
Transforming Structural Model to Runtime Model of Embedded Software with
Real-time Constraints ∗

Sharath Kodase, Shige Wang, Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan

1301 Beal Avenue
Ann Arbor, MI 48109-2122

email:{skodase,wangsg,kgshin}@eecs.umich.edu

Abstract

The model-based methodology has proven to be effec-
tive for fast and low-cost development of embedded soft-
ware. In the model-based development process, transform-
ing a software structural model that describes the under-
lying application, to an implementable runtime model is a
critical issue. Since the designed software will finally run
on the target platform, non-functional issues like schedu-
lability, timing constraints and resource requirements have
to be considered during the transformation. In this paper,
we propose a generic runtime model architecture that can
best satisfy the non-functional requirements of the system,
and a generic transformation method to convert a struc-
tural model to a runtime model in such an architecture. The
transformation approach is based on the notion of end-to-
end computations performed by the system in response to
external stimuli. We demonstrate the advantages and effec-
tiveness of the proposed method by constructing a software
runtime model for a combined electronic throttle and air-
fuel ratio control system.

1 Introduction

The model-based software development methodology is
known to accelerate embedded software (ESW) develop-
ment and lower the development cost. In the model-based
methodology, multiple models are used to specify the ESW
behavior, structure, and implementation, and verify the sys-
tem correctness. The process of ESW development can
therefore be viewed as a multi-stage process of transform-
ing a model at one stage to a model at another stage. Differ-

∗The work reported in this paper was supported in part by DARPA
under the US AFRL Contract No. F33615-00-C-1706.

ent stages in the ESW design can be partitioned into behav-
ior design, structure design, runtime system generation, and
code generation, with behavioral model, structural model,
runtime model, and programming model used at each stage,
respectively. In each stage, the model is refined with fur-
ther implementation details to generate a model for the next
stage.

One of the major hurdles in current model-based ESW
development practice is the transformation from a structural
model to a runtime model. A structural model specifies
components and their interactions in ESW, and is usually
represented with data flow diagrams, context flow diagrams,
and object collaboration diagrams. A runtime model, on
other hand, specifies the organization of entities in a struc-
tural model into runtime tasks,1 inter-task communications,
and task allocations on the execution platform. During
the transformation from a structural model to a runtime
model, complex non-functional issues like schedulability of
the task set, message delays, and response-time constraints
must be considered to ensure the correctness of the resultant
runtime system. This makes the transformation complex for
real applications with a large number of components and
component-interactions.

Although there are methods proposed for systematically
transforming a structural model to a runtime model [2, 4, 9],
non-functional constraints are usually either ignored or con-
sidered as non-critical requirements during the transforma-
tion. This makes it uncertain for the generated runtime
model to meet system timing constraints. Hence, the ESW
designer is driven to perform the transformation by expen-
sive ad-hoc trial-and-error.

In this paper, we propose a novel transformation method
to convert an ESW structural model to a runtime model.

1Tasks in our model can be implemented as processes/threads. We use
the terms “task” and “process/thread” interchangeably.

1

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

Our transformation process is based on a component-based
structural model and a task-based runtime model. The ob-
jective of runtime model generation is to obtain an imple-
mentation with high processor utilization and low runtime
overheads. The transformation process obtains transac-
tions or end-to-end computations performed by the system
in response to external stimuli, by analyzing the structural
model. Then, it derives real-time properties of these trans-
actions according to system timing constraints and available
resources in the platform configuration. Finally, the runtime
model is obtained using the derived properties of transac-
tions.

The rest of the paper is organized as follows. Section 2
presents the structural model and the runtime model that
we use to develop the transformation method. Section 3
describes the algorithm to transform a structural model to a
runtime model with timing and scheduling constraints. Sec-
tion 4 illustrates the transformation method and its advan-
tages through a real world example of automotive electrical
throttle control (ETC) with air-fuel ratio (AFR) control sys-
tem. Section 5 states the related work. The paper concludes
with Section 6.

2 Structural and Runtime Models

Structural and runtime models describe the same ESW
but with different views and are used during different de-
velopment phases. Structural models are generally used to
model the ESW structure for functional design, while run-
time models are normally used later for ESW implementa-
tion on a given target platform.
Structural model. The structural model we use here is
component-based, in which ESW design is modeled as a set
of software components and their interactions. Each com-
ponent in the model contains a set of external interfaces,
a behavior controller, and controlled actions as shown in
Figure 1. The external interfaces are represented as events
accepted by the component through dedicated ports, and de-
fine the functionality that can be invoked by other compo-
nents. The behavior controller implements a subset of func-
tions defined in the behavioral model, and controls the ac-
tions performed in response to the input and output events
generated. With such a component model, the system can
be designed by connecting cooperating components through
their ports, and the system execution can be done by having
external events like timer interrupts and/or sensor I/O trig-
ger a sequence of actions in components. We assume asyn-
chronous event communication between components. Such
a component structure [13] has been shown beneficial for
software reuse and model-based integration.
Runtime model. The generic runtime model we are as-
suming consists of tasks, whose invocations are triggered
by messages including interrupt signals, data, and events.

BEHAVIOR SPEC

ACTIONS

OUTPUT EVENT

INPUT EVENT

PORT

COMPONENT

Figure 1. Compo-
nent structure.

Wait for messages

Initialization

Execute message−handler

Figure 2. Task struc-
ture.

The structure of a task is shown in Figure 2.
Each task may perform a sequence of actions from one or

more components. This requires a task to have references to
all components that own the actions to be performed. Such
references are constructed during task initialization. Also,
during the initialization, all messages that a task can receive
and actions that must be performed in response to a message
must be registered.

After initialization, each task performs blocking-wait for
messages. Upon arrival of a message, the task executes the
registered components’ actions in a predefined order to pro-
cess the message, and returns to the blocking-wait. In each
round of a task execution, exactly one message is processed.
Therefore, a queue is required for each task to buffer in-
coming messages during the task execution. The task is not
re-enterable, meaning that the arrival of a new message has
to wait in the queue until the task finishes processing the
current message.

We further assume that all tasks execute with statically-
assigned priorities in the runtime model. A task with high
priority preempts lower-priority tasks. Actions within a task
are executed at the same priority assigned to the task itself.
This distinguishes our model from other models used in au-
tomatic runtime model generation which require dynamic
priority assignment to tasks according to the processed mes-
sages [6, 11]. Compared to these models requiring dynamic
priority assignment to tasks and two-level scheduling (at
message and task levels), our approach has the advantages
of low runtime overhead, lesser complexity and better sup-
port from current commercial real-time operating systems.

Given such structural and runtime models, the prob-
lem of transformation from a structural model to a runtime
model is to map components’ actions in the structural model
to tasks in a runtime model in a way that (a) the execu-
tion sequence of actions defined in the structural model to
achieve functional objectives is preserved, and (b) both the
timing and scheduling constraints of the system are met.

3 Model Transformation

Our transformation method relies on the notion of trans-
action to generate a runtime model from a structural model.

2

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

A transaction is defined as a sequence of actions of com-
ponents performed in the end-to-end processing of an input
signal. A transaction can be identified by tracing the ac-
tions in a structural model along the data processing path
from input to output. Multiple transactions may exist in a
structural model and each transaction can be represented as
a directed acyclic graph.

Our method for generating a runtime model from a struc-
tural model consists of three steps: (1) identify transac-
tions in the structural model, (2) assign priorities to compo-
nent actions in each transaction to meet timing and schedul-
ing constraints, and (3) allocate actions in transactions to
threads. This process is outlined in Figure 3.

Structural model

Final run−time tasks

Priority assignment and thread mapping

Identify transactions in the system

Figure 3. Process of transforming structural
model to runtime model.

Transaction identification: The first step of the transfor-
mation process is to identify all transactions in the struc-
tural model with action sequences and components. Start-
ing from each input signal to the system, transactions can
be found by recording actions performed by components in
response to the input signal and following the output events
generated. Following an event involves recording actions
that are triggered by the event and following other gener-
ated output events. This following is terminated when no
further output events are generated, or the outputs leave the
system. For the structural models represented as UML col-
laboration diagram or sequence diagram, for example, the
transactions can be obtained through tracing events along
the links, and determining the sequence of actions by fol-
lowing the sequence number.

The number of transactions in a structural model can be
large as the model has to consider transactions performed
in all possible system modes/states. However, not all the
transactions in the system are essential in runtime model
generation.

Given the fact that some transactions will not be active
simultaneously (for example, transactions to control ETC
without cruise control and with cruise control), these trans-
actions can be treated as a group, and the one with the

longest end-to-end computation time can be used as the rep-
resentative in runtime model generation. Such grouping re-
duces the number of transactions significantly, and makes
the approach scalable for large applications.

We further assume that some performance information,
like worst case execution times (WCETs), of component ac-
tions are available. Such information can be obtained dur-
ing unit-testing of a component, and stored with the com-
ponents.

Priority assignment and thread mapping: After iden-
tifying the transactions, we assign priorities to component
actions before constructing tasks in the runtime model. The
priority of an action is assigned so as to meet the timing
constraints of the transaction containing the action. Such
assignment works on finer-grained actions rather than tasks.
Therefore, it is more flexible than traditional approaches
where task construction is done first, and priority assign-
ment to the tasks is done later.

The problem of priority assignment to actions in trans-
actions is similar to the problem of priority assignment to
tasks in a real-time system. As the problem of assign-
ing task priorities to make a system schedulable is an NP-
hard problem, assigning priorities to actions with transac-
tion timing constraints met is also NP-hard, and hence re-
quires heuristic techniques to obtain a solution.

In this paper, we use an approach based on simulated
annealing [7, 8] to generate action priority assignments.
Given any priority assignment s, simulated annealing ran-
domly searches for an optimal solution among the neigh-
bors of s. When it finds a better assignment n, it jumps
to n and continues search from n until it finds the optimal
solution. Therefore, important elements in the simulated
annealing algorithm are the energy function used to de-
scribe the desirability of a candidate assignment, neighbor-
selection function and a temperature annealing schedule.

The energy function is designed such that the solution
with the lowest energy will be the optimal solution. In our
approach, the energy function is designed such that the op-
timal solution satisfies timing and schedulability constraints
and has low runtime overheads, in terms of threads and
inter-thread communications. Particularly, the energy func-
tion for priority assignment s in our method is defined as:

E(s) = k1 ∗max{r(Rei)−d(Rei) : Rei is a transaction})
+k2 ∗number of distinct priority levels
+k3 ∗number of communicating
component-actions of different priority levels

where E(s) is the energy value of the assignment s; d(Rei) is
the deadline associated with Rei ; and r(Rei) is the response
time of Rei . Values of k1 and k2 are chosen such that the first
two components of E(s) return similar values. Constant k3

is designed to be smaller than k2 for minimizing the number

3

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

of priority levels used in a transaction. Selection of these
constants depends on the problem under consideration.

As can be seen from the above equation, the factors we
consider in action priority assignment include timing and
scheduling constraints, the number of priority levels used in
the whole system, and the number of priority levels used in a
transaction. While timing and scheduling constraints must
be met as the system requires, minimizing the number of
priority levels used both in a system and within a transaction
reduces runtime overhead.

To reduce the search space for neighbor selection, we ap-
ply the result from the [5], which states that the end-to-end
system response time is not affected if priorities assigned to
actions are changed to canonical form. In a canonical pri-
ority assignment to a transaction, succeeding actions have
higher or equal priority than preceding ones. Our algorithm
uses this result and restricts the search to only those points
that are in the canonical form. The neighborhood of a given
point s is found by either of the following:

1. Raise the priority p(aeik) of an action aeik, which is
not at the highest priority level, to a new level p′, such
that p(aeik) < p′ ≤ p(aeik+1), where aeik+1 is the suc-
ceeding action. If aeik is the last action in the system
response, then raise aeik to level greater than p(aeik).

2. Lower the priority of an action aeik, which is not at
the lowest priority level, to a new level, p′ such that
p(aeik−1) ≤ p < p(aeik), where aeik−1 is the preced-
ing action. If aeik is the first action in the system re-
sponse, then lower the priority of aeik to level lower
than p(aeik).

The action aeik is picked randomly among the set of
transactions.

For the annealing schedule, the temperature is decreased
linearly according to the equation, Tnext = k4 ∗T . The val-
ues of k4 is usually between 0.95 to 0.99. The algorithm
terminates when a feasible solution is found and neither up-
ward nor downward energy jumps have been made for the
last Eequilibrium moves. In our implementation, we set
Eequilibrium to be 3 times the neighborhood (space) of a
point in the search space.

We use deadline-monotonic priority assignment to ac-
tions as the starting point for the simulated annealing algo-
rithm. For the schedulability analysis, we modify the ap-
proach in [5] to include the blocking delays due to synchro-
nization between actions, overheads due to context switch
and scheduling, and overheads due to communicating ac-
tions of differing priorities.

The task set is constructed only after priorities of all ac-
tions are assigned. We then construct the tasks by map-
ping all actions with the same priority to one task. The ad-
vantage of this mapping is that the results of timing and

schedulability analysis in the priority assignment step re-
main same and valid, even after task mapping. The reason
for this is that we consider the worst-case response times
for transactions in the energy function and context switch,
scheduling overheads in the schedulability analysis. Since
non-functional issues like schedulability and system timing
constraints, are satisfied in the priority assignment step, the
runtime tasks thus constructed are also guaranteed to satisfy
the non-functional requirements. This approach can also be
viewed as a generic approach to task construction. On one
end, transaction-based task construction 2 can be achieved
by assigning the same priority to actions in a transaction.
On the other end, the approach becomes component-based
or object-based task construction 3 if all actions of a com-
ponent are assigned the same priority.

Since our approach maps actions to tasks, it is an action-
based mapping. The unit of mapping is of finer granularity
than transactions or objects. Consequently, this approach
leads to lower blocking delays and results in higher proces-
sor utilization than either transaction-based or object-based
approaches [1]. Also, in some cases, action-based mapping
yields a successful runtime [5] that cannot be obtained using
other approaches.

4 Runtime Model Generation of an Automo-
tive Application

To demonstrate the effectiveness of our approach in ob-
taining a runtime model, we apply the proposed method to
an application in the automotive domain, consisting of Elec-
tronic Throttle Control (ETC) and Air-Fuel Ratio (AFR)
control. ETC is a subsystem in the Powertrain engine con-
trol system, which regulates throttle and controls the vol-
ume of air in the engine cylinders. AFR is another part of
engine control, which controls the ratio of air-to-fuel mix-
ture in the cylinders. The high level structural model of the
ETC and AFR system is shown in Figure 4.

In this model, all components of Manager, Monitor, AFR
and Servo Control are triggered by periodic timing signals.
The behavior specification for these components are repre-
sented as statecharts.

Using the statecharts, we obtain transactions present in
the system. Table 1 lists the end-to-end transactions, timing
characteristics of actions, and the deadlines of the transac-
tions in the example application. The worst-case execution
time (WCET) values in the table are arbitrarily chosen to
demonstrate the ability of our approach to runtime map-
ping. However, the periods and the deadlines are from a
real ETC/AFR application.

2In transaction-based mapping, all actions in a transaction are mapped
to one task.

3In object-based mapping, all actions of a component are assigned to
one task.

4

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

Monitor����

Manager����

Servo Control����

Scheduler
����
����
����

��

��

AFR
��

SFP ��

Timer

Cam pulses

Figure 4. Electronic throttle control and air
fuel ratio control.

Since ETC and AFR components are essential during the
engine operation, these transactions are always active in the
system in all engine operation modes. For the aperiodic SFP
component, we assume that it is invoked at the highest rate.
The actions of afr and sfp access a shared data variable, and
hence must be synchronized. A 0.05 ms blocking time is
assumed for any synchronization in this example.

An extra 0.05 ms is added to the execution time for
any inter-thread communication. We apply our priority-
assignment algorithm for these transactions. Table 2 shows
the obtained priority assignments, and the response times
for these transactions under such assignment, and the final
task set generated. Priorities obtained using simulated an-
nealing with the discussed energy function are given as the
numbers next to component actions.

The processor utilization of the constructed system for
the above example is as high as 0.933. We also notice
that other transformation methods like object-based (mak-
ing scheduler, monitor, and other components a separate
task) and transaction-based (making each transaction a sep-
arate task) mapping cannot yield a schedulable system.

5 Related Work

There have been a number of approaches proposed
for real-time software development and for runtime map-
ping from different structural models. CODARTS [9] and
COMET [3] are two examples that support systematic gen-
eration of runtime models based on functional properties of
components. The structural model used in these tools is
similar to UML-RT. The components and their interactions
are classified into several “stereotypes” according to their
functionality. This classification is used for runtime map-
ping. They do not use schedulability to guide the mapping
process.

In [2, 12], object-based mapping is proposed to guide the
transformation from a structural model to an implementa-

Action WCET
(ms)

Period
(ms)

Deadline
(ms)

sch.monitor 0.20 - -
sch.manager 0.20 - -
sch.servo 0.20 - -
sch.afr 0.20 - -
monitor 1.25 20 20
manager 3.25 20 20
servo 1.25 5 5
afr.get speed 4.00 20 -
afr 6.25 20 20
sfp 0.25 10 10

Transactions
sch.monitor → monitor
sch.manager → manager
sch.servo → servo
sch.afr → afr.get speed → afr
sfp

Table 1. Real-time characteristics of
component-actions and transactions in
ETC and AFR.

Transaction Response
time (ms)

Deadline
(ms)

sch.monitor [3] → monitor [3] 17.75 20.0
sch.manager [2] → manager [2] 17.75 20.0
sch.servo [3] → servo [3] 3.25 5.0
sch.afr [1] → afr.get speed [1]
→ afr [2]

27.2.0 30.0

sfp [3] 3.75 10.0

Thread Priority Actions
Thread 1 1 { sch.afr → afr.get speed}
Thread 2 2 {{sch.manager → manager}, afr}
Thread 3 3 {{sch.servo → servo},

{sch.monitor → monitor}, sfp}

Table 2. Priority assignment and response
times of transaction in ETC and AFR, and run-
time threads in the implementation model.

5

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

tion model. First, threads are identified first based on prop-
erties like periodicity and functionality. Then, objects are
mapped to threads. One of the main difficulties with us-
ing object-based mapping in static priority threading archi-
tectures is that every component-action executes with the
same fixed priority, irrespective of the criticality or the im-
portance of the transaction it is involved in. As a result,
some actions that could be run at lower priorities get exe-
cuted at higher priorities, increasing the blocking times and
decreasing the processor utilization. It also becomes dif-
ficult to assign priorities to threads when a component is
involved in multiple transactions. But the advantage of this
approach is that it is easier than other approaches to do the
transformation.

In [10, 11] a mapping methodology is provided for
ROOM [12] models considering schedulability. The run-
time architecture they assume is a dynamic priority thread
architecture where threads change their priority based on
messages they handle. In [6] a mapping process is presented
that extends this work for UML-RT models. The runtime ar-
chitecture they assume is also a dynamic priority threading
architecture where threads have pre-emptive thresholds that
specify what other threads can pre-empt them. They adopt
a combination of transaction-based and priority-based map-
pings.

The structural model we assume for our mapping pro-
cess is from [13], which is the model proposed for em-
bedded software architectures, designed for re-usability of
components. The implementation model for our approach
is inspired by practical applications like avionics mission
control and automotive control applications which use very
similar models.

6 Conclusion

In this paper, we propose a methodology of transform-
ing structural models to runtime models with real-time con-
straints considered. Our method makes use of results from
real-time scheduling theory and tries to obtain a runtime
model that not only satisfies timing constraints but also
yields high processor utilization and low overheads. The
proposed approach is based on identifying transactions,
and assigning priorities to fine-granularity actions using the
simulated annealing technique. As opposed to the tradi-
tional object-based or transaction-based approach, our ap-
proach yields higher processor utilization, lower implemen-
tation overheads, and timing constraint satisfaction.

Our approach departs from the usual practice of deter-
mining priorities for transactions in the system first and
then determining the threads present in the system by
integrating these two steps into one. Priorities are as-
signed to component-actions considering the system tim-
ing constraints, platform configuration, and overheads due

to scheduling, context-switch, and inter-thread communi-
cation. The simulated annealing heuristic tries to obtain a
solution that satisfies timing constraints and yields minimal
implementation overheads. Using an example motivated by
a automotive power-train application, we have shown that
our method can produce successful implementation models
when other approaches fail.

References

[1] A. Burns and A. J. Wellings. Dual priority assignment: A
practical method for increasing processor utilization. In 5th
Euromicro workshop on Real–time systems, pages 48–53.
IEEE Computer Society Press, June 1993.

[2] B. P. Douglass. Doing Hard Time. Addison Wesley, 1999.
[3] H. Gomaa. Designing real-time applications with the

comet/uml method. citeseer.nj.nec.com/470515.html.
[4] H. Gomaa. Designing Concurrent Distributed, and Real time

Applications with UML. Addison–wesley, 2000.
[5] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Fixed prior-

ity scheduling periodic tasks with varying execution priority.
Real-Time Systems Symposium, pages 116–128, December
1991.

[6] S. Kim, Sukjae-Cho, and Seongsoo-Hong. Schedulability-
aware mapping of real-time object-oriented models to multi-
threaded implementations. Real-Time Computing Systems
and Applications, pages 7–14, December 2000.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, (220):671–680, 1983.

[8] P. G. M. Laarhoven and E. H. L. Aarts. Simulated Annealing:
Theory and Applications. D. Reidel Publishing, 1987.

[9] K. Mills and H. Gomaa. Knowledge-based automation of a
design method for concurrent systems.

[10] M. Saksena. Towards automatic synthesis of qos preserv-
ing implementations from object-oriented design models.
Workshop on Object-Oriented Real-time Dependable Sys-
tems, (93–99), November 2000.

[11] M. Saksena, P. Karvelas, and Y. Wang. Automatic synthe-
sis of multi-tasking implementations from real-time object-
oriented models. International Symposium on Object-
Oriented Real-Time Distributed Computing, March 2000.

[12] B. Selic, G. Gullickson, and P. Ward. Real-time object ori-
ented modeling. John wiley and sons, 1994.

[13] S. Wang and K. G. Shin. An architechture for embedded
software integration using reusable components. Interna-
tional conference on compilers, architectures, and synthesis
for embedded systems, 2000.

6

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

