
A Model-Based Approach to System-Level Dependency and Real-Time

Analysis of Embedded Software∗

Zonghua Gu, Sharath Kodase, Shige Wang and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122, USA
zgu@eecs.umich.edu

Abstract
We describe an end-to-end tool-chain for model-

based design and analysis of component-based embedded
real-time software. All aspects of an embedded real-time
system are captured in domain-specific models, includ-
ing software components and architecture, timing and
resource constraints, processes and threads, execution
platforms, etc. We focus on the AIRES tool, which per-
forms various static analysis tasks based on the mod-
els, including system-level dependency analysis, exe-
cution rate assignment to component ports, real-time
and schedulability analysis, and automated allocation
of components to processors. By capturing all relevant
information explicitly in the models at the design-level,
and performing analysis that provide insight into non-
functional aspects of the system, we can raise the level
of abstraction for the designer, and facilitate rapid sys-
tem prototyping.

1 Introduction
As embedded real-time systems become more and

more complex and mission- or safety-critical, the tra-
ditional development process of manual coding fol-
lowed by extensive and lengthy testing is becoming
inadequate. The overarching concern for an embed-
ded system developer is no longer to optimize software
at very low levels in order to squeeze every ounce of
performance out of it,1 but to ensure high-level sys-
tem correctness, modularity and maintainability at the
expense of some performance loss. In order to in-
crease developer productivity, the abstraction level for

∗The work reported in this paper was supported in part by
DARPA and ARO under contracts/grants F3615-00-1706 and
DAAD19-01-1-0473, respectively.

1This may still be true for certain domains such as digital
signal processing for mass-produced consumer products, where
performance optimizations can result in large savings in hard-
ware costs.

software development has been raised from assembly
language to modern programming languages such as
C/C++ and Ada. There is a recent trend to raise
the level of abstraction further to the model-level,
and rely on automatic or semi-automatic code gener-
ators to produce code in a traditional programming
language. Examples of this approach include Unified
Modeling Language (UML) [15], Model-Driven Archi-
tecture (MDA) [14], and Model-Integrated Computing
(MIC) [13]. In particular, the MIC approach advo-
cates using domain-specific models throughout the en-
gineering process that allow both system analysis (to
determine the overall characteristics of the system) and
synthesis (to generate configuration or functional code
for the system). The DARPA MoBIES (Model-Based
Integration of Embedded Software) program, started
in 2000, has been exploring model-based approaches
for embedded software composition and analysis, espe-
cially emphasizing non-functional issues such as tim-
ing, synchronization, dependability and resource con-
straints.

The Bold Stroke framework [9, 10] is a product-
line architecture used at Boeing for developing avion-
ics mission computing software, which is the embed-
ded software aboard a military aircraft for controlling
mission-critical functions, such as navigation, target
tracking and identification, weapon firing, etc. It is
modeled in UML, manually coded in C++, and runs on
top of Real-Time CORBA Event Service implemented
in TAO [8]. Even though there exist UML models for
the software, they mainly serve in a documentation role
that the software developer can refer to while perform-
ing manual coding. Therefore, the link between model
and code is weak and easily broken in the process of
system maintenance and evolution, where code is mod-
ified or enhanced without the corresponding changes at

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

the model-level, or vice versa. Furthermore, UML has
little support for analysis that is relevant for embedded
systems, such as real-time properties like schedulabil-
ity, safety properties like deadlock freedom, etc.

AIF XML File

Partial Import
Analysis Results

System Config Code

TranslationTranslation

UML Model

Analysis Tool (AIRES)

Code Generator

ESML Model

Figure 1: A partial view of the end-to-end MoBIES
tool chain for avionics mission computing.

Within the context of the DARPA MoBIES pro-
gram, researchers from multiple institutions have been
working together to produce an end-to-end tool chain
with the Bold Stroke framework as an one of the appli-
cation domains. The Embedded Systems Modeling Lan-
guage (ESML) has been designed as a domain-specific
modeling notation. Figure 1 shows portion of the tool-
chain relevant to this paper. The process starts with
the existing UML models in Rational Rose, and par-
tially imports them into the ESML models as compo-
nents. The designer then manually constructs models
of system architecture by inter-connecting the compo-
nents, and enhances the models with attributes spe-
cific to embedded systems such as timing and resource
information. Information collected from runtime in-
strumentation of the system can be also imported into
the model as annotations. Once we have the models,
a code generator tool can be used to generate system
configuration file used for initializing the component
inter-connection topology at runtime. With a trans-
lator provided by Vanderbilt University, we can also
extract information from the models for analysis pur-
poses in the form of Analysis Interface Format (AIF)
XML files, which is essentially a subset of the ESML
language that contains the dependency and real-time
information needed by the analysis tools. AIF was de-
signed mainly to facilitate integration of third-party
modeling and analysis tools, and will not be discussed
further. A tool called AIRES (Automatic Integration
of Reusable Embedded Software) that we have been
developing is the focus of the paper.

Given an AIF file generated from ESML models,
AIRES extracts system-level dependency information,
including event- and invocation-dependencies, and con-
structs port- and component-level dependency graphs.
Various analysis tasks are supported based on these
graphs, such as checking for anomalies such as de-
pendency cycles, visual display of dependency graphs,
as well as forward/backward slicing to isolate relevant
components. It then assigns execution rates to com-
ponent ports, and uses real-time scheduling theory to
analyze the resulting system of real-time task set. If the
task set is not schedulable, the designer can add more
processors and allocate components to them with the
help of the automated allocation algorithm.

This paper is structured as follows: Section 2 de-
scribes the ESML modeling language. Section 3 de-
scribes the dependency analysis capabilities of the
AIRES tool. Section 4 describes the real-time analysis
techniques. Section 5 describes the algorithm for au-
tomated allocation of components to processors. Sec-
tion 6 demonstrates the usage of the tool with an ap-
plication example. Section 7 talks about related work,
and the paper concludes with Section 8.

2 Embedded Systems Modeling Lan-
guage

Based on the Model-Integrated Computing [13] ap-
proach, the Generic Modeling Environment (GME) is a
configurable toolset for creating domain-specific mod-
eling and program synthesis environments through a
meta-model that specifies the modeling paradigm of the
application domain. The meta-model captures all the
syntactic, semantic and presentation information re-
garding the application domain, and defines the fam-
ily of models that can be created using the resulting
modeling environment. The ESML meta-model [6] de-
fines a comprehensive modeling language that captures
all essential aspects of the embedded system, includ-
ing software architecture, timing and resource con-
straints, execution threads, execution platform infor-
mation (processors and network), allocation of compo-
nents to threads/processors, etc. We only describe the
aspects of ESML that are essential for later discussions
in this paper.

ESML is based on Real-Time Event Channel imple-
mented in the TAO CORBA [8]. Components are com-
posite objects with ports, which interact with one an-
other, either through event triggers or procedure invo-
cations. The CORBA Component Model (CCM) ter-
minology is adopted, where each component can have
the following types of ports:

• Publish Port to publish events.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

• Subscribe Port to subscribe to events.

• Receptacle to issue method invocations.

• Facet to accept method invocations.

Component interactions follow a control-push data-
pull style as shown in Figure 2. First, the data pro-
ducer component publishes a DataAvailable event from
its publish port indicating that it has fresh data; when
the data consumer component receives the event from
its subscribe port, it issues a GetData call from its re-
ceptacle to the producer’s facet to retrieve the data.
Note that we abstract away from detailed functional
behavior of the components, and only focus on the in-
teraction dynamics.

Subscriber

Event

Publisher

Component

ReceptacleFacet

Subscribe PortPublish Port

Invocation

Component

Figure 2: The control-push data-pull style of interac-
tion.

Each input port (subscribe port or facet) has an as-
sociated action that in turn triggers one or more output
ports (publish port or receptacle) of the same compo-
nent. This allows us to determine the intra-component
trigger pathways used in the subsequent dependency
analysis. Each action also has a WCET(worst-case
execution time) attribute used for real-time analysis.
Each subscribe port can subscribe to multiple events,
and has a correlation attribute, either AND or OR. For
AND correlation, an input port inp is triggered, i.e.,
the action associated with inp is executed, only when
all of the input events arrive at inp; for OR correla-
tion, the port is triggered when any of the input events
arrive.

3 System-Level Dependency Analysis
Traditional software dependency analysis works at

the code-level, and studies control and data flow rela-
tionships associated with functions and variables. Con-
trol dependency refers to flow of control through a se-
quential program, and data dependency refers to the
locations of definitions and uses of the program vari-
ables. When we raise the level of abstraction from code
to models, it is necessary to perform system-level de-
pendency analysis, that is, structural and behavioral
relationships between software components and ports
at the level of system architecture, which often involve
concurrency and distribution.

From ESML models, we first generate AIF files, and
then extract system dependency information and con-
struct a directed graph called Port Dependency Graph
(PDG), where each node is a port , and each edge de-
note dependencies between ports. Note that we use
ports to refer to both event publish/subscribe ports,
and invocation facet/receptacles.

Definition. A Port Dependency Graph (PDG) is a
graph (Vp, Ep), where

• Vp is a set of ports, {pi, 1 ≤ i ≤ Np}. Each pi can
be one of 4 types: publish port ppub, subscribe
port psub, receptacle precep or facet pfacet.

• Ep is a set of directed, weighted port connections,
{conni, i ≤ i ≤ Nconn}, and each conni can be
one of 2 types:

Inter-component dependency: is either
event-trigger dependency from output port
of the publisher component to input port
of the subscriber component, or invoca-
tion dependency from receptacle of the
invoking component to facet of the invoked
component.

Intra-component dependency: describes the
intra-component trigger pathways from input
ports to output ports of the same component.

The weight of an edge is equal to the execution
rate of the ports that it connects multiplied by the
size of data transferred at each execution cycle.

The PDG captures all the relevant dependency in-
formation in the ESML model, and serves as the back-
bone data structure for all subsequent analysis tasks.
However, we define component dependency graphs
(CDG) for purposes of convenient visual display as well
as easy manipulation in certain analysis tasks. CDG
captures dependency information at a higher level of
abstraction – component-level instead of port-level –
hiding all the intra-component dependencies. It can
be derived directly and straightforwardly from PDG.

We can use conventional graph algorithms to an-
alyze the dependency graphs, and identify certain
anomalies such as:

• Dependency cycles. A cycle of event or invocation
dependencies indicates a design error if it becomes
an infinite loop at runtime. However in the case of
feedback loops, it is possible to have a legitimate
dependency cycle if the component receiving the
feedback has AND correlation for its inputs.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

• Events published with no subscribers, or events
subscribed to with no publishers.

• Component ports unreachable from any timers,
hence unable to be assigned rates. This is elab-
orated in Section 4.

In all the cases AIRES provides warnings to the de-
signer, but it is up to the designer to decide if it is an
error or not.

We can also perform forward/backward slicing of the
dependency graphs. Given a component or a port, we
can answer user queries such as

• What downstream components/ports can this
component or port potentially affect via event or
invocation dependencies?

• What upstream components/ports can potentially
affect this component or port?

This is achieved by traversing the dependency
graphs forward or backward starting from a compo-
nent (for CDG) or a port (for PDG). These queries
are useful in software evolution, where a designer can
assess the impact of changing or replacing a certain
component, as well as for other purposes such as local-
izing faults, minimizing regression tests, reusing com-
ponents, and system re-engineering.

Even though the current avionics software does not
allow dynamic creation or destruction of components,
both the inter- and intra-component dependencies can
change at runtime due to modal behavior, that is, com-
ponents can change mode to publish new events, stop
publishing old events, or change its internal trigger
pathways. For example, a modal component can have
both active and inactive modes. When in the active
mode, an input event triggers an output event; when in
the inactive mode, an incoming event is simply ignored
and dropped. ESML allows modeling of such behavior
by associating a finite state machine with a modal com-
ponent. Instead of a single PDG, we can view the sys-
tem as having multiple pre-defined system-level modes,
obtained by all combinations of component modes. Be-
sides component modes, it is also possible for the sys-
tem to have a system-wide normal mode and a fault
mode. In the fault mode, one or more processors can
fail, and certain backup components on the working
processors are activated to replace components on the
failed processors. We can construct a PDG for each
system-level mode, and apply the analysis techniques
to each mode separately.

4 Real-Time Analysis

The runtime execution framework for Bold Stroke
uses RT-CORBA Event Service [8] running on the real-
time operating system VxWorks, which supports a sin-
gle address-space process on each processor with multi-
ple threads. The mission computer interacts with sen-
sors and actuators through periodic messages on one or
more communication buses. Messages are triggered at
harmonically-related execution rates such as 1Hz, 5Hz,
10Hz, etc. As a result, each processor has a number
of system threads, also called rate groups, running at
harmonically related rates. This periodicity forces pro-
cessing within a rate group to be divided into execution
frames, where each frame represents the fixed execution
period. For example, the execution frame for a 20Hz
rate group has length 50ms. Triggered by the Time-
out events generated by a periodic timer, the frame
begins by polling input messages from the communica-
tions buses. After inputs are complete, a DataAvailable
event is pushed to initiate a chain of actions along the
dependency graph. When all actions within a given
rate group complete (frame processing completes), an
output message is sent to external devices on the com-
munications bus. A frame failing to complete outputs
prior to the start of the next frame is said to be in a
frame overrun condition, meaning that it has missed
its deadline, here equal to its period.

Each component/port pair is assigned an execution
rate. All the ports assigned the same execution rate
run within the context of the system thread with that
rate. For example, all ports assigned rate of 20Hz run
within the context of the 20Hz thread. The WCET
(worst-case execution time) of the thread is thus the
sum of WCETs of all the actions associated with in-
put ports assigned to the thread. Note that rates are
assigned to ports, not components, therefore a compo-
nent may be multi-rate if it has multiple ports assigned
different rates.

The rate-assignment algorithm performs recursive
depth-first search [3] on the PDG starting from each
timer’s publish port, which publishes the Timeout
event. All the ports reachable from a timer port is
assigned the rate of the timer. If multiple input ports
of a component are assigned different rates, and trigger
the same output port, the output port is assigned the
highest rate, i.e., the highest rate takes precedence and
propagates through. If an input port of a component
subscribes to multiple events with different rates, it
is assigned the highest rate if its correlation attribute
is set to OR, or the lowest rate if its correlation at-
tribute is set to AND. For the latter case, the compo-
nent under-samples the higher-rate inputs.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

After the executing the rate assignment algorithm,
we obtain a set of system threads or tasks (we use
threads and tasks interchangeably). The Bold Stroke
framework adopts fixed-priority, rate monotonic, pre-
emptive scheduling discipline, that is, the higher rate
thread has a higher execution priority and can preempt
lower-priority threads. This allows us to use mature
Rate Monotonic Analysis (RMA) techniques [7] to cal-
culate thread response times. If the hardware platform
is composed of multiple processors, and a system-level
thread crosses processor boundary, it becomes a dis-
tributed and precedence-constrained task chain. The
end-to-end response time analysis technique [12] can be
applied for schedulability analysis of such task chains.
We have not considered infrastructure overheads from
RTOS and middleware during timing analysis, which
can significantly impact the overall system response
time according to measurements on the target. One
approach is to roll the infrastructure overheads into
component WCETs determined from runtime measure-
ments. It is also part of our future work to incorporate
message scheduling delays on the avionics bus into the
end-to-end analysis.

5 Automated Allocation of Compo-
nents to Processors

Given a component/port dependency graph and
a multi-processor distributed hardware platform, we
would like to allocate the components to processors
in order to achieve certain objectives such as schedu-
lability, load balancing, minimized network communi-
cation, etc. The typical allocation process works as
follows: the designer manually allocates components
to processors by modifying the ESML models in GME,
then invokes AIRES to assess system real-time prop-
erties. If the system is not schedulable, he goes back
to the models, redoes the allocation or adds more pro-
cessors, and iterates the process until schedulability is
achieved. As a typical system contains thousands of
components and complex interactions, it is highly de-
sirable to provide tool support to automate this pro-
cess.

At the most basic level, the designer can visually ex-
amine the dependency graphs to identify components
with high or low-cohesion between them while making
allocation decisions. We have also implemented sim-
ple algorithms such as first-fit (to minimize number
of processors) and best-fit (to achieve load-balancing).
Here we describe a heuristic algorithm based on [1]
that attempts to minimize inter-processor communica-
tion costs while maintaining schedulability. No claims
of optimality can be made due to its heuristic nature,
and the designer can only view the allocation results as

suggestions that help him/her make the final decisions.
The algorithm is performed on the Component De-

pendency Graph. First, we assign a util (utilization)
attribute to each component, calculated from WCET
and execution rate of its associated input ports. For
example, an input port triggered at 20Hz and has an
associated action with WCET of 5ms will contribute a
utilization value of 5ms*20Hz/1000ms = 0.1. A com-
ponent with two such input ports has utilization 0.2.
The sum of utilizations of all components allocated to
a processor must not exceed a certain upper bound
util bound, which is a customizable parameter. Ac-
cording to the classic rate monotonic scheduling the-
ory [7], any processor with utilization under 0.69 is
schedulable. Setting util bound to a lower value puts
more constraints on the allocation algorithm, and has
the effect of balancing the workload across processors;
setting it to a higher value makes it easier to find a
feasible solution.2 We perform a heuristic k-way min-
cut algorithm [1] on the CDG, where k is the number
of processors. That is, we cut the CDG into k clusters
and allocate each cluster to a processor, while mini-
mizing the total weight of edges that are cut, subject
to the constraint that the total utilization on each pro-
cessor does not exceed util bound . It is possible that
the algorithm may fail to find a feasible allocation. In
that case, the designer must redesign the system either
by adding more processors, or increase util bound for
each processor.

This algorithm works under the assumption that the
underlying platform is homogeneous, that is, all pro-
cessors have the same processing power, and communi-
cation costs between processors are all the same. This
is realistic for the tightly coupled avionics hardware ar-
chitecture, which is PowerPC processors plugged into a
VME backplane, but may not be applicable in the gen-
eral case. More sophisticated optimization algorithms
such as branch-and-bound or simulated annealing are
needed to obtain accurate results, which have expo-
nential complexity in the worst case, while the graph
min-cut algorithm has polynomial complexity at the
expense of optimality.

6 Sample Usage of AIRES
We consider one of the application scenarios pro-

vided to us by Boeing. Functionally, the scenario rep-

2In order to obtain more accurate results, real-time schedul-
ing theory [7, 12] need to be used as a subroutine in the allo-
cation algorithm to assess system schedulability in place of the
util bound parameter. Since the allocation algorithm is heavily
heuristic in nature, we did not use more sophisticated schedula-
bility checks during component allocation. However the designer
should use the tool capabilities described in Section 4 to access
system schedulability after allocation.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Figure 3: A screenshot of AIRES.

Figure 4: The end-to-end timeline of distributed system threads of 20Hz (left) and 1Hz (right). The numbers in
square brackets denote response time interval [BCRT, WCRT] of the task starting from the timer trigger. The
dark portion of the horizontal bar denotes BCRT, and the dark portion combined with light portion denotes
WCRT.

resents steering calculations needed to support var-
ious displays on the aircraft. There are two rate
groups/system threads in the system: a 1Hz thread
and a 20Hz thread. In the 1Hz thread, information
from various waypoints – certain signposts along the
designated route – is merged into route-based steer-
ing information, and is shown either in the navigation

or flight plan display, depending on the pilot steering
mode. In the 20Hz thread, inputs from track sen-
sors are merged and fed into the tactical steering and
HUD (Heads-Up) display. This scenario is relatively
simple from an analysis perspective since the depen-
dency graphs for the two threads are disjunct from each
other, but it serves as a good illustrating example. In

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

order to demonstrate the end-to-end distributed real-
time analysis functionality, we modify the original sce-
nario, which runs on a single processor, to run on a
2-processor distributed platform. Both threads crosses
processor boundaries to become distributed tasks.

In Figure 3, the normal mode system configuration is
analyzed and displayed. This scenario does not have a
fault mode. The Warnings Dialog displays dependency
anomalies such as event dependency cycles, events pub-
lished with no subscribers, component/port unreach-
able from timers, hence unable to be assigned rates,
etc. Shown on the lower right is the Component De-
pendency Graph, and the upper right is the task graph,
drawn with the Graphviz freeware tool. The left pane
tree view displays the processors, tasks and compo-
nents organized hierarchically; the right pane list view
displays different analysis results depending on the
item selected on the left pane. In this figure, a proces-
sor node is selected in the tree view, and the list view
displays tasks running on the processor, with attributes
such as WCET, period, utilization, WCRT (worst-case
response time), BCRT (best-case response time), sys-
tem slacks (the maximum scale-up factor while main-
taining system schedulability), etc.

Figure 7 shows the end-to-end timeline for the two
distributed system threads in the task graph. In this
application scenario, the two system threads do not
intersect at a component, so there is no blocking time
due to contention for shared resources. On the left
is the timeline for the 20Hz thread with period 50ms.
P1 50 is the timer-triggered task segment on processor
P1, and P2 50 is the subsequent task segment on P2
triggered by the completion event of P1 50. The 20Hz
thread is the highest priority thread in the system, and
suffers neither preemption nor blocking delays. There-
fore, its WCRT and BCRT are the same as its WCET.
On the right is the timeline for the 1Hz thread with
period 1000ms. It suffers preemption delays caused
by the 20Hz thread. The first task segment P1 1000
on P1 has response time interval [26, 46]ms, and the
next task segment P2 1000 on P2 has response time
interval [33, 66]ms, both calculated relative to the 1Hz
timer trigger on P1. Both system threads are schedu-
lable since they finish within their deadlines.

7 Related Work
VEST (Virginia Embedded Systems Toolkit) [11]is

an integrated environment for constructing and ana-
lyzing component based embedded systems. Design-
ers can select or create passive components, compose
them into a system, map them onto runtime structures
such as processes or threads, map them onto hard-
ware platform, and perform dependency checks and

non-functional analyses along many dimensions such
as real-time, performance and reliability.

Cadena [5] is an integrated environment for build-
ing and analyzing CORBA Component Model (CCM)
based systems. Its main functionalities include CCM
code generation in Java, dependency analysis and
model-checking with DSpin [4]. Some of the concepts
in dependency analysis are necessarily similar to ours,
such as the Port Dependency Graph, since both tools
are targeted towards the Bold Stroke framework. How-
ever the emphasis of Cadena is on verification of soft-
ware logical properties through model-checking instead
of system-level real-time and schedulability properties.
The model-checking approach suffers from the well-
known state space explosion problem that limits its
scalability.

MetaH [2] is an ADL and toolset for development
of real-time, fault-tolerant, securely-partitioned, multi-
processor software in the avionics domain. The toolset
supports runtime executive code generation in Ada,
real-time schedulability analysis based on RMA, as
well as reliability and security analysis. The Bold
Stroke framework is different from the MetaH frame-
work in many ways. For example, Bold Stroke uses
RT-CORBA Event Service as its underlying communi-
cation and execution substrate, which can be viewed as
the counterpart of the MetaH runtime executive. The
use of COTS (commercial off-the-shelf) software like
TAO CORBA eliminates the need for generation of a
customized executive for each application. There are
also subtle differences in the runtime execution model.
The port-to-port connections in MetaH cause periodic
assignments to occur between the buffer variables as-
sociated with the ports. Therefore, for an end-to-end
distributed task chain, the predecessor task T1 and suc-
cessor task T2 are decoupled and both execute indepen-
dently and periodically. In the Bold Stroke framework,
T2 is directly triggered by the event issued by T1 in-
stead of executing periodically. Classic RMA analy-
sis techniques [7] can be applied to the MetaH frame-
work, while the end-to-end response time analysis tech-
nique [12] must be used for the Bold Stroke framework
to obtain accurate response times for an end-to-end
task chain.

8 Conclusions and Future Work
We have described a model-based approach for anal-

ysis and rapid prototyping of object-oriented real-time
software, using the avionics mission computing soft-
ware as an application domain. The entire end-to-end
tool-chain is a result of collaboration among multiple
institutions, but in this paper we have mainly focused
on the system-level dependency and real-time analy-

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

sis techniques implemented in the AIRES tool, which
include dependency anomaly detection, visual displays
of dependency graphs, assignment of execution rates to
component ports, timing and schedulability analysis,
automated allocation of components to processors, etc.
All the algorithms implemented in the tool are of poly-
nomial complexity and scalable to large, realistically-
sized systems.

We believe AIRES fills a gap in the current software
development practice, which relies heavily on time-
consuming and expensive testing on the target plat-
form, as it provides insight into non-functional aspects
of models at design-level, and helps the engineer make
high-level design decisions that have a large impact on
the embedded software. It is complementary to tools in
a typical IDE (Integrated Development Environment)
that work at the code level, such as compilers, debug-
gers, runtime tracers and automated testers. As the
model-based approach is becoming more mainstream,
as evidenced by the Model-Driven Architecture initia-
tive [14] and the number of tool vendors in the embed-
ded real-time domain that claim to support it, analysis
tools like AIRES that work at the model-level will be-
come more prevalent.

As part of our future work, we plan to use runtime
data collected from instrumented application programs
running on the target platform to provide accurate tim-
ing annotations in ESML models such as component
WCET information, as well as validate analysis results
produced by AIRES such as end-to-end response times.
An instrumentation framework and log data format in
XML has already been defined by Boeing. Standard-
ized APIs for accessing XML files facilitate integration
of such runtime information into AIRES.

References

[1] Tarek F. Abdelzaher and Kang G. Shin. Period-
based load partitioning and assignment for large
real-time applications. IEEE Transactions on
Computers, 49(1):81–87, 2000.

[2] P. Binns, M. Englehart, M. Jackson, and S. Vestal.
Domain-specific software architectures for guid-
ance, navigation and control. International Jour-
nal of Software Engineering and Knowledge Engi-
neering, 6(2):201–227, June 1996.

[3] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Cliff Stein. Introduction to
Algorithms. McGraw Hill Publishers, 2nd edition,
2001.

[4] Claudio Demartini, Radu Iosif, and Riccardo
Sisto. dSPIN: A dynamic extension of SPIN. In
SPIN, pages 261–276, 1999.

[5] John Hatcliff, William Deng, Matthew Dwyer,
Georg Jung, and Venkatesh Prasad. Cadena: An
integrated development, analysis, and verification
environment for component-based systems. In In-
ternational Conference on Software Engineering,
2003.

[6] Gabor Karsai, Sandeep Neema, Arpad Bakay,
Akos Ledeczi, Feng Shi, and Andy Gokhale. A
model-based front-end to tao/ace. In Proceedings
of the 2nd Workshop on TAO, 2002.

[7] Mark H. Klein, Thomas Ralya, Bill Pollak, and
Ray Obenza. A Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analy-
sis for Real-Time Systems. Kluwer Academic Pub-
lishers, 1993.

[8] D. Schmidt, D. Levine, and T. Harrison. The de-
sign and performance of a real-time corba object
event service. In Proceedings of ACM Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 434–445, 1997.

[9] David Sharp. Reducing avionics software cost
through component based product line develop-
ment. In Proceedings of the Software Technology
Conference, 1998.

[10] David Sharp. Object-oriented real-time comput-
ing for reusable avionics software. In Proceedings
of Fourth International Symposium on Object-
Oriented Real-Time Distributed Computing, pages
185–192, 2001.

[11] John Stankovic. Vest: A toolset for constructing
and analyzing component based operating systems
for embedded and real-time systems. Technical
report, University of Virginia, 2000.

[12] Jun Sun and Jane W.S. Liu. Bounding the end-
to-end response times of tasks in a distributed
real-time system using the direct synchronization
protocol. Technical report, University of Illinois,
1996.

[13] Janos Sztipanovits and Gabor Karsai. Model-
integrated computing. IEEE Computer,
30(4):110–111, April 1997.

[14] OMG MDA website. www.omg.org/mda.

[15] OMG UML website. www.omg.org/uml.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

