
Improving Scalability of Task Allocation and Scheduling in Large Distributed
Real-Time Systems Using Shared Buffers ∗

Sharath Kodase, Shige Wang, Zonghua Gu, Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

email:{skodase,wangsg,zgu,kgshin}@eecs.umich.edu

Abstract

Scheduling precedence-constrained tasks in a dis-
tributed real-time system is an NP-hard problem. As a re-
sult, the task allocation and scheduling algorithms that use
these heuristics do not scale when applied to large dis-
tributed systems. In this paper, we propose a novel ap-
proach that eliminates inter-task dependencies using shared
buffers between dependent tasks. The system correctness,
with respect to data-dependency, is ensured by having each
dependent task poll the shared buffers at a fixed rate. Tasks
can, therefore, be allocated and scheduled independently
of their predecessors. To meet the timing constraints of
the original dependent-task system, we have developed a
method to iteratively derive the polling rates based on end-
to-end deadline constraints. The overheads associated with
the shared buffers and the polling mechanism are minimized
by clustering tasks according to their communication and
timing constraints. Our simulation results with the task al-
location based on a simple first-fit bin packing algorithm
showed that the proposed approach scales almost linearly
with the system size, and clustering tasks greatly reduces
the polling overhead.

1 Introduction

Distributed real-time systems are becoming larger and
more complex as the scope of real-time computing extends
to more demanding and challenging applications. To meet
timing and schedulability constraints in such applications,
task allocation and schedule (TAS) decisions, must be made
at design time. The problem of allocating and scheduling
precedence-constrained tasks on processors in a distributed

∗The work reported in this paper was supported in part by DARPA
under the US AFRL Contract No. F33615-00-C-1706.

real-time system is NP-hard. For such tasks, even the prob-
lem of determining if a given allocation of tasks to proces-
sors satisfies the timing constraints is NP-hard. As such,
heuristics for determining the timing satisfiability of a task
allocation can be very complex [12], or involve generating
the entire schedule in one planning cycle 1[8, 9]. These ap-
proaches are computationally-intensive and can take very
long time to find a solution.

Existing heuristics for task allocation and scheduling
(TAS) are based on artificial intelligence search techniques
like branch-and-bound [8], simulated annealing [2, 7, 11]
and tabu search [6]. These algorithms obtain approximate
or near-optimal solutions to the TAS problem by iteratively
evaluating different points in the search space. The num-
ber of points to evaluate in the search space is large even
when dealing with moderately-sized task sets. Therefore,
these algorithms do not scale well when applied to large dis-
tributed real-time systems. The task system generated with
such an approach suffers from difficulties in checking if the
timing and schedulability constraints are met during soft-
ware integration and testing phases. This results in higher
development costs, a longer development cycle, and some-
times even redesign.

In this paper, we propose a new approach that eliminates
the inter-task dependencies existing in a large-scale applica-
tions by introducing shared buffers between pairs of depen-
dent tasks. Successor tasks are decoupled from their pre-
decessors as they need only access to the buffers. The cor-
rectness, with respect to data-dependency, of the system is
preserved by having successor tasks poll the shared buffers
at predefined rates. Thus, the precedence-constrained task
system is transformed into a system consisting solely of in-
dependent tasks. This transformed system of independent
tasks is much easier for their allocation and scheduling than

1The planning cycle is equal to the LCM (least common multiple) of
periods of all tasks on a processor.

1

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

the original system.
The rest of this paper is organized as follows. Section 2

presents the system model and states the problem of re-
solving dependencies with shared buffers. Section 3 de-
tails the shared-buffer approach including the methods of
deriving the polling rates for TAS and reducing the resul-
tant overheads. Section 4 evaluates the proposed approach
and presents an example application. The paper concludes
with Section 5.

2 System Model

A real-time task system A is defined as a set T of inter-
communicating (hence inter-dependent) real-time tasks.
The system can be represented as a directed acyclic graph
(DAG) GA, where a node represents a task and a link rep-
resents the dependency between two tasks. Given any two
tasks Ti and Tj with a directed link from Ti to Tj, we say Tj

is immediately dependent on Ti. Ti is called a predecessor
of Tj, and Tj is called a successor of Ti. Such a predecessor–
successor relationship is transitive.

In GA, nodes without predecessors are called input tasks.
Similarly, nodes without successors are called output tasks.
Typically, input tasks are triggered periodically or sporadi-
cally. We make no distinction between these two types of
invocations, and denote the interval between two successive
invocations of a task Ti by pTi . For any output task To, there
should exist at least one path Pio from an input task Ti to it in
GA. Such a path between a pair of input and output tasks are
subject to a timing constraint, denoted by dio, which speci-
fies that To should be finished within dio units of time after
Ti is released.

Given the system model defined as above, our goal is
to transform the system A with dependent task set T to an
equivalent system A′ with task set T ′, where (a) the task set
|T ′| = |T |; (b) each task Ti in T has a corresponding task
T ′

i in T ′; (c) tasks in T ′ are all independent; and (d) if there
exists a directed link Li j: Ti → Tj in A, there is a buffer Bi j

which T ′
i writes its outputs to, and T ′

j reads its input from.
T ′

j periodically checks Bi j for updates from T ′
i . The period

at which T ′
j checks for buffer updates is called the polling

period of T ′
j . The transformation process ensures the func-

tion of the original system A is preserved in A′, and also
eliminates dependencies by introducing the shared buffer
Bi j. The resulting system A′ can easily fit the assumptions
of most TAS algorithms, and thus, any of them can be used
in our system design and analysis.

The transformation from A to A′ should be done in such
a way that the schedulability and timing constraints of the
original system A are preserved in the transformed system
A′. In other words, if A′ is schedulable, then so is A. Our
approach preserves the timing constraints and schedulabil-
ity by deriving the polling periods for tasks in A′ based on

A’s timing constraints and schedulability considerations.

3 System Transformation Using Shared
Buffers

Figures 1 and 2 give an example system with depen-
dent tasks and the corresponding transformed system using
shared buffers. The task graph of the original system con-
tains 4 tasks, where T3 depends on the outputs of both T1

and T2, and T4 depends on the output from T3, as shown in
Figure 1(a). The system is subject to two timing constraints
C14 and C24. The runtime scenario of the original system is
shown in Figure 1(b).

T1

T2

T3 T4

C14

C24

(a) Original task graph with 4
tasks.

T1 T2

T3

Processor 2

Processor 1

Trigger T3

T3 becomes ready to execute

(b) Scheduling with dependencies on 2 proces-
sors.

Figure 1. An example system with dependent
tasks.

The system is transformed into a system with indepen-
dent tasks as shown in Figure 2(a). The transformed sys-
tem contains the original 4 tasks and 3 shared buffers. The
polling rates p3 and p4 are assigned to T ′

3 and T ′
4 such that

constraints C14 and C24 are satisfied. Tasks are triggered
independently, as shown in Figure 2(b).

In the transformed system, the explicit triggering mech-
anism used to meet the precedence constraints in the origi-
nal system is replaced by an implicit trigger stored and up-
dated as flags along with the shared buffers. The successor
tasks decide when to process their input buffers based on
these flags. Given the original system computed or output
a value var with time period, Pvar, the transformation only
changes the internal mechanism that determines how the se-
quences of tasks determining var are triggered. The rest of
the system behavior like the input rate of data into the sys-
tem, or the output rate of data to the environment remains

2

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

T’1

T’2

T’3

B13

B23

B34 T’4

p3 p4

(a) Task graph with independent tasks after
transformation.

T1 T2

T3 becomes ready to execute

T3

Processor 2

Processor 1

T3 polling

(b) Schedule of transformed tasks on 2 proces-
sors.

Figure 2. The system after transformation us-
ing shared buffers.

unchanged.

3.1 Derivation of shared-buffer polling rates

In the proposed approach, tasks will check the shared
buffers for updates at some fixed intervals after the system
transformation. To ensure that non-functional constraints
such as task deadlines, rates and schedulability are met af-
ter the transformation, the polling rates for tasks in the sys-
tem A′ have to be determined from the timing constraints
CA in the original system A. For any successor task in the
transformed system, the worst-case update-detection delay
occurs when the shared buffer is updated immediately after
the task checks it. Since the task can only detect the up-
dates in the next polling cycle in such cases, the delay can
be at most one polling period. Therefore, the condition un-
der which every task in transformed system satisfies CA can
be expressed as:

pollT ′
i
+ rT ′

i
≤ dT ′

i
− sT ′

i
(1)

where pollT ′
i

is the task’s polling period, rT ′
i

is the response
time (also called the completion time), dT ′

i
is the deadline

for execution of T ′
i , and sT ′

i
is the start time of T ′

i . The
term dT ′

i
− sT ′

i
defines the maximum allowable processing

time for T ′
i . sT ′

i
can be derived from the deadlines of T ′

i ’s
predecessors as:

sT ′
i
= max{dT ′

k
: T ′

k is an immediate predecessor of T ′
i }.

The deadlines for each task in A can be derived from CA

using a modified version of the deadline-distribution algo-
rithms in [5].

To derive the polling period of T ′
i using Eq. (1), we need

to know the response time of T ′
i . Such response time de-

pends on the allocation of T ′
i , which, in turn, depends on

the polling period for each task. This circular dependency
between the response time and the polling period for each
task can be resolved by iteratively determining solutions for
both. We can set the initial polling period of T ′

i to pTi and
perform TAS. After obtaining rT ′

i
from TAS, Eq. (1) can be

checked. For those tasks that do not pass the check, their
polling periods should be revised systematically and TAS
should be repeated. This process of assigning polling peri-
ods to tasks and performing TAS should be iterated until all
tasks in T ′

i satisfy Eq. (1).
If no task in T ′ satisfies Eq. (1), it indicates that the

worst-case update-detection delay for the task is longer than
required. To reduce the detection delay, the task polling pe-
riod should be reduced. We achieve using Eq. (2):

excessT ′
i
= pT ′

i
+ rT ′

i
−dT ′

i
+ sT ′

i

poll′T ′
i
= pollT ′

i
− excessT ′

i
/2.

(2)

where poll′T ′
i

is the new polling period of T ′
i , and excess is

defined as the amount of time by which T ′
i exceeds its max-

imum allowable execution time. Figure 3 provides the al-
gorithm for polling period derivation. Since shortening the
polling periods increases the system workload in each iter-
ation and will eventually lead to an unschedulable task set,
the algorithm is guaranteed to terminate in a finite number
of iterations.

After transformation, schedulability analysis is required
to ensure the system-wide timing correctness. To perform
schedulability analysis, we replace a polling task by two
tasks, one dedicated to the polling behavior, and the other
to data processing, because of different execution times for
polling operation and data processing. The one for data pro-
cessing is only executed when the shared buffer is updated,
and is released with a fixed offset equal to the polling period
to ensure the data availability. These two tasks can then be
considered as independent tasks and schedulability analy-
sis can be performed using traditional techniques like fixed
priority pre-emptive scheduling [1].

3.2 Polling overhead reduction

Resolving inter-task dependencies with shared buffers
induces overheads to the final system as a result of tasks
polling shared buffers. Such overheads include additional
context switches, and blocking times for shared-buffer ac-
cess and management (e.g., setting and updating flags).
These overheads depend on the number of tasks in the sys-
tem and their polling rates. Larger number of tasks and

3

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Algorithm PP D: Poll Period Derivation
Input: T ′: tasks in transformed system A′,

T : tasks in original system A,
P: processors,
CA: original end-to-end timing constraints,
pollthresh : user specified polling period threshold for tasks in T ′.

Output: {pollT ′
i
}: polling periods for each task in T ′,

Alloc: allocation of tasks in T ′ to processors in P.
Begin:
distribute timing constraints CA over each task in T in A.
for each task T ′

i in T ′, pollT ′
i

= pTi .
Loop:

allocate and schedule tasks T ′ on processors P → Alloc.
if(every task T ′

i in T ′ can be successfully scheduled)
{

if(every task T ′
i satisfies Eq. (1))

return successful, {pollT ′
i
}, Alloc.

else
{

for every task T ′
j that fails Eq. (1)

{
decrease pollT ′

j
using Eq. (2).

if(pollT ′
j
≤ pollthresh)

return failure.
}
goto Loop.

} /* end-else */
} /* end-if */
else return failure.

end

Figure 3. Algorithm of polling period deriva-
tion.

higher polling rates introduce more context switches in a
given period of time. The overhead of shared-buffer man-
agement also increases with the number of tasks and their
polling rates because of frequent checking and updating of
flags on shared buffers. In this work, we adopt task clus-
tering to reduce the number of tasks and their polling over-
heads.

Task clustering partitions a set of tasks into several dis-
joint groups and uses explicit ordering to resolve inter-task
dependencies within each group. We use pairwise cluster-
ing [9] and period-based clustering [10] for this, although
other methods can be used as well. The number of tasks is
further reduced using local clustering, in which tasks with
precedent dependencies are clustered together if they are
allocated to the same processor. Since the number of in-
dependently polling tasks is reduced, the system overhead
is lowered due to fewer context switches and lower polling
frequencies.

The overhead is further reduced by distributing deadlines
over the task clusters. Each cluster is treated as a composite
task in the deadline distribution algorithm. Since the sys-
tem now contains smaller number of composite tasks, more

slack can be allocated to each composite task. This will
result in a larger value of dT ′

i
− sT ′

i
in Eq. (1), which will

consequently decrease the polling rates.
The polling overhead can be further reduced by reduc-

ing or eliminating blocking time using multiple-buffers [4]
between predecessor and successor tasks.

4 Evaluation

We evaluated the effectiveness and efficiency of our ap-
proach using both simulation systems as well as a represen-
tative application.
Experiment configuration:
Since the goal of this work is to apply simple, polyno-
mial time TAS algorithm, a simple TAS algorithm must be
chosen first in the evaluation. We chose the first-fit algo-
rithm [3] for task allocation. This algorithm orders tasks
according to decreasing resource consumption (or task uti-
lization) and allocates them, one by one, to processors. The
priority assignment was based on deadline-monotonic pol-
icy with a higher priority assigned to a task with tighter
deadline, and the holistic scheduling approach [1] was used
for the schedulability analysis. 2

Our algorithm for polling rate derivation partitions end-
to-end timing constraints over individual tasks or composite
tasks by using two well-known deadline-distribution heuris-
tics: pure slicing and normal slicing approach [5]. The pure
slicing approach distributes slack in the deadline according
to the number of tasks in the directed acyclic graph, while
the normal slicing approach distributes the deadline to com-
ponent tasks in proportion to their execution times. Only
local clustering is used in comparisons to evaluate the over-
head reduction methods.

The simulated system we exercised contains a set of
tasks whose number ranges randomly from 60 to 300, par-
titioned into 10 ∼ 50 groups, with each group consisting of
4 ∼ 8 dependent tasks.

Table 1 summarizes the selected algorithms and system
parameters in the simulation.

In the simulation, we first constructed several task graphs
with properties assigned according to Table 1. Then, they
were transformed into independent tasks using the shared-
buffer approach. Algorithm PP D was executed to itera-
tively generate task allocation and scheduling, and provided
the number of processors used to schedule the given task
set, processor utilizations, polling overheads, and the num-
ber of iterations to generate a schedulable task set. This
process was repeated 3 times with different random seeds
and an average was taken on the obtained values.
Experimental results:

2Since we are only interested in the relative performance of the shared-
buffer approach, the choices of algorithms will not affect the comparison
results.

4

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

To find a schedulable task allocation, the total number
of schedulability checks performed in each iteration by the
first-fit TAS is of order Θ(n ∗ p), where n and p are the
number of tasks and the number of processors, respectively.
The total number of checks performed during the execu-
tion of Algorithm PP D depends on the number of iterations
required to converge to a solution. The number of itera-
tions required to allocate tasks on processors with a differ-
ent number of tasks in the task set is given in Figure 4(a).
In this experiment, we fixed the slacks in all dependent-task
graphs to a constant of 7 times of the execution time for all
tasks. The results in Figure 4(a) show that the number of it-
erations increases almost linearly with the number of tasks.
Irrespective of the number of tasks in the system, the num-
ber of iterations to generate a solution is bounded around
20, even in a graph of 250 tasks. This indicates that the
TAS problem for a large task set can be solved in a short
time using our approach.

In each iteration, any task that does not satisfy Eq. (1) has
its polling period reduced using Eq. (2). Since the polling
period of a task can only decrease with each iteration until
the task can be either satisfactorily scheduled, or below a
specified threshold when the algorithm gives up, the num-
ber of iterations in which each task has its polling period
revised, is bounded. This sets an upper limit to the number
of iterations that the algorithm can perform, and this limit is
linear in the number of tasks for a given slack.

The simulation results on the efficiency of using shared
buffers are plotted in Figure 4(b), showing the number of
processors required to make the task set schedulable using
the first-fit algorithm. We compare the number of proces-
sors returned by Algorithm PP D with that returned by the
first-fit TAS on the same system, but without inter-task de-
pendencies. We set the maximum number of tasks in this
experiment to 220 tasks.

The results in Figure 4(b) show that without cluster-
ing, allocation algorithms using the polling method perform

Deadline-distribution Pure slicing, Normal slicing
Task clustering Local clustering
Task allocation First-fit bin packing algorithm
Scheduling Static priority pre-emptive

scheduling
Average out degree of each task 2
Average in degree of each task 2
Execution time of each task 5 ∼ 10 ms
Period of a dependency graph 50 ∼ 150 ms
Slack for a dependency graph 2.5 ∼ 7 times the sum of execu-

tion times of tasks in the graph
Polling overhead 5 ∼ 10% of single task execution

times

Table 1. Algorithm selection and graph char-
acteristics in the simulation system.

0

5

10

15

20

25

50 100 150 200 250

N
um

be
r

O
f I

te
ra

tio
ns

Number Of Tasks

Pure DD,No clustering
Pure DD,Local clustering
Normal DD,No clustering

Normal DD,Local clustering

(a) Number of iterations vs. number of tasks

20

25

30

35

40

45

50

55

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

P
ro

ce
ss

or
s

R
eq

ui
re

d

Slack of Dependency Graphs

Pure DD,No clustering
Pure DD,Local clustering
Normal DD,No clustering

Normal DD,Local clustering
No dependencies

(b) Number of processors required vs. slack

Figure 4. Simulation results for different num-
bers of iterations and processors required.

worse when tasks have low slacks in their deadlines. This
is because the polling rate for tasks gets higher after trans-
formation when the slacks are low, thus wasting more pro-
cessor time for polling. But for larger system slacks, the
processors returned by the polling approach asymptotically
meets that of scheduling the system without any inter-task
dependencies. The polling rates for dependent tasks de-
crease as the system slacks increase. In such cases, truly
independent tasks require fewer processors for them to be
schedulable. This implies that our approach be more useful
when tasks have more slack and longer deadlines, which is
commonly the case in large-scale distributed systems.

Figure 4(b) also shows the efficacy of task clustering in
terms of polling overhead reduction. Even at low system
slacks, if the local clustering is used, the number of proces-
sors required to schedule the task system is only marginally
higher than that required to schedule the same system with-
out task dependencies. This indicates that task clustering is
indispensable to the shared-buffer approach.

Figure 5(a) shows the polling overheads before and after
task clustering. The polling overhead is defined as:

5

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

polling overhead in % =

∑
p ∈ P

∑
T ′

j ∈ T Sp

pollexecT ′
j

pollT ′
j

|P|

∑
p ∈ P

∑
T ′j ∈ TSp

{
pollexecT ′

j

pollT ′
j

+
eT ′

j

pT ′
j

}

|P|

where P is the set of processors, T Sp the set of tasks al-
located on p, pollexecT ′

i
the execution time for polling T ′

i ,
pollT ′

i
the polling period of T ′

i , pT ′
i

the invocation period
of T ′

i , and eT ′
i

the execution time for data processing of T ′
i .

The numerator in the above equation denotes the polling
utilization averaged over all tasks and processors. The de-
nominator in the equation denotes the sum of polling and
task utilizations averaged over all tasks and processors.

0

10

20

30

40

50

60

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

P
ol

lin
g

O
ve

rh
ea

d

Slack of Dependency Graphs

Pure DD,No clustering
Pure DD,Local clustering
Normal DD,No clustering

Normal DD,Local clustering

Figure 5. Simulation results for polling over-
heads.

From Figure 5, we observe that the overhead without
task clustering is 2 ∼ 3 times higher than that with local
clustering. We also observed that the polling overheads de-
crease as the system slacks increase. This is also caused
by lowering the polling rates of tasks with increased slack.
With task clustering, the polling overheads are reduced and
thus more acceptable as they are around less than 15%, even
at low system slacks.

We also observed that the normal deadline-distribution
algorithm tends to introduce smaller polling overheads,
use fewer processors, and assign lower polling rates for
dependent tasks than the pure deadline distribution when
task clustering is not used. When task clustering was used,
both the normal and pure deadline-distribution algorithms
tend to generate similar results on these metrics.

Comparison with regular TAS:
As the TAS for precedence-constrained periodic tasks in
a distributed system is NP-complete, existing heuristics
for determining the satisfiability of a task allocation can
be very complex [12], or involve generating the entire

schedule up to the planning cycle — LCM (least common
multiple) of periods — of all tasks on each processor [8, 9].
These approaches are computationally very intensive and
can take very long time. Since such timing satisfiability
checks are invoked at each step of any TAS algorithm, the
running times can be very large even for moderately-sized
task sets.

In the polling method, the global end-to-end timing con-
straints are broken to individual timing constraints on com-
ponent tasks. Each task is made independent of others using
shared buffers. Consequently, determining the satisfiability
of a given deadline allocation to tasks only involves schedu-
lability check on each processor. Since such checks for in-
dependent periodic tasks can be done accurately and very
fast, TAS using the polling method is much faster than the
usual non-polling approach.

To evaluate this, we compared the running times for TAS
using the polling method (polling TAS) with TAS not us-
ing polling method, but allocating and scheduling based on
dependencies (regular TAS). For polling method, we used
normal deadline distribution algorithm. For regular TAS,
we used a simple depth-first search (DFS) algorithm that
terminates after finding the first solution that satisfies the
timing constraints. To determine timing satisfiability, we
used a simple algorithm that determines the response time
of each task using holistic analysis [1], and then determines
the end-to-end response times using the response times of
individual component tasks. To see how fast this simple
check is, we determined the time taken for the satisfiability
tests for an example task set in [12], on a sun workstation.
Our simple check took 0.0019 second whereas the iterative
method in [12] took 0.13 second. Using this simple check
for DFS TAS, we measured the times taken to allocate and
schedule 15 task graphs with characteristics as given in Ta-
ble 1, on a 1.2GHz AMD Athlon processor with 256MB
RAM. The time taken for both approaches for systems with
different slacks is shown in Table 2.

Approach System slack=5.0 System slack=7.0
Polling method 1.5 sec 1.3 sec
DFS method 2334 sec 2111 sec

Table 2. Polling method and regular TAS

Even with a simple satisfiability check, the DFS algo-
rithm takes a much longer time than the polling method.
We also found that since DFS is not an optimal algorithm, it
takes more processors than the polling method with first-fit
bin packing allocation to schedule the tasks.

A more rigorous timing check like in [12], and to op-
timize TAS for a metric like load balancing, or to mini-
mize processors, would increase the time for TAS signifi-
cantly when dependencies are considered. With the polling

6

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

method, however, it is easier and much faster to perform
TAS to optimize for metrics like load balancing, or mini-
mizing processors owing to its simpler timing satisfiability
checks and task independence.

However, because of the overheads associated with the
polling method, its solutions may be inferior to optimum
solutions obtained directly. To evaluate how the polling
method compares with an (optimum) regular TAS, we com-
pared the number of processors required to schedule 9 task
graphs using the polling method and an exhaustive search
TAS algorithm. The characteristics of the task graphs are
given in Table 1. Table 3 shows the number of processors
required and their average utilizations.

Approach System slack=2.0 System slack=5.0
Polling method 6.67 processors, 0.82 6 processors, 0.80
Optimum TAS 6 processors, 0.76 6 processors, 0.76

Table 3. Polling method and optimum TAS al-
gorithm

For a system slack of 2.0, due to its overheads, the
polling method requires, on average, an extra processor to
schedule the task set. However, when the system slack is
higher at 5.0, the polling method requires the same num-
ber of processors as the regular TAS method. As described
and evaluated above, a higher slack in deadlines decreases
the polling overhead, making the performance of the TAS
algorithm using polling closer to the optimum.

4.1 Automotive Control Applications

We further evaluated the usefulness of our proposed ap-
proach in real applications. We chose an automotive vehi-
cle control system as a representative application to apply
the shared-buffer approach. The task graph of the vehicle
control system is given in Figure 6. Although this system
contains only a small number of tasks and their dependen-
cies, the timing constraints are stringent and dependencies
are representative.

The system contains two controllers managing engine
operations and distance between vehicles. The two con-
trollers are to be scheduled on two Motorola 555 processors
(MPC 1 and MPC 2), with both running OSEKWorks op-
erating system. The processors are connected together by a
high-speed controller area network (CAN) of 1 Mbps. Sen-
sors for engine speed, vehicle speed, crank angle, brake po-
sition, radar, and steering wheel position are associated with
MPC 1, and actuators for throttle, transmission, brake and
steering wheel actuators are bounded to MPC 2. The sensor
tasks, TS CKP, TS ENG, TS E T, TS TRAN, VEH LAT
and RUNMODULES need to run on MPC 1, where actuator
tasks TA ENG, TA TRAN, CAN BRAKE and HST have

Tasks Exec time (ms) Bound Processor
TS CKP 0.10 MPC 1
TS ENG 0.13 MPC 1
TS E T 0.20 MPC 1

TS TRAN 0.25 MPC 1
TC CKP 0.13
TC ENG 0.08

TC TRAN 0.05
TP ENG 0.07

TP TRAN 0.14
TA ENG 0.13 MPC 2

TA TRAN 0.09 MPC 2
VEH LAT 0.074 MPC 1
BUTTONS 0.08

HMI 0.07 MPC 2
HST 0.09 MPC 2

CAN READ 0.104 MPC 1
VEH IOLS 0.345

ENG SPDLS 0.760
CAN BRAKE 0.08 MPC 2

RUNMODULES 0.101 MPC 1
DPC SEND 0.08

Table 4. Timing characteristics of the vehicle
control tasks.

TS_CKP

TS_E_T

TS_TRAN

TS_ENG

TA_ENG
TC_CKP

TC_ENG

TC_TRAN

TP_ENG

TP_TRAN TA_TRAN

BUTTONS

HST

RUNMODULES DPC_SEND

ENG_SPDLS CAN_BRAKEVEH_IOLSCAN_READ

HMI

VEH_LAT

ETC Application

V2V Application

Figure 6. Automotive control applications.

to be scheduled on MPC 2. The real-time characteristics of
tasks are as shown in Table 4.

The period at which fresh data enters tasks TS CKP,
TS ENG, TS E T, TS TRAN is 5ms. The end-to-end dead-
line for engine control tasks to process inputs and generate
outputs should be within 5ms. Steering wheel position data
is processed by VEH LAT at a period of 4ms. Deadline for
processing steering wheel data is 4ms. CAN READ and
RUNMODULES tasks are required to process their inputs
at periods of 10ms and 4ms, respectively. The end-to-end
deadlines for processing these data are the same as periods.

For this scenario, we applied our iterative TAS using the
first-fit bin packing algorithm with fixed-priority scheduling
and deadline-monotonic priority assignment. The polling
overhead including all OS overheads (e.g., context switch
and timer overhead) is measured to be 0.01 ms for both
processors. The analysis results for the normal deadline-

7

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Task Polling
Period (ms)

Response
Time (ms)

Processor

TS CKP 0.45 0.13 MPC 1
TS ENG 0.45 0.26 MPC 1
TS E T 0.45 0.46 MPC 1

TS TRAN 0.45 0.72 MPC 1
TC CKP 0.85 0.37 MPC 2
TC ENG 0.85 0.16 MPC 2

TC TRAN 0.85 0.08 MPC 2
TP ENG 0.85 0.44 MPC 2

TP TRAN 0.85 0.58 MPC 2
TA ENG 0.85 1.40 MPC 2

TA TRAN 0.85 1.26 MPC 2
VEH LAT 0.56 0.79 MPC 1
BUTTONS 1.11 0.24 MPC 2

HMI 1.11 1.08 MPC 2
HST 1.11 1.17 MPC 2

CAN READ 1.27 1.01 MPC 1
VEH IOLS 1.52 1.01 MPC 2

ENG SPDLS 1.52 2.18 MPC 2
CAN BRAKE 1.52 2.27 MPC 2

RUNMODULES 1.11 0.91 MPC 1
DPC SEND 1.34 0.66 MPC 2

Table 5. The results using the normal
deadline-distribution algorithm.

distribution algorithm are shown in Table 5.
Our algorithm took 11 iterations to complete. The

polling periods for tasks on the same processor are assigned
the same because of task clustering. The polling overhead
for normal deadline distribution turns out to be 4.6%.

The data transmitted between these tasks is very small
(in the order of at most 4–8 bytes). For this reason, we ig-
nore the inter-processor communication. However, this can
be accounted for by considering the network as a proces-
sor and any inter-processor communication as a task to be
scheduled on the network. The inter-processor communi-
cation tasks will depend on task allocation and will be dif-
ferent for each allocation. Determining of these tasks and
scheduling them on the network processor can be handled
during TAS algorithm itself. However, Algorithm PP D
will remain same and equally applicable.

5 Conclusions

In this paper, we proposed a new approach to eliminat-
ing inter-task dependencies by introducing shared buffers
between dependent tasks, and assigning a proper polling
rate for each dependent task to ensure the end-to-end timing
constraints are met. By making dependent tasks indepen-
dent, existing efficient and fast TAS algorithms can be used
to find a solution in polynomial time for large distributed
systems. We developed an algorithm that iteratively assigns
the polling rates for tasks during TAS.

The results based on both simulation and real application
of an automotive vehicle control system have shown that
significant scalability benefits for TAS algorithms can be

gained using the proposed approach, and the polling over-
head was greatly reduced by task clustering. As the number
of tasks in the system increases, the number of iterations
of our algorithm and the number of schedulability checks
increase only linearly. The simulation results have also in-
dicated that our approach is more effective when there is
more slack in the deadlines of dependent tasks.

References

[1] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Ap-
plying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, pages 284–292,
1993.

[2] J. Beck and D. Siewiorek. Simulated annealing applied to
multicomputer task allocation and processor specification.
8th IEEE Symposium on Parallel and Distributed Process-
ing, pages 232–239, 1996.

[3] R. Graham. Bounds on the performance of scheduling algo-
rithms, pages 165–227. John Wiley and Sons, 1976.

[4] H. Huang, P. Pillai, and K. G. Shin. Improving wait-free al-
gorithms for interprocess communication in embedded real-
time systems. Usenix Annual Technical Conference, June
2002.

[5] J. Jonsson and K. Shin. Deadline assignment in distributed
hard real-time systems with relaxed locality constraints. In
17th International Conference on Distributed Computing
Systems, pages 27–30, Baltimore, MD, May 1997. IEEE
Comput. Society.

[6] M. Lin, L. Karlsson, and L. Yang. Heuristic techniques:
Scheduling partially ordered tasks in a multi-processor en-
viroment with tabu search and genetic algorithms. 7th In-
ternational Conference on Parallel and Distributed Systems,
pages 515–523, 2000.

[7] M. D. Natale and J. Stankovic. A simulated annealing for
multiprocessor scheduling. Technical Report 10, ARTS lab,
S. Anna, Pisa, 1995.

[8] T. Peng, K. Shin, and T. Abdelzaher. Assignment and
scheduling of communicating periodic tasks in distributed
real-time systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 8(12), 1997.

[9] K. Ramamritham. Allocation and scheduling of precedence-
related periodic tasks. IEEE Transactions on Parallel and
Distributed Systems, 6(4):412–420, April 1995.

[10] A. Tarek and K. Shin. Period based load partitioning and as-
signment for large real time applications. IEEE Transactions
on Computers, 49(1):81–87, January 2000.

[11] B. Wells and C. Carroll. An augmented approach to task
allocation: combining simulated annealing with list-based
hueristics. Euromicro workshop on Parallel and Distributed
Processing, pages 508–515, 1993.

[12] T.-Y. Yen and W. Wolf. Performance estimation for real-time
distributed embedded systems. IEEE Transactions on Par-
allel and Distributed Systems, 9(11):1125–1136, November
1998.

8

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

