
Integrated Modeling and Analysis of Computer-Based Embedded

Control Systems

Zonghua Gu and Kang G. Shin
Real-Time Computing Laboratory

Electrical Engineering and Computer Science Department
University of Michigan

Ann Arbor, MI 48109, USA
{zgu, kgshin}@eecs.umich.edu

Abstract
Embedded real-time systems are ubiquitous in mod-

ern society, many of which perform safety-critical
functions, and therefore, it is imperative to have tools
and techniques that can guarantee a high degree of sys-
tem correctness. They typically perform information
processing on a digital computer tightly coupled with
the continuous physical environment. Even though hy-
brid systems is an active research area, most work has
ignored the scheduling behavior of software processes
due to contention for the shared CPU resource. We
propose an integrated approach based on hybrid au-
tomata and model-checking for modeling and analy-
sis of computer-based embedded control systems where
real-time scheduling behavior of the controller software
is explicitly represented at the model-level, together
with the physical environment that it interacts with.
An application example is used to demonstrate the ben-
efits of the integrated approach in performing tradeoff
analysis involving both the controller software and the
controlled physical system.

1 Introduction
Embedded real-time systems are ubiquitous in

modern society, many of which perform safety-critical
functions, and therefore, it is imperative to have tools
and techniques that can guarantee a high degree of
system correctness. Real-time systems must satisfy
both functional and non-functional properties, such
as timing and resource constraints. In particular, ad-
dressing real-time issues is becoming the bottleneck
in embedded systems development. Oftentimes it is
not until the later phases of the development life-cycle
when the developers discover that system timing prop-
erties are not satisfiable, requiring costly redesign and
re-implementation, and resulting in schedule and bud-
get overruns. It is important to use powerful real-time

analysis tools and techniques at early design phases in
order to avoid undesirable surprises at later testing
and integration stages.
Embedded real-time systems typically perform in-

formation processing tightly coupled with physical
processes. The boundary between physical and soft-
ware processes are often blurred. However, modeling
tools tend to focus on either one or the other. The
Model-Integrated Computing [15] approach advocates
integrated modeling:

“Computers now control many critical sys-
tems in out lives...Such computers wed phys-
ical systems to software, tightly integrat-
ing the two and generating complex compo-
nent interactions unknown in earlier systems.
Thus, it is imperative that we construct soft-
ware and its associated physical system so
they can evolve together.”

A computer-based embedded control system typi-
cally consists of one or more digital controllers that in-
teract with each other and a continuous environment.
Modeling and analysis of these types of hybrid systems
is an active research area with many tools available for
simulation and verification, such as HyTech [7], Check-
Mate [14], CHARON [1], d/dt [4], Teja [16], etc. They
focus on the system-level dynamics and typically ig-
nore real-time scheduling behavior of the embedded
software on a shared processor during system analysis.
There are also many tools based on real-time schedul-
ing theory such as RapidRMA [18] and TimeWiz [17],
but they do not represent the physical system explic-
itly. Rather, the physical environment is abstracted
to a set of periodic or aperiodic interrupts that trigger
sequences of tasks on the processor.
Traditionally, the control engineer designs the con-

trol algorithms without consideration of controller

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

platform issues, and then hand them over to the soft-
ware engineer, who implements them on a minimum
cost controller platform while guaranteeing system
schedulability for a set of task execution frequency re-
quirements. The authors in [13, 5] propose to break
the rigid wall between controller design and software
implementation, and adopt an integrated approach,
thus opening up the possibility of applying a range
of offline optimization and online adaptation tech-
niques. For example, instead of treating each task as
having a rigid minimum execution frequency require-
ment of 40Hz, we can relax it to an interval of [35Hz,
40Hz]. The controller suffers performance degrada-
tion with slower execution frequencies as long as it
still maintains critical control objectives such as sys-
tem stability. This enables the designer to perform
cost-performance tradeoff analysis.

In this paper, we propose an integrated approach
for modeling and analysis of embedded real-time sys-
tems with tight coupling between embedded software
and embedding physical environment, and analyze the
real-time scheduling behavior of the software together
with the physical system that the software is control-
ling within the same formal framework of Hybrid Au-
tomata (HA). We can also adopt other real-time for-
malisms such as variants of Petri-Nets with time [6]
and Timed Automata [11], but as a formalism for de-
scribing hybrid systems, HA seems particular suitable
since it accurately describes the hybrid nature of a
computer-based control system. By adopting this ap-
proach, we enable the designer to have an integrated
view of the entire system when making design deci-
sions, so she can clearly see the effect of making a
change in embedded software on the rest of the sys-
tem, or a change in the physical system on embedded
software design. She can also perform optimization
analysis such as maximizing total system utility given
resource constraints, or minimizing total system cost
given safety and liveness requirements.

In order to model real-time behavior of embedded
software, it is unavoidable to model processor con-
tention due to multiple applications executing on the
same platform. We can model real-time scheduling
algorithms with a formal model such as HA, and use
model checking to obtain end-to-end response time,
thus enabling verification of software schedulability as
well as system-level timing constraints within a single
framework.

This paper is structured as follows. Section 2 pro-
vides a brief informal introduction to HA and the tool
HyTech. Section 3 describes a generic approach for
modeling fixed-priority scheduling with HA. Section 4

considers integrated modeling and analysis of the rail-
road crossing problem, and the paper concludes with
Section 6.

2 Introduction to Hybrid Automata
and Hytech

on

x = 1

x = 3 1 <= x <= 31 <= x <= 3

dx = −x

off

x = 2

turn_on

turn_off

dx = −x + 5

Figure 1: A Thermostat. The variable x denotes tem-
perature; dx denotes 1st derivarive of x.

A hybrid dynamical system has both real-valued
and boolean-valued variables. A system trajectory
is a sequence of flows and jumps: during flows, the
boolean part of the state stays constant and the real
part of the state evolves over time; at jumps, the en-
tire state changes instantaneously. We describe hy-
brid dynamical systems using hybrid automata(HA).
A HA annotates the control graph of a finite automa-
ton with conditions on real-valued variables. Each
node of the graph represents an operating mode of the
system, and is annotated with differential inequalities
that prescribe the possible evolutions (flows) of the
real variables while the system remains in the given
mode. Each edge of the graph represents a switch
in operating mode, and is annotated with a condition
that prescribes the possible changes (jumps) of the real
variables when the system executes the mode switch.
Figure 1 shows a HA model for a thermostat taken

from [7]. It alternates between two operating modes:
on or off. Initially, the heater is on and the tem-
perature x is 2 degrees. When the heater is on, the
temperature rises at the rate of −x + 5 degrees per
minute; when the heater is off, the temperature falls
at the rate of −x degrees per minute. The heater can
be turned off when the temperature reaches 3 degrees,
and it can be turned on when the temperature falls to
1 degree. This is due to the edge conditions x = 1 and
x = 3, which assert when a mode switch may occur.
The invariant conditions 1 ≤ x ≤ 3 of both operating
modes prescribe that a mode switch must occur before
the temperature leaves the operating interval of [1, 3]
degrees.
Hytech [7] is a model-checker for Linear Hybrid Au-

tomata(LHA), that is, the dynamics of the continuous
variables are defined by linear differential inequalities.
Since the state space for a hybrid system is infinite,
Hytech performs exhaustive state space exploration

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

symbolically (i.e., not enumeratively) by describing
infinite state sets using linear constraints. A major
strength of HyTech is its ability to perform parametric
analysis. Often a system is described using parame-
ters, and the designer is interested in knowing which
values of the parameters are required for correctness.
Hytech can be used to automatically synthesize the
valid regions for the parameters.

3 Task Modeling with Hybrid Au-
tomata

run

rt_pri’ := 0
runtime >= bcet

check
asap

check
asap

asap
check

runtime’ := 0

rt_pri’ := pri

& clk = 0

& clk = 0

clk = 0

rt_pri’ = 0

t1start

druntime=0

checking

rt_pri < MAXPRI

druntime=0

ready

rt_pri = MAXPRI

asap check

druntime=0

druntime=1

runtime<=wcet

wait

t1finish

Figure 2: An event-triggered task scheduled under
priority-based preemptive scheduling. A primed vari-
able denotes the value of the variable after a discrete
state change.

waiting

check

t2start or t2finish

t1start or t1finish
check_all

asap

Figure 3: An auxiliary checker automaton that works
with the task automaton in Figure 2. It assumes that
there are 2 tasks in the system.

Figure 2 shows a event-triggered task modeled with
HA, and Figure 3 shows a checker automaton that
works together with the task automaton. Figure 4
shows a periodic timer that can be used to trigger the
task automaton in Figure 2.
In order to model priority-based scheduling, it is

necessary for the system to choose the highest prior-
ity task ready to run at any given moment. This only

clk = 0

reset(clk)

TimerEvt

Waiting

clk <= period
TimerEvt

Initial

clk <= offset

clk = offset

reset(clk)

clk = period

Figure 4: A periodic timer with offset and period. In
order to be used with the task automaton in Figure 2,
the name of the synchronizing event has to be the same
in both automata, i.e., rename TimerEvt to t1start, or
vice versa.

needs to be done at those check instants when a new
task instance is triggered and ready to run, or a run-
ning task has just finished its execution. We model
each real-time task with an automaton, in addition
to a checker automaton in Figure 3, which issues a
system-wide check signal at the check instants that
forces each task automaton to check to see if it has
the highest-priority at that moment.
A task automaton in Figure 2 contains several local

variables:

• pri is a constant value denoting the task’s nomi-
nal priority.

• rt pri is a discrete variable denoting the task’s
runtime priority. It is set equal to the nominal
priority pri when it is triggered and ready to ex-
ecute, actively competing for the CPU; it is set
equal to 0 when it has finished its execution and
is inactive, waiting for the next activation trigger
to arrive.

• runtime is a stopwatch variable that measures the
amount of time that the task has spent in execu-
tion. In order to model preemptive scheduling, it
is necessary to use a stopwatch instead of a clock.

A task initially goes into wait state with rt pri = 0,
meaning that it is not ready to compete for the CPU
yet. When it is triggered by a t1start event, which can
be from a periodic timer or an aperiodic interrupt, it
goes into ready state after setting rt pri′ = pri, i.e.,
setting its runtime priority to its nominal priority. The
t1start event also triggers the auxiliary automaton in
Figure 3 to go from waiting to check all. This enables
the channel check and forces all the task automata
currently in states ready or run into the checking
state. Each task checks to see if it’s the highest prior-
ity task. If yes, then it goes to the run state; if not,
it goes to the ready state.1 The auxiliary clock clk

1rt pri = MAX PRI is a shorthand for a set of statements

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

ensures that the checking state is entered and exited
instantaneously. runtime is a stopwatch that keeps
track of the task’s execution time by increasing at
rate 1 in the run state, and not increasing in all other
states. When the task has been running for at least
bcet (best-case execution time), it can choose to finish
its execution and go back to the wait state after issu-
ing a t1finish signal, which in turn triggers another
round of check among all ready tasks. The task has to
finish its execution before wcet(worst-case execution
time), enforced by the invariant runtime ≤ wcet in
location run.
In order to model non-preemptive scheduling, it is

only necessary to remove the transition edge from the
run state to checking, and add a self-transition from
run state back to itself upon the signal check. This
means that the task automaton ignores the check sig-
nal while it is running, i.e., it runs to completion once
triggered.
An alternative modeling method [2] works by man-

ually constructing the global scheduler automaton
with states such as (assuming there are two tasks
in the system, A and B) AwaitBwait, AwaitBrun,
ArunBwait and ArunBready. This method does not
scale up to more than a few tasks since the number of
states grows exponentially with the number of tasks.
Note that we are not solving the state space explosion
problem that is a major limiting factor in the scala-
bility of the model-checking approach; we are merely
proposing a modeling approach that does not involve
manual construction of an automaton with exponen-
tially increasing size.

4 Railroad Crossing Problem
The Railroad Crossing (RC) problem, taken

from [7], describes a railroad crossing, whose physi-
cal layout is shown in Figure 5, and whose behavior
is given by the train/gate/controller automata in Fig-
ures 6, 7 and 8.
The system consists of 3 components: the train, the

gate, and the controller. The train is initially some
distance (at least 2000 meters) away from the track
intersection with the gate fully raised. As the train ap-
proaches, it triggers a sensor 1000 meters ahead of the
intersection, signaling its upcoming entry to the con-
troller. Upon receiving the signal, the controller per-
forms some internal computation that causes a delay
between [bcet lower, wcet lower] seconds, then sends

comparing the current task’s priority to those of the other tasks
in the system. Also note that for the sake of brevity, the current
model formulation does not deal with tasks with equal priority
value. This can be addressed by assigning an index number to
tasks with equal priority in order to break the tie.

Controller CPU

100m1000m

Exit SensorEntry Sensor Gate

Figure 5: Railroad Crossing System.

x’ := [2000, inf]

dx in [30,50]

x <= 100

past

dx in [−50,−30]

x >= 0

nearfar

x >= 1000

dx in [−50,−40]

x >= 2000 x = 1000

app

exit

x = 0

x = 100

Figure 6: The train automaton. Variable x is the distance
of the train from the gate.

a lower command to the gate. When the gate receives
a lower command, it lowers itself at a rate of 9 degrees
per second. After the train has exited the intersec-
tion and is 100 meters away, It sends an exit signal
to the controller. After a computational delay be-
tween [bcet raise, wcet raise] seconds, the controller
commands the gate to be raised. Note that the delay
from triggering of the enter/exit sensors to issuing the
lower/raise command to the gate is likely not caused
by computational activities, since the computation is
trivial, but rather system design parameters imple-
mented by a time out mechanism. For our purposes
we assume it’s computational delay in order to intro-
duce processor contention later.
The system has to satisfy two properties:

• Safety: Whenever the train is in the crossing, the
gate has to be lowered.

• Bounded liveness: Within a certain time limit δt
after the train leaves the crossing, the gate has to
be raised.

Although the Railroad Crossing problem is a stan-
dard textbook problem in real-time specification and
verification, there has been little discussion about the

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

raise

closed

g = 0

dg = 0

dg = 0

g = 90

open
g = 90

g <= 90

dg = 9

up

g = 0

g >= 0

dg = −9

down

lower

Figure 7: The gate automaton. Variable g is the angle of
the gate relative to the horizontal position. When g = 0,
the gate is lowered; when g = 90, the gate is raised.

exit, t’ := 0

t >= bcet_raise
t <= wcet_raise

lower
t >= bcet_lower

t <= wcet_lower

about to lower about to raiseidle

app exit

dt = 0 dt = 1dt = 1

app exit

raise

app, t’ := 0

t’ := 0 t’ := 0

Figure 8: The controller automaton. It is a event-driven
task triggered by sensor signals app and exit. The app
signal triggers the task Tlower, and the exit signal triggers
the task Traise. Since this is the only task running on the
CPU, there is no processor contention, and each task runs
to completion.

real-time scheduling behavior of the controller com-
puter. That is, it is generally assumed that the con-
troller is dedicated to a single task with no interfer-
ence from higher-priority tasks or operating systems
activity, so there is no need for analyzing the real-
time scheduling behavior of the controller software.
This may well be true for the simple controller we are
considering here, but in general designers have been
putting more and more functionality on a single micro-
controller in order to reduce costs. Furthermore, there
is also a tendency to take advantage of distributed,
multi-processor platforms. In these kinds of complex
embedded systems, the real-time scheduling problem
is non-trivial to solve, and it is desirable to model the
scheduling and runtime platform issues explicitly.
In order to make the problem more interesting, we

consider several parallel train tracks, each having a
separate gate. A single controller CPU is used to con-
trol all of the train tracks. The controller tasks are log-

ically independent, since the tracks are independent,
but they interfere with each other due to contention
for the shared CPU resource.
Figure 9 shows a controller model that explicitly

deals with real-time scheduling issues. Compare it to
Figure 8, the states about to lower and about to raise
have been expanded into multiple states based on real-
time task modeling approach in Figure 2. We can
view the controller software as a task-chain consisting
of a two tasks: the lower-gate task Tlower trigged by
the entry sensor, followed by the raise-gate task Traise

triggered by the exit sensor. A back-of-the envelop
calculation shows that the time interval between the
two task triggers lies between [22, 61.6] seconds. Since
the distance between the entry sensor and exit sensor
is 1100m, and the maximum speed of the train when
it is travelling between the two sensors is 50m/s, the
minimum amount of time between triggers of the two
sensors is 1100/50 = 22s. The upper bound of 61.6 can
be calculated similarly. We assign a higher priority to
Tlower than Traise, since the former affects the safety
property, which is obviously more important than the
bounded liveness property. That is, we are willing to
suffer delays in raising the gate in order to ensure that
the gate is lowered in time for the train to pass. The
priority assignment does not matter if there is only
one task chain, since Tlower and Traise are precedence-
constrained and do not interfere with each other, but
it does matter when there are multiple task chains
running on the same processor.
This task model does not fit the assumptions of

Rate Monotonic Analysis (RMA) [8], and would re-
quire non-trivial extensions to RMA in order to de-
termine its schedulability. It is also intimately tied
to the physical environment, which provides the task
triggers in a non-periodic fashion. By modeling the
task scheduling behavior explicitly together with the
physical environment, we can use model-checking to
determine schedulability as well as verify system-level
safety and bounded liveness properties within the
same framework.
Let’s assume there are 3 train/gate combinations,

hence 3 task chains running on a single controller
CPU. All 3 set of trains and gates have the same tim-
ing parameters specified in Figure 6 and Figure 7. The
controller task chains have timing specifications in Ta-
ble 1.
HyTech reveals that the system does not satisfy the

safety requirement, and produces a counter-example
leading to the safety violation. Essentially, when all
3 trains arrive at the same time, task Tlower3 has the
lowest priority, so it does not finish its execution and

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

& clk = 0

rt_pri’ := pri_raise

exit

runtime >= bcet_raise
rt_pri’ := 0
raise

app

rt_pri’ := pri_lower

runtime’ := 0

runtime >= bcet_lower
rt_pri’ := 0
lower

exit

rt_pri’ := pri_raise

runtime’ := 0
runtime’ := 0

rt_pri’ := pri_lower

app

asap
check

asap
check check

asap

asap check
asap check

druntime=1

druntime=0

asap check

rt_pri = MAXPRI

druntime=0

rt_pri < MAXPRI

druntime=0 druntime=0

rt_pri < MAXPRI

asap check

rt_pri = MAXPRI

run_lowerchecking_lower

ready_lower

run_raise checking_raise

ready_raise

druntime=0

druntime=1

runtime<=wcet_lower runtime<=wcet_raise

about to lower about to raise

idle

clk = 0
& clk = 0

& clk = 0

clk = 0
& clk = 0

runtime’ := 0

Figure 9: The Controller in the presence of processor contention. We augment the model in Figure 8 with real-time
scheduling information, since there are multiple controller tasks running on the same CPU. The scheduling discipline is
preemptive fixed-priority.

Tlower1 Tlower2 Tlower3

Priority 6 5 4
[bcet,wcet] [2.0,3.0] [3.0,4.0] [3.0,4.0]

Traise1 Traise2 Traise3

Priority 3 2 1
[bcet,wcet] [3.0,4.0] [3.0,4.0] [3.0,4.0]

Table 1: The timing parameters for the 3 controller
task chains. Larger priority value denotes higher pri-
ority. Time units are in seconds.

issue a lower signal to the gate until 11s after the train
arrival. The gate takes 10s to lower itself. Meanwhile,
the train travels at maximum speed of 50m/s, and ar-
rives at the crossing 20s after tripping the entry sen-
sor, when the gate is not yet fully lowered.
We can take advantage of the parametric analysis

capability of HyTech to derive certain timing param-
eters, whether those of the software or the physical
environment, given timing specification for the rest of
the system, in order to satisfy system-level require-
ments. For example, we can set Tlower3 as a parame-
ter, and ask the question: what is the range of values
for Tlower3 such that the system safety requirement is
satisfied? Similarly, we can ask: if we cannot change
the timing properties of the controller tasks, what is

the maximum speed of the train between tripping the
entry sensor and arriving at the gate? Using paramet-
ric analysis, the designer can come up with a number
of options to remove the safety violation:

• Switch to a faster execution platform, and reduce
Tlower3 to be below 3s.

• Add more controller CPUs to the system, and run
each controller task on a separate CPU to improve
system responsiveness.

• Impose a reduced speed limit on incoming trains
once they reach the entry sensor position, so that
the minimum time the train takes to reach the
crossing from the entry sensor position is above
21s.

• Switch to a more responsive gate so that the time
it takes to raise or lower the gate is below 9s.

Of course we can adopt a combination of any subset
of the above options with relaxed parameters for each
individual option.
Concerning the bounded liveness property, para-

metric analysis reveals that the gate is raised at a
minimum of δt = 24s after the train crosses the gate.
We can also impose a more strict requirement, say

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

δt ≤ 18s, and synthesize various parameters of the
system that satisfies the requirement.

5 Related Work
Model-Integrated Computing (MIC) [15] uses in-

tegrated, multi-view, domain-specific models to cap-
ture information relevant to the system under de-
sign. Models can represent the designer’s understand-
ing of an entire computer-based system, including
information-processing architecture, physical architec-
ture, and operating environment. The Generic Mod-
eling Environment (GME) [10] explicitly represents
dependencies and constraints among various model-
ing views, and can be used for generating system im-
plementation as well as specialized models that feed
into various analysis tools such as model-checkers.
Our approach can be viewed as a specific instance
of the more general concept of MIC, using a for-
mal model (Hybrid Automata) and analysis method
(model-checking), while MIC allows the designer to
uses meta-modeling techniques to construct arbitrary
domain-specific modeling environments. In fact we
can construct a meta-model for HA within GME, syn-
thesize a graphical modeling environment that acts as
a front-end to the user, and write an interpreter to gen-
erate the textual input to the HyTech model-checker,
which lacks a graphical user interface. We can also
imagine providing the designer with an even higher
level of abstraction by using an UML-like modeling
notation within GME, enhanced with real-time and
hybrid system concepts, and generate HyTech mod-
els automatically. This approach allows the user to
use a familiar industry-standard notation instead of a
formal modeling language.
Seto [13] proposed an integrated approach to con-

troller design and task scheduling, where task frequen-
cies are allowed to vary within a certain range as long
as such a change does not affect critical control func-
tions such as maintenance of system stability. An algo-
rithm was proposed that optimizes the overall system
control performance while maintaining schedulability
by adjusting task frequencies. Similarly, Eker [5] pre-
sented a Matlab toolbox for simulation of a real-time
kernel in parallel with continuous plant dynamics. The
toolbox allows the user to study the interactions be-
tween the control tasks and the scheduler, making it
possible to experiment with more flexible approaches
to real-time control systems, such as feedback schedul-
ing. This body of work deals with controller perfor-
mance with traditional metrics in control theory such
as signal rise time, stability, etc., while our focus is on
modeling of system real-time behavior, and static, of-
fline verification through model-checking, although it

is possible to take advantage of other existing hybrid
modeling tools for integrated simulation(HyTech does
not provide a simulation component).
Norstrom [11] extended the classic model of Timed

Automata(TA) with a notion of real-time tasks. A
discrete transition in an extended TA denotes an
event releasing a task and the guard on the transition
specifies all the possible arriving times of the event.
The schedulability problem can be transformed into
a reachability problem for TA. Our work is similar in
that we model real-time scheduling together with the
physical environment. Our use of HA instead of TA
enables more accurate modeling of the physical sys-
tem. Other approaches to formal modeling and anal-
ysis of real-time scheduling include Corbett’s work on
timing analysis of Ada tasking programs [3], and Lee’s
work on real-time process algebra ACSR-VP [9]. None
of them proposes an integrated modeling approach.

6 Conclusions and Future Work
In this paper we have proposed an integrated ap-

proach for modeling and analysis of embedded real-
time systems with tight coupling between embedded
software and embedding physical environment, where
the physical system and the software artifacts are
modeled within the same formal framework. We have
also described a generic method for modeling fixed-
priority scheduling with Hybrid Automata. Our ap-
proach allows the designer to model and analyze the
embedded system in an integrated manner, including
the physical system and the software controlling it,
and use model-checking to determine schedulability of
the software together with system-level timing con-
straints.
Although we have used a specific modeling formal-

ism (HA), this approach is generic and can be applied
together with other formal or informal models com-
monly used in the embedded systems domain, such
as timed or hybrid variants of Petri-Nets [12]. We
have used a simple example, railroad crossing, to il-
lustrate our approach. It is our intention and ongoing
work to model and analyze a more realistic system
that involves non-trivial hybrid behavior in both the
physical system and software. We are also considering
using other hybrid analysis tools directly in order to
avoid some of HyTech’s limitations, such as restriction
to linear dynamics, lack of structural/behavioral hier-
archy and graphical user interface, lack of simulation
capability, etc.

References
[1] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur,

F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. Pap-

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

pas, and O. Sokolsky. Hierarchical hybrid model-
ing of embedded systems. In Proceedings of EM-
SOFT’01:First Workshop on Embedded Software,
2001.

[2] Steven Bradley, William Henderson, and David
Kendall. Reducing conservatism in response time
analysis of distributed systems. In Proceedings of
the IEE Colloquium on Real-Time Systems, 1999.

[3] James C. Corbett. Timing analysis of Ada task-
ing programs. IEEE Transactions on Software
Engineering, 22(7):461–483, July 1996.

[4] T. Dang and O. Maler. Reachability analysis via
face lifting. Hybrid Systems: Computation and
Control. LNCS, 1386, 1998.

[5] J. Eker and A Cervin. A matlab toolbox for
real-time and control systems co-design. In Pro-
ceedings of the Sixth International Conference on
Real-Time Computing Systems and Applications,
pages 320 –327, 1999.

[6] Robert Esser, Jrn W. Janneck, and Martin
Naedele. Applying an object-oriented petri net
language to heterogeneous systems design. In
Proceedings of Petri-Nets in System Engineering,
1997.

[7] T. Henzinger, P. Ho, and H. Wong-Toi. Hytech:
A model checker for hybrid systems. Software
Tools for Technology Transfer, special issue on
timed and hybrid systems, pages 110–112, 1997.

[8] Mark H. Klein, Thomas Ralya, Bill Pollak, and
Ray Obenza. A Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Anal-
ysis for Real-Time Systems. Kluwer Academic
Publishers, 1993.

[9] Hee-Hwan Kwak, Insup Lee, Anna Philippou,
Jin-Young Choi, and Oleg Sokolsky. Symbolic
schedulability analysis of real-time systems. In
RTSS, pages 409–, 1998.

[10] Akos Ledeczi, Miklos Maroti, Arpad Bakay, and
Gabor Karsai. The generic modeling environ-
ment. In Proceedings of the IEEE International
Workshop on Intelligent Signal Processing, May
2001.

[11] C. Norstrom, A. Wall, and Wang Yi. Timed au-
tomata as task models for event-driven systems.

In Proceedings of the 7th International Confer-
ence on Real-Time Computing Systems and Ap-
plications (RTCSA’99), pages 182–189, Decem-
ber 1999.

[12] C. Ramchandani. Analysis of asynchronous con-
current systems by timed petri nets. In Technical
Report TR 120, Massachussets Institute of Tech-
nology, February 1974.

[13] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin.
On task schedulability in real-time control sys-
tems. In Proceedings of the 17th IEEE Real-Time
Systems Symposium, pages 13–21, 1996.

[14] B. Silva, K. Richeson, B. Krogh, and A. Chuti-
nan. Modeling and verifying hybrid dynamic
systems using checkmate. In Proceedings of the
4th International Conference on Automation of
Mixed Processes, 2000.

[15] Janos Sztipanovits and Gabor Karsai. Model-
integrated computing. IEEE Computer,
30(4):110–111, April 1997.

[16] Teja Technologies website. http://www.teja.com.

[17] TimeSys website. http://www.timesys.com.

[18] Tripacific Software website.
http://www.tripac.com.

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

