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Abstract
In computer-based control systems, embedded soft-

ware is taking over what mechanical and dedicated elec-
tronic systems used to do, that is, to engage and con-
trol the physical world, interacting directly with sensors
and actuators. Therefore, software running on a digital
processor is tightly-coupled with its surrounding phys-
ical environment. We propose an integrated approach
based on Timed Petri-Nets for modeling and analysis
of embedded real-time systems where real-time schedul-
ing behavior of the controller software is explicitly rep-
resented at the model-level, together with the physical
environment that it interacts with. This enables the
designer to have an integrated view of the entire sys-
tem while analyzing the system and making design de-
cisions. We also describe a syntax-directed, automated
translation procedure from Timed Petri-Nets to Timed
Automata, thus enabling the use of model checkers such
as UPPAAL for analysis purposes. We consider the
railroad crossing problem as an application example,
and evaluate alternatives for controller implementation
on either single-processor or distributed multi-processor
platforms based on the integrated approach.

1 Introduction
Embedded software is the software controlling ev-

erything around us from telephones and pagers to cars
and airplanes. Its main task is to take over what me-
chanical and dedicated electronic systems used to do,
that is, to engage and control the physical world, inter-
acting directly with sensors and actuators. Therefore,
embedded real-time systems typically perform infor-
mation processing tightly coupled with physical pro-
cesses. The boundary between physical and software
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processes are often blurred. However, modeling tools
tend to focus on either the system-level dynamics, or
the real-time scheduling behavior of software processes.

Traditionally, the control engineer designs the con-
trol algorithms without consideration of controller
platform issues, and then hands them over to the
software engineer, who implements them on a mini-
mum cost controller platform while guaranteeing sys-
tem schedulability for a set of task execution frequency
requirements. The authors in [18, 6] propose to break
the rigid wall between controller design and software
implementation, and adopt an integrated approach,
thus opening up the possibility of applying a range of
offline optimization and online adaptation techniques.
For instance, instead of treating each task as having a
rigid execution frequency requirement of 40Hz, we can
relax it to an interval of [35Hz, 40Hz]. The controller
suffers performance degradation with slower execution
frequencies as long as it still maintains critical control
objectives such as system stability. This enables the
designer to perform cost-performance tradeoff analy-
sis.

In this paper, we propose an integrated approach
for modeling and analysis of embedded real-time sys-
tems with tight coupling between embedded software
and embedding physical environment, and analyze the
real-time scheduling behavior of the software together
with the physical system that the software is control-
ling within the same formal framework of Timed Petri-
Nets [17]. By adopting this approach, we enable the de-
signer to have an integrated view of the entire system
when making design decisions, so she can clearly see the
effect of making a change in embedded software on the
rest of the system, or a change in the physical system
on embedded software design. She can also perform
optimization analysis such as maximizing total system
utility given resource constraints, or minimizing total
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system cost given safety and liveness requirements.

Various timed extensions to Petri Nets have
been proposed, including Ramchandani’s Timed Petri
Nets [17], Merlin and Faber’s Time Petri Nets [15],
Little and Ghafoor’s Timed Petri Nets [13], as well as
stochastic extensions to Petri Nets [14]. (Here we use
the term PN with Time to refer to the various timed ex-
tensions to PN). Even though analysis techniques [19]
exist that can perform certain types of timing anal-
ysis on certain variants of PN with Time, tool sup-
port is generally either not available, or only offers lim-
ited analysis capabilities, despite an abundance of tools
for analysis of various untimed Petri-Nets. For exam-
ple, there is no tool support for the end-to-end timing
analysis algorithms described in [22]. On the other
hand, there are mature and scalable model checkers
for Timed Automata (TA) [1], such as UPPAAL [2]
and Kronos [10], that offer sophisticated analysis ca-
pabilities for temporal logic specifications of system
property. We describe a simple translation algorithm
from certain variants of PN with Time to semantically
equivalent TA models, so that we can leverage the TA
model checkers as a universal analysis back-end, in-
stead of having to construct separate tools for each
different variant of PN with Time. (Note that We do
not deal with stochastic Petri Nets here.) In this paper
we describe translation algorithms for two most popu-
lar types of PN with time, Ramchandani’s Timed PN
, and Merlin and Faber’s Time PN [15]. In our opin-
ion, PN has certain advantages over TA in terms of
usability, since it has constructs for modeling system
structure as well as behavior. It is easy to add in struc-
tural and behavioral hierarchy [5], which are absent in
TA. However we can still map hierarchical PN mod-
els into TA models by flattening the hierarchy, at the
expense of losing some clarity and understandability.
Hence we propose to use PN with time as front-end
interface for the designer and TA model checkers as
back-end analysis engine.

In order to gain wider acceptance in industry, it is
important to provide automated tool support instead
of just algorithms described on paper. We use the
Generic Modeling Environment (GME) [12] to pro-
vide the capabilities for modeling TPN and TA, as
well as for implementation of translators from TPN
to TA. GME is a configurable toolkit for creating
domain-specific modeling and program synthesis envi-
ronments. The configuration is accomplished through
meta-models specifying the modeling paradigm of the
application domain, which are used to generate the tar-
get domain-specific environment.

We use Ramchandani’s Timed Petri Nets [17](hence

referred to as TPN) as the modeling framework to illus-
trate the integrated modeling approach. TPN is well-
suited for modeling distributed event-triggered soft-
ware systems, since it is intuitive to map events to
tokens, and execution of software components to tran-
sition firings. The translation procedure also gives a
formal semantics for TPN in terms of TA, and clarifies
some semantic ambiguities regarding multiple-enabled
transitions. We use the well-known railroad crossing
problem as an application example. Using the model
checker UPPAAL, we were able to check the system
safety and liveness properties, as well as schedulability
of controller software within the same framework. In
case a system timing property is violated, UPPAAL
provides an error trace leading to the violation state
and allows us to gain more insight into the cause of
the violation.

Our contribution in this paper is two-fold: First, we
propose an integrated modeling approach for embed-
ded real-time systems with tight coupling between em-
bedded software and embedding physical environment
within the same modeling framework; next, we for-
mally define a translation procedure from TPN mod-
els into TA models, thus enabling the use of mature
model checkers for TA such as UPPAAL for TPN anal-
ysis. We also describe implementation of automated
tool support for the TPN-to-TA translation within the
Generic Modeling Environment(GME).

This paper is structured as follows. Section 2 pro-
vides a brief introduction to the two real-time for-
malisms considered, TPN and TA. Section 3 describes
a simple algorithm for mapping TPN models into TA.
Section 4 considers modeling and analysis of the rail-
road crossing problem. Section 5 describes related
work, and the paper concludes with Section 6.

2 Introduction to TA and TPN
A timed automaton [1] is a standard finite-state au-

tomaton extended with a finite collection of real-valued
clocks, which proceed at the same rate and measure
the amount of time that has elapsed since they were
last reset. The UPPAAL definition of TA has added a
few extensions to the standard definition of [1], such as
integer variables, CCS-style synchronous communica-
tion, urgent channels, etc. We refer interested readers
to [2] for details.

Since there are many different variants of PN with
Time, we provide a detailed description of our defi-
nition of TPN. A TPN is characterized by a 7-tuple
N = (P, T,B, F, I,M0,D), where

• P is a finite set of places pi.

• T is a finite set of transitions ti.
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• B is the backward incidence function B : T ×P →
N , where N is the set of nonnegative integers.

• F is the forward incidence function F : T × P →
N .

• I is the inhibitor edge incidence function I : T ×
P → {0, 1}. The input place to an inhibitor edge
is called an inhibitor input place.

• M0 is the initial marking function M0 : P → N .

• D is a mapping D : T → Q∗ × (Q∗ ∪ ∞), which
associates a delay interval τ = [lb, ub] with each
transition t ∈ T , where Q∗ is the set of rational
numbers.

A transition t is said to be enabled when each of its
input places pi has at least B(t, pi) tokens, and each
of its inhibitor input places pj is empty. A transition
T with delay interval τ = [lb, ub] is fired as soon as it
is enabled, unless disabled by the firing of a conflicting
transition that removes tokens from some of T ’s input
places. The firing takes at least lb time units, but no
more than ub time units. During the firing, the to-
kens at the input places have been consumed, but the
tokens at the output places have not been produced.
At the end of the firing, output tokens are produced.
Note that our definition of TPN requires each tran-
sition to be urgent, that is, fired as soon as enabled,
unless disabled by a conflicting transition at that in-
stant, while in the original definition[17], no bound is
imposed on when a transition may fire after it is en-
abled. Also, note the distinction between Timed Petri
Nets and Time Petri Nets [15]. In a Time Petri Net,
transition T has to be enabled continuously for [lb, ub]
time units before it can fire, and the firing is instanta-
neous: input tokens are consumed and output tokens
are produced at the same time. During the time in-
terval [lb, ub], T may be disabled by the firing of a
conflicting transition.

It is natural to use PN for representing resources
and scheduling. CPU is an inherently sequential re-
source; that is, only one task can execute on the CPU
at one time. This leads to an interleaving notion of
concurrency, and priorities are used for arbitration of
competing requests for the shared resource. TPN has
maximum parallelism semantics, that is, independent
transition firings can take place concurrently as if the
number of processors available is unlimited. In order
to model CPU scheduling, it is necessary to introduce
shared places in order to sequentialize the execution of
concurrent transitions. We can also easily model multi-
ple physical resources such as multiple processors con-

nected through a network, as well as logical resources
such as semaphores.

Pstart Pstart1

Pfin1

Pfin2

Pstart2

CPU
Timer1

T1[bcet1, wcet1]

Timer2
T2[bcet2, wcet2]

[phase]

[period]

Pperiodic Tperiodic

Tinit

Tstart

Pinit Pfin Tfin

Figure 1: TPN models for periodic timers and real-time
tasks.

On the left of Figure 1 is the TPN model for a peri-
odic timer with period and initial phase that provides
stimuli for a real-time task. The task is triggered when
a token is deposited into Pstart; at the completion of
task execution, a token is deposited into Pfin. A frame
overrun occurs if the task response time is greater than
its period. In order to avoid frame overrun, the con-
figuration (Pperiodic = 1, Pfin = 0) must not be reach-
able. On the right is the TPN model for static pri-
ority, non-preemptive scheduling of two periodic tasks.
The blocks marked Timer1 and Timer2 are a syntactic
shorthand for the timer model on the left. The upper
part represents high-priority task Task1; the lower part
represents low-priority task Task2. The place CPU de-
notes the shared resource of a single CPU. A triggered
task executes if CPU is available, i.e., place CPU con-
tains a token; otherwise it waits until the CPU becomes
idle. The inhibitor edge from Pstart1 to T2 represents
the fact that Task1 has priority over Task2, since a
non-empty Pstart1 prevents T2 from firing.

Even though we use TPN in this paper, the inte-
grated modeling approach is independent of the un-
derlying modeling formalism. It is conceivable to
adopt into our framework other formalisms that are
more suitable for modeling real-time scheduling such as
ACSR [7]. Since TPN lacks inherent notions of prior-
ity and preemption, we have to use a number of ad hoc
techniques to work around these limitations. First, we
use inhibitor arcs to simulate priorities. This approach
prevents us from modeling dynamic priority schedul-
ing algorithms such as Earliest Deadline First (EDF);
it also becomes unwieldy when modeling a large num-
ber of tasks with distinct priorities. Second, although
TPN is a dense-time formalism, we have to discretize
the delay of a TPN transition in order to model pre-
emptive scheduling, due to lack of a built-in notion of
preemption like that in ACSR, or a stopwatch mecha-
nism like that in Hybrid Automata [9]. (We omit the
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modeling of preemptive scheduling due to space limi-
tations.)

3 TPN to TA Translation
We describe a translation algorithm for mapping a

TPN model into a semantically equivalent TA model.1

1. Declare a global urgent channel go. A transition
with an urgent channel as its synchronization label
is an urgent transition, and has to be taken as soon
as it is enabled without delay. Create an automa-
ton named Dummy with a single location, and a
transition with synchronization label go! starting
and ending at that location, as in Figure 2.

2. For each TPN place p ∈ P , declare an integer
global variable with the same name in the TA
model.

3. Suppose a TPN transition t ∈ T has an associ-
ated delay interval [lb, ub], a pre-set of k input
places pin

1 , . . . , pin
k , a post-set of m output places

pout
1 , . . . , pout

m , and a set of n inhibitor input places
pinh
1 , . . . , pinh

n . Classify each t ∈ T according to
its number of input, output and inhibitor places.
For example, all transitions with 1 input place, 2
output places, and 1 inhibitor place are put into
the same class. For each transition class:

(a) Define a timed automaton template with two
locations disabled and firing, one local clock
c, and k + m + n integer parameters named
pin
1 , . . . , pin

k , pout
1 , . . . , pout

m , pinh
1 , . . . , pinh

n .

(b) Add an invariant condition c ≤ ub at the lo-
cation firing.

(c) Add an edge from disabled to firing with
guard condition pin

1 ≥ B(pin
1 , t), . . . , pin

k ≥
B(pin

k , t), pinh
1 == 0, . . . , pinh

n == 0, syn-
chronization label go?, and assignment la-
bel c := 0, pin

1 := pin
1 − B(pin

1 , t), . . . , pin
k :=

pin
k −B(pin

k , t).

(d) Add an edge from firing to disabled with
guard condition c ≥ lb, and assignment label
pout
1 := pout

1 + F (pout
1 , t), . . . , pout

m := pout
m +

F (pout
m , t).

4. In the system configuration section, instantiate
one automaton template for each TPN transition,
with the appropriate global variables as parame-
ters, representing the input, output and inhibitor
places of that transition.

go!

Figure 2: Automaton Dummy with an urgent transition
go.

[lb, ub]

in

out_wgt

in_wgt

out

disabled firing

c <= ub

in >= in_wgt
go?
c := 0,
in := in - in_wgt

out := out + out_wgt
c >= lb

Figure 3: TA model of a TPN [17] transition t with 1
input place in, 1 output place out, and time bounds [lb, ub].
The process template has argument list (int in, out; const
in wgt, out wgt; const lb, ub), and a local clock c.

Figure 3 shows the mapping for a TPN transition t
with 1 input place in and 1 output place out. The ur-
gent channel go ensures that the automaton changes its
state from disabled to enabled as soon as in ≥ in wgt,
that is, the input place in contains in wgt or more to-
kens. The number of tokens in is reduced by in wgt
representing the consumption of tokens in the input
place. The TPN transition’s firing duration [lb, ub] is
modeled by the state firing in the TA model, which
has an invariant condition c ≤ ub, and a guard condi-
tion c ≥ lb on the state change from firing to disabled
that represents the end of transition firing. The result-
ing semantics is that the automaton has to change its
state from firing to disabled if it has been staying in
state firing continuously for at least lb time units, and
at most ub time units. If the input place in contains
more than 2 ∗ in wgt tokens, and the TPN transition
is still enabled after one firing, then the urgent channel
go will immediately force a state change back to firing
from disabled, and the clock is reset to start counting
the delay interval [lb, ub] all over again. That is, a new
transition is freshly enabled after each firing.

Figure 5 shows a simple example taken from [22]. In
order to translate this TPN model into a TA model,
it is a simple matter of instantiating the TA templates
for TPN transitions with 1 input/1 output, and 2 in-
put/1 output, which happen to be the only two types

1This algorithm is based on that in [4]. Please refer to Sec-
tion 5 for discussions on the differences between our algorithm
and that of [4].
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[lb, ub]

in

out_wgt

in_wgt

out

disabled firing

c <= ub

in >= in_wgt
go?
c := 0

in := in - in_wgt,
out := out + out_wgt

in >= in_wgt,
c >= lb

in < in_wgt
go?

Figure 4: TA model of a Time PN [15] transition. Com-
pare it to Figure 3 to see the difference in semantics be-
tween Merlin and Faber’s Time PN [15] and Ramchandani’s
Timed PN [17]. Here a transition is eligible to be fired when
it has been continuously enabled for lb time units, and it
has to be fired when it has been continuously enabled for
ub time units. But unlike Timed PN, the transition can
be disabled if some other conflicting transition fires and re-
moves tokens from its input place in, so that the number
of tokens in place in drops below in wgt.

T3:[40,90]

T2:[10,70]

T4:[20,40]

P3

P1

P2

P6

T5:[10,30]

P5

P4

T1:[30,50]

Figure 5: An example TPN model.

int P1:=1, P2:=1, P3:=0, P4:=0, P5:=0, P6:=0;

urgent chan go;

T1 := T1in_1out(P2, P4, 1, 1, 30, 50);

T2 := T1in_1out(P1, P5, 1, 1, 10, 70);

T3 := T1in_1out(P1, P3, 1, 1, 40, 90);

T4 := T1in_1out(P3, P5, 1, 1, 20, 40);

T5 := T2in_1out(P4, P5, P6, 1, 1, 1, 10, 30);

System T1, T2, T3, T4, T5, Dummy;

Figure 6: The UPPAAL system definition section that in-
stantiates the templates for the TA model that is translated
from the TPN model in Figure 5.

of transitions present, as shown in Figure 6.
The properties that can be verified through trans-

formation from TPN to TA can also be directly verified
through state space exploration of the TPN model it-
self, so we do not claim to add any analytical power
by the TPN-to-TA mapping. We are merely proposing
to take advantage of mature tools for TA such as UP-
PAAL for analysis of TPN, as well as other variants
of timed extensions of Petri-Nets, as described in more

detail in Section 1. Also note that reachability analy-
sis for TA with variables is in general undecidable, so
the model-checking procedure is not guaranteed to ter-
minate. This corresponds to the fact that reachability
analysis for TPN is in general undecidable.

src

<<Model>>

TPNModel

weight : int

<<Connection>>

OutputArc

InputArc

<<Connection>>

weight : int

<<Atom>>

numTokens : int
invariant: String

0..*

0..*0..*

0..*

src

dst

ub: int
lb: int

<<Atom>>

Transition

Place

dst

Figure 7: The UML-based meta-model for TPN.

0..*

GlobalChanVar

<<Atom>>

<<Atom>>

GlobalClockVar

GlobalIntVar

<<Atom>> <<Model>>

TAModel

Invariant: string

<<Atom>>

State

LocalClockVar

<<Atom>>

<<Atom>>

LocalIntVarAutomaton

<<Model>>0..*

0..*

0..*
0..*

0..*

Assignment: string

Sync: string

Guard: string

Transition

<<Connection>>

dst

src

0..*

0..*

Figure 8: The UML-based meta-model for TA.

In order to implement automated tool support for
the translation, we take advantage of the Generic Mod-
eling Environment (GME) [12], which is a configurable
toolset for creating domain-specific modeling and pro-
gram synthesis environments through a meta-model
that specifies the modeling paradigm of the applica-
tion domain. The meta-model captures all the syn-
tactic, semantic and presentation information regard-
ing the application domain, and defines the family of
models that can be created using the resulting mod-
eling environment. Figure 7 and 8 show the UML-
based meta-models for TPN and TA, respectively. For
example, the meta-model in Fiture 7 specifies that a
TPNModel consists of 0 or more Places and Transi-
tions, connected by InputArcs and OutputArcs. Each
Place has attributes such as Invariant and numTo-
kens, and each Transition has a time interval specified
by attributes lb (lower-bound) and ub (upper-bound).
Domain-specific modeling environments for TPN and
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TA can then be generated based on the meta-models.
GME also provides a set of APIs for writing model
interpreters that traverse the model elements and per-
form various processing tasks such as model transla-
tion and code generation. We have implemented an
interpreter that performs TPN-to-TA translation by
syntax-directed mapping of corresponding constructs
in the two meta-models. For example, for each tran-
sition in the TPN model, an Automaton is generated
for the TA model; for each place in the TPN model, a
GlobalIntVar is generated for the TA model, etc. An-
other interpreter is needed to convert TA models in
GME into the input file format to UPPAAL, which is
based on XML.

4 Railroad Crossing Problem
Although the railroad crossing (RC) problem is a

standard textbook problem in real-time specification
and verification, there has been little discussion about
the real-time scheduling behavior of the controller com-
puter. That is, it is generally assumed that the con-
troller is dedicated to a single task with no interference
from higher-priority tasks or operating systems activ-
ity, so there is no need for real-time scheduling theory.
This may well be true for the simple controller we are
considering here, but in general designers have been
putting more and more functionality on a single micro-
controller in order to reduce costs. Furthermore, there
is also a tendency to take advantage of distributed,
multi-processor platforms. In these kinds of complex
embedded systems, the real-time scheduling problem
is non-trivial to solve, and it is desirable to model the
scheduling and runtime platform issues explicitly.

4.1 RC without Scheduling

Controller CPU

Exit SensorEntry Sensor Gate

Figure 9: Railroad Crossing with a single controller CPU
placed near the gate.

The RC problem describes a railroad crossing, whose
physical layout is shown in Figure 9, and whose behav-
ior is given by the TPN in Figure 10. Here we assume
that the trains only travel from left to right. The sys-
tem has to satisfy two properties:

• safety: Whenever the train is in the crossing, the
gate has to be lowered.

Train

Controller CPU

T8

T5

T4
T7

P12

P11

T6

P10

P9

P8

P7

P6

P5

P4

T3

P3

T2

P2

T1

P1

Gate

Up

Down

Approach

Before
Crossing

Within

Past

Transition T1 T2 T3 T4

[lb, ub] [1,1] [4,5] [1,1] [1,1]
Transition T5 T6 T7 T8

[lb, ub] [1,1] [1,2] [1,2] [1,1]

Figure 10: TPN model of the RC system without consid-
eration of real-time scheduling issues.

Controller T4 T5

9

T7

81 2

T1

T6

T2 T2T1T8T3 T3

T4

T7

Illegal States
P3 = 1 & P12 = 0

0 3 4 5 6 7

Gate

Train

Figure 11: Execution trace of the TPN model in Figure 10,
except T2’s delay interval is changed from [4,5] to [1,2].
That is, it takes shorter for the train to reach the crossing
from entry sensor position.

• bounded liveness: Within a certain time limit δt
after the train leaves the crossing, the gate has to
be raised.

An entry sensor is placed some distance before the
train reaches the crossing, and an exit sensor is placed
a short distance after the train leaves the crossing.
When the train crosses the position of the entry sensor
(T1 fires), a signal is sent from the sensor to the con-
troller, which is typically placed near the gate. Upon
receiving the signal, the controller sends a lower-gate
command to the gate (T4 fires). Upon receiving this
command, the gate takes some time to lower itself (T7

fires). Meanwhile, the train keeps going and enters the
crossing (T2 fires). In order to satisfy the safety re-
quirement, the illegal state (P3 = 1 & P12 = 0) should
never be reached. That is, it should never be the case
that the train is in the crossing and the gate is not
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lowered. After the train leaves the crossing (T3 fires),
the exit sensor sends a signal to the controller, which,
in turn, sends a raise-gate command to the gate (T5

fires). Upon receiving this command, the gate raises
itself (T6 fires). Note that we are not dealing with the
Generalized Railroad Crossing [8] problem where mul-
tiple trains may be in the crossing at the same time.
The TPN model in Figure 10 forces the gate to be
raised and lowered once for each train going through
the crossing.

Given the TPN specification of the RC system in
Figure 10, we can map the TPN system into a TA
model and use UPPAAL to check the system safety and
liveness properties. For the safety property, it amounts
to checking that (E<> P3 = 1 and P12 = 0) is false. For
the bounded liveness property, it is necessary to add an
observer automaton that goes into an error state upon
detecting a property violation. The system specified
in Figure 10 satisfies both properties if δt = 3, that is,
the gate has to be raised within 3 time units after the
train leaves the crossing. However, if we change T2’s
delay interval from [4,5] to [2,3], that is, the train trav-
els faster and reaches the gate within [2,3] time units
of tripping the entry sensor, then the safety property
no longer holds. UPPAAL can provide us with an ex-
ecution trace leading to the safety property violation,
as shown in Figure 11.
4.2 RC with Single-Processor Scheduling

T9

Controller CPU

Down

Up

Gate

Train

Past

Within

Crossing
Before

Approach

T8

T5

T4

P10

P9

P8

P7

P6

P5

P4

T3

P3

T2

P2

T1

P1

Timer

T6 T7

P12

P11

CPU

Transition T1 T2 T3 T4 T5

[lb, ub] [1,1] [4,5] [1,1] [1,1] [1,1]
Transition T6 T7 T8 T9

[lb, ub] [1,2] [1,2] [1,1] [2,3]

Figure 12: TPN model of the RC system with single CPU
controller platform. A high-priority periodic task with pe-
riod 10, execution time interval [2,3] and arbitrary release
phase has been added. The timer block is a syntactical
shorthand for the TPN model for a timer in Figure 1.

T9 T4 T5

9

T7

81 2

T1T8T1

P3=1 & P12=0
Illegal State

T6

0 3 4 5 6 7

Gate

T3T2Train

Controller

Figure 13: Execution trace of the TPN model in Figure 12.

In order to make the problem more interesting, we
add a high-priority periodic task to the controller CPU.
One can think of this task as a timer interrupt handler
that demands immediate CPU processing. Figure 12
depicts the TPN model of the RC system for the single
processor case. Note that we model non-preemptive
scheduling for the sake of simplicity. Figure 13 shows
that addition of the high-priority task results in the
violation of safety property.
4.3 RC with Multi-Processor Scheduling

Exit SensorGate

Controller CPU1 Controller CPU2

Entry Sensor

Figure 14: RC with a distributed multi-processor con-
troller platform. CPU1 is placed near the entry sensor,
and CPU2 is placed near the gate and exit sensor.

Figure 14 shows the layout for a multi-processor ex-
ecution platform, where a controller is placed near the
entry sensor that controls lowering of the gate, and an-
other controller placed near the gate that controls rais-
ing of the gate. Figure 15 depicts TPN model of the
RC system for the multi-processor case with two high-
priority periodic tasks added, as well as explicit mod-
eling of the shared network resource. Model-checking
reveals that the safety property is again violated. Fig-
ure 16 shows an execution trace leading to the viola-
tion.

The designer has a number of options to remove the
safety violation:

• Switch to preemptive scheduling, and assign lower
priorities to the two interfering periodic tasks
T9,T10 on the controllers, as well as the network
task T12.

• Switch to a faster execution platform, including
the CPUs and network. For example, reduce the
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Figure 15: TPN model of the RC system with a multi-
processor execution platform. Two high-priority periodic
tasks with period 10, execution time interval [1,2] and ar-
bitrary release phase are added, one on each of the two
CPUs. The place Network models the shared network con-
necting CPU1 to CPU2 and the gate. Here all the message
transmission tasks on the network happen to have the same
priority.
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Figure 16: Execution trace of the TPN model in Figure 15.

WCET of T4 to be below 0.5, and the network
message transmission latency T11 to be below 0.5.

• Impose a reduced speed limit on incoming trains
once they reach the entry sensor position, so that
the minimum time the train takes to reach the

crossing from the entry sensor position is above 6.

• Switch to a more responsive gate so that the time
it takes to raise or lower the gate is below 1.

Of course we can adopt a combination of any subset
of the above options. In general, model-checking can
be used to derive certain timing parameters, whether
those of the software or the physical environment, given
timing specification for the rest of the system, in or-
der to satisfy system-level requirements. Ideally this
requires parametric analysis capability such as that
provided by Hytech [9], which is not present in UP-
PAAL. Still, we can use a trial and error approach,
and perform a binary search on the possible intervals
of variable values to find out the answer.

The RC problem serves as an illustrating toy ex-
ample for the integrated modeling approach, and we
plan to model and analyze more realistic application
examples and evaluate the scalability of our approach.

5 Related Work
Real-time scheduling theory based on the rate

monotonic analysis (RMA) framework [11] is a ma-
ture research area whose results have been widely
adopted by industry practitioners. However it also
has certain limitations compared to formal analysis
techniques. First, scheduling anomalies can occur
when jobs have arbitrary release times and shared re-
sources [20]. Even though algorithms have been de-
veloped to solve such scheduling problems, each algo-
rithm is problem-specific and needs to be developed
for each situation. Second, formal analysis tools such
as ACSR [7] and Hytech [9] provide parametric anal-
ysis capabilities that can synthesize task timing pa-
rameters in order to satisfy system-level timing con-
straints, which is not straightforward to achieve with
RMA. Third, scheduling theory focuses on the soft-
ware system only and does not allow for an integrated
modeling approach.

Model-Integrated Computing (MIC) [21] uses inte-
grated, multi-view, domain-specific models to capture
information relevant to the system under design. Mod-
els can represent the designer’s understanding of an
entire computer-based system, including information-
processing architecture, physical architecture, and op-
erating environment. Their modeling tool, Generic
Modeling Environment (GME) [12], explicitly rep-
resents dependencies and constraints among various
modeling views, and can be used for generating system
implementation as well as specialized models that feed
into various analysis tools such as model-checkers. Our
approach can be viewed as a specific instance of the
more general concept of MIC, using a particular formal
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model (TPN) and analysis method (model-checking),
while MIC allows the designer to use meta-modeling
techniques to construct arbitrary domain-specific mod-
eling environments.

Cortes [4] proposed a mapping algorithm from
PRES+ model, which is a variant of Time Petri
Nets with additional data handling capabilities, into
HyTech [9] models. Our mapping is simpler and
more compositional because we take advantage of
UPPAAL’s capability of having guard conditions on
urgent transitions, which is not present in Hytech.
Cortes’ mapping algorithm can only deal with 1-safe
PNs (each place can contain at most one token), while
our algorithm can deal with non-1-safe PNs (each place
can contain more than one token) and multiple-enabled
transitions. Instead of assuming that the PN is 1-
bounded, we can write temporal logic queries in UP-
PAAL to check for n-boundedness of any place or the
entire PN. The ability to model non-1-safe TPNs is
convenient for modeling task queuing and preemptive
scheduling.

For PN with Time, some semantic ambiguities arise
when multiple tokens are allowed in one place [3], since
we can make a choice as to which tokens are chosen to
enable transitions. In our TA-based semantics, instead
of keeping track of the age of each individual token,
we only require the total number of tokens in each in-
put place to be above the enabling threshold in order
for a transition to be enabled. This corresponds to a
threshold-based instead of age-based [3] semantics. An
example where this semantics is useful is Figure 17,
which shows a model used to detect server overload,
taken from [3]. Different semantics are useful in dif-
ferent situations, but the important point is that our
translation algorithm gives a clear semantics to mod-
eling constructs that are otherwise ambiguous.

Request Server[2,3]

[30,30]

4040
Loaded

Running

Figure 17: A model fragment used to detect server over-
load. The number of tokens in place running represents
the number of outstanding requests to be processed at
the server. If this number has been greater than 40 for
more than 30 time units, an overload signal is generated by
putting a token in the place overload. Note that this is a
Time PN model [15] instead of a Timed PN model [17], and
should be mapped to TA according to Figure 4.

Naedele [16] presented an approach delegated exe-
cution, which allows modeling and simulation of both
functional and scheduling aspects of real-time systems
with High-Level Petri Nets (HLPN). Due to high ex-
pressive power of HLPN, his approach is scalable to
larger models, and can model preemptive scheduling
more elegantly than our approach. However the anal-
ysis technique is limited to simulation; formal analysis
via model-checking is not supported.

6 Conclusions and Future Work
In this paper we have proposed an integrated ap-

proach for modeling and analysis of embedded real-
time systems with tight coupling between embedded
software and embedding physical environment, where
the physical system and the software artifacts are mod-
eled within the same formal framework. We have also
described a translation procedure from TPN models
into TA models, thus enabling the use of mature model
checkers for TA such as UPPAAL for TPN analysis.
We describe implementation of automated tool support
within the Generic Modeling Environment (GME).
Our approach allows the designer to model and analyze
the embedded system in an integrated manner, includ-
ing the physical system and the software controlling
it, and use model-checking to determine schedulabil-
ity of the software together with system-level timing
constraints.

Although we have used a specific modeling formal-
ism (TPN), this approach is generic and can be ap-
plied together with other formal or informal models
commonly used in the embedded systems domain. For-
malisms like TPN and TA are used for analysis only,
and are not broad-spectrum models that can be applied
throughout the system development life-cycle. We plan
to investigate integration of formal techniques with in-
formal, widely-adopted techniques such as the Unified
modeling Language(UML), which would allow the de-
signer to gain the benefits of applying formal tech-
niques without the overhead of learning “yet another
modeling language”.
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