
A Fault-Tolerant Scheduling Algorithm for
Real-Time Periodic Tasks with

Possible Software Faults
Ching-Chih Han, Member, IEEE, Kang G. Shin, Fellow, IEEE, and

Jian Wu, Student Member, IEEE

Abstract—A hard real-time system is usually subject to stringent reliability and timing constraints since failure to produce correct

results in a timely manner may lead to a disaster. One way to avoid missing deadlines is to trade the quality of computation results for

timeliness and software fault tolerance is often achieved with the use of redundant programs. A deadline mechanism which combines

these two methods is proposed to provide software fault tolerance in hard real-time periodic task systems. Specifically, we consider the

problem of scheduling a set of real-time periodic tasks each of which has two versions: primary and alternate. The primary version

contains more functions (thus more complex) and produces good quality results, but its correctness is more difficult to verify because

of its high level of complexity and resource usage. By contrast, the alternate version contains only the minimum required functions

(thus simpler) and produces less precise, but acceptable results and its correctness is easy to verify. We propose a scheduling

algorithm which 1) guarantees either the primary or alternate version of each critical task to be completed in time and 2) attempts to

complete as many primaries as possible. Our basic algorithm uses a fixed priority-driven preemptive scheduling scheme to preallocate

time intervals to the alternates and, at runtime, attempts to execute primaries first. An alternate will be executed only 1) if its primary

fails due to lack of time or manifestation of bugs or 2) when the latest time to start execution of the alternate without missing the

corresponding task deadline is reached. This algorithm is shown to be effective and easy to implement. This algorithm is enhanced

further to prevent early failures in executing primaries from triggering failures in the subsequent job executions, thus improving

efficiency of processor usage.

Index Terms—Real-time systems, deadline mechanisms, notification time, primary, alternate, backwards-RM algorithm, CAT

algorithm, EIT algorithm.

æ

1 INTRODUCTION

IN some hard real-time systems, such as computer-
integrated manufacturing and industrial process control,

a number of tasks are periodically invoked and executed in
order to collectively accomplish a common mission/
function and each of them must be completed by a certain
deadline. Failure to complete such a task in time may lead
to a serious accident. In case both the timing and
computation-quality constraints cannot be met, one way
of meeting the timing constraints is to trade computation
quality for timeliness. For example, Lin et al. [1] developed
a concept, called imprecise computation, to deal with time-
constrained iterative calculations. The main idea of im-
precise computation is that one may meet the deadline of a
task by executing a version of the task that is faster, but
inferior in some other respects, such as the resources it
consumes or the precision of the results it generates. A
variation of imprecise computation, called performance
polymorphism, is to use two or more means to carry out a
computation [2].

In addition to the timeliness requirement, two other
important requirements of real-time systems are predict-
ability and reliability [3]. For example, the reliability
requirement for commercial transport aircraft is specified
in terms of the allowable probability of failure per mission
and a figure of 10ÿ9 has been specified by NASA for
commercial aircraft for a 10-hour flight [4]. In order to meet
these stringent requirements, the system must complete its
tasks in time even in the presence of program (software)
execution failures (due to software bugs). Campbell et al.
proposed a deadline mechanism to provide the required fault
tolerance in real-time software systems [5], [6]. In the
deadline mechanism, two versions of programs are pro-
vided for each real-time task: primary and alternate. The
primary version contains more functions (thus more
complex) and produces good quality results, but its
execution is more prone to failure because of its high level
of complexity and resource usage. The alternate version, on
the other hand, contains only the minimum required
functions (thus simpler) and produces less precise but
acceptable results. Since it is simpler and requires less
resources, its correctness (thus reliability) is assumed to
have been fully tested a priori and no failure occurs due to
software bugs during its execution.1

362 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

. The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI 48109-2122.
E-mail: {cchan, kgshin, wujz}@eecs.umich.edu.

Manuscript received 3 Oct. 2000; revised 21 Jan. 2002; accepted 22 Apr. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 112937.

1. The execution of an alternate may fail due to a processor failure, but
such failures can be handled by using redundant hardware which is not the
subject of this paper.

0018-9340/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

In this paper, we address the problem of scheduling real-
time periodic tasks by using the deadline mechanism for
providing software fault tolerance. The objective of our
scheduling algorithm is to guarantee either the primary or the
alternate version of each task to be correctly completed before
the corresponding deadline while trying to complete as many
primaries as possible. However, if the primary of a task fails
(due to manifestation of a bug) during its execution or if its
successful completion cannot be guaranteed (due to insuffi-
cient processor time), we must activate the alternate of the
task. Since the invocation behavior of a set of periodic tasks
repeats itself once every T time units, where T , called the
planning cycle of the task set, is the least common multiple of
the periods of all periodic tasks, we only need to consider all
the task invocations in a planning cycle.

Many researchers investigated the issues of scheduling a
set of periodic tasks [7], [8], [9], [10], [11], [12] and
scheduling both periodic and aperiodic tasks [13], [14],
[15], [16], [17], [18]. Sha [19] developed the Simplex
Architecture to support safe and reliable online upgrade
of hardware and software components in spite of errors in
the new module. It is achieved by the use of analytic
redundancy and real-time dynamic component binding.
Melhem et al. [20] proposed a scheme to provide the fault-
tolerant functionality to real-time systems with transient
and intermittent faults. Based on the assumption that at
most one task execution is affected by hardware malfunc-
tions during one time interval �f , two algorithms were
presented to reserve fault-tolerant execution time to a queue
of real-time tasks. Liestman and Campbell [6] studied the
aforementioned fault-tolerant scheduling problem under
the assumption that the task system is simply periodic, i.e.,
the period of each task is a multiple of the next smaller
period. They proposed two approaches to maximizing the
number of primaries scheduled. In the first approach, they
first constructed a schedule for the task set in a planning
cycle and then rescheduled the task set in a partially-
executed schedule whenever a primary is completed
successfully. The second approach used the algorithms of
the first approach to construct a tree of schedules and then
used simple schedulers to implement the scheduling
algorithm with the table representations of these trees. In
addition to the restricted assumption that the task system is
simply periodic, both approaches have their own draw-
backs. Since the first approach needs to construct a schedule
for the task set and reconstruct the whole schedule for the
current planning cycle whenever the execution of a primary
succeeds, it incurs significant online overhead. On the other
hand, since the second approach uses table-driven schedu-
lers which need to store all possible schedules in a tree data
structure, the need for an excessive amount of memory
makes the scheduling algorithms impractical. Moreover,
their approaches did not reconstruct the schedule if a
primary fails to complete and/or produce correct results in
time, thus wasting the processor time originally allocated to
the failed primary.

Chetto and Chetto [21] used a last chance strategy to
achieve the same objective. An offline scheduler reserves
time intervals for the alternates. Each such interval is
chosen so that any alternate starts its execution at the latest

possible time. At runtime, the primaries are scheduled
during the remaining intervals before their alternates. The
alternates can preempt a primary when a time interval
reserved for the alternates is reached. Whenever a primary
is completed successfully, the execution of its correspond-
ing alternate is no longer needed and, hence, an online
scheduling algorithm must dynamically deallocate the time
interval(s) reserved for the alternate so as to increase the
processor time available for the execution of other pri-
maries. Their algorithm is based on a dynamic priority-driven
preemptive scheduling scheme, called the earliest-deadline-first
(EDF) algorithm. They first used an offline EDF, called
earliest-deadline-first as late as possible (EDL), to reserve time
intervals for the alternates. Then, at runtime, they used any
online preemptive scheduling algorithm to schedule the
primaries and, whenever a primary is successfully com-
pleted the reserved time intervals for the alternates are
reconstructed/modified. Such reconstruction is achieved by
removing the alternate corresponding to the completed
primary and rescheduling the remaining alternates accord-
ing to EDL from the time the corresponding primary was
completed to the end of the current planning cycle. The
reconstruction takes a significant amount of time, making
the online overhead of their algorithm high. Moreover, their
algorithm does not consider the case in which one early job
failure could lead to lots of subsequent job failures, thus
degrading the system performance significantly.

Our algorithm follows the last chance strategy, except
that it is based on fixed priority-driven preemptive
scheduling scheme, such as the rate-monotonic (RM) algo-
rithm [11], to reserve a priori time intervals for the
alternates. At runtime, we dynamically adjust/reconstruct
the reserved time intervals for the alternates whenever a
primary is successfully completed and, hence, the corre-
sponding alternate is no longer needed. Our reconstruction
algorithm takes less time since we use RM algorithm and
we need to reconstruct the reserved time intervals only for
those alternates affected, specifically, the tasks with lower
priority, thus reducing the runtime computation overhead.
Moreover, we add two simple modifications to the online
scheduling of primaries or alternates, making significant
improvements in efficiency of processor usage as well as
percentage of successful primary executions.

The rest of the paper is organized as follows: Section 2
briefly reviews periodic task systems and the associated
scheduling algorithms and presents a formal description of
our problem. In Section 3, we first describe the basic fault-
tolerant scheduling algorithm, then discuss its potential
problem, and, finally, present two simple ideas which can
be integrated into the basic algorithm to achieve more
efficient processor usage. Section 4 presents the simulation
results of our proposed algorithm. The paper concludes
with Section 5.

2 BACKGROUND AND PROBLEM FORMULATION

The main intent of this paper is to schedule, with the deadline
mechanism, real-time periodic tasks, each of which uses two
independent versions of the task for the purpose of meeting
timing constraints while tolerating software faults. For
convenience of presentation, we will first briefly review the

HAN ET AL.: A FAULT-TOLERANT SCHEDULING ALGORITHM FOR REAL-TIME PERIODIC TASKS WITH POSSIBLE SOFTWARE FAULTS 363

traditional real-time periodic task system and several
commonly used scheduling algorithms. We will then

formally state the problem addressed in this paper.

2.1 Periodic Task Systems and Scheduling
Algorithms

A real-time periodic task system [11] consists of a set of n

periodic tasks � ¼ f�1; �2; . . . ; �ng. Each task �i must be
executed once every Ti time units, where Ti is the period of

�i. Each execution of a periodic task is called a job (or
request), and every job of �i has a computation (or execution)

time ei. The jth job of �i is denoted as Jij for all 1 � i � n and
j � 1. Jij is ready for execution at time ðjÿ 1Þ � Ti and must

be completed by the start time of the next job period of the
same task, which is equal to j � Ti. We define rij ¼
ðjÿ 1Þ � Ti to be the request time (or release time) and dij ¼
j � Ti the deadline of Jij.

A commonly used online scheduling scheme for the

traditional real-time periodic task system is the priority-
driven preemptive scheduling scheme. For preemptive

scheduling, tasks (jobs) can be suspended during their
execution and resumed at a later time. For priority-driven

scheduling, each task is given a (fixed or dynamic) priority.
At runtime, the scheduler always chooses among the active

jobs the one with the highest priority to execute next, where
an active job is one whose execution has been requested but

unfinished. If each task is given a fixed priority for all of its
executions (jobs), the scheduling scheme is said to be fixed

or static priority-driven. If the priority of a task changes
from one execution to another (i.e., each job of the task has

its own distinct priority), then the scheduling scheme is
called dynamic priority-driven.

If a scheduling algorithm produces a schedule for a set of

tasks in which each job Jij starts its execution after its
request time rij and finishes before its deadline dij, then the

schedule is said to be feasible and the scheduling algorithm
is said to feasibly schedule the task set. A scheduling

algorithm is said to be optimal for a particular scheduling
scheme if, for any task set that can be feasibly scheduled by

any other algorithm of the same scheme, it can also be
feasibly scheduled by the algorithm. Liu and Layland [11]

showed that 1) the rate-monotonic (RM) algorithm which
assigns priorities to tasks according to the rate-

monotonic rule—the shorter the period the higher the
priority—is optimal for fixed priority-driven scheduling

schemes and 2) the deadline-driven algorithm, or
termed elsewhere the earliest-deadline-first (EDF) algo-

rithm, which assigns priorities to jobs according to
their deadlines—the earlier the deadline, the higher

the priority—is optimal for dynamic priority-driven
scheduling schemes. Liu and Layland also showed

that a task set can be feasibly scheduled by the EDF
algorithm if and only if the (processor) utilization factor

Uð�Þ ¼
Pn

i¼1 ei=Ti is less than or equal to one and the
least upper bound for a task set to be feasibly

scheduled by the RM algorithm is KðnÞ ¼ nð21=n ÿ 1Þ,
i.e., if Uð�Þ ¼

Pn
i¼1 ei=Ti � KðnÞ ¼ nð21=n ÿ 1Þ, then the

task set is guaranteed to be schedulable by the RM
algorithm.

2.2 Problem Formulation

The fault-tolerant real-time periodic task system considered
in this paper is formally defined as follows: Consider a set
of n real-time periodic tasks � ¼ f�1; �2; . . . ; �ng. Each task �i
has a period Ti and two independent versions of computa-
tion program: the primary Pi and the alternate Ai. The
primary contains more functions and, when executed
correctly, produces good quality results, but its reliability
cannot be guaranteed because of its complicated functions
(to produce good quality results) that are difficult to test/
verify. The alternate is reliable due to its simple functions
that are easy to test and produces less precise but acceptable
results. Pi has a computation time pi, Ai has a computation
time ai, and, usually, pi � ai for 1 � i � n. In order to define
the possible task failures, we use FPi to denote the
probability that the primary fails during its execution.

Let the planning cycle, T , be the least common multiple
(LCM) of T1; T2; . . . ; Tn. Then, ni ¼ T=Ti is the number of
jobs of �i in each planning cycle. Since the task-invocation
behavior repeats itself for every planning cycle, we only
need to consider all task invocations during any one
planning cycle. Thus, without loss of generality, we can
consider the problem of scheduling tasks for the first
planning cycle ½0; T �. The primary and the alternate of the
jth job Jij of �i are denoted by Pij and Aij, respectively. For
each Jij of �i, either Pij or Aij must be completed by its
deadline j � Ti. Since Pij provides a better computation
quality, we would prefer the execution of Pij to that of Aij.
However, in case Pij fails, we must ensure Aij to be
completed by its deadline, thus providing an acceptable,
though possibly degraded, computation quality. That is, we
want to complete as many primaries as possible while
guaranteeing either the primary or the alternate of each task
to be successfully completed by its deadline.

3 THE PROPOSED APPROACH

In this section, we first present our basic fault-tolerant
algorithm and the corresponding schedulability analysis.
Then, we point out some problems existing in the basic
algorithm and propose two more ideas to improve the
percentage of the successful primaries.

3.1 The Basic Algorithm

As mentioned earlier, our algorithm uses the last chance
philosophy [21]: If there are primaries pending for execu-
tion, alternates will not be scheduled until the latest
possible time, called the notification time, on or before which
if alternates are not scheduled, they will not be completed
in time. We first give an overview of the algorithm and then
illustrate the algorithm with examples.

3.1.1 Overview

Given a real-time periodic task set � , we first use any fixed
priority-driven scheduling algorithm to reserve time inter-
vals as late as possible for all the alternates in a planning
cycle before runtime. At runtime, if there are primaries
pending during the time intervals that were not reserved by
alternates, the scheduler chooses the primaries to execute
first. The primaries can be scheduled by any online
scheduling algorithm, such as a (fixed or dynamic)

364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

priority-driven preemptive scheduling scheme with the RM
or EDF priority assignment. A primary may fail (because of
software bugs or taking too long to complete) at any time
during its execution. If a primary fails, its corresponding
alternate must be executed. Moreover, when the notification
time, vij, of alternate Aij is reached, yet its corresponding
primary Pij has not been completed or has failed, Aij is
activated (thus preempting the execution of any primary,
including Pij, or other lower-priority alternates). The
primary Pij, if it has not been finished, will be aborted
since its alternate Aij is now chosen to be executed. Every
alternate, if activated on or after its notification time, has
higher priority than all primaries and the activated
alternates are executed according to their priorities assigned
by the offline fixed-priority algorithm.

Note, however, that an alternate need not be activated if
its corresponding primary has been successfully completed
before its notification time. That is, if Pij finishes its
execution successfully before the notification time vij, the
alternate Aij need not be activated and, hence, the time
interval(s) allocated to Aij can be reallocated to other
primaries or alternates. In this case, the notification time of
Aij is no longer needed and is thus cancelled. Moreover, the
notification times of other alternates need to be adjusted
since the time reserved for Aij is now freed.

3.1.2 Details and Examples

We now present the details of the algorithm. The notifica-
tion time vij of an alternate Aij can be calculated by any
fixed-priority algorithm as follows: In calculating the
notification times, we consider only the alternates Aijs
(i.e., we use ai as the computation time of �i as in the
traditional periodic task system, which has only one version
per task) and use a fixed-priority algorithm F to construct a
schedule (for example, by using the slack interval method
described in [17]) backward from time T to time 0, and find
the “finish” time vij of Aij in the schedule, for each 1 � i � n
and 1 � j � ni. We will call this algorithm the backward-F
algorithm for a given fixed-priority scheduling algorithm F .
We then use vij as the notification time of Aij at runtime.
That is, the notification times are simply the finish times of
the alternates if they are scheduled by a fixed-priority
algorithm backward from time T . (We assume that the
alternates can be feasibly scheduled by the algorithm.) Note
that the notification times force the alternates to be
scheduled as late as possible and, hence, the scheduling
algorithm leaves the largest possible room for executing the
primaries before executing the alternates. The following
example illustrates how the notification times are calculated

under the assumption that the underlying fixed-priority
algorithm is the RM algorithm.

Fig. 1 illustrates how the notification times are calculated
under the assumption that the underlying fixed-priority
algorithm is the RM algorithm. Consider a periodic task set
� ¼ f�1; �2g with ðTi; pi; ai ¼ ð5; 2; 1ÞÞ 2 and (6, 2, 2), respec-
tively, thus the planning cycle T ¼ LCMð5; 6Þ ¼ 30. (Note
that the numbers for Tis, pis, and ais in this example are
chosen for ease of demonstration.) We use the RM
algorithm to schedule the alternates backward from time
30 to time 0 and find the notification times of all the
alternates in ½0; 30�. As shown in Fig. 1, since Task 1 has
higher priority than Task 2, the notification times for Task 1
are first calculated as v1j ¼ 4, 9, 14, 19, 24, and 29, for
1 � j � 6. Then, the alternates for Task 2 are reserved for
the time slots left over by the accommodation of the
alternates for Task 1 and the corresponding notification
times are v2j ¼ 3, 10, 16, 22, and 27, for 1 � j � 5.

In the above calculation of the notification times, we
assume that all tasks are requested simultaneously from the
start. Now, we discuss the phasing problem and show the
worst case for task scheduling happens when all tasks start
simultaneously. As mentioned before, we want to leave the
largest possible room for executing the primaries by setting
up the notification time as late as possible. In other words,
the worst case happens when the notification times are set
at the earliest possible time point. If we use RM to schedule
backward from time T to time 0, the case mentioned above
is equivalent to the case that the “finish” time of each job is
delayed as much as possible. This is exactly the same
phasing problem analyzed in Liu and Layland’s paper [11]
and they have proven that the worst case happens when all
backward tasks are initiated at time T.

At runtime, the primaries are scheduled during the
remaining intervals before their alternates. Whenever a
primary is successfully completed, the time interval(s)
reserved for the execution of its corresponding alternate is
(are) no longer needed and, hence, can be deallocated.
Otherwise, the corresponding alternate has to be executed
later for providing reliability. The alternates can preempt a
primary when a time interval reserved for the alternates is
reached. When the notification time of an alternate Aij is
reached and if the corresponding primary Pij has not been
completed, Pij has to be aborted because we are not sure
whether or not the execution of Pij will finally be successful
and we do not want to end up with no completed primary
or alternate by giving more time for Pij’s execution. Fig. 2
illustrates all these runtime cases for the task set in the last

HAN ET AL.: A FAULT-TOLERANT SCHEDULING ALGORITHM FOR REAL-TIME PERIODIC TASKS WITH POSSIBLE SOFTWARE FAULTS 365

2. We omit the failure probability parameter FPi for simplicity.

Fig. 1. The notification times calculated by the backward-RM algorithm.

example. At time 0, we execute primary P11 and suppose it
fails (due to software bugs) at the end of its execution time 2.
The time interval ½4; 5� allocated to A11 cannot be cancelled
and it will be executed later. From time 2, P21 is executed
until time 3, at which its execution will be aborted because
the notification time of the corresponding alternate A21 is
reached. Then, in interval ½3; 6�, two alternates A11 and A21

are executed in their preallocated time intervals. At time 6,
there are two active primary jobs P12 and P22. Since P12 has
higher priority, we select P12 to start its execution and
suppose it succeeds at time 8. The time interval ½9; 10�
allocated to A12 is no longer needed and, hence, can be
freed. Now, P22 can start its execution and complete
successfully at time 10. Finally, the corresponding pre-
allocated alternate time interval ½10; 12� is also removed.
Similarly, the subsequent steps can be reached by applying
the basic online scheduling algorithm.

3.1.3 Schedulability Analysis

Our proposed algorithm has two main objectives: 1) guar-
antee either primary or alternate of each task (job) to be
successfully completed before their corresponding dead-
lines; (2) complete as many primaries as possible to achieve
better computation quality. The first objective is achieved
by using an offline fixed priority scheduling algorithm
(such as RM) to ensure the successful accommodation of all
alternate jobs. This offline schedule is constructed backward
from time T and the alternates are executed as late as
possible, thus leaving the largest possible room for the
execution of the primaries to accomplish the second goal.

Therefore, our proposed algorithm is based on the
condition that all the alternates can be scheduled success-
fully by the offline static priority scheduling algorithm.
Suppose we use the backward-RM algorithm to construct
the offline schedule. Since the least upper bound of the
processor utilization for a task set to be schedulable by the
RM algorithm is nð21=n ÿ 1Þ [11], our approach is feasible

when the utilization of the alternates is no more than
nð21=n ÿ 1Þ, that is, Up ¼

Pn
i¼1 ai=Ti � nð21=n ÿ 1Þ.3

3.2 The Modified Algorithm

3.2.1 Existing Problems

Our basic scheduling algorithm seems good in the sense
that it has provided timeliness and reliability at the same
time. Unfortunately, we found that there exist some cases in
which the basic fault-tolerant algorithm suffers very large
system degradation, which is, “one job failure could lead to
lots of subsequent job failures.” Fig. 3 illustrates one of such
examples. Suppose the task set is � ¼ f�1; �2g with ðTi; pi; aiÞ
= (9, 5, 1) and (14, 4, 3) and the planning cycle
T ¼ LCMð9; 14Þ ¼ 126. Suppose the primary P11 fails at
the end of its execution, or at time 5. So, the time allocated
to its corresponding alternate ½7; 9� cannot be cancelled. We
apply the basic algorithm to schedule the execution of
primaries or alternates and the scheduling details are
omitted for simplicity. Fig. 3 shows a small part of the
schedule. As can be seen in the figure, at least three
subsequent primaries are affected by P11’s failure and their
executions are aborted because of having insufficient
processor resources. This example exhibits the disadvan-
tages of the basic algorithm: It lacks some functionality to
provide protection for subsequent jobs from being affected
by the early failures.

3.2.2 The Checking Available Time (CAT) Algorithm

We can deal with the aforementioned problem by making
careful use of processor cycles in case of failures in
executing primaries. Note that, in the above example, some
primary execution is wasted and the design of a better
algorithm to utilize the processor more efficiently is
possible. As seen in Fig. 3, at time 9, we choose to execute
P21 since it has higher priority. P21 is executed during time

366 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 2. The runtime dynamic job scheduling.

Fig. 3. The pathological case demonstrating the drawback of the basic scheduling algorithm.

3. The sufficient condition for a task set to be schedulable by RM is
presented in [11].

interval ½9; 11� and ½14; 16�, but finally gets aborted at time 16,
the notification time of its corresponding alternate A21.
However, at time 9, it is known that the unallocated time
interval between that time and its notification time 16 are
only four units of time, which is less than the required five
units of time for P21’s execution. The system has insufficient
processor cycles available to accommodate the primary P12,
so there are no benefits to be gained from this execution
(actually, it will result in waste of processor time). We can
use such wasted time for other jobs to get more productive
processor usage.

Therefore, the basic idea of our new algorithm is that,
before selecting a primary to execute, we have to verify
whether or not there are enough unallocated units of time
for its completion. If we apply this new algorithm, then, at
time 9, P21 is selected to start execution instead of P12 since
there is an insufficient amount of time for P12 to complete its
execution before the corresponding notification time. After
such a small modification, as shown in Fig. 4, the new
algorithm makes a significant improvement since there are
no more subsequent primary failures due to the early
failure of primary job P11.

The new algorithm is formalized as follows: As men-
tioned before, at runtime, the scheduler always chooses,
among the active jobs, the one with the highest priority to
execute next, where an active job is the one which is released
but unfinished. Our new approach modifies the definition
of the active job and adds one more constraint to it: The
active job must have enough unreserved units of time to
complete before its corresponding deadline. Suppose, at
time t, there are k � n primaries which have been released
but uncompleted. For each of these primaries Pij, the
corresponding notification time is vij. Suppose there are ‘

time intervals fIi; 1 � i � ‘g that have been allocated for
alternates by the offline backward-RM algorithm between
time t and time vij, the unallocated time interval for Pij is
calculated as

ATij ¼ ðvij ÿ tÞ ÿ
Xl
i¼1

Ii;

where AT stands for “Available Time.” Pij is not regarded
as an active job unless the calculated available time ATij is
greater than, or equal to, the required execution time for its
completion. For example, in the above example, P12 is not
an active job at time 9 because the unallocated time
available at that instant is only four units of time, but it

needs five units of time to complete. The new algorithm is
called the CAT (Checking Available Time) algorithm.

In the CAT algorithm, we calculate the available
processor time for each primary Pij only by subtracting
the preallocated time intervals for alternates from the
interval between that time instant and the corresponding
deadline. However, at runtime, there could be other higher-
priority primaries that will be invoked later, but before Pij’s
completion, and preempt Pij. Moreover, the preallocated
time units for alternates in the time interval ½t; vij� change
dynamically because they can be deallocated if their
corresponding primaries are completed successfully. In
what follows, we prove that the available time estimated by
the CAT algorithm is the maximum possible number of
time units available for Pij’s execution.

Theorem. The ATij calculated by the CAT algorithm estimates
the maximum available time that can be used for Pij’s
execution when the inequality ai � pi holds for each task �i,
1 � i � n.

Proof. As shown in Fig. 5, two types of conditions are
possible to occur during the time interval ½t; vij� that
might change the processor cycles available for primary
Pij’s execution.

Case 1. A certain higher-priority primary, such as Pxy
in Fig. 5, is invoked and preempts the execution of Pij.
Thus, the actual available time for Pij becomes
ATacutalij ¼ ATij ÿ px, where px is the execution time of
Pxy. Obviously, ATacutalij � ATij.

Case 2. Some primary, for example, Pvw in Fig. 5, with
higher priority than Pij is invoked, preempts Pij, and,
finally, finishes its execution successfully. According to
the basic algorithm, the processor time allocated for
alternate Avw should be deallocated. Suppose that the
time allocated to Avw is located in the interval ½t; vij�, then
the actual time available for Pij’s execution becomes
ATactualij ¼ ATij ÿ pv þ av, where pv and av are the execu-
tion times of Pvw and Avw, respectively. Since the
alternate usually contains fewer functions than the
corresponding primary, we assume that the inequality
av � pv always holds. Therefore, the actual available time

HAN ET AL.: A FAULT-TOLERANT SCHEDULING ALGORITHM FOR REAL-TIME PERIODIC TASKS WITH POSSIBLE SOFTWARE FAULTS 367

Fig. 4. The task set scheduled by the CAT algorithm.

Fig. 5. The proof of the validity of the CAT algorithm.

is also no greater than the estimated available time by the
CAT algorithm.

Combining Case 1 and Case 2 proves that the
available time calculated by the CAT algorithm is the
largest possible processor time available for Pij’s execu-
tion. In other words, if the calculated available time ATij
is less than the time required to complete Pij’s execution,
it is impossible to finish Pij before its deadline, no matter
what happens at runtime. Therefore, it is logical to
disallow Pij’s execution and utilize the available time for
other jobs’ execution. tu

The merit of the CAT algorithm lies in that it tries to

eliminate the wasteful execution of primaries as much as

possible and utilize processor time thus saved for produc-

tive execution of other jobs. Note, however, that the CAT

algorithm incurs an online computation overhead because it

needs to calculate the available time for each primary that

has been released but unfinished. Moreover, in the above

proof, it is shown that the CAT algorithm estimates the

maximum possible unallocated/available time. Since, at

runtime, some higher-priority primaries could preempt

Pij’s execution, e.g., Case 1 in the above proof, there is

actually less time to be allocated for Pij’s execution and,

consequently, Pij may fail because of reduced (hence

insufficient) processor time available to it. Under this

condition, the amount of time that has already been

consumed by Pij’s execution would also become a waste.

Taking into account this dynamic execution of primaries

instead of merely considering the reserved processor cycles

for alternates during ½t; vij� can achieve even more efficiency

in processor usage, but this incurs more computational

overhead. The CAT algorithm makes a relatively good

tradeoff between elimination of the waste of processor time

and reduction of runtime computational overhead.

3.2.3 The Eliminating Idle Time (EIT) Algorithm

Another algorithm can be incorporated into the CAT
algorithm to achieve better system performance. In case
there are no active primaries waiting for execution and none
of the alternates’ notification times has been reached, the
processor will become idle, hence wasting the processor
cycles. Moreover, since the CAT algorithm adds one more
constraint on the primaries being “active,” the chance that
there are no active primaries and the processor becomes
idle is further increased .

Namely, the Eliminating Idle Time (EIT) algorithm
chooses an alternate to execute when the processor is about
to be idle even though its latest start time, or notification
time, is not reached. If a primary arrives or the notification
time of another alternate is reached during the execution of
this alternate, say Axy, prior to its notification time, Axy will
be preempted and its notification time should be adjusted to
reflect the progress made in its execution, i.e., the reduced
computation time. Moreover, the notification times of other
alternates should also be adjusted accordingly. As a result,
each alternate has two execution modes: prenotification and
postnotification. An alternate executing before its notification
time is said to be in its prenotification mode and has lower
priority than all primaries. An alternate executing on and
after its notification time is said to be in its postnotification
mode and has higher priority than any primary (and, hence,
has higher priority than any alternate in its prenotification
mode). By using the EIT algorithm, the processor’s idle time
is utilized by the alternate whose execution is advanced and
the time thus saved is made available for possible
productive execution of jobs at a later time.

Fig. 6 illustrates the advantages of the EIT algorithm.
Consider a task set � ¼ f�1; �2g with ðTi; pi; aiÞ = (3, 1.5, 1)
and (5, 1, 1) and the planning cycle T ¼ LCMð3; 5Þ ¼ 15. As
shown in Fig. 6a, suppose P11 finishes its execution
successfully at time 1.5, the corresponding alternate A11

368 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 6. The task schedule illustrating the advantages of the EIT algorithm. (a) The task set scheduled by the basic algorithm. (b) The task set

scheduled by the EIT algorithm.

releases the preallocated time interval ½2; 3�. P21 executes
during ½1:5; 2:5�, and suppose it finally fails at time 2.5. At
time 2.5, there are no more active primaries waiting for
execution and the processor is idle. At time 3, P12 is invoked
and continues execution until time 4, when the notification
time of A21 is reached. P12 is preempted and aborted when
the notification time of A12 is reached. In Fig. 6b, the EIT
algorithm is applied to save the processor’s idle time. At
time 2.5, instead of leaving the processor idle, the EIT
algorithm advances the execution of alternate A21 and saves
the idle time interval ½2:5; 3� into interval ½4; 4:5� that is used
later for P12’s execution. P12 is completed successfully at
time 4.5 and the corresponding alternate A12 is deallocated.
Consequently, the EIT algorithm enhances processor time
usage and the percentage of successful primaries as well.

When the processor is idle, the execution of any alternate
whose corresponding primaries have not been completed
successfully could be advanced. As mentioned before,
advancing the execution of one alternate could lead to the
adjustment of other alternates’ execution times. Our
approach is to choose, among all alternates, the one with
the lowest priority. It is easy to show that this eliminates the
maximum computation overhead in adjusting the notifica-
tion time of other alternates.

3.2.4 Pseudocode Description of a Combined CAT and

EIT Algorithm

In this section, we present, in Fig. 7, the pseudocode of our

modified fault-tolerant scheduling algorithm which inte-

grates the CAT and EIT algorithms into the basic scheduling

algorithm.

4 SIMULATION RESULTS

This section presents the simulation results of our proposed

algorithm for different task sets. We demonstrate the

strength of our modified scheduling algorithm by compar-

ing its simulation results with those generated with the

basic algorithm.

4.1 Metrics

As mentioned earlier, the objective of our fault-tolerant

scheduling algorithm is to guarantee either the primary or

alternate version of each job to be successfully completed

before its corresponding deadline while trying to complete

as many primaries as possible. Therefore, we define the

following two metrics: PctSucci, which indicates the

percentage of successfully completed primaries for each

HAN ET AL.: A FAULT-TOLERANT SCHEDULING ALGORITHM FOR REAL-TIME PERIODIC TASKS WITH POSSIBLE SOFTWARE FAULTS 369

Fig. 7. The pseudocode of the modified fault-tolerant scheduling algorithms.

task, and W, the processor time wasted by executing
unsuccessful primaries during the whole time span of the
schedule.

4.2 Simulation I

The first simulation aims to demonstrate the merits of our
proposed algorithm by showing the improvement of the
algorithm achieved in terms of the above two metrics. The
task set used in the simulation is � ¼ f�1; �2; �3; �4g with
ðTi; pi; aiÞ = (13, 3, 2), (24, 7, 3), (39, 9, 7), and (144, 23, 17)
and the planning cycle is T ¼ LCMð13; 24; 39; 144Þ ¼ 1; 872.
For each task set, the following four algorithms (basic,
basic+CAT, basic+EIT, and basic+EIT+CAT) are indepen-
dently applied to run for 19 planning cycles, which are
35,568 units of time4 and the simulation results are recorded
correspondingly. We also test these algorithms for different
primary failure probabilities. the simulation results are
plotted in Fig. 8.

Here, we give an example to show how to calculate the
two metrics: PctSucc and W. Suppose FP (failure prob-
ability) is 0.1 and there are 20 jobs, then there are two
(¼ 0:1� 20) primary failures because of the software bugs
and at most 18 successful primaries. If the actual schedule
accommodates only nine successful primaries, then
PctSucc ¼ 9=18 ¼ 50%. That is, PctSucc is the percentage
of actual successful primaries among the maximum
possible successful primaries, thus representing how many
subsequent primaries are affected by the early failures and

how well the corresponding scheduling algorithm deals
with early primary failures. If the execution of a primary is
aborted when the corresponding notification time is
reached, the amount of time that has already been
consumed by the primary is regarded as wasted. W, the
wasted processor time, is calculated by summing up the
time slots wasted by all unsuccessful primaries.

As shown in Fig. 8, the simulation results exhibit the
following features:

1. For the basic algorithm, the lower-priority task
suffers failure more significantly. For example, for
FP = 0.1, the percentage of successful primaries for
task 4 degrades to only 20 percent, while that of
task 1 is greater than 80 percent. Task 4 gets less of a
chance to be executed because of its low priority.

2. Integrating either the CAT algorithm or the EIT
algorithm decreases the wasted processor time and
enhances the percentage of successful primaries. As
shown in Fig. 8, the “basic+EIT” and “basic+CAT”
algorithms make some improvements over the basic
algorithm. The highest system performance is
achieved by the basic algorithm combined with both
EIT and CAT. As shown in Fig. 8a, for task 4, the
“basic+EIT+CAT” algorithm increases the percen-
tage of successful primaries from 20 percent to
75 percent, improved by nearly 300 percent. In the
meantime, in Fig. 8d, the wasted time decreases from
4,700 to only 1,200, reducing by 75 percent.

3. As shown in Fig. 8c and Fig. 8d, when the failure
probability FP is small, e.g., FP = 2%, the “basic+

370 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 8. The results of Simulation I. (a) FP_ = 0.1. (b) FP = 0.05. (c) FP = 0.02. (d) Wasted time.

4. Multiple planning cycles are used just for enlarging the graphs of the
simulation results.

EIT+CAT” algorithm avoids almost all the wasted
time on primaries that are unable to be completed
because of insufficient processor time, thus protect-
ing the subsequent primaries from being affected by
early failures.

4. It is noticed that, when FP is large (5 percent or
more), even if the best algorithm, the “basic+EIT+-
CAT” algorithm, is applied, there is still some
execution time wasted, especially under a poor
system condition (i.e., with a large failure prob-
ability). As discussed in Section 3.2.2, accounting for
the dynamic execution of primaries instead of only
considering the reserved times for alternates can
make more improvements. However, this is not
worthy of application in the sense that 1) it incurs
high run-time computation overhead and 2) it is
very difficult at runtime to estimate how many
failures will occur during one primary’s execution,
especially when the failure of each task happens
independently from that of the others.

4.3 Simulation II

In the first simulation, we demonstrated the performance of

our proposed scheduling algorithms by applying them to a

specific task set. In this section, we show that the

performance that the proposed algorithm achieves depends

on the specific task set. We apply the algorithms to five task

sets with different processor utilizations, which isP5
i¼1ðpi=TiÞ, where pi, Ti are the execution time of primaries

and the period, respectively, for task �i. As shown in Fig. 9,5

in case the processor utilization is low, for example, the first

task set whose utilization is 0.799, the system performance

does not suffer large degradation even if the basic algorithm

is applied, meaning that the system has enough unallocated

time to handle failures. In such cases, there is no benefit of

applying the CAT and EIT algorithms that incur computa-

tional overheads. Only when the original processor utiliza-

tion is very high, for example, the task set with utilization

0.927, and the system cannot deal with failures easily, does

the application of the modified algorithm achieves sig-

nificant performance improvement.

4.4 A Further Extension

In both the simulation results, the metric W (Wasted Time)
is found to be a good indicator of the current system
performance. A large W indicates that many primaries have
been aborted because of insufficient processor time, so our
modified algorithm enhances the efficiency of processor
usage, thus alleviating the performance degradation. If the
current wasted time W is small, meaning that the system is
able to deal with the failures, there is no need to adopt the
modified algorithm which incurs computation overhead.

An adaptive algorithm can be designed as follows:
Because the wasted time W is the sum of all the wasted times
by individual unsuccessful primaries thus far, instead of
using the absolute value, we will calculate the increment of W
(denoted as �W during a certain period as the system
performance indicator. If �W is larger than some predeter-
mined threshold, then the modified algorithm, the “basic+-
CAT+EIT” algorithm, is activated; else, only the basic
algorithm is used to save much computation overhead.

5 CONCLUSION

With efficient scheduling algorithms and software fault-
tolerant deadline mechanisms, one can design a system that
meets its task timing constraints while tolerating software
faults.

In this paper, we considered the problem of scheduling
real-time periodic tasks using the deadline mechanism to
provide software fault tolerance. We proposed a scheduling
algorithm based on the last chance philosophy to schedule
the alternates as late as possible and leave as much room as
possible for executing the primaries before their deadlines.
Our basic algorithm makes significant performance im-
provements by integrating two very simple but elegant
heuristics. The simulation results have shown that, in some
worst cases, specifically, the cases with high failure
probability and/or high task utilization, the modified
algorithm can make an impressive performance enhance-
ment; for example, the percentage of successful primaries is
increased by 300 percent in certain cases. In the final part of
this paper, we also proposed a more adaptive algorithm,
enabling our algorithm to deal with dynamic task systems.

HAN ET AL.: A FAULT-TOLERANT SCHEDULING ALGORITHM FOR REAL-TIME PERIODIC TASKS WITH POSSIBLE SOFTWARE FAULTS 371

5. The five task sets have the processor utilization of 0.709, 0.832, 0.887,
0.913, and 0.927, respectively. For ease of illustration, we do not include the
specific parameters of each task set. The failure probability in this
simulation is fixed at 0.05.

Fig. 9. The results of Simulation II.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the US Office of Naval Research under Grant N00014-99-1-
0465 and the US Defense Advanced Research Projects
Agency under US Airforce Contract F49620-01-1-020. Any
opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] K.-J. Lin, S. Natarajan, and J.W.-S. Liu, “Imprecise Results:
Utilizing Partial Computations in Real-Time Systems,” Proc.
Real-Time Systems Symp., pp. 210-217, Dec. 1987.

[2] K.B. Kenny, “Structuring Real-Time Systems Using Performance
Polymorphism,” PhD thesis, Univ. of Illinois at Urbana-Cham-
paign, Nov. 1990.

[3] J.A. Stankovic, “Misconceptions about Real-Time Computing,”
Computer, pp. 10-19, Oct. 1988.

[4] J. Goldberg et al., “Development and Analysis of SIFT,” NASA
contractor report 17146, NASA Langley Research Center, Feb.
1984.

[5] R.H. Campbell, K.H. Horton, and G.G. Belford, “Simulations of a
Fault-Tolerant Deadline Mechanism,” Proc. Ninth Fault-Tolerant
Computing Symp. (FTCS-9), pp. 95-101, June 1979.

[6] A.L. Liestman and R.H. Campbell, “A Fault-Tolerant Scheduling
Problem,” IEEE Trans. Software Eng., vol. 12, no. 11, pp. 1089-1095,
Nov. 1986.

[7] M.G. Harbour, M.H. Klein, and J.P. Lehoczky, “Timing Analysis
for Fixed-Priority Scheduling of Hard Real-Time Systems,” IEEE
Trans. Software Eng., vol. 20, no. 1, pp. 13-28, Jan. 1994.

[8] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,”
Proc. Real-Time Systems Symp., pp. 166-171, Dec. 1989.

[9] J.Y.-T. Leung and M.L. Merrill, “A Note on Preemptive Schedul-
ing of Periodic, Rreal-Time Tasks,” Information Processing Letters,
vol. 11, no. 3, pp. 115-118, Nov. 1980.

[10] J.Y.-T. Leung and J. Whitehead, “On the Complexity of Fixed-
Priority Scheduling of Periodic, Real-Time Tasks,” Performance
Evaluation, vol. 2, pp. 237-250, 1982.

[11] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, Jan. 1973.

[12] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,” IEEE
Trans. Computers, vol. 39, no. 9, pp. 1175-1185, Jan. 1990.

[13] C.-C. Han and K.G. Shin, “A Globally Optimal Algorithm for
Scheduling Both Hard Periodic and Soft Aperiodic Tasks,” IEEE
Trans. Computers, submitted.

[14] N. Homayoun and P. Ramanathan, “Dynamic Priority Scheduling
of Periodic and Aperiodic Tasks in Hard Real-Time Systems,”
Real-Time Systems J., vol. 6, pp. 207-232, 1994.

[15] J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” Proc. Real-
Time Systems Symp., pp. 261-270, Dec. 1987.

[16] J.P. Lehoczky and S. Ramos-Thuel, “An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks in Fixed Priority Preemptive
Systems,” Proc. Real-Time Systems Symp., pp. 110-123, Dec. 1992.

[17] T.-H. Lin and W. Tarng “Scheduling Periodic and Aperiodic Tasks
in Hard Real-Time Computing Systems,” Performance Evaluation
Rev., vol. 19, no. 1, pp. 31-37, May 1991.

[18] B. Sprunt, J. Lehoczky, and L. Sha, “Exploiting Unused Periodic
Time for Aperiodic Service Using the Extended Priority Exchange
Algorithm,” Proc. Real-Time Systems Symp., pp. 251-258, Dec. 1988.

[19] L. Sha, “Dependable System Upgrade,” Proc. 19th IEEE Real-Time
Systems Symp., pp. 440-449, 1998.

[20] R. Melhem, S. Ghosh, and D. Mosse, “Enhancing Real-Time
Schedules to Tolerate Transient Faults,” Proc. 16th IEEE Real-Time
Systems Symp., pp. 120-129, Dec. 1995.

[21] H. Chetto and M. Chetto, “Some Results of the Earliest Deadline
Scheduling Algorithm,” IEEE Trans. Software Eng., vol. 15, no. 10,
pp. 1261-1269, Oct. 1989.

Ching-Chih (Jason) Han received the BS
degree in electrical engineering from National
Taiwan University, Taipei, Taiwan, in 1984, the
MS degree in computer science from Purdue
University, West Lafayette, Indiana, in 1988, and
the PhD degree in computer science from the
University of Illinois at Urbana-Champaign in
1992. From August 1992 to January 1994, he
was an associate professor in the Department of
Applied Mathematics at National Sun Yat-sen

University, Kaohsiung, Taiwan. From February 1994 to July 1996, he
was a visiting research scientist in the Real-Time Computing Laboratory
at the University of Michigan, Ann Arbor. From August 1996 to July
1997, he was an assistant professor in the Department of Electrical
Engineering at Ohio State University. Since August 1997, Dr. Han has
joined several industry companies in the bay area of California, all of
which are in the Internet/Web technology area. He also cofounded an
Internet startup, CreOsys (now Oridus), Inc, which is now a leading
Internet solution provider that integrates real-time, Web-based, dis-
tributed graphic information services for the engineering world. He is a
member of the IEEE and the IEEE Computer Society.

Kang G. Shin (S’75-M’78-SM’83-F’92) received
the BS degree in electronics engineering from
Seoul National University, Seoul, Korea, in 1970
and the MS and PhD degrees in electrical
engineering from Cornell University, Ithaca,
New York, in 1976 and 1978, respectively. He
is the Kevin and Nancy O’Connor Professor of
Computer Science and Founding Director of the
Real-Time Computing Laboratory in the Depart-
ment of Electrical Engineering and Computer

Science, the University of Michigan, Ann Arbor. His current research
focuses on QoS-sensitive networking and computing as well as on
embedded real-time OS, middleware, and applications, all with
emphasis on timeliness and dependability. He has supervised the
completion of 42 PhD theses, and authored/coauthored more than 500
technical papers and numerous book chapters in the areas of distributed
real-time computing and control, computer networking, fault-tolerant
computing, and intelligent manufacturing. He has coauthored (jointly
with C.M. Krishna) a textbook Real-Time Systems (McGraw-Hill, 1997).
From 1978 to 1982, he was on the faculty of Rensselaer Polytechnic
Institute, Troy, New York. He has held visiting positions at the US
Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories, Computer
Science Division within the Department of Electrical Engineering and
Computer Science at the University of California Berkeley, and
International Computer Science Institute, Berkeley, California, IBM
T.J. Watson Research Center, and Software Engineering Institute at
Carnegie Mellon University. He also chaired the Computer Science and
Engineering Division, EECS Department, the University of Michigan for
three years beginning in January 1991. He is a fellow of the IEEE and
the ACM and member of the Korean Academy of Engineering, was a
Distinguished Visitor of the Computer Society of the IEEE, an editor of
the IEEE Transactions on Parallel and Distributed Computing, and an
area editor of the International Journal of Time-Critical Computing
Systems, Computer Networks, and ACM Transactions on Embedded
Systems.

Jian Wu (S’02) received the BS and MS
degrees in computer science from Tsinghua
University, Beijing, China, in 1999 and 2001,
respectively. Since August 2001, he has been
with the Electrical Engineering and Computer
Science Department, University of Michigan,
Ann Arbor. His current research interests
focus on the design of routing protocols to
provide fault-tolerance for multicast commu-
nications. He is a student member of the

IEEE and the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

372 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

