Packet Classification

For service differentiation, layer-4 switching [20], [38] has
been proposed, in which routing decisions are made based
on the destination address as well as on the header fields at
the transport or higher layer. Routing and QoS lookups are
integrated into a single framework to fulfill layer-4 switch-
ing and, therefore, the forwarding database of a router
consists of a large number of filters to be applied on
multiple header fields. The deployment of a large-scale
packet filtering mechanism [16], [18], [38] makes it feasible
to implement layer-4 or higher switching at edge routers or
at the front-end of server farms. However, layer-4 switching
has primarily been used for load balancing by connection
routers in server farms. It is very difficult to implement
layer-4 switching at core routers due mainly to security and
scalability difficulties. Even with fast and scalable packet
classification, the problems with layer-4 switching at core
routers are: 1) addition of higher-layer information—such
as port numbers—and more routing entries enlarges the
routing table at core routers, causing the routing lookup to
require more memory and time, and 2) when IP payload is
encrypted, higher-layer headers become inaccessible.

To support layer-4 service differentiation and resource
isolation, the fine-grained QoS classification has to work
well at both edge and core routers. Therefore, we decouple
the fine-grained QoS lookup from the routing lookup at
core routers by employing a two-stage packet classification
mechanism. In addition to overcoming the scalability
problem at core routers, there are several other reasons
for this decoupling as follows:

. Routing decisions must be made at the input port,
but most of service differentiation—buffer manage-
ment and packet scheduling—is performed at the
output port.

. There is a large difference between the search spaces
of routing lookup and QoS lookup. The size of the
routing table is very large and ever-increasing with
the growth of the Internet, but the filtering rule set of
QoS classification is small and remains stable.

. Conventional routing lookup is based solely on
destination addresses, which is a one-dimensional
search, but QoS lookup is based on multiple fields,
which is a multidimensional search.

Note that, at core routers, our QoS lookup is restricted to
the IP header fields and the transport-layer information is
accessed only at edge routers if necessary. The proposed
QoS lookup should not become the performance bottleneck
inside the router. Moreover, the decoupling greatly sim-
plifies the implementation of packet classification. The
architecture of the two-stage packet classification is illu-
strated in Fig. 1, where the forwarding table is the local
version of routing table in the line card. With the
forwarding table, the routing/switching decision can be
made locally at each input port.

3.2 Fine-Grained QoS Classifier

As the key component of the tIP router architecture, the
proposed QoS classifier at routers uses several fields in the
IP header for QoS classification, in addition to the DS field.
Transport-layer information is extracted to further divide a
BA into a UDP aggregate, a TCP aggregate, and an ICMP
aggregate and, then, to distinguish TCP control segments
that mainly consist of ACKs from TCP data segments in the
TCP aggregate. QoS classification can be modeled at three
different hierarchical levels, as shown in Fig. 2.
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At the first two levels, it is straightforward to set the
filtering rules. By checking DS and protocol type fields in the
IP header against the filtering rules, the QoS classification is
simple and does not cause any ambiguity. However, the
accurate TCP control segment identification at level 3 could
be much more complex. To implement the identification of
TCP control segments at IP routers, the easiest way is to
utilize one of the unused bits of DS field in the IP header.
However, the problem with this solution is that it requires
the modification of the IP header and cooperation from end-
hosts. Moreover, the IETF has proposed the use of the two
unused bits of DS field for the deployment of the Explicit
Congestion Notification (ECN) mechanism [31] at routers.

So, we propose size and port-based identification of TCP
control segments without requiring any new bit. Note that we
present below a detailed description of a general TCP control
segment identification which can be applied to the identifica-
tion of each individual TCP control segment like SYN, FIN,
ACK, and RST. The only difference at the port-based
identification is to check different bits in the 6-bit flag field.

3.2.1 TCP Control Segment Identification

Initially, each TCP segment is encapsulated in a single
IP packet, but IP fragmentation could occur at intermediate
routers. Once the IP packet is fragmented, only the first
fragment contains the TCP header. So, the IP packet that
contains the TCP header must have a zero fragmentation
offset. By checking the fragmentation offset field in the
IP header, the ambiguity caused by IP fragmentation is
eliminated. Theoretically, if an IP packet encapsulates a
TCP control segment, it should meet the following require-
ments: 1) Its protocol type is TCP, 2) its fragmentation offset
is zero, and 3) the corresponding flags in the TCP header
are ON. The first two conditions can be verified by checking
the IP header, but the validation of the third condition
needs to access the TCP header. Then, based on whether the
TCP header is accessed or not, we have two versions of TCP
control segment identification: lightweight and heavyweight.

Recent Internet traffic measurements [8], [41] have
shown that about 40 percent of all IP packets are 40 bytes
long, most of which are TCP control segments, implying
that an overwhelming majority of TCP control segments are
40 bytes long. Since IP options are included primarily for
network testing or debugging and the fraction of packets
with IP header options is typically less than 0.003 percent
[21], it is reasonable to assume that no IP option fields are
attached to TCP control segments.

3.2.2 ACK Identification

The lightweight version is a size-based classifier. It takes
advantage of the above observations. By checking the total
length field in the IP header, it can tell TCP control segments
from data segments without accessing the TCP header. The
base filtering rule of TCP control segment identification is
that the TCP segments whose total length are 40 bytes are
classified as TCP control segments. The rationale behind
this is that, since the IP header without options is 20 bytes
and the TCP header without options is 20 bytes, a total of
40 bytes is the minimum size of an IP packet that
encapsulated a TCP segment (without any payload).
Considering TCP options—MSS option (4 bytes), Window

scale factor option (3 bytes), Timestamp option (10 bytes), and

Selective Acknowledgment option (10/18/26 bytes)—that

can appear in the TCP control segments like SYNs or ACKs

and the requirement of a 4-byte boundary by padding NOOP

options, the complete filtering rule of TCP control segment

identification is set as:

Rule : f X j X ¼ 4 � n; 10 � n � 20g;

where X is the total length of an IP packet and n is an

integer. Since the maximum space that TCP options can use

is 40 bytes, the maximum packet length of a TCP control

segment is 80 bytes.
The main advantage of the lightweight version is that

there is no need to access the TCP header, thus reducing

overhead significantly. Its chief disadvantage is inaccuracy.

The tiny TCP data segments that meet the filtering rules will

be misclassified as TCP control segments. However,

because the tiny TCP data segments are most likely to

belong to interactive TCP sessions, they have similar

features of TCP control segments, i.e., small size and loss-

sensitive TCP performance. For end-to-end TCP perfor-

mance, it is beneficial to separate them from, and give

priority over, other TCP data segments. Moreover, the

proposed adaptive weight-based resource manager has the

ability to cope with this inaccuracy.
Since the lightweight version does not access the TCP

header, it cannot further differentiate TCP control segments

into SYNs, FINs, ACKs, and RSTs. To achieve accurate and

fine-grained TCP control segment identification, the TCP

header needs to be accessed. The heavyweight version of TCP

control segment identification is a port-based classifier. The

matching scope is outside the IP header and, hence, the TCP

flags of the TCP header are checked. Besides the additional

overhead in accessing the TCP header, IPSec makes the port-

based classification difficult. However, a multilayer IPSec

protocol [48] has been proposed, which allows trusted routers

to access the transport-layer information.
Even in the heavyweight version of TCP control segment

identification, especially for ACK identification, we still

need to rely on the total length field in the IP header to

eliminate the ambiguity caused by the following two facts:

. Some TCP implementations always set the ACK-flag
bit ON once the TCP connection is established [39].
Furthermore, some malicious TCP senders could
intentionally set the TCP flag bit ON in its TCP data
segments.

. The piggyback mechanism in which ACKs are sent
along with a reverse-direction data flow results in a
packet that could be interpreted as a TCP data
segment or TCP ACK.

The ambiguity caused by always-on ACK-flag and

piggybacking can be solved by simply checking the total

IP packet length. The large packet with ACK-flag ON is

classified as a TCP data segment, but the small packet with

ACK-flag ON is classified as a TCP ACK. Considering the

addition of TCP option fields like the Timestamp in the TCP

header, we set the threshold to 80 bytes, as the available

bytes for TCP options is 40. If the total packet length is
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larger than 80 bytes, the packet is classified as a TCP data
segment. Otherwise, it is classified as a TCP ACK.

In summary, we use a lightweight version of flow
identification at core routers. All transport-layer informa-
tion is derived from the IP header only and there is no need
to access the TCP header. So, it does not violate the layering
concept. At edge routers or firewalls, layer-4 or 7 switching
and packet filtering have been implemented and deployed
by many vendors. We provide a heavy-weight identifica-
tion scheme which accesses the TCP header only as an
option at edge routers. Therefore, even if the format of TCP
header changes in future, only the heavy-weight identifica-
tion scheme, if employed at edge routers, needs to be
modified. We believe, however, that the format of TCP
header is unlikely to change, due mainly to the compat-
ibility problems with the already widely deployed TCP.

A detailed description of the complete TCP control
segment identification algorithm is given in Fig. 3, where N
is an integer such that 10 � N � 20. There are three major
steps in the heavyweight version, but only two steps in the
lightweight version are given in Fig. 3.

3.2.3 Validating Lightweight Identification

To validate the lightweight version of TCP control segment
identification algorithm, six Internet traces taken at three
different sites [27] are used. All the traces were collected
between February 2002 and March 2002. The three chosen
sites are located at high-bandwidth interconnection points.
ADV represents the site where the OC3c (155Mbps) PoS
(Packet over Sonet) link connects the Advanced Network
and Services premises in Armonk, New York, to their ISP
and the Internet2/Abilene network. ANL refers to the OC3c
link between the Argonne National Laboratory and the
Ameritech Network Access Point (NAP) in Chicago. BUF is
the site where the OC3 PoS link connects NYSERnet’s router
and the State University of New York at Buffalo’s router.

From these traces, we found that no TCP control segment
is misclassified as a data segment and only an insignificant
number of tiny TCP data segments are misclassified as
control segments. The filtering rule of 4-byte boundary
significantly reduces the inclusion of tiny data segments
(less than 80 bytes) in control segments. For example, in
BUF-1 trace, without this rule, there would be 13,318 tiny
data segments that are misclassified. However, after
applying this rule, the number of misclassified data
segments is reduced to 2,218. Table 1 gives the percentage

of misclassification of TCP data segments versus the total
data segments in each trace. Moreover, over 97 percent of
the misclassified tiny TCP data segments are with “PSH”
flag ON in its TCP header, indicating the quick delivery
requirement of these segments.

3.2.4 Discussion

Currently, only a negligible part of the IP traffic is reported
to belong to IPv6 [8], [41], so the proposed QoS classifier is
based only on IPv4. Compared to IPv4, the most important
changes in IPv6 lie in the packet format. The header format
of IPv6 is very different from that of IPv4. However, the
following two features of IPv6 will make the TCP control
segment identification even easier and faster: 1) IPv4’s
variable-length options field is replaced by a series of fixed-
format headers and each IP packet has a base header
followed by zero or more extension headers, and 2) no
fragmentation occurs at intermediate routers and all the
fragmentation and reassembly are restricted to end-hosts.
So, it is easy to adjust the proposed QoS classifier to work
properly in the context of IPv6.

The emergence of Internet Telephony—also called voice
over Internet Protocol (VoIP)—does not pose any difficulty
on the identification of lightweight version TCP control
segments since VoIP data streams are carried by Real-Time
Transport Protocol (RTP) that is running on top of UDP,
instead of TCP [32]. Moreover, the real audio streams show
a significant regularity on packet lengths—concentrating on
244/254, 290/300, and 490/502 bytes [22], which are much
larger than 80 bytes.

3.3 Adaptive Weight-Based Resource Manager

To enable better service differentiation and resource
isolation between thinner aggregates, we propose an
adaptive weight-based resource manager for IP routers. A
hierarchical link-sharing structure is built, which is similar
to the hierarchy of QoS classification and the class-based
queuing management [10]. As shown in Fig. 4, the root of
the resource tree is the total link capacity. As the level of the
resource tree gets lower, the IP flows that share the link are
split into thinner aggregates. Each leaf node has its own
queue and every classified incoming packet is then inserted
into the appropriate queue. Subsequently, the weighted
round-robin scheduler will take care of these queued
packets and select the next packet for transmission.

At level 1 of the resource tree, each node represents the
allocated bandwidth to each BA. The bandwidth allocation
and priority assignment at the BA level are done by the
Bandwidth Broker (BB) [26] via Service Level Agreements
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Fig. 3. The flowchart of the TCP control segment identification algorithm.

TABLE 1
Effect of Misclassification



(SLAs). At level 2 of the resource tree, the BA is divided
further into a UDP aggregate and a TCP aggregate. Each
node at level 2 corresponds to the bandwidth allocated to
the thinner UDP/TCP aggregate. Within each BA, the UDP
aggregate and the TCP aggregate have the same priority
and a weighted round-robin scheduling scheme is used
between them. The composition of each BA is different.
Most of an EF (Expedited Forwarding) aggregate is UDP
real-time audio/video. However, in the AF (Assured
Forwarding) and BE (Best-Effort) aggregates, the majority
of packets belong to TCP. The weights assigned to the
thinner aggregates are based on the recent empirical studies
reported in [8], [21], [22], [41], which are listed in Table 2.
Here, we assume that the total weight of each BA is 1. The
total weight assigned to UDP and TCP aggregates in BE is
0.99 since ICMP packets account for less than 1 percent of
all IP packets and, by default, these ICMP packets are
treated as BE traffic. Note that the weights at level 2 are
tunable parameters that can be adjusted by network
administrators to meet their local requirements. The weight
assignment is strictly enforced only when there is no empty
queue. Once a queue is empty, its assigned weight can be
temporarily shared by other nonempty queues until the
next packet enters the queue.

Each node at level 3 of the resource tree represents the
bandwidth allocated to TCP data or control segments. The
TCP data and control segments within the same TCP
aggregate are also scheduled according to the weighted
round-robin policy. The guiding principle for the weight
setting at level 3 is that preference is given to control
segments, but there is a strict limit on the weight of control
segments. The weight preference to control segments is the
embodiment of resource overprovisioning as suggested in
[28], and the strict limit prevents the misuse of preference.
Because the overwhelming majority of the TCP control
segments are TCP ACKs, we first present the rule of setting
the weight of TCP ACKs, and then use the ACK weight as
the baseline to derive the weights of all TCP control
segments.

3.3.1 Setting the Weight of ACKs

The rule of thumb for setting the weight for TCP ACKs is to
approximate the upper bound of their bandwidth con-
sumption. If the weight is measured in number of packets,

the ratio of the weight of TCP ACKs to that of TCP data
segments is 1:1. This one data segment versus one ACK policy
is based on the fact that the transmission of a TCP data
segment will later trigger a TCP ACK. Considering wide
deployment of the delayed ACK mechanism at TCP
receivers, weights are assigned to give preference to TCP
ACKs and this preference is also intended to provide a
safety cushion to other TCP control segments and tiny TCP
data segments in which the lightweight version of TCP
control segment identification is used.

Adhering to the policy of one data segment versus one ACK,
if the weight is measured in number of bytes, then we
should consider the average packet size. As mentioned
earlier, a great majority of TCP ACKs are 40 bytes long, so
the average size of TCP ACK is 40 bytes. Common MSSs of
TCP implementations are 512, 536, and 1,460 bytes [8], [41].
Including the 40 bytes of both the IP and TCP headers, the
total packet lengths for these MSSs are 552, 576, and
1,500 bytes, respectively. Their observed ratio is 1:1:2. Thus,
the average size of a TCP data segment is 1K bytes and the
ratio of the weight of ACKs to that of data segments is 1:25.

The traffic load distribution inside the DS domain will be
balanced by routing algorithms and traffic engineering. At
an interface of a core router, the volume of outgoing TCP
data traffic equals that of incoming TCP data traffic and
each outgoing TCP data segment2 implies an incoming TCP
ACK to the interface. Therefore, this one data segment versus
one ACK policy is valid for core routers inside a DS domain.

However, at a leaf router or a boundary router between
two different DS domains, this policy is often invalid due to
the asymmetry of traffic load. This traffic load asymmetry
has been observed in traffic measurements of the trans-
Atlantic link [41]. The weight of TCP ACKs should depend
on the weight allocated to the TCP data segments in the
reverse direction. The weight of the ACK aggregate at leaf
or boundary routers can be set based on traffic measure-
ments or with the help of the Bandwidth Broker. Like the
weight setting at level 2, the weight assigned to ACKs,
which is the baseline of TCP control segments, is also a
tunable parameter and can be adjusted locally.

Once the weight of the ACK aggregate is set, we use a
simple adaptive calibration scheme to derive the weight of
all TCP control segments for which the ACK weight is used
as the baseline. The mechanism of the weight calibration
works similarly to the adaptive-weighted packet scheduling
of EF traffic [44]. Its goal is to increase the flexibility of the
resource manager to absorb bursty control traffic and the
tiny data segments that are misclassified as TCP control
segments.
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TABLE 2
Level-2 Weight Distribution in Different BAs

2. Or, two outgoing TCP data segments if the delayed ACK mechanism
is ON at the TCP receiver.

Fig. 4. The link-sharing framework.



3.3.2 Adaptive Weight Calibration of

TCP Control Aggregate

As in [44], we use the estimated average queue size of the
TCP control aggregate to adaptively adjust the weight. The
average queue size of the TCP control aggregate is
calculated by using a low-pass filter with an exponen-
tially-weighted moving average. Let avg be the average
queue size, q the instantaneous queue size, and fl the
parameter of the low-pass filter, then the average queue size
of TCP control aggregate is estimated as:

avg ð1ÿ flÞ � avgþ fl � q:

To reduce the instantaneous fluctuation of queue size, the
parameter of the low-pass filter fl is set to 0.01.

Assuming that the weight of TCP ACKs is wa, we set the
original weight of the TCP control aggregate wc to 1:2 wa. To
adaptively calibrate the weight of the TCP control aggre-
gate, two thresholds, minth and maxth, are introduced. By
keeping the average queue size of the TCP control
aggregate below the maximum threshold, bursty losses of
TCP control segments are prevented. To accomplish this,
the weight of the control aggregate should be proportion-
ally increased once the average queue size of the control
aggregate exceeds the minimum threshold. The values of
minth and maxth are set to one-fourth and three-fourths of
the buffer, respectively. The linear relationship between the
weight and the average queue size of control aggregate is
given by:

fðCÞ ¼
wc; C 2 ½0;minthÞ
ðUÿwcÞ�ðCÿminthÞ
maxthÿminth þ wc; C 2 ½minth;maxthÞ

U; C 2 ½maxth; full�;

8<:
where fðCÞ is the weight function of the control aggregate,
U is the upper limit that the weight of the control aggregate
can reach, and C is the average queue size of the control
aggregate. Since the total weight for TCP aggregates is
fixed, the increase of the control aggregate’s weight must
cause the same amount of decrease in the data aggregate’s
weight. However, once the average queue size of the control
aggregate reduces below maxth, the weights taken from the
data aggregate will be returned.

The weight calibration favors the control aggregate, but
disfavors the data aggregate, which is consistent with the
guiding principle of the weight settings. The rationale
behind this is that the bandwidth taken by the data
aggregate is usually much more than the bandwidth
consumed by the control aggregate; the small amount of
bandwidth shift from the data aggregate to the control
aggregate can prevent bursty losses of the control segments,
but only leads to a single isolated data packet loss or just a
longer queuing delay. However, the weight of the control
aggregate cannot exceed the upper limit, which prevents
the abuse of preferential treatment of TCP control segments
and protects the TCP data aggregate from starvation. U is
set to 2wc in our simulation.

4 PERFORMANCE EVALUATION

The proposed tIP router architecture is evaluated by
simulation with ns-2 [25], [42]. According to the purpose

of simulation, we categorize the simulation experiments

into two different classes. One is used for evaluating the

capability of resource isolation under flooding attacks, the

other is used for evaluating the capability of service

differentiation for end-to-end TCP performance. The net-

work topologies of the two classes are different. In the

presentation of simulation results, Existing refers to the

current DiffServ (or Internet) architecture, Marking refers to

the ACK marking scheme proposed in [28], and Reserved

refers to the reserved bandwidth for EF and AF flows.

4.1 The Simulation Setup

In our simulation experiments, each end-host is connected

to its respective edge router and the edge routers are

connected via core routers. The link capacity and one-way

propagation delay between an end-host and an edge router

are 10 Mbps and 1 ms, respectively. The one-way propaga-

tion delay between an edge router and a core router is 8 ms,

but that between two core routers is 16 ms. The UDP/TCP

data segment size is set to 1,000 bytes and the TCP control

segment size is set to 40 bytes. The version of TCP used in

the simulation is TCP New-Reno since it has been widely

deployed in the Internet, and the delayed-ACK mechanism

is ON.

4.2 Resource Isolation

In the flooding experiments, the link capacity between an

edge router and a core router is 6 Mbps, but that between

two core routers is 5 Mbps. As the network topology for the

purpose of a DDoS attack, it is convenient to consider it in

terms of a tree graph. The victim’s machine is at the root of

the tree, with network routers being intermediate nodes in

the tree. The leaf nodes of the tree are the flooding sources

and normal end-hosts. The simulated network topology for

DDoS attacks is shown in Fig. 5. In our flooding experi-

ments, there is a flooding source in each stub network

except for the one that the victim belongs to. The flooding

rate at each source is constant and set to 5,000 packets per

second in SYN and ACK flooding attacks, but 500 packets

per second in UDP and ICMP flooding attacks. At the same

time, there are TCP connections running from normal end-

hosts to the victim as the background traffic.
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Fig. 5. The simulated network topology used for resource isolation.



We first measure the volume of the flooding traffic that
reaches the victim under different IP architectures. Four
types of flooding attacks—SYN, ACK, UDP, and ICMP
flooding—are simulated. All the flooding traffic is trans-
ported by the BE service. Since there is no difference in
treating the BE traffic in the current Internet and DiffServ
architectures, we normalize the various flooding traffic
reached the victim in these architectures to 1 to make the
presentation easier. Then, the flooding traffic received at the
victim in the tIP router architecture is properly scaled based
on the normalization. Fig. 6 shows that the tIP router
throttles the flooding volume that reaches the victim and
effectively protects the victim from flooding attacks. More
importantly, most of the flooding traffic will be dropped by
the first few routers before they reach the core of the
network, thus confining the damage caused by the flooding
source mainly to the local stub network where it originated.
The cascaded throttling of flooding traffic at the first few
routers shields the rest of the Internet unaffected, and saves
the network bandwidth. The cascaded throttling of flooding
traffic is depicted in Fig. 7.

Moreover, during flooding attacks, the effective TCP
throughputs in Existing and Marking are reduced almost to
zero, but the one in tIP router can still achieve 95 percent (in
the cases of UDP and ICMP flooding) and 85 percent (in the
cases of SYN and ACK flooding) of the bandwidth assigned
to the entire BE traffic, thanks to the layer-4 resource
isolation. Fig. 8 illustrates the dynamics of average
throughput of a background TCP connection under the
UDP or ICMP flooding attack that starts at 0.2s. Since the
TCP connection is not interfered with by UDP or ICMP

floods, its average throughput follows a typical sawtooth-
like curve.

Our simulation results show that the tIP router provides
a built-in protection mechanism to counter DDoS attacks.
Splitting layer-4 traffic greatly reduces the performance
degradation caused by such DDoS attacks as flooding of
UDP, ICMP, TCP SYN, and ACK traffic. The resource
isolation provided inside the BE traffic class is especially
valuable since the edge routers in the DiffServ architecture
perform traffic conditioning and policing on EF and
AF traffic, but not on BE traffic.

For EF or AF traffic, both UDP and ICMP flooding do not
cause much damage in all DiffServ architectures because
the edge routers perform traffic conditioning and policing
on EF and AF traffic. However, the simple Marking scheme
exposes more vulnerability to the ACK flooding attacks. In
this architecture, the ACK flows are accepted without strict
policing based on the belief that the small bandwidth
requirement by ACK flows can be absorbed by over-
provisioning. The flooding ACK flows marked as EF or AF
traffic can seriously violate the traffic profile between the
stub network and the leaf router that connects the stub
network to the Internet. Even worse, in large-scale DDoS
attacks, even if only a small number of ACKs are flooded
from each attacking source, once these ACKs are aggre-
gated at core routers where no traffic conditioning is
performed, the flooding ACK aggregates can “steal” the
reserved bandwidth from the conformant aggregates. Fig. 9
charts the goodputs of conformant EF and AF flows from a
normal end-host to the victim in Marking and tIP router,
and clearly shows the vulnerability of Marking to the ACK
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Fig. 6. The flooding traffic volume reached the victim.

Fig. 7. The distribution of dropped packets at different level routers.

Fig. 8. Average throughput of the background TCP connection.

Fig. 9. The goodput of conformant EF and AF flows under the ACK

flooding attack.



flooding attack and the robustness of tIP router to the same
attack. Note that the conformant EF flow is carried by UDP,
but the AF one is carried by TCP.

4.3 Service Differentiation

In the experiments of service differentiation, the link
capacity between an edge router and a core router is
3 Mbps, but that between two core routers is 1 Mbps. We
study the TCP flows and measure their ACK loss rate and
effective throughput, where we not only compare the
tIP router with the existing DiffServ, but also with the
marking scheme for TCP ACKs proposed in [28]. The
simulation network topology for service differentiation is
shown in Fig. 10, which is a relatively simple, yet
sufficiently representative topology for validating end-to-
end TCP performance. The experimental configuration is as
follows: Three targeted TCP connections are established
from S1 to C1, which receive premium, assured, and best-
effort services, respectively. In addition to the three targeted
TCP connections, two more TCP connections carry BE data
from S2 to C2. All of them have infinite amounts of data to
send, i.e., with commonly used “persistent” sources.

With respect to the direction of targeted TCP data flows,
we name the path R3 ! R1 the forward path and the path
R1 ! R3 the backward path. The resources along the forward
path R3 ! R1 are properly provisioned for the premium
and assured forwarding traffic, but the remaining network
resources are periodically exhausted by the BE traffic,
causing random data losses to occur in the forward path.

On the backward path R1 ! R3, similar background
traffic is generated between Ei to Fi and shares the same
path with the targeted ACK flows. The background traffic is
a mixture of premium, assured, and BE traffic. Compared to
the simulation configuration in the forward path, there are
two key differences in the backward path:

. the network resources for the premium and assured
services in the background traffic are underprovi-
sioned, and

. the BE traffic consists of not only TCP flows but also
UDP flows, which causes severe congestion in the
backward path, thus resulting in bursty packet
losses.

4.3.1 The Simulation Results

The ACK loss rates of targeted TCP connections are plotted
in Fig. 11 and the effective throughputs of the targeted TCP
connections are plotted in Fig. 12. The simulation results
show us that:

. the tIP router provides better service isolation for
ACK flows, significantly lowering the ACK loss rate
and increasing effective throughput, and

. the ACK marking scheme cannot support service
isolation for ACK flows when network resources are
under-provisioned, thus resulting in bursty ACK
losses and, hence, degrading TCP performance
significantly.

For EF and AF traffic, the ACK loss rates of Marking are

much lower than those of Existing, but are much higher

than those of the tIP router. Moreover, most of ACK losses

are bursty rather than random, lowering effective through-

put. For EF traffic, the main reasons for bursty ACK losses

are: 1) To support low delay for EF traffic, the buffer space

for premium service is very small and can only accom-

modate one or two data packets; 2) the size of a data
segment is much larger than that of an ACK. Once the

buffer has been filled with one or two data segments, the

subsequent incoming ACKs will be dropped.
In the Existing and Marking DiffServ architectures,

AF traffic shares the same FIFO queue with BE traffic, but

AF packets are much less likely to be dropped than BE ones.

However, without proper resource provisioning for ACK

flows, the ACKs are more likely to be marked as high drop-

precedence packets at edge routers due to the corresponding

traffic profile violation. Under severe congestion, all the

packets marked with high drop-precedence will be dropped,

causing bursty ACK losses. Since bursty ACK losses cause

much severer degradation to TCP performance than random

882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

Fig. 10. The simulated network topology for service differentiation.

Fig. 11. The ACK loss rate in different DiffServ architectures.

Fig. 12. The effective throughput in different DiffServ architectures.



ACK losses, even modest ACK loss rates for EF and AF can
greatly reduce their effective throughput.

As the Existing DiffServ, the ACK marking scheme
provides no improvement to BE traffic. BE ACKs experi-
ence a high loss rate in the backward path because of the
congestion caused by the UDP flows in the background
traffic. Furthermore, due to data losses in the forward path,
an ACK loss for retransmission in the backward path leads
to a timeout, reducing cwnd to 1, triggering a slow-start and,
hence, degrading effective throughput significantly.

In contrast, the tIP router architecture significantly
improves the performance of BE TCP traffic thanks to its
resource isolation between UDP and TCP flows, as well as
between ACKs and TCP data segments within the BE class.
The tIP router not only provides better service quality to
high-tiered services, but also significantly improves the
performance of BE TCP sessions.

Note that, although the TCP version in our simulation
experiment is New-Reno, most of the simulation results in
this paper are applicable to all TCP variants for the
following reasons. First, the TCP behaviors after a retrans-
mission timeout for all of these schemes are similar. TCP
variants differ only in the way of recovering from packet
losses after a fast retransmit. Second, the ACK losses in the
reverse path only lead to a timeout or slower congestion
window growth, but cannot trigger a fast retransmit.

5 CONCLUSIONS

We presented a transport-aware IP router architecture to
provide layer-4 service differentiation and resource isola-
tion. The key components of the tIP router architecture are
the fine-grained QoS classifier and the adaptive weight-
based resource manager. A two-stage packet classification
mechanism is devised to decouple the fine-grained QoS
lookup from the routing lookup at core routers. BAs are
further divided into thinner aggregates. By using separate
queues and adaptive-weighted bandwidth allocation, better
service differentiation and resource isolation are achieved
for these thinner aggregates.

We evaluated the performance of the tIP router
architecture by simulation. The simulation results show
that:

. it provides a built-in protection mechanism to
counter DDoS attacks: The flooding traffic is
significantly throttled and most of them is dropped
in a close proximity to their sources;

. the resource isolation of the tIP router protects the
normal traffic from the flooding traffic that belongs
to a different transport protocol;

. the tIP router guarantees that high-tiered TCP
sessions receive better service and, hence, yield
better performance in terms of loss rate, end-to-end
delay, and effective throughput than low-tiered TCP
sessions;

. it not only achieves better service quality for high-
tiered services, but also significantly improves the
performance of BE TCP sessions.

Furthermore, the simulation results demonstrate that a
simple ACK marking scheme does not provide good service
differentiation and resource isolation for ACK flows when

network resources are underprovisioned. It exposes the

vulnerability of EF and AF traffic to the ACK flooding

attacks. The tIP router architecture is therefore necessary to

provide better network QoS to TCP sessions and is a simple

yet powerful built-in protection mechanism to counter

DDoS attacks.
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