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ABSTRACT
IP spoofing has been exploited by Distributed Denial of Service (DDoS)
attacks to (1) conceal flooding sources and localities in flooding traf-
fic, and (2) coax legitimate hosts into becoming reflectors, redirect-
ing and amplifying flooding traffic. Thus, the ability to filter spoofed
IP packets near victims is essential to their own protection as well as
to their avoidance of becoming involuntary DoS reflectors. Although
an attacker can forge any field in the IP header, he or she cannot fal-
sify the number of hops an IP packet takes to reach its destination.
This hop-count information can be inferred from the Time-to-Live
(TTL) value in the IP header. Using a mapping between IP addresses
and their hop-counts to an Internet server, the server can distinguish
spoofed IP packets from legitimate ones. Base on this observation,
we present a novel filtering technique that is immediately deploy-
able to weed out spoofed IP packets. Through analysis using net-
work measurement data, we show that Hop-Count Filtering(HCF)
can identify close to 90% of spoofed IP packets, and then discard
them with little collateral damage. We implement and evaluate HCF
in the Linux kernel, demonstrating its benefits using experimental
measurements.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Security

General Terms
Algorithms,Performance,Security

Keywords
security,networking,DDoS defense,TTL,host-based

1. INTRODUCTION
An Internet host can spoof IP packets by using a raw socket to fill

arbitrary source IP addresses into their IP headers [28]. IP spoof-
ing is usually associated with malicious network behaviors, such as
Distributed Denial of Service (DDoS) attacks. As one of the most
difficult problems in network security, DDoS attacks have posed a
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serious threat to the availability of Internet services [6, 18, 27]. In-
stead of subverting services, DDoS attacks limit and block legitimate
users’ access by exhausting victim servers’ resources [7], or saturat-
ing stub networks’ access links to the Internet [19]. To conceal flood-
ing sources and localities in flooding traffic, attackers often spoof
IP addresses by randomizing the 32-bit source-address field in the
IP header [12, 13]. Moreover, some known DDoS attacks, such as
smurf [8] and more recent DRDoS (Distributed Reflection Denial of
Service) attacks [19, 33], are not possible without IP spoofing. Such
attacks masquerade the source IP address of each spoofed packet
with the victim’s IP address. It is difficult to counter IP spoofing
because of the stateless and destination-based routing of the Inter-
net. The IP protocol lacks the control to prevent a sender from hid-
ing the origin of its packets. Furthermore, destination-based routing
does not maintain state information on senders, and forwards each IP
packet toward its destination without validating the packet’s true ori-
gin. Overall, IP spoofing makes DDoS attacks much more difficult
to defend against.

To thwart DDoS attacks, researchers have taken two distinct ap-
proaches: router-basedand victim-based. The router-based approach
makes improvements to the routing infrastructure, while the victim-
based approach enhances the resilience of Internet servers against
attacks. The router-based approach performs either off-line analysis
of flooding traffic or on-line filtering of DDoS traffic inside routers.
Off-line IP traceback [4, 36, 37, 38, 41] attempts to establish pro-
cedures to track down flooding sources after occurrences of DDoS
attacks. While it does help pinpoint locations of flooding sources,
off-line IP traceback does not help sustain service availability during
an attack. On-line filtering mechanisms rely on IP router enhance-
ments [15, 23, 24, 25, 26, 31] to detect abnormal traffic patterns and
foil DDoS attacks. However, these solutions require not only router
support, but also coordination among different routers and networks,
and wide-spread deployment.

Compared to the router-based approach, the victim-based approach
has the advantage of being immediately deployable. More impor-
tantly, a potential victim has a much stronger incentive to deploy
defense mechanisms than network service providers. The current
victim-based approach protects Internet servers using sophisticated
resource management schemes. These schemes provide more ac-
curate resource accounting, and fine-grained service isolation and
differentiation [3, 5, 35, 39], for example, to shield interactive video
traffic from bulk data transfers. However, without a mechanism to
detect and discard spoofed traffic, spoofed packets will share the
same resource principals and code paths as legitimate requests. While
a resource manager can confine the scope of damage to the service
under attack, it may not be able to sustain the availability of the ser-
vice. In stark contrast, the server’s ability to filter most, if not all,
spoofed IP packets can help sustain service availability even under
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DDoS attacks. Since filtering spoofed IP packets is orthogonal to
resource management, it can be used in conjunction with advanced
resource-management schemes.

Therefore, victim-based filtering, which detects and discards spoofed
traffic without any router support, is essential to protecting victims
against DDoS attacks. We only utilize the information contained in
the IP header for packet filtering. Although an attacker can forge any
field in the IP header, he or she cannot falsify the number of hops an
IP packet takes to reach its destination, which is solely determined
by the Internet routing infrastructure. The hop-count information is
indirectly reflected in the TTL field of the IP header, since each inter-
mediate router decrements the TTL value by one before forwarding
a packet to the next hop. The difference between the initial TTL
(at the source) and the final TTL value (at the destination) is the
hop-count between the source and the destination. By examining the
TTL field of each arriving packet, the destination can infer its initial
TTL value, and hence the hop-count from the source. Here we as-
sume that attackers cannot sabotage routers to alter TTL values of IP
packets that traverse them.

In this paper, we propose a novel hop-count-based filter to weed
out spoofed IP packets. The rationale behind hop-count filtering is
that most spoofed IP packets, when arriving at victims, do not carry
hop-count values that are consistent with the IP addresses being
spoofed. Hop-Count Filtering(HCF) builds an accurate IP-to-hop-
count (IP2HC) mapping table, while using a moderate amount of
storage, by clustering address prefixes based on hop-count. To cap-
ture hop-count changes under dynamic network conditions, we also
devise a safe update procedure for the IP2HC mapping table that pre-
vents pollution by HCF-aware attackers. The same pollution-proof
method is used for IP2HC mapping table initialization and adding
new IP addresses into the table.

Two running states, alert and action, within HCF use this mapping
to inspect the IP header of each IP packet. Under normal condition,
HCF stays in alert state, watching for abnormal TTL behaviors with-
out discarding any packet. Even if a legitimate packet is incorrectly
identified as a spoofed one, it will not be dropped. Therefore, there
is no collateral damage in alert state. Upon detection of an attack,
HCF switches to actionstate, in which HCF discards those IP pack-
ets with mismatching hop-counts. Besides the IP2HC inspection,
several efficient mechanisms [17, 20, 30, 43] are available to detect
DDoS attacks. Through analysis using network measurement data,
we show that HCF can recognize close to 90% of spoofed IP pack-
ets. In addition, our hop-count-based clustering significantly reduces
the percentage of false positives.1 Thus, we can discard spoofed
IP packets with little collateral damage in action state. To ensure
that the filtering mechanism itself withstands attacks, our design is
light-weight and requires only a moderate amount of storage. We
implement HCF in the Linux kernel at the IP layer as the first step
of incoming packet processing. We evaluate the benefit of HCF with
experimental measurements and show that HCF is indeed effective
in countering IP spoofing by providing significant resource savings.

The remainder of the paper is organized as follows. Section 2
presents the TTL-based hop-count computation and the hop-count
inspection algorithm, which is in the critical path of HCF. Section
3 studies the feasibility of the proposed filtering mechanism, based
on a large set of previously-collected traceroute data, and the
resilience of our filtering scheme against HCF-aware attackers. Sec-
tion 4 demonstrates the effectiveness of the proposed filter in detect-
ing spoofed packets. Section 5 deals with the construction of IP2HC
mapping table, the heart of HCF. Section 6 details the two running
states of HCF, the inter-state transitions, and the placement of HCF.
Section 7 presents the implementation and experimental evaluation

1Percentage of the legitimate packets identified as the spoofed.

of HCF. Section 8 discusses related work. The paper concludes with
Section 9.

2. HOP-COUNT INSPECTION
Central to HCF is the validation of the source IP address of each

packet via hop-count inspection. In this section, we first discuss the
hop-count computation, and then detail the inspection algorithm.

2.1 TTL-based Hop-Count Computation
Since hop-count information is not directly stored in the IP header,

one has to compute it based on the TTL field. TTL is an 8-bit field in
the IP header, originally introduced to specify the maximum lifetime
of each packet in the Internet. Each intermediate router decrements
the TTL value of an in-transit IP packet by one before forwarding it
to the next-hop. The final TTL value when a packet reaches its des-
tination is therefore the initial TTL subtracted by the number of in-
termediate hops (or simply hop-count). The challenge in hop-count
computation is that a destination only sees the final TTL value. It
would have been simple had all operating systems (OSs) used the
same initial TTL value, but in practice, there is no consensus on the
initial TTL value. Furthermore, since the OS for a given IP address
may change with time, we cannot assume a single static initial TTL
value for each IP address.

Fortunately, however, according to [14], most modern OSs use
only a few selected initial TTL values, 30, 32, 60, 64, 128, and 255.
This set of initial TTL values cover most of the popular OSs, such as
Microsoft Windows, Linux, variants of BSD, and many commercial
Unix systems. We observe that most of these initial TTL values are
far apart, except between 30 and 32, 60 and 64, and between 32 and
60. Since Internet traces have shown that few Internet hosts are apart
by more than 30 hops [9, 10], which is also confirmed by our own
observation, one can determine the initial TTL value of a packet by
selecting the smallest initial value in the set that is larger than its
final TTL. For example, if the final TTL value is 112, the initial TTL
value is 128, the smaller of the two possible initial values, 128 and
255. To resolve ambiguities in the cases of {30, 32}, {60, 64}, and
{32, 60}, we will compute a hop-count value for each of the possible
initial TTL values, and accept the packet if there is a match with one
of the possible hop-counts.

The drawback of limiting the possible initial TTL values is that
packets from end-systems that use “odd” initial TTL values, may be
incorrectly identified as having spoofed source IP addresses. This
may happen if a user switches OS from one that uses a “normal”
initial TTL value to another that uses an “odd” value. Since our
filter starts to discard packets only upon detection of a DDoS attack,
such end-systems would suffer only during an actual DDoS attack.
The study in [14] shows that the OSs that use “odd” initial TTLs are
typically older OSs. We expect such OSs to constitute a very small
percentage of end-hosts in the current Internet. Thus, the benefit
of deploying HCF should out-weight the risk of denying service to
those end-hosts during attacks.

2.2 Inspection Algorithm
Assuming that an accurate IP2HC mapping table is present (see

Section 5 for details of its construction) Figure 2.1 outlines the HCF
procedure used to identify spoofed packets. The inspection algo-
rithm extracts the source IP address and the final TTL value from
each IP packet. The algorithm infers the initial TTL value and sub-
tracts the final TTL value from it to obtain the hop-count. The source
IP address serves as the index into the table to retrieve the correct
hop-count for this IP address. If the computed hop-count matches
the stored hop-count, the packet has been “authenticated;” other-
wise, the packet is likely spoofed. We note that a spoofed IP address
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for each packet:
extract the final TTL Tf and the IP address S;
infer the initial TTL Ti ;
compute the hop-count Hc = Ti −Tf ;
index S to get the stored hop-count Hs;
if (Hc �= Hs)

the packet is spoofed;
else

the packet is legitimate;

Figure 1: Hop-Count inspection algorithm.

may happen to have the same hop-count as the one from a zombie
(flooding source2) to the victim. In this case, HCF will not be able
to identify the spoofed packet. However, we will show in Section 4
that even with a limited range of hop-count values, HCF is highly
effective in identifying spoofed IP addresses.

Occasionally, legitimate packets may be identified as spoofed due
to inaccurate IP2HC mapping or delay in hop-count update. There-
fore, it is important to minimize collateral damage under HCF. We
note that an identified spoofed IP packet is only dropped in the action
state, while HCF only keeps track of the number of mis-matched IP
packets without discarding any packets in the alert state. This guar-
antees no collateral damage in the alert state, which should be much
more common than the actionstate.

3. FEASIBILITY OF HOP-COUNT FILTER-
ING

The feasibility of HCF hinges on three factors: (1) stability of
hop-counts, (2) diversity of hop-count distribution, and (3) robust-
ness against possible evasions. In this section, we first examine the
stability of hop-counts. Then, we assess if valid hop-counts to a
server are diverse enough, so that matching the hop-count with the
source IP address of each packet suffices to recognize spoofed pack-
ets with high probability. Finally, our discussion will show that it is
difficult for an HCF-aware attacker to circumvent filtering.

3.1 Hop-Count Stability
The stability in hop-counts between an Internet server and its clients

is crucial for HCF to work correctly and effectively. Frequent changes
in the hop-count between the server and each of its clients not only
lead to excessive mapping updates, but also greatly reduce filtering
accuracy when an out-of-date mapping is in use during attacks.

The hop-count stability is dictated by the end-to-end routing be-
haviors in the Internet. According to the study of end-to-end routing
stability in [32], the Internet paths were found to be dominated by
a few prevalent routes, and about two thirds of the Internet paths
studied were observed to have routes persisting for either days or
weeks. To confirm these findings, we use daily traceroute mea-
surements taken at ten-minute intervals among 113 sites [16] from
January 1st to April 30th, 2003. We observed a total of 10,814 dis-
tinct one-way paths, a majority of which had 12,000 traceroute mea-
surements each over the five-month period. In these measurements,
most of the paths experienced very few hop-count changes: 95%
of the paths had fewer than five observable daily changes. There-
fore, it is reasonable to expect hop-counts to be stable in the Internet.
Moreover, the proposed filter contains a dynamic update procedure
to capture hop-count changes as discussed in Section 5.2.

2In this paper, the terms zombie and flooding source are used inter-
changeably.

3.2 Diversity of Hop-Count Distribution
Because HCF cannot recognize forged packets whose source IP

addresses have the same hop-count value as that of a zombie, a di-
verse hop-count distribution is critical to effective filtering. It is nec-
essary to examine hop-count distributions at various locations in the
Internet to ensure that hop-counts are not concentrated around a sin-
gle value. If 90% of client IP addresses are ten hops away from a
server, one would not be able to distinguish many spoofed packets
from legitimate ones using HCF alone.

Type Sample Number

Commercial sites 11
Educational sites 4
Non-profit sites 2

Foreign sites 18
.net sites 12

Table 1: Diversity of traceroute gateway locations.
To obtain actual hop-count distributions, we use the raw tracer-

oute data from 50 different traceroute gateways in [11]. We
use only 47 of the data sets because three of them contain too few
clients compared to the others. The locations of traceroute gate-
ways are diverse as shown in Table 1. Most of the traceroute
gateways measured hop-counts to more than 40,000 clients.

We examined the hop-count distributions at all traceroute
gateways to find that the Gaussian distribution (bell-shaped curve)
is a good first-order approximation. Figures 2–3 show the hop-
count distributions of two selected sites: a well-connected commer-
cial server net.yahoo.com and a web server for Stanford Linear
Accelerator Center. We are interested in the girth of a distribution,
which can give a qualitative indication of how well HCF works, i.e.,
the wider the girth, the more effective HCF will be. For Gaussian
distributions, the girth is the standard deviation, σ. The Gaussian
distribution3 can be written in the following form:

f (h) = C e−
(h−µ)2

2σ2

where C is the normalization constant, so the area under the Gaus-
sian distribution sums to the number of IP addresses measured. The
mean value of a Gaussian distribution specifies the center of the bell-
shaped curve, and the standard deviation specifies the girth of the
bell. We are only interested in using the Gaussian distribution to
study if hop-count is a suitable measure for HCF. We are not making
any definitive claim of whether hop-count distributions are Gaussian
or not. For each given hop-count distribution, we use the normfit
function in Matlab to fit the distribution of hop-counts for each data
set. We plot the means and standard deviations, along with their 95%
confidence intervals, in Figures 4 and 5, respectively. We observe
that most of the mean values fall between 14 and 19 hops, and the
standard deviations between 3 and 5 hops. The largest percentage of
IP addresses that have a common hop-count value is only 10%. Such
distributions allow HCF to work effectively as we will show in the
quantitative evaluation of HCF in Section 4.

3.3 Robustness against Evasion
Once attackers learn of HCF, they will try to generate spoofed

packets that can dodge hop-count inspections, hence evading HCF.
However, such an attempt will either require a large amount of re-
source or time, and very elaborate planning, i.e., casual attackers are
unlikely to be able to evade HCF. In what follows, we assess the
various ways attackers may evade HCF.
3By “distribution,” we mean it in a generic sense that is equivalent
to histogram.
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Figure 3: Stanford University.
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The key for an attacker to evade HCF is his ability to set an appro-
priate initial TTL value for each spoofed packet, because the number
of hops traversed by an IP packet is determined solely by the routing
infrastructure. Assuming the same initial TTL value I for all Inter-
net hosts, a packet from a flooding source, which is hz hops away
from the victim, has a final TTL value of I − hz. In order for the
attacker to generate spoofed packets from this flooding source with-
out being detected, the attacker must change the initial TTL value
of each packet to I

′
= I − (hs−hz), where hs is the hop-count from

the spoofed IP address to the victim. Each spoofed packet would
have the correct final TTL value, I − (hs−hz)−hz = I −hs, when it
reaches the victim.

An attacker can easily learn the hop-count, hz, from a zombie site
to the victim by running traceroute. However, randomly select-
ing the source address for each spoofed IP packet [12, 13] makes it
extremely difficult, if not impossible, for the attacker to learn hs. To
obtain the correct hs values for all spoofed packets sent to the vic-
tim, the attacker has to build a priori an IP2HC mapping table that
covers the entire random IP address space. This is much more dif-
ficult than building an IP2HC mapping table at the victim, since the
attacker cannot observe the final TTL values of normal traffic at the
victim. For an attacker to build such an IP2HC mapping table, he or
she may have to compromise at least one end-host behind every stub
network whose IP addresses are in the random IP address space, and
perform traceroute to get hs for the corresponding IP2HC map-
ping entry. Without correct hs values, an attacker cannot fabricate
the appropriate initial TTL values to conceal forgery.

Without compromising end-hosts, it may be possible for an at-
tacker to probe the hs value for a given IP address if it is not sending
any packets to the network. The probing procedure works as follows:

(1) force the victim into the actionstate to actively filter packets by
launching a DDoS attack; (2) probe the quiescent host and extract the
latest value of its IP identification field of the header [44]; (3) send a
spoofed packet containing a legitimate request with the quiescent IP
address as the source IP address to the victim with a tentative initial
TTL; (4) re-probe the quiescent host and check if its IP ID has in-
creased by more than one. If it has, this indicates that the victim has
accepted the spoofed packet and the initial TTL is the desired one.4

Otherwise, the attacker will change the initial TTL value and repeat
the above probing procedure. Although it is possible to obtain the
appropriate initial TTL for a single IP address, probing the whole
random address space requires an excessive amount of time and ef-
fort. First, an attacker has to launch a DDoS attack that must last long
enough to accommodate a large number of probes, or launch numer-
ous short-lived DDoS attacks to accommodate all probing activities.
Even if the attacker probes only one host per stub network, with the
Internet containing tens of millions of stub networks, it is difficult to
hide during this process of TTL probing. Second, the attacker must
ensure an IP address remains quiescent during the probing. Since the
attacker cannot prevent the probed IP address from becoming active,
he or she can easily misinterpret an increase of the IP ID number as
the forged initial TTL being correct.

Without compromising end-hosts, an attacker may compute hop-
counts of to-be-spoofed IP addresses based on an accurate router-
level topology of the Internet, and the underlying routing algorithms
and policies. The recent Internet mapping efforts such as Internet

4If the victim accepts the spoofed packet, a response would be sent
to the quiescent host, causing it to generate a response, most likely a
RST, and increase the IP ID number by one.
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Map [9], Mercator [21], Rocketfuel [40], and Skitter [10] projects,
may make the approach plausible. However, the current topology
mappings put together snapshots of various networks measured at
different times. Thus-produced topology maps are generally time-
averaged approximations of actual network connectivity. More im-
portantly, inter-domain routing in the Internet is policy-based, and
the routing policies are not disclosed to the public. The path, and
therefore the hop-count, between a source and a destination is de-
termined by routing policies and algorithms that are often unknown.
Even if an attacker has accurate information of the Internet topol-
ogy, he or she cannot obtain the correct hop-counts based on network
connectivity alone. We believe that the quality of network maps will
improve with better mapping technology, but we do not anticipate
any near-term advances that can lead to accurate hop-counts based
on just Internet maps.

Instead of spoofing randomly-selected IP addresses, an attacker
may choose to spoof IP addresses from a set of already-compromised
machines that are much smaller in number than 232, so that he or she
can measure all hs’s and fabricate appropriate initial TTLs. How-
ever, this weakens the attacker’s ability in several ways. First, the list
of would-be spoofed source IP addresses is greatly reduced, which
makes the detection and removal of flooding traffic much easier.
Second, source addresses of spoofed IP packets reveal the locations
of compromised end-hosts, which makes IP traceback much easier.
Third, the attacker must somehow probe the victim server to obtain
the correct hop-counts. However, network administrators nowadays
are extremely alert to unusual access patterns or probing attempts;
so, it would require a great deal of effort to coordinate the probing
attempts so as not to raise red flags. Fourth, the attacker must modify
the available attacking tools since the most popular distributed at-
tacking tools, including mstream, Shaft, Stacheldraht, TFN, TFN2k,
Trinoo and Trinity, generate randomized IP addresses in the space
of 232 for spoofing [12, 13]. The wide-spread use of randomness in
spoofing IP address has been verified by the “backscatter” study [27],
which quantified DoS activities in the Internet.

4. EFFECTIVENESS OF HCF
We now assess the effectiveness of HCF from a statistical stand-

point. More specifically, we address the question “what fraction of
spoofed IP packets can be detected by the proposed HCF?” We as-
sume that potential DDoS victims know the complete mapping be-
tween their client IP addresses and hop-counts (to the victims them-
selves). In the next section, we will discuss the construction of such
mappings. We assume that, to spoof packets, the attacker randomly
selects source IP addresses from the entire IP address space, and
chooses hop-counts according to some distribution. Without loss of
generality, we further assume that the attacker evenly divides the
flooding traffic among the flooding sources. This analysis can be
easily extended for cases where the flooding traffic is unevenly dis-
tributed. To make the analysis tractable, we consider only static hop-
counts. We will later discuss an update procedure that will capture
legitimate hop-count changes.

4.1 Simple Attacks
First, we examine the effectiveness of HCF against simple attack-

ers that spoof source IP addresses while still using the default initial
TTL values at the flooding sources. Most of the available DDoS at-
tacking tools [12, 13] do not alter the initial TTL values of packets.
Thus, the final TTL value of a spoofed packet will bear the hop-
count value between the flooding source and the victim. To assess
the performance of HCF against such simple attacks, we consider
two scenarios: single flooding source and multiple flooding sources.

4.1.1 A Single Source
Given a single flooding source whose hop-count to the victim is

h, let αh denote the fraction of IP addresses that have the same hop-
count to the victim as the flooding source. Figure 6 depicts the hop-
count distributions seen at a hypothetical server for both real client
IP addresses, and spoofed IP addresses generated by a single flood-
ing source. Since spoofed IP addresses come from a single source,
they all have an identical hop-count. Hence, the hop-count distribu-
tion of spoofed packets is a vertical bar of width one. On the other
hand, real client IP addresses have a diverse hop-count distribution
that is observed to be close to a Gaussian distribution. The shaded
area represents those IP addresses — the fraction αh of total valid IP
addresses — that have the same distance to the server as the flood-
ing source. Thus, the fraction of spoofed IP addresses that cannot be
detected is αh. The remaining fraction 1−αh will be identified and
discarded by HCF.

The attacker may happen to choose a zombie that is 16 or 17 —
the most popular hop-count values — hops away from the victim as
the flooding source. However, the standard deviations of the fitted
Gaussian distributions are still reasonably large such that the per-
centage of IP addresses with any single hop-count value is small
relative to the overall IP address space. As shown in Section 3.2,
even if the attacker floods spoofed IP packets from such a zombie,
HCF can still identify nearly 90% of spoofed IP addresses. In most
distributions, the mode accounts for 10% of the total IP addresses,
with the maximum and minimum of the 47 modes being 15% and
8%, respectively. Overall, HCF is very effective against these sim-
ple attacks, reducing the attack traffic by one order of magnitude.

4.1.2 Multiple Sources
DoS attacks usually involve more than a single host, and hence,

we need to examine the case of multiple active flooding sources. As-
sume that there are n sources that flood a total of F packets, each
flooding source generates F/n spoofed packets. Figure 7 shows the
hop-count distribution of spoofed packets sent from two flooding
sources. Each flooding source is seen to generate traffic with a sin-
gle unique hop-count value. Let hi be the hop-count between the
victim and flooding source i, then the spoofed packets from source i
that HCF can identify is F

n (1−αi). The fraction, Z, of identifiable
spoofed packets generated by n flooding sources is:

Z =
F
n (1−αh1 )+ · · ·+ F

n (1−αhn
)

F

= 1− 1
n

n

∑
i=1

αhi

This expression says that the overall effectiveness of having mul-
tiple flooding sources is somewhere between that of the most ef-
fective source i with the largest αhi

and that of the least effective
source j with the smallest αhj

. Adding more flooding sources does
not weaken the HCF’s ability to identify spoofed IP packets. On
the contrary, since the hop-count distribution follows Gaussian, ex-
istence of less effective flooding sources (with small αh’s) enables
the filter to identify and discard more spoofed IP packets than in the
case of a single flooding source.

4.2 Sophisticated Attackers
Most attackers will eventually recognize that it is not enough to

merely spoof source IP addresses. Instead of using the default ini-
tial TTL value, the attacker can easily randomize it for each spoofed
IP packet. Although the hop-count from a single flooding source to
the victim is fixed, randomizing the initial TTL values will create
an illusion of packets having many different hop-count values at the
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two flooding sources.

victim server. The range of randomized initial TTL values should be
a subset of [hz, Id + hz], where hz is the hop-count from the flood-
ing source to the victim and Id is the default initial TTL value. The
starting point in this range should not be less than hz. Otherwise,
spoofed IP packets bearing TTLs smaller than hz will be discarded
before they reach the victim. The simplest method of generating ini-
tial TTLs at a single source is to use a uniform distribution. The final
TTL values, Tv’s, seen at the victim are Ir −hz, where Ir represents
randomly-generated initial TTLs. Since hz is constant and Ir follows
a uniform distribution, Tv’s are also uniformly-distributed. Since the
victim derives the hop-count of a received IP packet based on its Tv
value, the perceived hop-count distribution of the spoofed source IP
address is uniformly-distributed.

Figure 8 illustrates the effect of randomized TTLs, where hz = 10.
We use a Gaussian curve with µ= 15 and σ = 3 to represent a typical
hop-count distribution (see Section 3.2) from real IP addresses to the
victim, and the box graph to represent the perceived hop-count dis-
tribution of spoofed IP addresses at the victim. The large overlap be-
tween the two graphs may appear to indicate that our filtering mech-
anism is not effective. On the contrary, uniformly-distributed ran-
dom TTLs actually conceal fewer spoofed IP addresses from HCF.
For uniformly-distributed TTLs, each spoofed source IP address has
the probability 1/H of having the matching TTL value, where H is
the number of possible hop-counts. Consequently, for each possible
hop-count h, only αh/H fraction of IP addresses have correct TTL
values. Overall, assuming that the range of possible hop-counts is
[hi , hj ] where i ≤ j and H = j − i +1, the fraction of spoofed source
IP addresses that have correct TTL values, is given as:

Z̄ =
αhi

H
+ . . .+

αhj

H
=

1
H

·
j

∑
k=i

αhk
.

Note that we use Z̄ in place of 1−Z to simplify notation. In Figure 8,
the range of generated hop-counts is between 10 and 20, so H =
11. The summation will have a maximum value of 1 so Z̄ can be
at most 1/H = 8.5%, which is represented by the area under the
shorter Gaussian distribution in Figure 8. In this case, less than 10%
of spoofed packets go undetected by HCF.

In general, an attacker could generate initial TTLs within the range
[hm,hn], based on some known distribution, where the probability of
IP addresses with hop-count hk is phk

. If in the actual hop-count
distribution at the victim server, the fraction of the IP addresses that
have a hop-count of hk is αhk

, then the fraction of the spoofed IP
packets that will not be caught by HCF is:
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Figure 8: Hop-Count distribution of IP addresses with a single
flooding source, randomized TTL values.

Z̄ =
n

∑
k=m

αhk
· phk

.

The term inside the summation simply states that only phk
fraction

of IP addresses with hop-count hk can be spoofed with matching
TTL values. For instance, if an attacker is able to generate initial
TTLs based on the hop-count distribution at the victim, phk

becomes
αhk

. In this case, Z̄ becomes Z̄ = ∑n
k=m α2

hk
. Based on the hop-

count distribution in Figure 8, we can again calculate Z̄ for m = 0
and n = 30 to be 9.4%, making this attack slightly more effective
than randomly-generating TTLs. Surprisingly, none of these “intel-
ligent” attacks are much more effective than the simple attacks in
Section 4.1.1.

5. CONSTRUCTION OF HCF TABLE
We have shown that HCF can remove nearly 90% of spoofed traf-

fic with an accurate mapping between IP addresses and hop-counts.
Thus, building an accurate HCF table (i.e., IP2HC mapping table)
is critical to detecting the maximum number of spoofed IP pack-
ets. In this section, we detail our approach to constructing an HCF
table. Our objectives in building an HCF table are: (1) accurate
IP2HC mapping, (2) up-to-date IP2HC mapping, and (3) moderate
storage requirement. By clustering address prefixes based on hop-
counts, we can build accurate IP2HC mapping tables and maximize
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HCF’s effectiveness without storing the hop-count for each IP ad-
dress. Moreover, we design a pollution-proof update procedure that
captures legitimate hop-count changes while foiling attackers’ at-
tempt to pollute HCF tables.

5.1 IP Address Aggregation
It is highly unlikely that an Internet server will receive legitimate

requests from all live IP addresses in the Internet. Also, the entire IP
address space is not fully utilized in the current Internet. By aggre-
gating IP address, we can reduce the space requirement of IP2HC
mapping significantly. More importantly, IP address aggregation
covers those unseen IP addresses that are co-located with those IP
addresses that are already in an HCF table.

Grouping hosts according to the first 24 bits of IP addresses is a
common aggregation method. However, hosts whose network pre-
fixes are longer than 24 bits, may reside in different physical net-
works in spite of having the same first 24 bits. Thus, these hosts are
not necessarily co-located and have identical hop-counts. To obtain
an accurate IP2HC mapping, we must refine the 24-bit aggregation.
Instead of simply aggregating into 24-bit address prefixes, we further
divide IP addresses within each 24-bit prefix into smaller clusters
based on hop-counts. To understand whether this refined cluster-
ing improves HCF over the simple 24-bit aggregation, we compare
the filtering accuracies of HCF tables under both aggregations —
the simple 24-bit aggregation (without hop-count clustering) and the
24-bit aggregation with hop-count clustering.

For this accuracy experiment, we treat each traceroute gateway
(Section 3.2) as a “web server,” and its measured IP addresses as
clients to this web server. We build an HCF table based on the
set of client IP addresses at each web server and evaluate the fil-
tering accuracy under each aggregation method. We assume that
the attacker knows the client IP addresses of each web server and
generates packets by randomly selecting source IP addresses among
legitimate client IP addresses. We further assume that the attacker
knows the general hop-count distribution and uses it to generate the
hop-count for each spoofed packet. This is the DDoS attack that the
most knowledgeable attacker can launch without learning the exact
IP2HC mapping, i.e., the best scenario for the attacker.

We define the filtering accuracy of an HCF table to be the per-
centages of false positives and false negatives. False positives are
those legitimate client IP addresses that are incorrectly identified as
spoofed. False negatives are spoofed packets that go undetected by
HCF. Both should be minimized in order to achieve maximum fil-
tering accuracy. We compute the percentage of false positives as the
number of client IP addresses identified as spoofed divided by the
total number of client IP addresses. We compute the percentage of
false negatives according to the calculation in Section 4.2.

5.1.1 Aggregation into 24-bit Address Prefixes
For each web server, we build an HCF table by grouping its IP ad-

dresses according to the first 24 bits. We use the minimum hop-count
of all IP addresses inside a 24-bit network address as the hop-count
of the network. After the table is constructed, each IP address is con-
verted into a 24-bit address prefix, and the actual hop-count of the
IP address is compared to the one stored in the aggregate HCF table.
Since 24-bit aggregation does not preserve the correct hop-counts
for all IP addresses, we examine the performance of three types of
filters: “Strict Filtering,” “+1 Filtering,” and “+2 Filtering.” “Strict
Filtering” drops packets whose hop-counts do not match those stored
in the table. “+1 Filtering” drops packets whose hop-counts differ
by greater than 1 compared to those in the table, and “+2 Filtering”
drops packets whose hop-counts differ by greater than two.

We have shown in Section 4.2 that percentage of false negatives
is determined by the distribution of hop-counts. Aggregation of IP
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Figure 9: Accuracies of various filters. (Note that the points of
24-bit clustering filtering overlap with those of 32-bit filtering.)

addresses into 24-bit network addresses does not change the hop-
count distribution significantly. Thus, the 24-bit strict filtering yields
a similar percentage of false negatives for each web server to the case
of storing individual IP addresses (32-bit Strict Filtering in the fig-
ure). On the other hand, percentage of false positives is significantly
higher in the case of aggregation as expected. Figure 9 presents the
combined false positive and false negative results for the three filter-
ing schemes. The x-axis is the percentage of false negatives, and the
y-axis is the percentage of false positives. Each point in the figure
represents the pair of percentages for a single web server. For ex-
ample, under “24-bit Strict Filtering,” most web servers suffer about
10% of false positives, while only 5% of false negatives. As we relax
the filtering criterion, false positives are halved while false negatives
approximately doubled. Clearly, tolerating packets with mismatch-
ing hop-counts requires to make a trade-off between percentage of
false positives and that of false negatives. Overall, +1 Filtering of-
fers a reasonable compromise between false negatives and false pos-
itives. Considering the impact of DDoS attacks without HCF, a small
percentage of false positives may be an acceptable price to pay.

In practice, 24-bit aggregation is straightforward to implement and
can offer fast lookup with an efficient implementation. Assuming
a one-byte entry per network prefix for hop-count, the storage re-
quirement is 224 bytes or 16 MB. The memory requirement is mod-
est compared to contemporary servers which are typically equipped
with multi-gigabytes of memory. Under this setup, the lookup oper-
ation consists of computing a 24-bit address prefix from the source
IP address in each packet and indexing it into the HCF table to find
the right hop-count value. For systems with limited memory, the ag-
gregation table can be implemented as a much smaller hash-table.
While 24-bit aggregation may not be the most accurate, at present it
is a good and deployable solution.

5.1.2 Aggregation with Hop-Count Clustering
Under 24-bit aggregation, the percentage of false negatives is still

high (≈15%) if false positives are to be kept reasonably small. Based
on hop-count, one can further divide IP addresses within each 24-bit
prefix into smaller clusters. By building a binary aggregation tree it-
eratively from individual IP addresses, we cluster IP addresses with
same hop-count together. The leaves of the tree represent the 256
(254 to be precise) possible IP addresses inside a 24-bit address pre-
fix. In each iteration, we examine two sibling nodes and determine
whether we can aggregate IP addresses behind these two nodes. We
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Figure 10: An example of hop-count clustering.

will aggregate the two nodes as long as they share a common hop-
count, or one of them is empty. If aggregate is possible, the parent
node will have the same hop-count as the children. We can thus find
the largest possible aggregation for a given set of IP addresses. Fig-
ure 10 shows an example of clustering a set of IP addresses (with
the last octets shown) by their hop-counts using the aggregation tree
(showing the first four levels). For example, the IP address range,
128 to 245, is aggregated into a 128/25 prefix with a hop-count of
20, and the three IP addresses, 79, 105, and 111 are aggregated into a
64/26 prefix with a hop-count of 20. However, we cannot aggregate
these two blocks further up the tree due to holes in the address space.
We are able to aggregate 11 of 17 IP addresses into four network
prefixes. The remaining IP addresses must be stored as individual IP
addresses.

With hop-count-based clustering, we never aggregate IP addresses
that do not share the same hop-count. Hence, we can eliminate false
positives when all clients of a server are known as in Figure 9. HCF
will be free of false positives as long as the table is updated with the
correct hop-counts when client hop-counts change. Furthermore, un-
der hop-count clustering, we observe no noticeable increase in false
negatives compared to the approach of 32-bit Strict Filtering. Thus,
one cannot see the difference in Figure 9 due to their having similar
numbers of false positives and negatives. Compared to the 24-bit
aggregation, the clustering approach is more accurate but consumes
more memory. Figure 11 shows the number of table entries for all
web servers used in our experiments. The x-axis is the ID of the web
server ranked by the number of client IP addresses, and the y-axis is
the number of table entries. In the case of 32-bit Strict Filtering, the
number of table entries for each server is the same as the number of
client IP addresses. We observe that the hop-count-based clustering
increases the size of HCF table, by no more than 20% in all but one
case (36%).

5.2 Pollution-Proof Initialization and Update
To populate the HCF table initially, an Internet server should col-

lect traces of its clients that contain both IP addresses and the corre-
sponding TTL values. The initial collection period should be com-
mensurate with the amount of traffic the server is receiving. For a
very busy site, a collection period of a few days could be sufficient,
while for a lightly-loaded site, a few weeks might be more appropri-
ate.

Keeping the IP2HC mapping up-to-date is necessary for our filter
to work in the Internet where hop-counts may change. The hop-
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Figure 11: Sizes of various HCF tables.

count, or distance from a client to a server can change as a result
of relocation of networks, routing instability, or temporary network
failures. Some of these events are transient, but changes in hop-count
due to permanent events need to be captured.

While adding new IP2HC entries or capturing legitimate hop-count
changes, we must foil attackers’ attempt to slowly pollute HCF ta-
bles by dropping spoofed packets. One way to ensure that only le-
gitimate packets are used during initialization and dynamic update
is through TCP connection establishment, an HCF table should be
updated only by those TCP connections in the established state
[44]. The three-way TCP handshake for connection setup requires
the active-open party to send an ACK (the last packet in the three-
way handshake) to acknowledge the passive party’s initial sequence
number. The host that sends the SYN packet with a spoofed IP ad-
dress will not receive the server’s SYN/ACK packet and thus cannot
complete the three-way handshake. Using packets from established
TCP connections ensures that an attacker cannot slowly pollute an
HCF table by spoofing source IP addresses. While the HCF mecha-
nism works for all types of IP traffic, the update procedure uses only
TCP traffic.

While our dynamic update provides safety, it may be too expen-
sive to inspect and update an HCF table with each newly-established
TCP connection, since our update function is on the critical path of
TCP processing. We provide a user-configurable parameter to adjust
the frequency of update. The simplest solution would be to maintain
a counter p that records the number of established TCP connections
since the last reset of p. We will update the HCF table using packets
belonging to every k-th TCP connection and reset p to zero after the
update. p can also be a function of system load and hence, updates
are made more frequently when the system is lightly-loaded.

We note that mapping updates may require re-clustering which
may break up a node or merge two adjacent nodes on a 24-bit tree.
Re-clustering is a local activity, which confines itself to a single 24-
bit tree. Moreover, since hop-count changes are not a frequent event
in the network as reported in [32] and confirmed by our own obser-
vations, the overhead incurred by re-clustering is negligible.

6. RUNNING STATES OF HCF
Since HCF causes delay in the critical path of packet processing, it

should not be active at all time. We therefore introduce two running
states inside HCF: the alert state to detect the presence of spoofed
packets and the action state to discard spoofed packets. By default,
HCF stays in alert state and monitors the trend of hop-count changes
without discarding packets. Upon detection of a flux of spoofed
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In alert state:
for each sampled packet p:

spoo f= IP2HC Inspect(p);
t = Average(spoo f);
if ( spoo f )

if ( t > T1 )
Switch Action();

Accept(p);

for the k-th TCP control block tcb:
Update Table(tcb);

In actionstate:
for each packet p:

spoo f= IP2HC Inspect(p);
t = Average(spoo f);
if ( spoo f )

Drop(p);
else Accept(p);

if ( t ≤ T2 )
Switch Alert();

Figure 12: Operations in two HCF states.

packets, HCF switches to action state to examine each packet and
discards spoofed IP packets. In this section, we discuss the details of
each state and show that having two states can better protect servers
against different forms of DDoS attacks.

6.1 Tasks in Two States
Figure 6.1 lists the tasks performed by each state. In the alert

state, HCF performs the following tasks: sample incoming pack-
ets for hop-count inspection, calculate the spoofed packet counter,
and update the IP2HC mapping table in case of legitimate hop-count
changes. Packets are sampled at exponentially-distributed intervals
with mean m in either time or the number of packets. The exponen-
tial distribution can be precomputed and made into a lookup table
for fast on-line access. For each sampled packet, IP2HC Inspect()
returns a binary number spoo f, depending on whether the packet is
judged as spoofed or not. This is then used by Average() to compute
an average spoof counter t per unit time. When t is greater than a
threshold T1, HCF enters the action state. HCF in alert state will
also update the HCF table using the TCP control block of every k-th
established TCP connection.

HCF in action state performs per-packet hop-count inspection and
discards spoofed packets, if any. HCF in action state performs a
similar set of tasks as in alert state. The main differences are that
HCF must examine every packet (instead of sampling only a subset
of packets) and discards spoofed packets. HCF stays in action state
as long as spoofed IP packets are detected. When the ongoing spoof-
ing ceases, HCF switches back to alert state. This is accomplished
by checking the spoof counter t against another threshold T2, which
should be smaller than T1 for better stability. HCF should not al-
ternate between alert and action states when t fluctuates around T1.
Making the second threshold T2 < T1 avoids this instability.

To minimize the overhead of hop-count inspection and dynamic
update in alert state, their execution frequencies are adaptively cho-
sen to be inversely proportional to the server’s workload. We mea-
sure a server’s workload by the number of established TCP connec-

tions. If the server is lightly-loaded, HCF calls for IP2HC inspection
and dynamic update more frequently by reducing user-configurable
parameters, k and x. In contrast, for a heavily-loaded server, both
k and x are decreased. The two thresholds T1 and T2, used for de-
tecting spoofed packets, should also be adjusted based on load. The
general guideline for setting execution rates and thresholds with the
dynamics of server’s workload is given as follows:

Load↗ ⇒ Rates↘ ⇒ Threshold↘
Currently, however, we only recommend these parameters to be user-
configurable. Their specific values depend on the requirement of
individual networks in balancing security and performance.

6.2 Staying “Alert” to DRDoS Attacks
Introduction of the alert state not only lowers the overhead of

HCF, but also makes it possible to stop other forms of DoS attacks.
In DRDoS attacks, an attacker forges IP packets that contain legit-
imate requests, such as DNS queries, by setting the source IP ad-
dresses of these spoofed packets to the actual victim’s IP address.
The attacker then sends these spoofed packets to a large number of
reflectors. Each reflector only receives a moderate flux of spoofed
IP packets so that it may easily sustain the availability of its normal
service, thus not causing any alert. The usual intrusion detection
methods based on the ongoing traffic volume or access patterns may
not be sensitive enough to detect the presence of such spoofed traf-
fic. In contrast, HCF specifically looks for IP spoofing, so it will
be able to detect attempts to fool servers into acting as reflectors.
Although HCF is not perfect and some spoofed packets may still
slip through the filter, HCF can detect and intercept enough of the
spoofed packets to thwart DRDoS attacks. We would like to point
out that an attacker may evade detection if he knows the hop-count
mapping from reflectors to a victim as discussed in Section 3.3.

6.3 Blocking Bandwidth Attacks
To protect server resources such as CPU and memory, HCF can be

installed at a server itself or at any network device near the servers,
i.e., inside the ‘last-mile’ region, such as the firewall of an organi-
zation. However, this scheme will not be effective against DDoS at-
tacks that target the bandwidth of a network to/from the server. The
task of protecting the access link of an entire stub network is more
complicated and difficult because the filtering has to be applied at
the upstream router of the access link, which must involve the stub
network’s ISP.

The difficulty in protecting against bandwidth flooding is that packet
filtering must be separated from detection of spoofed packets as the
filtering has to be done at the ISP’s edge router. One or more ma-
chines inside the stub network must run HCF and actively watch
for traces of IP spoofing by always staying in the alert state. For
complete protection, the access router should also run HCF in case
attacking traffic terminates at the access router. This can be accom-
plished by substituting a regular end-host configured as a router. In
addition, at least one machine inside the stub network needs to main-
tain an updated HCF table since only end-hosts can see established
TCP connections. Under an attack, this machine should notify the
network administrator who then coordinates with the ISP to install a
packet filter based on the HCF table on the ISP’s edge router.

Our two running-state design makes it natural to separate these
two functions — detection and filtering of spoofed packets. Figure
13 shows a hypothetical stub network that hosts a web server that
runs HCF. The stub network is connected to its upstream ISP via
an access router and the ISP’s edge router. Under normal network
condition, the web server monitors its traffic and builds the HCF ta-
ble. When attack traffic arrives at the stub network, HCF at the web
server will notice this sudden rise of spoofed traffic and inform the
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Figure 13: Packet filtering at a router to protect bandwidth.

network administrator via an authenticated channel. The administra-
tor can have the ISP install a packet filter in the ISP’s edge router,
based on the HCF table. Note that one cannot directly use the HCF
table since the hop-counts from client IP addresses to the web server
are different from those to the router. Thus, all hop-counts need to
be decremented by a proper offset equal to the hop-count between
the router and the web server. Once the HCF table is enabled at
the ISP’s edge router, most spoofed packets will be intercepted, and
only a very small percentage of the spoofed packets that slip through
HCF, will consume bandwidth. In this case, having two separable
states is crucial since routers usually cannot observe established TCP
connections and use the safe update procedure.

7. RESOURCE SAVINGS
This section details the implementation of a proof-of-concept HCF

inside the Linux kernel and presents its evaluation on a real testbed.
The two concerns we addressed are the per-packet overhead of HCF
and the amount of resource savings when HCF is active. Our mea-
surements show that HCF only consumes a small amount of CPU
time, and indeed makes significant resource savings.

7.1 Building the Hop-Count Filter
To validate the efficacy of HCF in a real system, we implement

a test module inside the Linux kernel. The test module resides in
the IP packet receive function, ip rcv. To minimize the CPU cy-
cles consumed by spoofed IP packets, we insert the filtering function
before the code segment that performs the expensive checksum ver-
ification. Our test module has the basic data structures and functions
to support search and update operations to the hop-count mapping.

The hop-count mapping is organized as a 4096-bucket hash table
with chaining to resolve collisions. Each entry in the hash table rep-
resents a 24-bit address prefix. A binary tree is used to cluster hosts
within each 24-bit address prefix. Searching for the hop-count of an
IP address consists of locating the entry for its 24-bit address prefix
in the hash table, and then finding the proper cluster that the IP ad-
dress belongs to on the tree. Given an IP address, HCF computes the
hash key by XORing the upper and lower 12-bits of the first 24 bits
of the source IP address. Since 4096 is relatively small compared to
the set of possible 24-bit address prefixes, collisions are likely to oc-
cur. To estimate the average size of a chained list, we hash the client
IP addresses from [11] into the 4096-bucket hash table to find that,
on average, there are 11 entries on a chain, with the maximum being
25. We build the clustering tree by choosing a minimum clustering
unit of four IP addresses so the tree has a depth of six (26 = 64).
This tree can then be implemented as a linear array of 127 elements.
Each element in the array stores the hop-count value of a particular
clustering. We set the array element to be the hop-count if clustering
is possible, and zero otherwise.

with HCF without HCF
scenarios avg min avg min
TCP SYN 388 240 7507 3664

TCP open+close 456 264 18002 3700
ping 64B 396 240 20194 3604
ping 1500B 298 124 35925 2436
ping flood 358 256 20139 3616
TCP bulk 443 168 6538 3700
UDP bulk 490 184 6524 3628

Table 2: CPU overhead of HCF and normal IP processing.

To implement the HCF-table update, we insert the function call
into the kernel TCP code past the point where the three-way hand-
shake of TCP connection is completed. For every k-th established
TCP connection, the update function takes the argument of the source
IP address and the final TTL value of the ACK packet that completes
the handshake. Then, the function searches the HCF table for an en-
try that corresponds to this source IP address, and will either over-
write the existing entry or create a new entry for a first-time visitor.

7.2 Experimental Evaluation
For HCF to be useful, the per-packet overhead must be much

lower than the normal processing of an IP packet. We examine the
per-packet overhead of HCF by instrumenting the Linux kernel to
time the filtering function as well as the critical path in processing IP
packets. We use the built-in Linux macro rdtscl to record the ex-
ecution time in CPU cycles. While we cannot generalize our exper-
imental results to predict the performance of HCF under real DDoS
attacks, we can confirm whether HCF provides significant resource
savings.

We set up a simple testbed of two machines connected to a 100
Mbps Ethernet hub. A Dell Precision workstation with 1.9 GHz Pen-
tium 4 processor and 1 GB of memory, simulates the victim server
where HCF is installed. A second machine generates various types
of IP traffic to emulate incoming attack traffics to the victim server.
To minimize the effect of caches, we randomize each hash key to
simulate randomized IP addresses to hit all buckets in the hash table.
For each hop-count look-up, we assume the worst case search time.
The search of a 24-bit address prefix traverses the entire chained list
of 11 entries, and the hop-count lookup within the 24-bit prefix tra-
verses the entire depth of the tree.

We generate two types of traffic, TCP and ICMP, to emulate flood-
ing traffics in DDoS attacks. In the case of flooding TCP traffic, we
use a modified version of tcptraceroute [1] to generate TCP
SYN packets to simulate a SYN flooding attack. In addition, we
also repeatedly open a TCP connection on the victim machine and
close it right away, which includes sending both SYN and FIN pack-
ets. Linux delays most of the processing and the establishment of the
connection control block until receiving the final ACK from the host
that does the active open. Since the processing to establish a con-
nection is included in our open + close experiment, the mea-
sured critical path may be longer than that in a SYN flooding attack.
To emulate ICMP attacks, we run three experiments of single-stream
pings. The first uses default 64-byte packets, and the second uses
1500-byte packets. In both experiments, packets are sent at 10 ms in-
tervals. The third experiment uses ping flood (ping -f) with the
default packet size of 64 bytes and sends packets as fast as the sys-
tem can transmit. To understand HCF’s impact on normal IP traffic,
we also consider bulk data transfers under both TCP and UDP. We
compare the per-packet overhead without HCF with the per-packet
overhead of the filtering function in Table 2.

We present the recorded processing times in CPU cycles in Ta-
ble 2. The column under ’with HCF’ lists the execution times of the
filtering function. The column under ‘without HCF’ lists the normal
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Figure 14: Resource savings by HCF.

packet processing times without HCF. Each row in the table repre-
sents a single experiment, and each experiment is run with a large
number (≈ 40,000) of packets to compute the average number of cy-
cles. We present both the minimum and the average numbers. There
exists a difference between average cycles and minimum cycles for
two reasons. First, some packets take longer to process than oth-
ers, e.g., a SYN/ACK packet takes more time than a FIN packet.
Second, the average cycles may include lower-level interrupt pro-
cessing, such as input processing by the Linux Ethernet driver. We
observe that, in general, the filtering function uses significantly fewer
cycles than the emulated attacking traffic, generally an order of mag-
nitude less. Consequently, HCF should provide significant resource
savings by detecting and discarding spoofed traffic. In case of bulk
data transfers, the differences are also significant. However, the pro-
cessing of packets in bulk data transfers takes fewer cycles than the
emulated attack traffic. We attribute this to TCP header prediction
and UDP’s much simpler protocol processing. It is fair to say that
the filtering function adds only a small overhead to the processing of
legitimate IP traffic. However, this is by far more than compensated
by not processing spoofed traffic.

To illustrate the potential savings in CPU cycles, we compute the
actual resource savings we can achieve, when an attacker launches a
spoofed DDoS attack against a server. Given attack and legitimate
traffic, a and b, in terms of the fraction of total traffic per unit time,
the average number of CPU cycles consumed per packet without
HCF is a · tD + b · tL, where tD and tL are the per-packet process-
ing times of attack and legitimate traffic, respectively. The average
number of CPU cycles consumed per packet with HCF is:

(1−α) ·a· tDF +α ·a· tD +b· (tL + tLF )

with tDF and tLF being the filtering overhead for attack and le-
gitimate traffic, respectively, and α the percentage of attack traffic
that we cannot filter out. Let’s also assume that the attacker uses
64-byte ping traffic to attack the server that implements HCF. The
results for various a, b, and α parameters are plotted in Figure 14.
The x-axis is the percentage of total traffic contributed by the DDoS
attack, namely a. The y-axis is the number of CPU cycles saved as
the percentage of total CPU cycles consumed without HCF. The fig-
ure contains a number of curves, each corresponding to an α value.
Since the per-packet overhead of the DDoS traffic (20,194) is much
higher than TCP bulk transfer (6,538), the percentage of the DDoS
traffic that HCF can filter, (1−α), essentially becomes the sole de-
termining factor in resource savings.

As the composition of total traffic varies, the percentage of resource
savings remains essentially the same as (1−α).

8. RELATED WORK
Researchers have used the distribution of TTL values seen at servers

to detect abnormal load spikes due to DDoS traffic [34]. The Razor
team at Bindview built Despoof [2], which is a command-line anti-
spoofing utility. Despoof compares the TTL of a received packet
that is considered “suspicious,” with the actual TTL of a test packet
sent to the source IP address, for verification. However, Despoof re-
quires the administrator to determine which packets should be exam-
ined, and to manually perform this verification. Thus, the per-packet
processing overhead is prohibitively high for weeding out spoofed
traffic in real time.

In parallel with, and independent of our work, the possibility of
using TTL for detecting spoofed packet was discussed in [42]. Their
results have shown that the final TTL values from an IP address were
predictable and generally clustered around a single value, which is
consistent with our observation of hop-counts being mostly stable.
However, the authors did not provide a detailed solution against
spoofed DDoS attacks. Neither did they provide any analysis of the
effectiveness of using TTL values, nor the construction, update, and
deployment of an accurate TTL mapping table. In this paper, we
examine both questions and develop a deployable solution.

There are a number of recent router-based filtering techniques to
lessen the effects of DDoS packets or to curb their propagations in
the Internet. As a proactive solution to DDoS attacks, these filtering
schemes [15, 25, 31, 45], which must execute on IP routers or rely on
routers’ markings, have been proposed to prevent spoofed IP packets
from reaching intended victims. The most straightforward scheme is
ingress filtering[15], which blocks spoofed packets at edge routers,
where address ownership is relatively unambiguous, and traffic load
is low. However, the success of ingress filtering hinges on its wide-
deployment in IP routers. Most ISPs are reluctant to implement this
service due to administrative overhead and lack of immediate bene-
fits to their customers.

Given the reachability constraints imposed by routing and network
topology, route-based distributed packet filtering (DPF) [31] utilizes
routing information to determine whether an incoming packet at a
router is valid with respect to the packet’s inscribed source and des-
tination IP addresses. The experimental results reported in [31] show
that a significant fraction of spoofed packets may be filtered out, and
those spoofed packets that DPF fails to capture, can be localized into
five candidate sites which are easy to trace back.

To validate that an IP packet carries the true source address,
SAVE [25], a source address validity enforcement protocol, builds a
table of incoming source IP addresses at each router that associates
each of its incoming interfaces with a set of valid incoming network
addresses. SAVE runs on each IP router and checks whether each
IP packet arrives at the expected interface. By matching incoming
IP addresses with their expected receiving interfaces, the set of IP
source addresses that any attacker can spoof are greatly reduced.

Based on IP traceback marking, Path Identifier (Pi) [45] embeds
a path fingerprint in each packet so that a victim can identify all
packets traversing the same path across the Internet, even for those
with spoofed IP addresses. Instead of probabilistic marking, Pi’s
marking is deterministic. By checking the marking on each packet,
the victim can filter out all attacking packets that match the path
signatures of already-known attacking packets. Pi is effective even if
only half of the routers in the Internet participate in packet marking.

There already exist commercial solutions [22, 29] that block the
propagation of DDoS traffic with router support. However, the main
difference between our scheme and the existing approaches is that
HCF is an end-system mechanism that does not require any network
support. This difference implies that our solution is immediately
deployable in the Internet.
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9. CONCLUSION AND FUTURE WORK
In this paper, we present a hop-count based filtering scheme that

detects and discards spoofed IP packets to conserve system resources.
Our scheme inspects the hop-count of each incoming packet to vali-
date the legitimacy of the packet. Using moderate amount of storage,
HCF constructs an accurate IP2HC mapping table via IP address ag-
gregation and hop-count clustering. A pollution-proof mechanism
initializes and updates entries in the mapping table. By default, HCF
stays in alert state, monitoring abnormal IP2HC mapping behaviors
without discarding any packet. Once spoofed DDoS traffic is de-
tected, HCF switches to actionstate and discards most of the spoofed
packets.

By analyzing actual network measurements, we show that HCF
can remove 90% of spoofed traffic. Moreover, even if an attacker is
aware of HCF, he or she cannot easily circumvent HCF. Our ex-
perimental evaluation has shown that HCF can be efficiently im-
plemented inside the Linux kernel. Our analysis and experimental
results have indicated that HCF is a simple and effective solution
in protecting network services against spoofed IP packets. Further-
more, HCF can be readily deployed in end-systems since it does not
require any network support.

There are several issues that warrant further research. First, the ex-
istence of NAT (Network Address Translator) boxes, each of which
may connect multiple stub networks, could make a single IP address
appear to have multiple valid hop-counts at the same time. We will
need experimental studies to understand the effectiveness of HCF in
the presence of NAT. Second, to install the HCF system at a victim
site for practical use, we need a systematic procedure for setting the
parameters of HCF, such as the frequency of dynamic updates. Fi-
nally, we would like to build and deploy HCF in various networks to
see how effective it is against real spoofed DDoS traffics.
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