
Multiagent Planning for Agents
with Internal Execution Resource Constraints
Haksun Li

The University of Michigan, Ann Arbor
1101 Beal Avenue

Ann Arbor MI 48109-2110, USA
1-734-327-7907

haksunli@engin.umich.edu

Edmund H. Durfee
The University of Michigan, Ann Arbor

1101 Beal Avenue
Ann Arbor MI 48109-2110, USA

1-734-936-1563

durfee@umich.edu

Kang G. Shin
The University of Michigan, Ann Arbor

1301 Beal Avenue
Ann Arbor, MI 48109-2122

1-734-763-0391

kgshin@eecs.umich.edu
ABSTRACT
We study how agents can cooperate to revise their plans as they
attempt to ensure that they do not over-utilize their local resource
capacities. An agent in a multiagent environment should in
principle be prepared for all environmental events as well as all
events that could conceivably be caused by other agents’ actions.
The resource requirements to execute such omnipotent plans are
usually overwhelming, however. Thus, an agent must decide
which tasks to perform and which to ignore in the multiagent
context. Our strategy is to have agents selectively communicate
relevant details of their plans so that each gets a sufficiently
accurate view of the events others might cause. Reducing
uncertainties about the world trajectory improves the agents’
resource allocation decisions and decreases their resource
consumptions. In fact, our experiments over a sample domain
show that, on average, 50% of an agent’s initial actions are
planned for states it can discover it will never reach. The protocol
we develop in this paper thus discovers futile actions and reclaims
resources that would otherwise be wasted.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– coherence and coordination, multiagent systems.

General Terms
Algorithms, Performance, Design, Experimentation

Topics/Keywords
Coordination of multiple agents/activities & Coordination
infrastructures, Action selection and Planning for agents

1. INTRODUCTION
In a dynamic, multiagent environment, an agent (e.g., a car driver)
needs to be prepared to react to events arising naturally in the
world (e.g., rockslides in the road) as well as those due to the
actions of other agents (e.g., merging traffic). In this paper, we
distinguish between two types of events. A natural event is one
that may occur regardless of the activities of the agents in the
world. We call it an unconditional event. In contrast, the other
events occur because other agents explicitly choose to take some
actions. We call them conditional events.

An ideal agent could manage its resources in order to be prepared
to respond rapidly and correctly to all events of both types to

guarantee hard real-time performance1 [14]. We define execution
resources as those that an agent needs to implement and operate
its plan. They include the perceptual, effectual, and reasoning
capabilities of the agent during execution. This is different from
and complementary to the deliberation resources studied in the
anytime literature. For example, given enough deliberation time,
an ideal car driver could theoretically know exactly what to do in
all possible circumstances (such as with an exhaustive policy of
stimulus-response rules), and would be able to enact those
reactions instantaneously. Real car drivers, however, cannot
monitor their surroundings and react instantaneously. An agent’s
resources for following a policy can be constrained, perhaps
because of sensory limitations (e.g., the driver cannot look
between the front, the rear-view mirror, and the dashboard fast
enough), or actuator limitations (e.g., the driver cannot steer the
car, apply the emergency break, turn on the emergency flashers,
and honk the horn all at the same time).2 Realistic agents, with
execution resource constraints, may have to give up on
guaranteeing timely responses to some events so as to concentrate
their resources on meeting more important demands (e.g., the
driver might focus on traffic ahead at the expense of missing signs
for an exit). Agents also might modify their behaviors to elongate
reaction times for events (e.g., drive more slowly), adopt
restrictions on their behaviors to eliminate some dangerous
controllable events (e.g., drive on the right), and share information
to help each other know what conditional events to be prepared
for (e.g., use directional signals).

Our ongoing research efforts are devoted to studying the strategies
by which an agent that has execution resource constraints, or a
group of such agents, can efficiently make decisions about how to
manage their resources so as to perform their tasks effectively
despite the uncertainties inherent in the dynamic, multiagent
environment. Elsewhere, we have described a strategy that an
agent can use to compute the probabilities of various events
occurring so as to devote its limited resources to being prepared
for the most likely events [9]. The agent prioritizes its use of
resources by planning for events in order of their occurrence
probabilities, and unlikely events are ignored in case of
insufficient resources. In a multiagent environment, the
uncertainties about the plans of other agents impair the accuracy
of those probability computations, which in turn degrades the

1 A hard real-time agent is not a fast agent, but is an agent that

must reliably meet the deadlines of all its tasks/actions.
Otherwise, it is considered to have failed its mission completely.

2 Agents might also have external resources that are shared with
other agents, such as communication channels. In this paper, we
will only focus on an agent’s internal (execution) resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS’03, July 14-18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007…$5.00.

560

quality of resource allocation decisions. Moreover, those
uncertainties prevent agents from “envisioning” similar future
situations, so they may not agree on their expected interactions.

In this paper, we exploit the fact that many of the events of
concern to one agent are conditional on the choices of other
agents. Thus judicious communication among the agents can
allow them to develop a more coherent view of the global
activities. They can recognize which events are most important to
prepare for, as well as which events are assuredly not going to
occur. Note that we do not assume the agents are collaborating to
solve a common problem. Instead, we assume the agents are
loosely coupled but cooperative enough that they are willing to
share information. They have different goals. Therefore, this
paper is not about coordinating multiple agents to work together
to achieve shared objectives, but rather it is about what
information an agent, facing the uncertainties caused by other
agents, should acquire from them to make better local resource
allocation decisions as it otherwise works independently.
Specifically, the contributions of this paper are that we model the
problem of handling execution resource constraints in the context
of multiagent planning, and from this context we derive a
communication protocol that can be formally analyzed and
coupled with heuristics to improve a real-time agent’s
performance in dynamic, multiagent domains.

2. CIRCA BACKGROUND
The Cooperative Intelligent Real-time Control Architecture
(CIRCA) models the interactions between actions and
(conditional and unconditional) events explicitly, taking into
account the real-time aspects of execution [1, 10]. CIRCA selects,
schedules, and executes recognition-reactions assuming a
resource-limited execution platform. There are two main
subsystems in CIRCA, the Artificial Intelligence Subsystem (AIS)
and the Real-Time Subsystem (RTS). The RTS executes the real-
time control plans (see below) pre-computed by the AIS. Inside
the AIS are the probabilistic planner and the scheduler. The
planner generates a set of recognition-reactions, formally called
Test-Action-Pairs (TAPs), by searching through the state space to
determine the appropriate reactions for hazardous states. The
period for each TAP is also chosen to ensure a sufficiently rapid
response to preempt the emerging hazard.

The recognition test in a TAP is done by actively performing
actions to collect data or monitor for the relevant aspects of the
world, e.g., watching ahead of the car for looming obstructions. A
reaction is only executed if the world matches the state description
in the corresponding recognition test. As the progress of the world
is uncertain, and dangerous events can happen sporadically, the
RTS must check whether the reactions should be executed by
continuously looping over the schedule of recognition tests
frequently enough. The scheduler, based on the resource
constraints of the RTS, schedules the set of recognition-reactions
(TAPs) according to their periods chosen by the planner. A
CIRCA control plan, composed of a scheduled set of recognition-
reaction pairs, is therefore a cyclic (periodic) real-time schedule of
TAPs. (TAPs are also referred to as “actions” in this paper.)

Because the scheduler is working with a RTS with limited
resources, it could be that not all of the desired TAPs found by the
AIS can be scheduled. For example, the processor utilization of
each TAP is u = sum of the worst-case testing and execution times
for the TAP divided by its period. When the sum of the utilizations
of all TAPs exceeds 1, no schedule is possible. When this
happens, CIRCA computes the probabilities, called state

probabilities, of the agent reaching different states based on its
local state diagram. It finds a subset of the TAPs by removing
those planned for states with state probabilities below a threshold.
It keeps increasing this threshold until a schedulable subset is
found. We call this the unlikely state (cutoff) heuristic3. It is a
greedy search that lets an agent to devote its insufficient resources
to responding to events that are most likely to occur [9].4

CIRCA attempts to minimize the probability of failure and
maximize the probability of reaching goals. The failure
probability may increase when the unlikely state heuristic is
applied because some TAPs required to preempt possible (though
less likely) hazards are removed. Consequently, the utility
decreases. We distinguish between necessary and unnecessary
actions (TAPs). Necessary actions are those that an agent may
have to perform during execution to preempt some hazards.
Unnecessary actions are those that the agent includes in its plan
due to its ignorance about the plans of other agents. The agent will
test them but never execute the corresponding reactions. However,
it does not know this during planning unless the agents
communicate. Using our terminology from Section 1, necessary
actions are planned for unconditional events and some conditional
events, while unnecessary actions are planned for those
conditional events that will not arise5. Those unnecessary actions
can be safely removed from the agent’s plan to free up resources
without raising the failure probability. Therefore, an agent should
not remove any necessary actions by using the unlikely state
heuristic before it gets rid of all unnecessary ones. To determine
which actions are necessary and which are unnecessary, however,
requires a partially global view of the multiagent activities. The
main theme of this paper is about how agents can exchange
enough relevant information about their plans so that they can
identify and remove enough unnecessary actions. They can also
compute more accurately the true state probabilities.

The CIRCA state-space representation of the world is similar to
STRIPS. It is constructed from a set of state propositions, called
state features, and actions and events, called transitions, included
as part of a planner knowledge base (KB). A state consists of a set
of state features that describe the different aspects of the world. A
state in the world model is created dynamically by applying a
transition to its parent state. There are two types of transitions.
Action transitions are explicitly controlled by the plan executor in
the RTS, and thus only occur when selected during planning.
Events outside the system’s control are modeled as temporal
transitions, either innocuous temporal transitions (labeled tt) or
deleterious temporal transitions leading to system failure (labeled
ttf). A temporal transition, whether it is a tt or ttf, is described by a
precondition, an effect (which we call a postcondition), and a
probability function. The probability function describes the

3 This heuristic assumes that all failures are equally bad.

Otherwise, we could use the disutilities of the failures
discounted by their state probabilities.

4 If different types of failure incur different penalties, then this can
be coupled with the probability information so that the actions
that prevent smaller expected penalties are preferentially
removed.

5 Some conditional events may occur. Their corresponding actions
are thus necessary.

6 When we refer to a temporal transition (tt), we could also mean a
temporal transition to failure.

561

probability of a transition happening as a function of the time
since it was enabled, independently of other transitions. When
there is a ttf in a state, CIRCA plans a TAP to preempt the hazard.
It also chooses the TAP period, to guarantee completion before
the ttf occurs, up to a pre-defined probability threshold.
Preempting actions are called guaranteed actions.

A typical state diagram for planning is shown in Figure 3-1. It is a
partial state diagram for an agent named FIGHTER. Action
SHOOT-MISSILE-1 is a guaranteed action to preempt the ttf
BEING-ATTACKED. There is another type of action, called
reliable actions that here we assume are also scheduled with real-
time deadlines and thus utilize resources. However, they do not
preempt any explicit failures. Action HEAD-TO-LOC1 is a
reliable action that steers the fighter toward location LOC1.

A CIRCA agent in a multiagent environment builds on the single
agent architecture. It is augmented with the ability to distinguish
between private (local) features and public (shared) features. An
agent’s private features are those that no other agents are
interested in, such as its current fuel level. Private features do not
appear in the state diagrams of other agents. Public features are
those features that more than one agent is interested in. An agent
includes in its feature set only the public features that it cares
about. Thus, different agents may have different sets of public
features. It is through manipulating the public features that agents
impact each other. For example, in Figures 3-1 and 5-1, COMM
and ENEMY are public features shared by both BOMBER and
FIGHTER, while HEADINGF and LOCF are private features that
are accessible only to FIGHTER.7

Furthermore, a CIRCA agent in multiagent applications includes
in its knowledge base some public temporal transitions and public
action transitions of other agents (labeled ttac). Those transitions
are the temporal transitions and actions that affect the public
features it cares about. From the perspective of the agent, both the
temporal transitions (tts) in the environment and the actions of
other agents (ttacs) are alike. Both are beyond the control of the
agent. In contrast, private temporal transitions and private actions
of another agent do not include in their postconditions any public
features but only private features. For instance, B:BOMB-1 and
B:BOMB-2 are public actions of BOMBER in Figure 3-1, while
the action HEAD-TO-LOC1 is private for FIGHTER. The
temporal transitions FLY-TO-LOC0, FLY-TO-LOC1, and FLY-
TO-LOC2 are private for FIGHTER. In Figure 5-1, there are
temporal transitions of the same names but they are private for
BOMBER. There is no public temporal transition in this example.
To date, CIRCA treats transitions independently, modeling
concurrent activities only as a series of separate transitions. It
does not model concurrent activities whose effects when taken in
concert differ from their additive effects.

Differentiating between private and public features lets an agent
model only the relevant aspects of the world. The agent does not
need to know the entire plans of other agents, but only those parts
affecting the public features. Since a state represented by an agent
does not include the private features of other agents, it may
correspond to a group of states represented by those agents. As the
number of states is exponential in the number of features, this
abstraction significantly reduces planning complexity and state
diagram sizes.

7 The special feature “FAILURE” for an agent is always private.

3. REACHABILITY ANALYSIS
To succeed in a multiagent environment, a rational agent needs to
envisage what actions other agents might take, and choose its own
actions based on these predictions. Other agents cannot be
expected to know what constitutes failure for the agent (which
could in part be based on its private features), nor can they
promise not to affect negatively the public features. To play it
most safe, the agent must consider and plan for all states that it
foresees due to the transitions in the environment (unconditional
events) as well as all possible actions executed by other agents
(conditional events). Regardless of whether a state is reachable by
a sequence of temporal transitions (tts) or a sequence of others’
actions (ttacs) or a combination of both, the agent needs to expend
resources to schedule an action to preempt any hazards in the
state. We call such an analysis a reachability analysis. A state
diagram generated by a reachability analysis is called a
reachability graph. Figure 3-1 is the reachability graph of a
fighter patrolling nearby two locations after any potential
activities there by BOMBER. It includes in its planning, hence the
state diagram, all public actions by BOMBER.

COMM = F
ENEMY = F

HEADINGF = NULL
LOCF = LOC0
FAILURE = F

COMM = F
ENEMY = F

HEADINGF = LOC1
LOCF = LOC0
FAILURE = F

COMM = F
ENEMY = F

HEADINGF = NULL
LOCF = LOC1
FAILURE = F

COMM = F
ENEMY = T

HEADINGF = NULL
LOCF = LOC1
FAILURE = F

FLY-TO-LOC1

HEAD-TO-LOC1

B:BOMB-1

SHOOT-MISSILE-1

COMM = F
ENEMY = T

HEADINGF = NULL
LOCF = LOC1
FAILURE = T

BEING-ATTACKED

COMM = F
ENEMY = F

HEADINGF = LOC2
LOCF = LOC1
FAILURE = F

HEAD-TO-LOC2

COMM = F
ENEMY = F

HEADINGF = NULL
LOCF = LOC2
FAILURE = F

FLY-TO-LOC2

COMM = F
ENEMY = T

HEADINGF = NULL
LOCF = LOC2
FAILURE = FB:BOMB-2

SHOOT-MISSILE-2

COMM = F
ENEMY = T

HEADINGF = NULL
LOCF = LOC2
FAILURE = T

BEING-ATTACKED

COMM = F
ENEMY = F

HEADINGF = LOC0
LOCF = LOC2
FAILURE = F

HEAD-TO-LOC0

FLY-TO-LOC0

State Diagram for
FIGHTER

INITIAL
STATE IN

RECTANGLE

GOAL
STATE
WITH

DOTTED
EDGE

TT OR TTAC

ACTION

FAILURE
STATE
WITH
THICK

BORDER

PUBLIC FEATURES/
ACTIONS/TEMPORALS IN

ITALIC
PRIVATE FEATURES/

ACTIONS/TEMPORALS/
TTACS IN NORMAL

Figure 3-1: The (Partial9) Reachability Graph for FIGHTER10

However, just because another agent is capable of taking an action
does not mean that it will take that action, meaning that

8 All actions are either guaranteed (e.g. SHOOT-MISSILE-1) or

reliable actions (e.g. HEAD-TO-LOC1). This holds true also for
Figure 5-1.

9 For space reasons, this graph omits some B:BOMB-1 and
B:BOMB-2 transitions. They do not affect the final plan.

10 All actions are either guaranteed (e.g. SHOOT-MISSILE-1) or
reliable actions (e.g. HEAD-TO-LOC1). This holds true also for
Figure 5-1.

562

anticipating all possible actions on the part of other agents
requires an agent to prepare for states that might never arise. We
call those states unreachable states. In contrast, reachable states
are those states that the agent may reach during execution.
Unreachable states are included in a reachability graph only
because of ignorance. The actions planned for the unreachable
states are unnecessary actions and can be removed if they can be
recognized as such.

Forming control plans based on such a straightforward
reachability analysis suffices only when an agent has enough
resources to handle all contingencies. In this ideal case, it can
disregard (and be proudly ignorant about) the plans of other
agents. Regardless of which of the known possible actions the
other agents choose, and which potential states it may thus
encounter, it can always execute the proper reactions fast enough
to avoid failures. On the other hand, the agent may be unable to
schedule all the actions for all the states that it thinks it may
encounter due to over-utilization of resources.

This paper views the problem of how an agent decides how much
it needs to know about the plans of other agents as a type of
multiagent planning problem. Although an agent might not be
able to change the actions chosen by another agent, knowledge
about those choices can reduce uncertainties for its own planning,
thus allowing better resource allocation decisions to be made. Our
strategy to solve the limited resource allocation problem for a
group of independent but communicating agents is therefore to
have them first construct the worst-case resource consumption
scenarios, i.e., the reachability graphs. These can inevitably
include states that are reachable conditional upon the execution of
certain actions by other agents. The agents can then incrementally
exchange details about their plans to each form more precise
views of the future. While an agent must expend resources to
prepare for all unconditional events, it can avoid wasting
resources on conditional ones it learns for sure will not happen.

4. CONVERGENCE PROTOCOL
We have developed a protocol that allows agents to exchange
information about the intersecting parts of their plans. The agents
can reduce resource consumptions by lowering the uncertainties in
modeling the events caused by each other, in case of insufficient
resources. Agents identify unreachable states in the state diagrams
and eliminate the associated actions from their tentative plans. For
instance, in Figure 3-1, when FIGHTER is unable to guarantee
real-time performance to both SHOOT-MISSILE-1 and SHOOT-
MISSILE-2, knowing which location BOMBER is not going to
removes the corresponding shoot-missile action from its plan. We
assume that the agents perform the protocol after they have locally
formed their reachability graphs and have selected all actions they
would like to take (as if there were no resource constraints). The
protocol is described using C-like code in Figure 4-1.

An uncertain point of interest in the graph is a combination of a
state and a set of mutually exclusive ttacs. A set of ttacs in that
state corresponds to the alternative action choices of another agent
out of which it will choose one or none. As multiple agents can
plan for a state, there could be multiple sets of ttacs. When
choosing an uncertain point, the agent picks a state as well as
another agent planning for the state, i.e., a particular set of ttacs.
Each ttac, if planned by another agent, is a realizable branch in
the state diagram that consumes certain resources. A branch from
a state is a subgraph from a transition in that state. On the other
hand, if a ttac is not planned, the branch is not realizable during
execution. It can safely be pruned from the state diagram. All

actions planned for the descendant states of the branch are
subsequently removed (unless the states can be reached via other
viable transition paths), making scheduling easier.

The Convergence Protocol inquires about the states in descending
order of the estimated resource consumption reduction if the
unplanned actions of another agent in a state are removed. We
postpone the discussion of picking the next uncertain point
(labeled *) until Section 6.

Inquiring agent () {

Choose the uncertain point that gives the biggest estimated
utilization reduction; //*

Ask the corresponding agent which action(s) it will take;

Upon receiving an answer, update the state diagram and drop
unnecessary actions from the local plan;

Loop until either the resource constraints are satisfied or all
uncertain points are examined;

}

Answering agent () {

When (being asked by another agent about an uncertain point) {

Identify the corresponding state(s) in the local graph;

Reply with the action(s) (or none) planned for the state(s);

Record the agent’s name with the state(s);

}

If (an action is removed from its state diagram/plan) { //**

Inform all agents with names recorded with the state that the
action is no longer planned for that state;

}

}
Figure 4-1: The Convergence Protocol

If all features are public, then all agents have the same features.
There is a one-to-one correspondence between the states in any
two agents’ state diagrams. The answering agent can uniquely
identify the state (if it exists) that the inquiring agent is asking
about. As there can only be one planned action in a state for a
CIRCA agent, it will reply with the single action planned (if it
exists) for the inquired state. All but one ttac in that state can be
eliminated in the state diagram of the inquiring agent. However,
agents that distinguish between public and private features
(Section 2) do not usually share all features. Instead of sending all
its state features, the inquiring agent sends a more abstract state
description, consisting of only public features and their values.
The answering agent may have more than one state in its local
state diagram that matches the abstract description. It must reply
with all the actions planned for those matching states.
Accordingly, the inquiring agent must plan for more than one ttac
in that state.

It is important to point out that an agent is asking which action
another agent would execute if that other agent reaches a state.
The answer can be found simply by looking up the TAPs in its
reachability graph. If the agent is asking whether another agent
will execute an action, that other agent may not be able to answer
at all. The answer depends on its certainty about which states it
will encounter during execution. It cannot be certain of the
reachability without the complete plans from all other agents. As
the agents are refining their plans concurrently and
asynchronously, there are no such complete plans before the
multiagent planning process finishes. We are in the process of

563

extending the protocol so the agents can start exchanging useful
details to let other agents prune their search spaces earlier on.
Moreover, the reachability graphs of agents can be very different.
Some states may be in some graphs but not in others. In fact,
agents typically do not even have the same sets of state features.
Some agents may think that certain states are reachable while
others may think otherwise. For the example in Figure 3-1,
FIGHTER thinks that enemies appear at LOCF == LOC2, while
BOMBER may not concur. In case of insufficient resources for
agents to handle all states in their respective state spaces, the
Convergence Protocol allows them to gradually and cooperatively
discover which states are indeed reachable by exchanging only the
relevant details of their plans. They are able to refine their
individual plans by converging toward a set of commonly agreed-
upon reachable states until their resource constraints are satisfied.
Note that they do not need to agree completely on the set of
reachable states so all agents have the same state diagrams. The
beauty of our protocol is that they only have to use it until they
can schedule all their remaining actions after pruning enough
unnecessary ones. Even if an agent ends up allocating some
resources to situations that cannot possibly arise due to
incomplete knowledge, it is still acceptable if the agent has
enough resources relative to all the demands. If we require the
agents to have identical state diagrams, other (more costly)
protocols, such as [6], might work better.
If an agent fails to schedule for all remaining actions after
completing the Convergence Protocol, it resorts to the unlikely
state heuristic (Section 2) to remove the most unlikely (but
possibly necessary) actions. Even so, the agent still benefits from
engaging in the partial plan exchange by having a more informed
model of the plans of other agents. Otherwise, it might have
removed more necessary actions in order to satisfy its resource
constraints yielding an even lower agent utility.
The part of the protocol marked by (**) speeds up the pruning
process of other agents by broadcasting to those who have
previously inquired about (and therefore have shown interest in) a
state if an action is no longer planned for that state.
Clearly, the Convergence Protocol terminates. In the worst case, it
terminates after all agents examine all uncertain points in their
reachability graphs. As the protocol examines the states
exhaustively, an agent will move toward satisfying its resource
constraints by pruning the unnecessary temporal trajectories. If
the agent starts with sufficient resources to prepare for all that are
necessary, then it is guaranteed to find a plan that schedules all the
actions. An agent’s utility is not compromised if it can schedule
for all actions after running the protocol because the protocol
always removes actions that are assured to be unnecessary. Its
utility decreases only when it drops some necessary actions by
raising the probability threshold. Therefore, the order of inquiries
agents make about the action choices of others is irrelevant to its
utility. Similarly, the order of communication among agents is
also irrelevant to the utility. Regardless of when an agent asks
about a state, it will always get the most recent information about
that state (by **) before it has to raise the probability threshold. In
essence, what the agents ultimately end up finding as the
definitely reachable states will be unaffected by the order in which
states not in the intersection are pruned.
5. DEMONSTRATION
We now continue our story in Figure 3-1. We demonstrate how
our strategy lets agents cooperatively create a more coherent
picture of the global activities. By reducing uncertainties in
modeling other agents’ plans in case of insufficient resources,
agents may decrease their resource consumptions. A bomber

(BOMBER) is given a mission to attack one of the two locations.
After it attacks a location, enemy aircraft could arrive to retaliate.
A fighter (FIGHTER) is assigned to patrol around the locations to
repel the enemy aircraft whenever they arrive. Also, if FIGHTER
requests a response from BOMBER, BOMBER has to report its
status at LOC2. The complete state diagram (reachability graph)
for BOMBER is shown in Figure 5-1.

C O M M = F
E N E M Y = F

H E A D IN G B = N U LL
LO C B = LO C 0

TA R G E T1 = IN TA C T
TA R G E T2 = IN TA C T

FA ILU R E = F

C O M M = T
E N E M Y = F

H E A D IN G B = N U LL
LO C B = LO C 0

TA R G E T1 = IN TA C T
TA R G E T2 = IN TA C T

FA ILU R E = F

F:S IG N A L-C O M M

C O M M = F
E N E M Y = F

H E A D IN G B = LO C 1
LO C B = LO C 0

TA R G E T1 = IN TA C T
TA R G E T2 = IN TA C T

FA ILU R E = F

H E A D -TO -LO C 1

C O M M = T
E N E M Y = F

H E A D IN G B = LO C 1
LO C B = LO C 0

TA R G E T1 = IN TA C T
TA R G E T2 = IN TA C T

FA ILU R E = F

H E A D -TO -LO C 1 F:S IG N A L-C O M M

C O M M = T
E N E M Y = F

H E A D IN G B = N U LL
LO C B = LO C 1

TA R G E T1 = IN TA C T
TA R G E T2 = IN TA C T

FA ILU R E = F

FLY -TO -LO C 1

C O M M = T
E N E M Y = T

H E A D IN G B = N U LL
LO C B = LO C 1
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

B O M B -1

C O M M = F
E N E M Y = F

H E A D IN G B = N U LL
LO C B = LO C 1

TA R G E T1 = IN TA C T
TA R G E T2 = IN TA C T

FA ILU R E = F

FLY -TO -LO C 1

F:S IG N A L-C O M M

C O M M = F
E N E M Y = T

H E A D IN G B = N U LL
LO C B = LO C 1
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

B O M B -1

F:S IG N A L-C O M M

C O M M = T
E N E M Y = T

H E A D IN G B = LO C 2
LO C B = LO C 1
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

H E A D -TO -LO C 2

C O M M = F
E N E M Y = T

H E A D IN G B = LO C 2
LO C B = LO C 1
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

H E A D -TO -LO C 2

F:S IG N A L-C O M M

C O M M = T
E N E M Y = T

H E A D IN G B = N U LL
LO C B = LO C 2
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

FLY -TO -LO C 2

C O M M = F
E N E M Y = T

H E A D IN G B = N U LL
LO C B = LO C 2
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

R E S P O N D -C O M M
F:S IG N A L-C O M M

FLY -TO -LO C 2

C O M M = F
E N E M Y = T

H E A D IN G B = LO C 0
LO C B = LO C 2
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

H E A D -TO -LO C 0

C O M M = F
E N E M Y = T

H E A D IN G B = N U LL
LO C B = LO C 0
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

FLY -TO -LO C 0

C O M M = T
E N E M Y = T

H E A D IN G B = LO C 0
LO C B = LO C 2
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

F:S IG N A L-C O M M

R E S P O N D -C O M M

C O M M = T
E N E M Y = T

H E A D IN G B = N U LL
LO C B = LO C 0
TA R G E T1 =
D E S TR O Y E D

TA R G E T2 = IN TA C T
FA ILU R E = F

F:S IG N A L-C O M M

FLY -TO -LO C 0

Figure 5-1: The Reachability Graph for BOMBER
Both FIGHTER and BOMBER (Figures 3-1, 5-1) have 5 actions
to schedule if they do not know about the plan of the other agent.
Suppose the resource constraints are simplified such that each
agent can schedule only 4 TAPs. Both agents exceed their
capacities. By running the Convergence Protocol, FIGHTER asks
BOMBER what actions it plans when ((COMM == F) &&
(ENEMY == F)).11 BOMBER replies that it is going to do only
BOMB-1.12 Then FIGHTER can safely remove the children of the
ttac B1:BOMB-2, hence the action SHOOT-MISSILE-2, from its
state diagram and tentative plan. Likewise, BOMBER will
discover that FIGHTER does not signal BOMBER to respond at
LOC2. So, BOMBER can safely remove RESPOND-COMM
from its plan. As a result of communication using the
Convergence Protocol, both of them have only 4 TAPs left for

11 Recall agents communicate only public features and actions.
12 BOMB-1, BOMB-2, and RESPOND-COMM are the only

public actions for BOMBER.

564

scheduling. Both agents in this case can satisfy their local
resource constraints: neither resorts to using the unlikely state
heuristic to drop actions. So, no agent’s utility is compromised.
6. CHOICE FUNCTIONS
One implicit assumption in our work is that exchanging
information costs something. Otherwise, agents would simply
dump their entire plans or reachability graphs to other agents.
Also, not only does an agent need to identify what to
communicate but it also has to answer inquiries made by other
agents. Therefore, agents should reduce their planning costs by
minimizing the number of inquires made.
The part of the Convergence Protocol marked by (*) applies a
heuristic choice function to choose what the next best uncertain
point is. The more effective a choice function is, the sooner the
protocol leads an agent into finding a satisfying plan, and the less
computation and communication the agent does. In general, the
states that are closer to the initial states and have more ttacs
(alternative actions of one or more other agents) should be
examined with priority. These states tend to have more
downstream children, hence more planned actions taking up
resources. So, they tend to free up more resources if removed.
We have considered the following heuristics. They are listed in
order of increasing complexity.

1. Random Choice Function: The agent inquires about a
random state. This heuristic serves as a benchmark.

2. Sequential Choice Function: The agent inquires about
the states in the order of their expansions during
planning. If the state expansion is a breadth-first search,
then the states closer to the initial states tend to be
examined before others.

3. Distance Choice Function: The agent inquires about the
states in ascending order of their distances to the initial
states. The distance of a state is the minimal number of
transitions that take the agent from any of the initial
states to the state.

4. Load Choice Function: The agent inquires about the
states in descending order of their numbers of actions
per branch. The idea is to prune actions as fast as
possible. Not all actions have the same utilizations.

5. Utilization Choice Function: The agent inquires about
the states in descending order of utilization per branch.

Each of these choice functions allows an agent to find satisfying
plans at different converging speeds. Figure 6-1 shows a sample
relation between the utility13 and the communication cost using
the Convergence Protocol with the simplest choice functions
(repeated experiments). The communication cost could be
computational, e.g., time, power, or bandwidth, and/or non-
computational, e.g., the risk of eavesdropping. In any case, we
simply measure cost as the number of inquiries exchanged. Note
that these curves are monotonic non-decreasing functions,
meaning that the agent never loses utility by decreasing
uncertainties about the global activities. Although we typically
use the Convergence Protocol offline, its anytime nature allows it
to be employed online as well. In that case, the choice function
becomes particularly important. Adopting an appropriate choice
function can dramatically reduce the costs. We discuss the
converging rates of our candidate functions in Section 8.

13 The utility is a weighted function of the probability of the agent

achieving its goals and the probability of remaining safe.

Figure 6-1: Varying Converging Speeds14

7. EVALUATION
To evaluate the merit of the Convergence Protocol, we have
generated a set of random domains. Each domain has a random
number of agents from 2 up to a maximum of 10. Each agent has
its own knowledge base. The knowledge base has 7 private and
public binary features (T/F) total. The number of public features
in a domain is random. It measures how tightly coupled the agents
are for that domain, i.e., how many features they have in common.
As any public feature is shared by all agents, the knowledge bases
for any given domain have the same number of public features.
There are 15 private and public actions combined, and 7 private
and public temporal transitions combined for each agent. The
compositions are random. The actions and temporal transitions are
generated such that they invert the values of a random number of
features. All knowledge bases for a domain contain the same set
of public temporal transitions and public actions.
We have generated 1126 agents (KBs) for 402 domains with
which we perform our experiments. The number of agents that are
able to schedule for all their TAPs before running the
Convergence Protocol is 202 (12.42%). The number of agents that
are able to schedule for all their TAPs after running the protocol is
704 (43.30%). In other words, 502 (30.87%) agents become able
to schedule for all their TAPs. For those agents that still fail to
schedule for all actions, they, nonetheless, drop fewer necessary
actions (by raising the probability threshold) than they otherwise
would have needed to. For our experiments, the reduction in the
number of necessary actions dropped is on average 59.55% with a
standard deviation 39.85%. As a result, the agents’ utilities are not
as compromised as they would otherwise be without running the
Convergence Protocol.
Furthermore, we measure how effective the Convergence Protocol
is by what we call action effectiveness and state effectiveness.
Action effectiveness is the percentage of unnecessary actions
removed by the protocol. Likewise, state effectiveness is the
percentage of unreachable states included in an agent’s
reachability graph but removed by the protocol. The average
effectiveness is 53.74% and the standard deviation is 29.45%.

14 We graph the results for only the sequential and the random

heuristics. For this simplified illustrative problem, the more
sophisticated heuristics are overkill and give the same results as
the sequential heuristic. But, they usually perform differently
depending on the domains. We show this in Section 8.

Utility vs. Rounds of Inquiries

0.7
0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1 3 5 7 9 11 13 15 17 19 21 23 25
Rounds of Inquiries

Utility

Sequential
Random1

Random2

Random3

Average (Random)

565

Table 8-1: Choice Function Efficiencies

12 .232.220.730.168.221.6524 .664.4023 .864.302.780.48standard
derivation

4.450.761.160.173.390.5913 .882.4012 .192.141.720.26average

U tilizatio n
(State)

U tilizatio n
(A ction)

-L o ad
(State)

-L o ad
(A ction)

L o ad
(State)

L o ad
(A ction)

D istance
(State)

D istance
(A ction)

Sequential
(State)

Sequential
(A ction)

R andom
(State)

R andom
(A ction)

C hoice
Functio n
E fficiency

Table 8-2: Communication Efficiencies

0.680.120.350.061.580.981.220.221.060.190.480.09standard
derivation

0.730.110.530.070.750.131.130.170.980.150.610.09average

Utilization
(State)

Utilization
(Action)

-Load
(State)

-Load
(Action)

Load
(State)

Load
(Action)

Distance
(State)

Distance
(Action)

Sequential
(State)

Sequential
(Action)

Random
(State)

Random
(Action)

Communication
Efficiency

Similarly, action effectiveness has an average of 51.74% and
standard deviation of 35.84%. The data suggest15 that more than
half of the resources, at least in our sample domains, are often
wasted when an agent is ignorant about the plans of other agents.
When the agents include in their planning all conceivable
interactions based on all public actions of other agents, very often
more than 50% of the states that they think they may encounter
are in fact not reachable. Communication is therefore very
important for resource-limited agents. Our protocol allows the
agents to remove those states from their state diagrams.

8. CHOICE FUNCTION EFFICIENCIES
To study the convergence speeds and overheads of various choice
functions, we define choice function efficiency and
communication efficiency. Choice Function Efficiency is
measured by the number of actions (states) removed per inquiry.
Based on the same set of experimental domains described in
Section 7, we get the statistics in Table 8-1.

As we had expected, inquiry priority measured in terms of
utilization (Utilization) is more efficient than in terms of number
of actions (Load). Surprisingly, the efficiency of a choice function
does not necessarily increase with its complexity. The Load and
Utilization choice functions are both worse than Sequential and
Distance choice functions, but are still better than Random. The
reason for the poorer performances of both Load and Utilization
heuristics is that they are considering the number of actions and
utilization per branch. Even if a state has many actions in its
children, those actions could concentrate in one of the many
branches of the state. The inquiry priority of the state, i.e.,
utilization per branch, is therefore “diluted” by those branches
with fewer actions.

Moreover, the data confirm our hypothesis that the states closer to
the initial states should be inquired about with higher priority
(Distance is the best among the 5 heuristics). They are the states
that have more actions (total number of actions rather than actions
per branch) and higher utilizations. An ancestor of a state has at
least as many actions as the state itself. As the choice functions
have different computation and communication costs, we can
trade computation time with communication overheads.

Although choice function efficiency tells us how efficient a choice
function is at getting rid of unnecessary actions (states), it does
not tell us how costly communication is using the Convergence

15 We say “suggest” because these statistics are gathered over a

sample domain and have large variances. They do not
necessarily apply to other unknown applications.

Protocol. Not only does an agent have to send one message per
inquiry, it also has to send messages to answer all inquiries from
other agents and update them of any removed actions. Even if the
agent itself has sufficient resources so that it never asks questions,
it may still have to answer a lot of inquiries made by other agents.
We would like to measure the overhead for an agent to
communicate using the Convergence Protocol as a member in a
group. We define communication efficiency as the number of
actions (states) removed per message sent. The communication
efficiencies for different choice functions are shown in Table 8-2.

Both tables show that action efficiencies are lower than state
efficiencies. This is because an action is often planned for more
than one state for CIRCA. Only when all these states are pruned
from the state diagram can the action be safely removed from the
plan. Also, some pruned states have no associated actions. These
states do not change the utilizations of plans. However, they give
the agents better ideas of what states they may visit and how the
world may evolve. The agents can also more accurately compute
state probabilities. Accordingly, they can better apply the unlikely
state heuristic to drop the least likely necessary actions in case of
very stringent resource requirements. As discussed in Section 4,
all choice functions give equal performance in terms of agent
utility and generate equivalent final plans for agents.

9. RELATED WORK
Most existing research on cooperative multiagent planning has
been focusing on generating compatible plans to avoid negative
interactions among agents. Techniques, such as negotiation [11],
plan merging [7], multiagent MDPs [2] and (Generic) Partial
Global Planning [5], have been developed to resolve conflicts.
These algorithms and protocols focus on how the plans of some
agents constrain the plans of other agents, but assume that each
agent has sufficient resources to carry out its plan once
coordinated. Our work does not make this assumption.

An important consideration in multiagent planning centers around
how much an agent knows ahead of time about the other agents.
At one extreme, it might know nothing; for many of the
approaches listed above, agents must exchange plan information
to begin to model each other. At the other extreme, coordination
approaches such as Social Laws [12] assume (in the offline case)
that agents know everything they need to know about each other
right from the beginning: any plan an agent makes that adheres to
the social laws is assured to be coordinated with the other law-
abiding agents. In the middle are approaches where agents have
some knowledge (for example, the organizational roles of others)
ahead of time, but need to exchange information to acquire more
situation-specific details [4]. Our work resides in this middle

566

ground, because we assume that our agents know everything
about what others might do under different eventualities. But, in
contrast with work where subsequent communication is to add
details to enlarge an agent’s view of how the world might unfold,
we instead view the purpose of communication as helping agents
rule out some of the choices that they had anticipated others might
make.

A wide variety of agent communication protocols have been
developed over the years, ranging from the early days of the
Contract Net [13] to recent work on conversation policies [8]. The
protocol we employ involves simple query-response interactions.
Of particular relevance is the work of Conry [3], where the
protocol was coupled with a decision-making strategy such that an
agent would decide to send a query when it got “stuck” in terms
of not being able to make further headway on solving its problem
without more input. Our protocol works in a similar vein, by
assuming that an agent will only request information from others
when it cannot make local action choices that are guaranteed to
achieve its objectives without violating its execution resource
constraints. In other words, each of its action choices utilizes
some fraction of its internal execution resources to carry out, and
the principal constraint an agent faces is that the set of actions
must be schedulable (Section 2). The choice functions in this
paper and in Conry’s serve the same role: to speed up the searches
by trying to identify the “right” information to acquire.

10. CONCLUSIONS
We see in the demonstration from Section 5 how our strategy
helps agents find satisfying plans in a distributed manner. The
agents first construct their reachability graphs and then iteratively
refine their plans using the Convergence Protocol. The agents
cooperatively determine the set of states for which they need to
react by exchanging partial plans to generate more coherent views
of their activities.

Our experiments suggest that it is often worthwhile for agents to
exchange partial details of their plans if they have inadequate
internal execution resources. More than 50% of the resources may
be wasted when they are ignorant about the plans of others. Our
data show the tradeoffs between complexity and efficiency of
various choice functions. When communication is costly but
computation time is not, we can adopt a choice function with a
higher efficiency to minimize the overhead, and vice versa.

One major drawback of this approach is that it requires the agents
to construct the entire reachability graphs before they start to talk.
A reachability graph is an explicit representation of the complete
search space, not only of the agent itself but extended with its
knowledge of external events that might happen. It could be too
demanding on the part of the agent if the entire graph is to be
generated and kept in memory. We are in the process of
improving the Convergence Protocol so that the agents start
communication earlier as they construct their reachability graphs.
This can cut down on time spent on searching unreachable states,
and space storing the unused portions of their plans. Moreover, as
the agents interleave plan/reachability graph construction and
communication, we expect that they can generate better plans than
they do now.

11. ACKNOWLEDGMENTS
This research was supported in part by DARPA/AFRL Contract
F30602-00-C-0017. We also thank Dmitri Dolgov, Dave
Musliner, and the anonymous reviewers for their helpful
comments.

12. REFERENCES
[1] Atkins, E. M., Abdelzaher, T. F., Shin, K. G. and Durfee, E.

H. Mar-Apr 2001. Planning and Resource Allocation for
Hard Real-time, Fault-Tolerant Plan Execution. Journal of
Autonomous Agents and Multi-Agent Systems.

[2] Boutilier. C. 1999. Sequential Optimality and Coordination
in Multiagent Systems. IJCAI-99.

[3] Conry, S. E., MacIntosh, D. J., and Meyer, R.A. 1990.
DARES: A Distributed Automated Reasoning System.
Proceedings of AAAI-90, pp. 78-85.

[4] Decker, K. and Lesser, V. 1995. Designing a Family of
Coordination Algorithms. ICMAS-95.

[5] Durfee, E. H. and Lesser, V. R. September 1991. Partial
Global Planning: A Coordination Framework for Distributed
Hypothesis Formation. IEEE Transactions on Systems, Man,
and Cybernetics, Special Issue on Distributed Sensor
Networks, SMC-21(5):1167-1183.

[6] Ephrati, E., Pollack, M., and Rosenschein, J. S. 1995.
A tractable heuristic that maximizes global utility through
local plan combination. In Lesser, V., editor, Proceedings of
the First International Conference on Multi-Agent Systems
(ICMAS-95), pages 94-101, San Francisco, CA. MIT Press.

[7] Georgeff. M. 1983. Communication and Interaction in multi-
agent planning. Proc. of the Third National Conference on
Artificial Intelligence (AAAI-83), pp. 123 – 129.

[8] Kumar, S., Huber, M. J., Cohen, P. R., and McGee, D. R.
2002. Toward a Formalism for Conversation Protocols Using
Joint Intention Theory. Computational Intelligence Journal
(Special Issue on Agent Communication Language), Brahim
Chaib-draa and Frank Dignum (Guest Editors), Vol. 18, No.
2, pages 174-228.

[9] Li, H, Atkins, E., Durfee, E. H. and Shin, K. G. August 2001.
Practical State Probability Approximation for a Resource-
Limited Real-Time Agent. Proceedings of the IJCAI-01
Workshop on Planning with Resources.

[10] Musliner, D. J., Durfee, E. H., and Shin, K. G. 1995. World
Modeling for the Dynamic Construction of Real-Time
Control Plans. Artificial Intelligence, vol. 74, pp. 83-127.

[11] Shintani, T, Ito, T., and Sycara, K. 2000. Multiple
Negotiations among Agents for a Distributed Meeting
Scheduler. In Proceedings of the Fourth International
Conference on Multi-Agent Systems (ICMAS'2000).

[12] Shoham, Y. and Tennenholtz, M. February 1995. On Social
Laws for Artificial Agent Societies: Off-Line Design.
Artificial Intelligence, Vol. 73, Numbers 1-2, pp. 231-252.

[13] Smith, R. G. December 1980. The contract net protocol:
High-level communication and control in a distributed
problem solver. IEEE Transactions on Computers, C-
29(12):1104-1113.

[14] Stankovic, J. A. October 1988. Misconceptions about Real-
Time Computing: A Serious Problem for Next-Generation
Systems. IEEE Computer, vol. 21, no. 10, pp.10-19.

567

