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ABSTRACT 
We study how agents can cooperate to revise their plans as they 
attempt to ensure that they do not over-utilize their local resource 
capacities. An agent in a multiagent environment should in 
principle be prepared for all environmental events as well as all 
events that could conceivably be caused by other agents’ actions. 
The resource requirements to execute such omnipotent plans are 
usually overwhelming, however. Thus, an agent must decide 
which tasks to perform and which to ignore in the multiagent 
context. Our strategy is to have agents selectively communicate 
relevant details of their plans so that each gets a sufficiently 
accurate view of the events others might cause. Reducing 
uncertainties about the world trajectory improves the agents’ 
resource allocation decisions and decreases their resource 
consumptions. In fact, our experiments over a sample domain 
show that, on average, 50% of an agent’s initial actions are 
planned for states it can discover it will never reach. The protocol 
we develop in this paper thus discovers futile actions and reclaims 
resources that would otherwise be wasted. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– coherence and coordination, multiagent systems. 

General Terms 
Algorithms, Performance, Design, Experimentation 

Topics/Keywords 
Coordination of multiple agents/activities & Coordination 
infrastructures, Action selection and Planning for agents 

1. INTRODUCTION 
In a dynamic, multiagent environment, an agent (e.g., a car driver) 
needs to be prepared to react to events arising naturally in the 
world (e.g., rockslides in the road) as well as those due to the 
actions of other agents (e.g., merging traffic). In this paper, we 
distinguish between two types of events. A natural event is one 
that may occur regardless of the activities of the agents in the 
world. We call it an unconditional event. In contrast, the other 
events occur because other agents explicitly choose to take some 
actions. We call them conditional events. 

An ideal agent could manage its resources in order to be prepared 
to respond rapidly and correctly to all events of both types to 

guarantee hard real-time performance1 [14]. We define execution 
resources as those that an agent needs to implement and operate 
its plan. They include the perceptual, effectual, and reasoning 
capabilities of the agent during execution. This is different from 
and complementary to the deliberation resources studied in the 
anytime literature. For example, given enough deliberation time, 
an ideal car driver could theoretically know exactly what to do in 
all possible circumstances (such as with an exhaustive policy of 
stimulus-response rules), and would be able to enact those 
reactions instantaneously. Real car drivers, however, cannot 
monitor their surroundings and react instantaneously. An agent’s 
resources for following a policy can be constrained, perhaps 
because of sensory limitations (e.g., the driver cannot look 
between the front, the rear-view mirror, and the dashboard fast 
enough), or actuator limitations (e.g., the driver cannot steer the 
car, apply the emergency break, turn on the emergency flashers, 
and honk the horn all at the same time).2 Realistic agents, with 
execution resource constraints, may have to give up on 
guaranteeing timely responses to some events so as to concentrate 
their resources on meeting more important demands (e.g., the 
driver might focus on traffic ahead at the expense of missing signs 
for an exit). Agents also might modify their behaviors to elongate 
reaction times for events (e.g., drive more slowly), adopt 
restrictions on their behaviors to eliminate some dangerous 
controllable events (e.g., drive on the right), and share information 
to help each other know what conditional events to be prepared 
for (e.g., use directional signals). 

Our ongoing research efforts are devoted to studying the strategies 
by which an agent that has execution resource constraints, or a 
group of such agents, can efficiently make decisions about how to 
manage their resources so as to perform their tasks effectively 
despite the uncertainties inherent in the dynamic, multiagent 
environment. Elsewhere, we have described a strategy that an 
agent can use to compute the probabilities of various events 
occurring so as to devote its limited resources to being prepared 
for the most likely events [9]. The agent prioritizes its use of 
resources by planning for events in order of their occurrence 
probabilities, and unlikely events are ignored in case of 
insufficient resources. In a multiagent environment, the 
uncertainties about the plans of other agents impair the accuracy 
of those probability computations, which in turn degrades the 

                                                                 
1 A hard real-time agent is not a fast agent, but is an agent that 

must reliably meet the deadlines of all its tasks/actions. 
Otherwise, it is considered to have failed its mission completely. 

2 Agents might also have external resources that are shared with 
other agents, such as communication channels. In this paper, we 
will only focus on an agent’s internal (execution) resources. 
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quality of resource allocation decisions. Moreover, those 
uncertainties prevent agents from “envisioning” similar future 
situations, so they may not agree on their expected interactions. 

In this paper, we exploit the fact that many of the events of 
concern to one agent are conditional on the choices of other 
agents. Thus judicious communication among the agents can 
allow them to develop a more coherent view of the global 
activities. They can recognize which events are most important to 
prepare for, as well as which events are assuredly not going to 
occur. Note that we do not assume the agents are collaborating to 
solve a common problem. Instead, we assume the agents are 
loosely coupled but cooperative enough that they are willing to 
share information. They have different goals. Therefore, this 
paper is not about coordinating multiple agents to work together 
to achieve shared objectives, but rather it is about what 
information an agent, facing the uncertainties caused by other 
agents, should acquire from them to make better local resource 
allocation decisions as it otherwise works independently. 
Specifically, the contributions of this paper are that we model the 
problem of handling execution resource constraints in the context 
of multiagent planning, and from this context we derive a 
communication protocol that can be formally analyzed and 
coupled with heuristics to improve a real-time agent’s 
performance in dynamic, multiagent domains. 

2. CIRCA BACKGROUND 
The Cooperative Intelligent Real-time Control Architecture 
(CIRCA) models the interactions between actions and 
(conditional and unconditional) events explicitly, taking into 
account the real-time aspects of execution [1, 10]. CIRCA selects, 
schedules, and executes recognition-reactions assuming a 
resource-limited execution platform. There are two main 
subsystems in CIRCA, the Artificial Intelligence Subsystem (AIS) 
and the Real-Time Subsystem (RTS). The RTS executes the real-
time control plans (see below) pre-computed by the AIS. Inside 
the AIS are the probabilistic planner and the scheduler. The 
planner generates a set of recognition-reactions, formally called 
Test-Action-Pairs (TAPs), by searching through the state space to 
determine the appropriate reactions for hazardous states. The 
period for each TAP is also chosen to ensure a sufficiently rapid 
response to preempt the emerging hazard. 

The recognition test in a TAP is done by actively performing 
actions to collect data or monitor for the relevant aspects of the 
world, e.g., watching ahead of the car for looming obstructions. A 
reaction is only executed if the world matches the state description 
in the corresponding recognition test. As the progress of the world 
is uncertain, and dangerous events can happen sporadically, the 
RTS must check whether the reactions should be executed by 
continuously looping over the schedule of recognition tests 
frequently enough. The scheduler, based on the resource 
constraints of the RTS, schedules the set of recognition-reactions 
(TAPs) according to their periods chosen by the planner. A 
CIRCA control plan, composed of a scheduled set of recognition-
reaction pairs, is therefore a cyclic (periodic) real-time schedule of 
TAPs. (TAPs are also referred to as “actions” in this paper.) 

Because the scheduler is working with a RTS with limited 
resources, it could be that not all of the desired TAPs found by the 
AIS can be scheduled. For example, the processor utilization of 
each TAP is u = sum of the worst-case testing and execution times 
for the TAP divided by its period. When the sum of the utilizations 
of all TAPs exceeds 1, no schedule is possible. When this 
happens, CIRCA computes the probabilities, called state 

probabilities, of the agent reaching different states based on its 
local state diagram. It finds a subset of the TAPs by removing 
those planned for states with state probabilities below a threshold. 
It keeps increasing this threshold until a schedulable subset is 
found. We call this the unlikely state (cutoff) heuristic3. It is a 
greedy search that lets an agent to devote its insufficient resources 
to responding to events that are most likely to occur [9].4 

CIRCA attempts to minimize the probability of failure and 
maximize the probability of reaching goals. The failure 
probability may increase when the unlikely state heuristic is 
applied because some TAPs required to preempt possible (though 
less likely) hazards are removed. Consequently, the utility 
decreases. We distinguish between necessary and unnecessary 
actions (TAPs). Necessary actions are those that an agent may 
have to perform during execution to preempt some hazards. 
Unnecessary actions are those that the agent includes in its plan 
due to its ignorance about the plans of other agents. The agent will 
test them but never execute the corresponding reactions. However, 
it does not know this during planning unless the agents 
communicate. Using our terminology from Section 1, necessary 
actions are planned for unconditional events and some conditional 
events, while unnecessary actions are planned for those 
conditional events that will not arise5. Those unnecessary actions 
can be safely removed from the agent’s plan to free up resources 
without raising the failure probability. Therefore, an agent should 
not remove any necessary actions by using the unlikely state 
heuristic before it gets rid of all unnecessary ones. To determine 
which actions are necessary and which are unnecessary, however, 
requires a partially global view of the multiagent activities. The 
main theme of this paper is about how agents can exchange 
enough relevant information about their plans so that they can 
identify and remove enough unnecessary actions. They can also 
compute more accurately the true state probabilities. 

The CIRCA state-space representation of the world is similar to 
STRIPS. It is constructed from a set of state propositions, called 
state features, and actions and events, called transitions, included 
as part of a planner knowledge base (KB). A state consists of a set 
of state features that describe the different aspects of the world. A 
state in the world model is created dynamically by applying a 
transition to its parent state. There are two types of transitions. 
Action transitions are explicitly controlled by the plan executor in 
the RTS, and thus only occur when selected during planning. 
Events outside the system’s control are modeled as temporal 
transitions, either innocuous temporal transitions (labeled tt) or 
deleterious temporal transitions leading to system failure (labeled 
ttf). A temporal transition, whether it is a tt or ttf, is described by a 
precondition, an effect (which we call a postcondition), and a 
probability function. The probability function describes the 

                                                                 
3  This heuristic assumes that all failures are equally bad. 

Otherwise, we could use the disutilities of the failures 
discounted by their state probabilities. 

4 If different types of failure incur different penalties, then this can 
be coupled with the probability information so that the actions 
that prevent smaller expected penalties are preferentially 
removed. 

5 Some conditional events may occur. Their corresponding actions 
are thus necessary. 

6 When we refer to a temporal transition (tt), we could also mean a 
temporal transition to failure. 
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probability of a transition happening as a function of the time 
since it was enabled, independently of other transitions. When 
there is a ttf in a state, CIRCA plans a TAP to preempt the hazard. 
It also chooses the TAP period, to guarantee completion before 
the ttf occurs, up to a pre-defined probability threshold. 
Preempting actions are called guaranteed actions. 

A typical state diagram for planning is shown in Figure 3-1. It is a 
partial state diagram for an agent named FIGHTER. Action 
SHOOT-MISSILE-1 is a guaranteed action to preempt the ttf 
BEING-ATTACKED. There is another type of action, called 
reliable actions that here we assume are also scheduled with real-
time deadlines and thus utilize resources. However, they do not 
preempt any explicit failures. Action HEAD-TO-LOC1 is a 
reliable action that steers the fighter toward location LOC1. 

A CIRCA agent in a multiagent environment builds on the single 
agent architecture. It is augmented with the ability to distinguish 
between private (local) features and public (shared) features. An 
agent’s private features are those that no other agents are 
interested in, such as its current fuel level. Private features do not 
appear in the state diagrams of other agents. Public features are 
those features that more than one agent is interested in. An agent 
includes in its feature set only the public features that it cares 
about. Thus, different agents may have different sets of public 
features. It is through manipulating the public features that agents 
impact each other. For example, in Figures 3-1 and 5-1, COMM 
and ENEMY are public features shared by both BOMBER and 
FIGHTER, while HEADINGF and LOCF are private features that 
are accessible only to FIGHTER.7 

Furthermore, a CIRCA agent in multiagent applications includes 
in its knowledge base some public temporal transitions and public 
action transitions of other agents (labeled ttac). Those transitions 
are the temporal transitions and actions that affect the public 
features it cares about. From the perspective of the agent, both the 
temporal transitions (tts) in the environment and the actions of 
other agents (ttacs) are alike. Both are beyond the control of the 
agent. In contrast, private temporal transitions and private actions 
of another agent do not include in their postconditions any public 
features but only private features. For instance, B:BOMB-1 and 
B:BOMB-2 are public actions of BOMBER in Figure 3-1, while 
the action HEAD-TO-LOC1 is private for FIGHTER. The 
temporal transitions FLY-TO-LOC0, FLY-TO-LOC1, and FLY-
TO-LOC2 are private for FIGHTER. In Figure 5-1, there are 
temporal transitions of the same names but they are private for 
BOMBER. There is no public temporal transition in this example. 
To date, CIRCA treats transitions independently, modeling 
concurrent activities only as a series of separate transitions. It 
does not model concurrent activities whose effects when taken in 
concert differ from their additive effects.  

Differentiating between private and public features lets an agent 
model only the relevant aspects of the world. The agent does not 
need to know the entire plans of other agents, but only those parts 
affecting the public features. Since a state represented by an agent 
does not include the private features of other agents, it may 
correspond to a group of states represented by those agents. As the 
number of states is exponential in the number of features, this 
abstraction significantly reduces planning complexity and state 
diagram sizes. 

                                                                 
7 The special feature “FAILURE” for an agent is always private. 

3. REACHABILITY ANALYSIS 
To succeed in a multiagent environment, a rational agent needs to 
envisage what actions other agents might take, and choose its own 
actions based on these predictions. Other agents cannot be 
expected to know what constitutes failure for the agent (which 
could in part be based on its private features), nor can they 
promise not to affect negatively the public features. To play it 
most safe, the agent must consider and plan for all states that it 
foresees due to the transitions in the environment (unconditional 
events) as well as all possible actions executed by other agents 
(conditional events). Regardless of whether a state is reachable by 
a sequence of temporal transitions (tts) or a sequence of others’ 
actions (ttacs) or a combination of both, the agent needs to expend 
resources to schedule an action to preempt any hazards in the 
state. We call such an analysis a reachability analysis. A state 
diagram generated by a reachability analysis is called a 
reachability graph. Figure 3-1 is the reachability graph of a 
fighter patrolling nearby two locations after any potential 
activities there by BOMBER. It includes in its planning, hence the 
state diagram, all public actions by BOMBER. 
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Figure 3-1: The (Partial9) Reachability Graph for FIGHTER10 

However, just because another agent is capable of taking an action 
does not mean that it will take that action, meaning that 
                                                                 
8 All actions are either guaranteed (e.g. SHOOT-MISSILE-1) or 

reliable actions (e.g. HEAD-TO-LOC1). This holds true also for 
Figure 5-1. 

9  For space reasons, this graph omits some B:BOMB-1 and 
B:BOMB-2 transitions. They do not affect the final plan. 

10 All actions are either guaranteed (e.g. SHOOT-MISSILE-1) or 
reliable actions (e.g. HEAD-TO-LOC1). This holds true also for 
Figure 5-1. 

562



anticipating all possible actions on the part of other agents 
requires an agent to prepare for states that might never arise. We 
call those states unreachable states. In contrast, reachable states 
are those states that the agent may reach during execution. 
Unreachable states are included in a reachability graph only 
because of ignorance. The actions planned for the unreachable 
states are unnecessary actions and can be removed if they can be 
recognized as such. 

Forming control plans based on such a straightforward 
reachability analysis suffices only when an agent has enough 
resources to handle all contingencies. In this ideal case, it can 
disregard (and be proudly ignorant about) the plans of other 
agents. Regardless of which of the known possible actions the 
other agents choose, and which potential states it may thus 
encounter, it can always execute the proper reactions fast enough 
to avoid failures. On the other hand, the agent may be unable to 
schedule all the actions for all the states that it thinks it may 
encounter due to over-utilization of resources.  

This paper views the problem of how an agent decides how much 
it needs to know about the plans of other agents as a type of 
multiagent planning problem. Although an agent might not be 
able to change the actions chosen by another agent, knowledge 
about those choices can reduce uncertainties for its own planning, 
thus allowing better resource allocation decisions to be made. Our 
strategy to solve the limited resource allocation problem for a 
group of independent but communicating agents is therefore to 
have them first construct the worst-case resource consumption 
scenarios, i.e., the reachability graphs. These can inevitably 
include states that are reachable conditional upon the execution of 
certain actions by other agents. The agents can then incrementally 
exchange details about their plans to each form more precise 
views of the future. While an agent must expend resources to 
prepare for all unconditional events, it can avoid wasting 
resources on conditional ones it learns for sure will not happen. 

4. CONVERGENCE PROTOCOL 
We have developed a protocol that allows agents to exchange 
information about the intersecting parts of their plans. The agents 
can reduce resource consumptions by lowering the uncertainties in 
modeling the events caused by each other, in case of insufficient 
resources. Agents identify unreachable states in the state diagrams 
and eliminate the associated actions from their tentative plans. For 
instance, in Figure 3-1, when FIGHTER is unable to guarantee 
real-time performance to both SHOOT-MISSILE-1 and SHOOT-
MISSILE-2, knowing which location BOMBER is not going to 
removes the corresponding shoot-missile action from its plan. We 
assume that the agents perform the protocol after they have locally 
formed their reachability graphs and have selected all actions they 
would like to take (as if there were no resource constraints). The 
protocol is described using C-like code in Figure 4-1. 

An uncertain point of interest in the graph is a combination of a 
state and a set of mutually exclusive ttacs. A set of ttacs in that 
state corresponds to the alternative action choices of another agent 
out of which it will choose one or none. As multiple agents can 
plan for a state, there could be multiple sets of ttacs. When 
choosing an uncertain point, the agent picks a state as well as 
another agent planning for the state, i.e., a particular set of ttacs. 
Each ttac, if planned by another agent, is a realizable branch in 
the state diagram that consumes certain resources. A branch from 
a state is a subgraph from a transition in that state. On the other 
hand, if a ttac is not planned, the branch is not realizable during 
execution. It can safely be pruned from the state diagram. All 

actions planned for the descendant states of the branch are 
subsequently removed (unless the states can be reached via other 
viable transition paths), making scheduling easier. 

The Convergence Protocol  inquires about the states in descending 
order of the estimated resource consumption reduction if the 
unplanned actions of another agent in a state are removed. We 
postpone the discussion of picking the next uncertain point 
(labeled *) until Section 6. 

Inquiring agent () { 

Choose the uncertain point that gives the biggest estimated 
utilization reduction; //* 

Ask the corresponding agent which action(s) it will take; 

Upon receiving an answer, update the state diagram and drop 
unnecessary actions from the local plan; 

Loop until either the resource constraints are satisfied or all 
uncertain points are examined; 

} 

Answering agent () { 

When (being asked by another agent about an uncertain point) { 

Identify the corresponding state(s) in the local graph; 

Reply with the action(s) (or none) planned for the state(s); 

Record the agent’s name with the state(s); 

} 

If (an action is removed from its state diagram/plan) { //** 

Inform all agents with names recorded with the state that the 
action is no longer planned for that state; 

} 

} 
Figure 4-1: The Convergence Protocol 

If all features are public, then all agents have the same features. 
There is a one-to-one correspondence between the states in any 
two agents’ state diagrams. The answering agent can uniquely 
identify the state (if it exists) that the inquiring agent is asking 
about. As there can only be one planned action in a state for a 
CIRCA agent, it will reply with the single action planned (if it 
exists) for the inquired state. All but one ttac in that state can be 
eliminated in the state diagram of the inquiring agent. However, 
agents that distinguish between public and private features 
(Section 2) do not usually share all features. Instead of sending all 
its state features, the inquiring agent sends a more abstract state 
description, consisting of only public features and their values. 
The answering agent may have more than one state in its local 
state diagram that matches the abstract description. It must reply 
with all the actions planned for those matching states. 
Accordingly, the inquiring agent must plan for more than one ttac 
in that state.  

It is important to point out that an agent is asking which action 
another agent would execute if that other agent reaches a state. 
The answer can be found simply by looking up the TAPs in its 
reachability graph. If the agent is asking whether another agent 
will execute an action, that other agent may not be able to answer 
at all. The answer depends on its certainty about which states it 
will encounter during execution. It cannot be certain of the 
reachability without the complete plans from all other agents. As 
the agents are refining their plans concurrently and 
asynchronously, there are no such complete plans before the 
multiagent planning process finishes. We are in the process of 
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extending the protocol so the agents can start exchanging useful 
details to let other agents prune their search spaces earlier on. 
Moreover, the reachability graphs of agents can be very different. 
Some states may be in some graphs but not in others. In fact, 
agents typically do not even have the same sets of state features. 
Some agents may think that certain states are reachable while 
others may think otherwise. For the example in Figure 3-1, 
FIGHTER thinks that enemies appear at LOCF == LOC2, while 
BOMBER may not concur. In case of insufficient resources for 
agents to handle all states in their respective state spaces, the 
Convergence Protocol allows them to gradually and cooperatively 
discover which states are indeed reachable by exchanging only the 
relevant details of their plans. They are able to refine their 
individual plans by converging toward a set of commonly agreed-
upon reachable states until their resource constraints are satisfied. 
Note that they do not need to agree completely on the set of 
reachable states so all agents have the same state diagrams. The 
beauty of our protocol is that they only have to use it until they 
can schedule all their remaining actions after pruning enough 
unnecessary ones. Even if an agent ends up allocating some 
resources to situations that cannot possibly arise due to 
incomplete knowledge, it is still acceptable if the agent has 
enough resources relative to all the demands. If we require the 
agents to have identical state diagrams, other (more costly) 
protocols, such as [6], might work better. 
If an agent fails to schedule for all remaining actions after 
completing the Convergence Protocol, it resorts to the unlikely 
state heuristic (Section 2) to remove the most unlikely (but 
possibly necessary) actions. Even so, the agent still benefits from 
engaging in the partial plan exchange by having a more informed 
model of the plans of other agents. Otherwise, it might have 
removed more necessary actions in order to satisfy its resource 
constraints yielding an even lower agent utility. 
The part of the protocol marked by (**) speeds up the pruning 
process of other agents by broadcasting to those who have 
previously inquired about (and therefore have shown interest in) a 
state if an action is no longer planned for that state. 
Clearly, the Convergence Protocol terminates. In the worst case, it 
terminates after all agents examine all uncertain points in their 
reachability graphs. As the protocol examines the states 
exhaustively, an agent will move toward satisfying its resource 
constraints by pruning the unnecessary temporal trajectories. If 
the agent starts with sufficient resources to prepare for all that are 
necessary, then it is guaranteed to find a plan that schedules all the 
actions. An agent’s utility is not compromised if it can schedule 
for all actions after running the protocol because the protocol 
always removes actions that are assured to be unnecessary. Its 
utility decreases only when it drops some necessary actions by 
raising the probability threshold. Therefore, the order of inquiries 
agents make about the action choices of others is irrelevant to its 
utility. Similarly, the order of communication among agents is 
also irrelevant to the utility. Regardless of when an agent asks 
about a state, it will always get the most recent information about 
that state (by **) before it has to raise the probability threshold. In 
essence, what the agents ultimately end up finding as the 
definitely reachable states will be unaffected by the order in which 
states not in the intersection are pruned. 
5. DEMONSTRATION 
We now continue our story in Figure 3-1. We demonstrate how 
our strategy lets agents cooperatively create a more coherent 
picture of the global activities. By reducing uncertainties in 
modeling other agents’ plans in case of insufficient resources, 
agents may decrease their resource consumptions. A bomber 

(BOMBER) is given a mission to attack one of the two locations. 
After it attacks a location, enemy aircraft could arrive to retaliate. 
A fighter (FIGHTER) is assigned to patrol around the locations to 
repel the enemy aircraft whenever they arrive. Also, if FIGHTER 
requests a response from BOMBER, BOMBER has to report its 
status at LOC2. The complete state diagram (reachability graph) 
for BOMBER is shown in Figure 5-1. 
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Figure 5-1: The Reachability Graph for BOMBER 
Both FIGHTER and BOMBER (Figures 3-1, 5-1) have 5 actions 
to schedule if they do not know about the plan of the other agent. 
Suppose the resource constraints are simplified such that each 
agent can schedule only 4 TAPs. Both agents exceed their 
capacities. By running the Convergence Protocol, FIGHTER asks 
BOMBER what actions it plans when ((COMM == F) && 
(ENEMY == F)).11 BOMBER replies that it is going to do only 
BOMB-1.12 Then FIGHTER can safely remove the children of the 
ttac B1:BOMB-2, hence the action SHOOT-MISSILE-2, from its 
state diagram and tentative plan. Likewise, BOMBER will 
discover that FIGHTER does not signal BOMBER to respond at 
LOC2. So, BOMBER can safely remove RESPOND-COMM 
from its plan. As a result of communication using the 
Convergence Protocol, both of them have only 4 TAPs left for 

                                                                 
11 Recall agents communicate only public features and actions. 
12  BOMB-1, BOMB-2, and RESPOND-COMM are the only 

public actions for BOMBER. 
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scheduling. Both agents in this case can satisfy their local 
resource constraints: neither resorts to using the unlikely state 
heuristic to drop actions. So, no agent’s utility is compromised. 
6. CHOICE FUNCTIONS 
One implicit assumption in our work is that exchanging 
information costs something. Otherwise, agents would simply 
dump their entire plans or reachability graphs to other agents. 
Also, not only does an agent need to identify what to 
communicate but it also has to answer inquiries made by other 
agents. Therefore, agents should reduce their planning costs by 
minimizing the number of inquires made. 
The part of the Convergence Protocol marked by (*) applies a 
heuristic choice function to choose what the next best uncertain 
point is. The more effective a choice function is, the sooner the 
protocol leads an agent into finding a satisfying plan, and the less 
computation and communication the agent does. In general, the 
states that are closer to the initial states and have more ttacs 
(alternative actions of one or more other agents) should be 
examined with priority. These states tend to have more 
downstream children, hence more planned actions taking up 
resources. So, they tend to free up more resources if removed. 
We have considered the following heuristics. They are listed in 
order of increasing complexity. 

1. Random Choice Function: The agent inquires about a 
random state. This heuristic serves as a benchmark. 

2. Sequential Choice Function: The agent inquires about 
the states in the order of their expansions during 
planning. If the state expansion is a breadth-first search, 
then the states closer to the initial states tend to be 
examined before others. 

3. Distance Choice Function: The agent inquires about the 
states in ascending order of their distances to the initial 
states. The distance of a state is the minimal number of 
transitions that take the agent from any of the initial 
states to the state. 

4. Load Choice Function: The agent inquires about the 
states in descending order of their numbers of actions 
per branch. The idea is to prune actions as fast as 
possible. Not all actions have the same utilizations. 

5. Utilization Choice Function: The agent inquires about 
the states in descending order of utilization per branch. 

Each of these choice functions allows an agent to find satisfying 
plans at different converging speeds. Figure 6-1 shows a sample 
relation between the utility13 and the communication cost using 
the Convergence Protocol with the simplest choice functions 
(repeated experiments). The communication cost could be 
computational, e.g., time, power, or bandwidth, and/or non-
computational, e.g., the risk of eavesdropping. In any case, we 
simply measure cost as the number of inquiries exchanged. Note 
that these curves are monotonic non-decreasing functions, 
meaning that the agent never loses utility by decreasing 
uncertainties about the global activities. Although we typically 
use the Convergence Protocol offline, its anytime nature allows it 
to be employed online as well. In that case, the choice function 
becomes particularly important. Adopting an appropriate choice 
function can dramatically reduce the costs. We discuss the 
converging rates of our candidate functions in Section 8. 

                                                                 
13 The utility is a weighted function of the probability of the agent 

achieving its goals and the probability of remaining safe. 

 
Figure 6-1: Varying Converging Speeds14 

7. EVALUATION 
To evaluate the merit of the Convergence Protocol, we have 
generated a set of random domains. Each domain has a random 
number of agents from 2 up to a maximum of 10. Each agent has 
its own knowledge base. The knowledge base has 7 private and 
public binary features (T/F) total. The number of public features 
in a domain is random. It measures how tightly coupled the agents 
are for that domain, i.e., how many features they have in common. 
As any public feature is shared by all agents, the knowledge bases 
for any given domain have the same number of public features. 
There are 15 private and public actions combined, and 7 private 
and public temporal transitions combined for each agent. The 
compositions are random. The actions and temporal transitions are 
generated such that they invert the values of a random number of 
features. All knowledge bases for a domain contain the same set 
of public temporal transitions and public actions. 
We have generated 1126 agents (KBs) for 402 domains with 
which we perform our experiments. The number of agents that are 
able to schedule for all their TAPs before running the 
Convergence Protocol is 202 (12.42%). The number of agents that 
are able to schedule for all their TAPs after running the protocol is 
704 (43.30%). In other words, 502 (30.87%) agents become able 
to schedule for all their TAPs. For those agents that still fail to 
schedule for all actions, they, nonetheless, drop fewer necessary 
actions (by raising the probability threshold) than they otherwise 
would have needed to. For our experiments, the reduction in the 
number of necessary actions dropped is on average 59.55% with a 
standard deviation 39.85%. As a result, the agents’ utilities are not 
as compromised as they would otherwise be without running the 
Convergence Protocol. 
Furthermore, we measure how effective the Convergence Protocol 
is by what we call action effectiveness and state effectiveness. 
Action effectiveness is the percentage of unnecessary actions 
removed by the protocol. Likewise, state effectiveness is the 
percentage of unreachable states included in an agent’s  
reachability graph but removed by the protocol. The average 
effectiveness is 53.74% and the standard deviation is 29.45%.

                                                                 
14 We graph the results for only the sequential and the random 

heuristics. For this simplified illustrative problem, the more 
sophisticated heuristics are overkill and give the same results as 
the sequential heuristic. But, they usually perform differently 
depending on the domains. We show this in Section 8. 
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Table 8-1: Choice Function Efficiencies 
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Table 8-2: Communication Efficiencies 
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Similarly, action effectiveness has an average of 51.74% and 
standard deviation of 35.84%. The data suggest15 that more than 
half of the resources, at least in our sample domains, are often 
wasted when an agent is ignorant about the plans of other agents. 
When the agents include in their planning all conceivable 
interactions based on all public actions of other agents, very often 
more than 50% of the states that they think they may encounter 
are in fact not reachable. Communication is therefore very 
important for resource-limited agents. Our protocol allows the 
agents to remove those states from their state diagrams. 

8. CHOICE FUNCTION EFFICIENCIES 
To study the convergence speeds and overheads of various choice 
functions, we define choice function efficiency and 
communication efficiency. Choice Function Efficiency is 
measured by the number of actions (states) removed per inquiry. 
Based on the same set of experimental domains described in 
Section 7, we get the statistics in Table 8-1. 

As we had expected, inquiry priority measured in terms of 
utilization (Utilization) is more efficient than in terms of number 
of actions (Load). Surprisingly, the efficiency of a choice function 
does not necessarily increase with its complexity. The Load and 
Utilization choice functions are both worse than Sequential and 
Distance choice functions, but are still better than Random. The 
reason for the poorer performances of both Load and Utilization 
heuristics is that they are considering the number of actions and 
utilization per branch. Even if a state has many actions in its 
children, those actions could concentrate in one of the many 
branches of the state. The inquiry priority of the state, i.e., 
utilization per branch, is therefore “diluted” by those branches 
with fewer actions. 

Moreover, the data confirm our hypothesis that the states closer to 
the initial states should be inquired about with higher priority 
(Distance is the best among the 5 heuristics). They are the states 
that have more actions (total number of actions rather than actions 
per branch) and higher utilizations. An ancestor of a state has at 
least as many actions as the state itself. As the choice functions 
have different computation and communication costs, we can 
trade computation time with communication overheads. 

Although choice function efficiency tells us how efficient a choice 
function is at getting rid of unnecessary actions (states), it does 
not tell us how costly communication is using the Convergence 
                                                                 
15 We say “suggest” because these statistics are gathered over a 

sample domain and have large variances. They do not 
necessarily apply to other unknown applications. 

Protocol. Not only does an agent have to send one message per 
inquiry, it also has to send messages to answer all inquiries from 
other agents and update them of any removed actions. Even if the 
agent itself has sufficient resources so that it never asks questions, 
it may still have to answer a lot of inquiries made by other agents. 
We would like to measure the overhead for an agent to 
communicate using the Convergence Protocol as a member in a 
group. We define communication efficiency as the number of 
actions (states) removed per message sent. The communication 
efficiencies for different choice functions are shown in Table 8-2. 

Both tables show that action efficiencies are lower than state 
efficiencies. This is because an action is often planned for more 
than one state for CIRCA. Only when all these states are pruned 
from the state diagram can the action be safely removed from the 
plan. Also, some pruned states have no associated actions. These 
states do not change the utilizations of plans. However, they give 
the agents better ideas of what states they may visit and how the 
world may evolve. The agents can also more accurately compute 
state probabilities. Accordingly, they can better apply the unlikely 
state heuristic to drop the least likely necessary actions in case of 
very stringent resource requirements. As discussed in Section 4, 
all choice functions give equal performance in terms of agent 
utility and generate equivalent final plans for agents. 

9. RELATED WORK 
Most existing research on cooperative multiagent planning has 
been focusing on generating compatible plans to avoid negative 
interactions among agents. Techniques, such as negotiation [11], 
plan merging [7], multiagent MDPs [2] and (Generic) Partial 
Global Planning [5], have been developed to resolve conflicts. 
These algorithms and protocols focus on how the plans of some 
agents constrain the plans of other agents, but assume that each 
agent has sufficient resources to carry out its plan once 
coordinated. Our work does not make this assumption. 

An important consideration in multiagent planning centers around 
how much an agent knows ahead of time about the other agents. 
At one extreme, it might know nothing; for many of the 
approaches listed above, agents must exchange plan information 
to begin to model each other. At the other extreme, coordination 
approaches such as Social Laws [12] assume (in the offline case) 
that agents know everything they need to know about each other 
right from the beginning: any plan an agent makes that adheres to 
the social laws is assured to be coordinated with the other law-
abiding agents. In the middle are approaches where agents have 
some knowledge (for example, the organizational roles of others) 
ahead of time, but need to exchange information to acquire more 
situation-specific details [4]. Our work resides in this middle 
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ground, because we assume that our agents know everything 
about what others might do under different eventualities. But, in 
contrast with work where subsequent communication is to add 
details to enlarge an agent’s view of how the world might unfold, 
we instead view the purpose of communication as helping agents 
rule out some of the choices that they had anticipated others might 
make. 

A wide variety of agent communication protocols have been 
developed over the years, ranging from the early days of the 
Contract Net [13] to recent work on conversation policies [8]. The 
protocol we employ involves simple query-response interactions. 
Of particular relevance is the work of Conry [3], where the 
protocol was coupled with a decision-making strategy such that an 
agent would decide to send a query when it got “stuck” in terms 
of not being able to make further headway on solving its problem 
without more input. Our protocol works in a similar vein, by 
assuming that an agent will only request information from others 
when it cannot make local action choices that are guaranteed to 
achieve its objectives without violating its execution resource 
constraints. In other words, each of its action choices utilizes 
some fraction of its internal execution resources to carry out, and 
the principal constraint an agent faces is that the set of actions 
must be schedulable (Section 2). The choice functions in this 
paper and in Conry’s serve the same role: to speed up the searches 
by trying to identify the “right” information to acquire. 

10. CONCLUSIONS 
We see in the demonstration from Section 5 how our strategy 
helps agents find satisfying plans in a distributed manner. The 
agents first construct their reachability graphs and then iteratively 
refine their plans using the Convergence Protocol. The agents 
cooperatively determine the set of states for which they need to 
react by exchanging partial plans to generate more coherent views 
of their activities. 

Our experiments suggest that it is often worthwhile for agents to 
exchange partial details of their plans if they have inadequate 
internal execution resources. More than 50% of the resources may 
be wasted when they are ignorant about the plans of others. Our 
data show the tradeoffs between complexity and efficiency of 
various choice functions. When communication is costly but 
computation time is not, we can adopt a choice function with a 
higher efficiency to minimize the overhead, and vice versa. 

One major drawback of this approach is that it requires the agents 
to construct the entire reachability graphs before they start to talk. 
A reachability graph is an explicit representation of the complete 
search space, not only of the agent itself but extended with its 
knowledge of external events that might happen. It could be too 
demanding on the part of the agent if the entire graph is to be 
generated and kept in memory. We are in the process of 
improving the Convergence Protocol so that the agents start 
communication earlier as they construct their reachability graphs. 
This can cut down on time spent on searching unreachable states, 
and space storing the unused portions of their plans. Moreover, as 
the agents interleave plan/reachability graph construction and 
communication, we expect that they can generate better plans than 
they do now.  
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