

Lecture Notes in Computer Science 2968
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Jing Chen Seongsoo Hong (Eds.)

Real-Time and Embedded
Computing Systems
and Applications

9th International Conference, RTCSA 2003
Tainan City, Taiwan, ROC, February 18-20, 2003
Revised Papers

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Jing Chen
National Cheng Kung University, Department of Electrical Engineering
1 University Road, Tainan City, 701, Taiwan, ROC
E-mail: jchen@mail.ncku.edu.tw

Seongsoo Hong
Seoul National University, School of Electrical Engineering and Computer Science
San 56-1 Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
E-mail: sshong@redwood.snu.ac.kr

Library of Congress Control Number: 2004104587

CR Subject Classification (1998): C.3, D.4, C.2, D.2, H.4

ISSN 0302-9743
ISBN 3-540-21974-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 11006497 06/3142 5 4 3 2 1 0

Preface

This volume contains the 37 papers presented at the 9th International Confe-
rence on Real-Time and Embedded Computing Systems and Applications (RT-
CSA 2003). RTCSA is an international conference organized for scientists and
researchers from both academia and industry to hold intensive discussions on
advancing technologies topics on real-time systems, embedded systems, ubiqui-
tous/pervasive computing, and related topics. RTCSA 2003 was held at the
Department of Electrical Engineering of National Cheng Kung University in
Taiwan. Paper submissions were well distributed over the various aspects of
real-time computing and embedded system technologies. There were more than
100 participants from all over the world.

The papers, including 28 regular papers and 9 short papers are grouped into
the categories of scheduling, networking and communication, embedded systems,
pervasive/ubiquitous computing, systems and architectures, resource manage-
ment, file systems and databases, performance analysis, and tools and deve-
lopment. The grouping is basically in accordance with the conference program.
Earlier versions of these papers were published in the conference proceedings.
However, some papers in this volume have been modified or improved by the
authors, in various aspects, based on comments and feedback received at the
conference. It is our sincere hope that researchers and developers will benefit
from these papers.

We would like to thank all the authors of the papers for their contribution.
We thank the members of the program committee and the reviewers for their
excellent work in evaluating the submissions. We are also very grateful to all
the members of the organizing committees for their help, guidance and support.
There are many other people who worked hard to make RTCSA 2003 a success.
Without their efforts, the conference and this volume would not have been pos-
sible, and we would like to express our sincere gratitude to them. In addition,
we would like to thank the National Science Council (NSC), the Ministry of
Education (MOE), and the Institute of Information Science (IIS) of Academia
Sinica of Taiwan, the Republic of China (ROC) for their generous financial sup-
port. We would also like to acknowledge the co-sponsorship by the Information
Processing Society of Japan (IPSJ) and the Korea Information Science Society
(KISS).

Last, but not least, we would like to thank Dr. Farn Wang who helped in-
itiate contact with the editorial board of LNCS to publish this volume. We also
appreciate the great work and the patience of the editors at Springer-Verlag. We
are truly grateful.

Jing Chen and Seongsoo Hong

History and Future of RTCSA

The International Conference on Real-Time and Embedded Computing Systems
and Applications (RTCSA) aims to be a forum on the trends as well as inno-
vations in the growing areas of real-time and embedded systems, and to bring
together researchers and developers from academia and industry for advancing
the technology of real-time computing systems, embedded systems and their
applications. The conference assumes the following goals:

– to investigate advances in real-time and embedded systems;
– to promote interactions among real-time systems, embedded systems and

their applications;
– to evaluate the maturity and directions of real-time and embedded system

technology;
– to bridge research and practising experience in the communities of real-time

and embedded systems.

RTCSA started from 1994 with the International Workshop on Real-Time
Computing Systems and Applications held in Korea. It evolved into the Interna-
tional Conference on Real-Time Computing Systems and Applications in 1998.
As embedded systems is becoming one of the most vital areas of research and
development in computer science and engineering, RTCSA changed into the In-
ternational Conference on Real-Time and Embedded Computing Systems and
Applications in 2003. In addition to embedded systems, RTCSA has expanded
its scope to cover topics on pervasive and ubiquitous computing, home compu-
ting, and sensor networks. The proceedings of RTCSA from 1995 to 2000 are
available from IEEE. A brief history of RTCSA is listed below. The next RTCSA
is currently being organized and will take place in Sweden.

1994 to 1997: International Workshop on Real-Time
Computing Systems and Applications

RTCSA 1994 Seoul, Korea
RTCSA 1995 Tokyo, Japan
RTCSA 1996 Seoul, Korea
RTCSA 1997 Taipei, Taiwan

1998 to 2002: International Conference on Real-Time
Computing Systems and Applications

RTCSA 1998 Hiroshima, Japan
RTCSA 1999 Hong Kong, China
RTCSA 2000 Cheju Island, Korea
RTCSA 2002 Tokyo, Japan

From 2003: International Conference on Real-Time
and Embedded Computing Systems and
Applications

RTCSA 2003 Tainan, Taiwan

Organization of RTCSA 2003

The 9th International Conference on Real-Time and Embedded Computing Sy-
stems and Applications (RTCSA 2003) was organized, in cooperation with the
Information Processing Society of Japan (IPSJ) and the Korea Information
Science Society (KISS), by the Department of Electrical Engineering, National
Cheng Kung University in Taiwan, Republic of China (ROC).

Honorary Chair
Chiang Kao President of National Cheng Kung University

General Co-chairs
Ruei-Chuan Chang National Chiao Tung University (Taiwan)
Tatsuo Nakajima Waseda University (Japan)

Steering Committee
Tei-Wei Kuo National Taiwan University (Taiwan)
Insup Lee University of Pennsylvania (USA)
Jane Liu Microsoft (USA)
Seung-Kyu Park Ajou University (Korea)
Heonshik Shin Seoul National University (Korea)
Kang Shin University of Michigan at Ann Arbor (USA)
Sang H. Son University of Virginia (USA)
Kenji Toda ITRI., AIST (Japan)
Hideyuki Tokuda Keio University (Japan)

Advisory Committee
Alan Burns University of York (UK)
Jan-Ming Ho IIS, Academia Sinica (Taiwan)
Aloysius K. Mok University of Texas, Austin (USA)
Heonshik Shin Seoul National University (Korea)
John A. Stankovic University of Virginia (USA)
Hideyuki Tokuda Keio University (Japan)
Jhing-Fa Wang National Cheng Kung University (Taiwan)

Publicity Co-chairs
Lucia Lo Bello University of Catania (Italy)
Victor C.S. Lee City University of Hong Kong (Hong Kong)
Daeyoung Kim Information and Communications University (Korea)
Sang H. Son University of Virginia (USA)
Kazunori Takashio Keio University (Japan)

VIII Organization

Program Co-chairs

Jing Chen National Cheng Kung University (Taiwan)
Seongsoo Hong Seoul National University (Korea)

Program Committee

Giorgio C. Buttazzo University of Pavia (Italy)
Jörgen Hansson Linkoping University (Sweden)
Pao-Ann Hsiung National Chung Cheng University (Taiwan)
Chih-Wen Hsueh National Chung Cheng University (Taiwan)
Dong-In Kang ISI East, USC (USA)
Daeyoung Kim Information and Communications University (Korea)
Moon Hae Kim Konkuk University (Korea)
Tae-Hyung Kim Hanyang University (Korea)
Young-kuk Kim Chungnam National University (Korea)
Lucia Lo Bello University of Catania (Italy)
Kam-Yiu Lam City University of Hong Kong (Hong Kong)
Chang-Gun Lee Ohio State University (USA)
Victor C.S. Lee City University of Hong Kong (Hong Kong)
Yann-Hang Lee Arizona State University (USA)
Kwei-Jay Lin University of California, Irvine (USA)
Sang Lyul Min Seoul National University (Korea)
Tatsuo Nakajima Waseda University (Japan)
Yukikazu Nakamoto NEC, Japan (Japan)
Joseph Ng Hong Kong Baptist University (Hong Kong)
Nimal Nissanke South Bank University (UK)
Raj Rajkumar Carnegie Mellon University (USA)
Krithi Ramamritham India Institute of Technology, Bombay (India)
Ichiro Satoh National Institute of Informatics (Japan)
Lui Sha University of Illinois at Urbana-Champaign (USA)
Wei-Kuan Shih National Tsing Hua University (Taiwan)
LihChyun Shu National Cheng Kung University (Taiwan)
Sang H. Son University of Virginia (USA)
Hiroaki Takada Toyohashi University of Technology (Japan)
Yoshito Tobe Tokyo Denki University (Japan)
Hans Toetenel Delft University of Technology (Netherlands)
Farn Wang National Taiwan University (Taiwan)
Andy Wellings University of York (UK)
Wang Yi Uppsala University (Sweden)

Reviewers
Lucia Lo Bello
Giorgio C. Buttazzo
Jing Chen

Jörgen Hansson
Seongsoo Hong
Pao-Ann Hsiung

Chih-Wen Hsueh
Dong-In Kang
Daeyoung Kim

Organization IX

Moon Hae Kim
Tae-Hyung Kim
Young-Kuk Kim
Kam-Yiu Lam
Chang-Gun Lee
Victor C.S. Lee
Yann-Hang Lee
Kwei-Jay Lin
Sang Lyul Min

Tatsuo Nakajima
Yukikazu Nakamoto
Nimal Nissanke
Joseph Ng
Raj Rajkumar
Krithi Ramamritham
Ichiro Satoh
Lui Sha
Wei-Kuan Shih

Lih-Chyun Shu
Sang H. Son
Hiroaki Takada
Yoshito Tobe
Farn Wang
Andy Wellings
Wang Yi

Sponsoring Institutions

National Science Council (NSC), Taiwan, ROC
Ministry of Education (MOE), Taiwan, ROC
Institute of Information Science (IIS) of Academia Sinica, Taiwan, ROC
Information Processing Society of Japan (IPSJ), Japan
Korea Information Science Society (KISS), Korea

X Organization

Table of Contents

Scheduling

Scheduling-Aware Real-Time Garbage Collection Using Dual
Aperiodic Servers . 1

Taehyoun Kim, Heonshik Shin

On the Composition of Real-Time Schedulers . 18
Weirong Wang, Aloysius K. Mok

An Approximation Algorithm for Broadcast Scheduling
in Heterogeneous Clusters . 38

Pangfeng Liu, Da-Wei Wang, Yi-Heng Guo

Scheduling Jobs with Multiple Feasible Intervals . 53
Chi-sheng Shih, Jane W.S. Liu, Infan Kuok Cheong

Deterministic and Statistical Deadline Guarantees for a Mixed Set
of Periodic and Aperiodic Tasks . 72

Minsoo Ryu, Seongsoo Hong

Real-Time Disk Scheduling with On-Disk Cache Conscious 88
Hsung-Pin Chang, Ray-I Chang, Wei-Kuan Shih, Ruei-Chuan Chang

Probabilistic Analysis of Multi-processor Scheduling of Tasks
with Uncertain Parameters . 103

Amare Leulseged, Nimal Nissanke

Real-Time Virtual Machines for Avionics Software Porting
and Development . 123

Lui Sha

Algorithms for Managing QoS for Real-Time Data Services Using
Imprecise Computation . 136

Mehdi Amirijoo, Jörgen Hansson, Sang H. Son

Networking and Communication

On Soft Real-Time Guarantees on Ethernet . 158
Min-gyu Cho, Kang G. Shin

BondingPlus: Real-Time Message Channel in Linux Ethernet
Environment Using Regular Switching Hub . 176

Hsin-hung Lin, Chih-wen Hsueh, Guo-Chiuan Huang

XII Table of Contents

An Efficient Switch Design for Scheduling Real-Time
Multicast Traffic . 194

Deming Liu, Yann-Hang Lee

Embedded Systems/Environments

XRTJ: An Extensible Distributed High-Integrity Real-Time
Java Environment . 208

Erik Yu-Shing Hu, Andy Wellings, Guillem Bernat

Quasi-Dynamic Scheduling for the Synthesis of Real-Time Embedded
Software with Local and Global Deadlines . 229

Pao-Ann Hsiung, Cheng-Yi Lin, Trong-Yen Lee

Framework-Based Development of Embedded Real-Time Systems
Hui-Ming Su and Jing Chen . 244

Hui-Ming Su, Jing Chen

OVL Assertion-Checking of Embedded Software with
Dense-Time Semantics . 254

Farn Wang, Fang Yu

Pervasive/Ubiquitous Computing

System Support for Distributed Augmented Reality in Ubiquitous
Computing Environments . 279

Makoto Kurahashi, Andrej van der Zee, Eiji Tokunaga,
Masahiro Nemoto, Tatsuo Nakajima

Zero-Stop Authentication: Sensor-Based Real-Time
Authentication System . 296

Kenta Matsumiya, Soko Aoki, Masana Murase, Hideyuki Tokuda

An Interface-Based Naming System for Ubiquitous
Internet Applications . 312

Masateru Minami, Hiroyuki Morikawa, Tomonori Aoyama

Systems and Architectures

Schedulability Analysis in EDF Scheduler with Cache Memories 328
A. Mart́ı Campoy, S. Sáez, A. Perles, J.V. Busquets

Impact of Operating System on Real-Time Main-Memory Database
System’s Performance . 342

Jan Lindström, Tiina Niklander, Kimmo Raatikainen

The Design of a QoS-Aware MPEG-4 Video System 351
Joseph Kee-Yin Ng, Calvin Kin-Cheung Hui

Table of Contents XIII

Resource Management

Constrained Energy Allocation for Mixed Hard and Soft
Real-Time Tasks . 371

Yoonmee Doh, Daeyoung Kim, Yann-Hang Lee, C.M.Krishna

An Energy-Efficient Route Maintenance Scheme for Ad Hoc
Networking Systems . 389

DongXiu Ou, Kam-Yiu Lam, DeCun Dong

Resource Reservation and Enforcement for Framebuffer-Based Devices . . . 398
Chung-You Wei, Jen-Wei Hsieh, Tei-Wei Kuo, I-Hsiang Lee,
Yian-Nien Wu, Mei-Chin Tsai

File Systems and Databases

An Efficient B-Tree Layer for Flash-Memory Storage Systems 409
Chin-Hsien Wu, Li-Pin Chang, Tei-Wei Kuo

Multi-disk Scheduling for High-Performance RAID-0 Devices 431
Hsi-Wu Lo, Tei-Wei Kuo, Kam-Yiu Lam

Database Pointers: A Predictable Way of Manipulating Hot Data
in Hard Real-Time Systems . 454

Dag Nyström, Aleksandra Tešanović, Christer Norström,
Jörgen Hansson

Performance Analysis

Extracting Temporal Properties from Real-Time Systems by
Automatic Tracing Analysis . 466

Andrés Terrasa, Guillem Bernat

Rigorous Modeling of Disk Performance for Real-Time Applications 486
Sangsoo Park, Heonshik Shin

Bounding the Execution Times of DMA I/O Tasks on Hard-Real-Time
Embedded Systems . 499

Tai-Yi Huang, Chih-Chieh Chou, Po-Yuan Chen

Tools and Development

Introducing Temporal Analyzability Late in the Lifecycle of
Complex Real-Time Systems . 513

Anders Wall, Johan Andersson, Jonas Neander, Christer Norström,
Martin Lembke

RESS: Real-Time Embedded Software Synthesis and
Prototyping Methodology . 529

Trong-Yen Lee, Pao-Ann Hsiung, I-Mu Wu, Feng-Shi Su

XIV Table of Contents

Software Platform for Embedded Software Development 545
Win-Bin See, Pao-Ann Hsiung, Trong-Yen Lee, Sao-Jie Chen

Towards Aspectual Component-Based Development of
Real-Time Systems . 558

Aleksandra Tešanović, Dag Nyström, Jörgen Hansson,
Christer Norström

Testing of Multi-Tasking Real-Time Systems with Critical Sections 578
Anders Pettersson, Henrik Thane

Symbolic Simulation of Real-Time Concurrent Systems 595
Farn Wang, Geng-Dian Huang, Fang Yu

Author Index . 619

Scheduling-Aware Real-Time Garbage Collection
Using Dual Aperiodic Servers

Taehyoun Kim1 and Heonshik Shin2

1 SOC Division, GCT Research, Inc.,
Seoul 150-877, Korea
thkim@gctsemi.com

2 School of Electrical Engineering and Computer Science, Seoul National University,
Seoul 151-742, Korea
shinhs@snu.ac.kr

Abstract. Garbage collection has not been widely used in embedded real-time
applications since traditional real-time garbage collection algorithm can hardly
bound its worst-case responsiveness. To overcome this limitation, we have pro-
posed a scheduling-integrated real-time garbage collection algorithm based on
the single aperiodic server in our previous work. This paper introduces a new
scheduling-aware real-time garbage collection which employs two aperiodic
servers for garbage collection work. Our study aims at achieving similar per-
formance compared with the single server approach whilst relaxing the limitation
of the single server approach. In our scheme, garbage collection requests are
scheduled using the preset CPU bandwidth of aperiodic server such as the spo-
radic server and the deferrable server. In the dual server scheme, most garbage
collection work is serviced by the secondary server at low priority level. The
effectiveness of our approach is verified by analytic results and extensive simu-
lation based on the trace-driven data. Performance analysis demonstrates that the
dual server scheme shows similar performance compared with the single server
approach while it allows flexible system design.

1 Introduction

As modern programs require more functionality and complex data structures, there is a
growing need for dynamic memory management on heap to efficiently utilize the memory
by recycling unused heap memory space. In doing so, dynamic memory may be managed
explicitly by the programmer through the invocation of “malloc/free” procedures which
is often error-prone and cumbersome.

For this reason, the system may be responsible for the dynamic memory reclamation
to achieve better productivity, robustness, and program integrity. Central to this auto-
matic memory reclamation is the garbage collection (GC) process. The garbage collector
identifies the data items that will never be used again and then recycles their space for
reuse at the system level.

In spite of its advantages, GC has not been widely used in embedded real-time
applications. This is partly because GC may cause the response time of application
to be unpredictable. To guarantee timely execution of a real-time application, all the

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 1–17, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 T. Kim and H. Shin

components of the application must be predictable. A certain software component is
predictable means that its worst-case behavior is bounded and known a priori.

This is because garbage collectors should also run in real-time mode for predictable
execution of real-time applications. Thus, the requirements for real-time garbage col-
lector are summarized and extended as follows [1]; First, a real-time garbage collector
often interleaves its execution with the execution of an application in order to avoid in-
tolerable pauses incurred by the stop-and-go reclamation. Second, a real-time collector
must have mutators 1 report on any changes that they have made to the liveness of heap
objects to preserve the consistency of a heap. Third, garbage collector must not interfere
with the schedulability of hard real-time mutators. For this purpose, we need to keep
the basic memory operations short and bounded. So is the synchronization overhead
between garbage collector and mutators. Lastly, real-time systems with garbage collec-
tion must meet the deadlines of hard real-time mutators while preventing the application
from running out of memory.

Considering the properties that are needed for real-time garbage collector, this pa-
per presents a new scheduling-aware real-time garbage collection algorithm. We have
already proposed a scheduling-aware real-time GC scheme based on the single server
approach in [1]. Our GC scheme aims at guaranteeing the schedulability of hard real-time
tasks while minimizing the system memory requirement. In the single server approach,
an aperiodic server services GC requests at the highest priority level. It has been proved
that, in terms of memory requirement, our approach shows the best performance com-
pared with other aperiodic scheduling policies without missing hard deadlines [1].

However, the single server approach has a drawback. In terms of rate monotonic
(RM) scheduling, the server must have the shortest period in order to be assigned for
the highest priority. Usually, the safe server capacity for the shortest period may not
be large enough to service a small part of GC work. For this reason, the single server
approach may be sometimes impractical. To overcome this limitation, we propose a
new scheduling-aware real-time GC scheme based on dual aperiodic servers. In the dual
server approach, GC requests are serviced in two steps. The primary server atomically
processes the initial steps such as flipping and memory initialization at the highest priority
level. The secondary server scans and evacuates live objects. The effectiveness of the
new approach is verified by simulation studies.

The rest of this paper is organized as follows. Sect. 2 presents a system model and
formulates the problem addressed in this paper. The real-time GC technique based on the
dual aperiodic servers is introduced in Sect. 3. Performance evaluation for the proposed
schemes is presented in Sect. 4. This section proves the effectiveness of our algorithm by
estimating various memory-related performance metrics. Sect. 5 concludes the paper.

2 Problem Statement

We now consider a real-time system with a set of n periodic priority-ordered mutator
tasks, M = {M1, . . . , Mn} where Mn is the lowest-priority task and all the tasks
follow rate monotonic scheduling [2]. The task model in this paper includes an additional

1 Because tasks may mutate the reachability of heap data structure during the GC cycle, this
paper uses the term “mutator” for the tasks that manipulate dynamically-allocated heap.

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 3

Table 1. Notations

Symbol Description

Mi, Mi,j Periodic mutator task i and its jth instance
Ci, Ti, Di, Ri Worst-case execution time, period, deadline, and response time of Mi

Ai Maximum amount of memory allocated by Mi during Ti

Gk kth garbage collection request
CGC , RGC Worst-case execution time of and response time of G

Lk, L∗
k Amount of live memory processed by Gk and its maximum value

Mresv Memory reservation for hard real-time tasks
M System Memory requirement

Ts1, Ts2 Periods of the primary server and the secondary server
Cs1, Cs2 Capacities of the primary server and the secondary server

Si(k), Fi(k) Start/Completion time of the kth instance of Mi

δi(t) Idle time at priority level i at time t
Ii(w) Interference of tasks with higher priority than that of Mi during the time interval

[0, w)

property, memory allocation requirement of Mi. Mi is characterized by a tuple Mi =
(Ci, Ti, Di, Ai) (see Table 1 for notations). Our discussion will be based on the following
assumptions:

– Assumption 1: There are no aperiodic mutator tasks.
– Assumption 2: The context switching and task scheduling overhead are negligibly

small.
– Assumption 3: There are no precedence relations among Mis. The precedence con-

straint placed by many real-time systems can be easily removed by partitioning tasks
into sub-tasks or properly assigning the priorities of tasks.

– Assumption 4: Any task can be instantly preempted by a higher priority task, i.e.,
there is no blocking factor.

– Assumption 5: Ci, Ti, Di, and Ai are known a priori.

Although estimation of Ai is generally an application-specific problem, Ai can be spec-
ified by the programmer or can be given by a pre-runtime trace-driven analysis [3]. The
target system is designed to adopt dynamic memory allocation with no virtual memory.
In this paper, we consider a real-time copying collector proposed in [3], [4] for its sim-
plicity and real-time property. This paper treats each GC request as a separate aperiodic
task {Gk(tks , tke), k ≥ 1} where tks and tke denote the release time and completion time
of the kth GC request Gk, respectively.

In our memory model, the cumulative memory consumption mc(Mi, k, t) by a
mutator task, defined for the interval [tks , tk+1

s), is a monotonic increasing function.
Although the memory consumption function for each mutator can be various types
of functions, we can easily derive the upper bound of memory consumption of Mi

during t time units from the worst-case memory requirement of Mi, which amounts to
a product of Ai and the worst-case invocation number of Mi during t time units. Then,

4 T. Kim and H. Shin

the cumulative memory consumption by all the mutator tasks at t′ (tks ≤ t′ < tk+1
s) is

bounded by the following equation.

mc(k, t′) �
n∑

i=1

mc(Mi, k, t′) ≤
n∑

i=1

{(⌈
t′

Ti

⌉
−
⌊

tks
Ti

⌋)
Ai

}
. (1)

On the contrary, the amount of available memory depends on the reclamation rate of
the garbage collector. For the copying collector, half of the total memory is reclaimed
entirely at flip time. Actually, the amount of heap memory reproduced by Gk depends
on M and the size of live objects Lk, and is bounded by (M

2 − Lk).
We now consider the property of real-time GC request Gk. First, Gk is an aperiodic

request because its release time is not known a priori. It is released when the cumula-
tive memory consumption exceeds the amount of free (recycled) memory. Second, Gk

is a hard real-time request. The kth GC request Gk(tks , tke) must be completed before
Gk+1(tk+1

s , tk+1
e) is released. In other words, the condition tke < tk+1

s should always
hold. Suppose that available memory becomes less than a certain threshold while pre-
vious GC request has not been completed yet. In this case, the heap memory is fully
occupied by the evacuated objects and newly allocated objects. Thus, neither the garbage
collector nor mutators can continue to execute any longer.

On the other hand, the system may also break down if there is no CPU bandwidth
left for GC at tk+1

s even though the condition tke < tk+1
s holds. To solve this problem,

we propose that the system should reserve a certain amount of memory spaces in order
to prevent system break-down due to memory shortage. We also define a reservation
interval, denoted by RG , to bound the memory reservation. The reservation interval
represents the worst-case time interval [tks , tγ), where tγ(≥ tke) is the earliest time
instant at which the CPU bandwidth for GC becomes available. Hence, the amount of
memory reservation Mresv can be computed by the product of RG and the memory
requirement of all the mutator tasks during RG . There should also be memory spaces in
which currently live objects are copied. As a result, for the copying collector addressed
in this paper, the system memory requirement is given by:

M = 2(Mresv + L∗
k) = 2(

n∑
i=1

⌈
RG
Ti

⌉
Ai + L∗

k) (2)

where Mresv and L∗
k denote the worst-case memory reservation and the worst-case live

memory, respectively. The reservation interval RG is derived from the worst-case GC
response time RGC and the GC scheduling policy.

3 Dual Server Approach

3.1 Background

We have presented a scheduling-aware garbage collection scheme using single aperiodic
server in [1], [3]. In the single server approach, GC work is serviced by an aperiodic server
with a preset CPU bandwidth at the highest priority. The aperiodic server preserves its
bandwidth waiting for the arrival of aperiodic GC requests. Once a GC request arrives in

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 5

the meantime, the server performs GC as long as the server capacity permits; if it cannot
finish within one server period, it will resume execution when the consumed execution
time for the server is replenished. By assigning the highest priority, the garbage collector
can start immediately on arriving Gk preempting the mutator task running.

However, the single server approach has a drawback. Under the aperiodic server
scheme, the server capacity tends to be very small at the highest priority. Although the
server capacity may be large enough to perform the initial parts of GC procedure such as
flipping and memory initialization, it may not be large enough to perform single copying
operation of a large memory block. Guaranteeing the atomicity of such operation may
yield another unpredictable delay such as synchronization overhead. For this reason, this
approach may be sometimes impractical.

3.2 Scheduling Algorithm

In this section, we present a new scheduling-aware real-time GC scheme based on dual
aperiodic servers. In the dual server approach, GC is performed in two steps. The primary
server performs flip operation and atomic memory initialization at the highest priority.
The secondary server incrementally traverses and evacuates live objects. The major
issue of dual server approach is to decide the priority of the secondary server and its safe
capacity. We mean maximum server capacity which can guarantee the schedulability of
given task set by safe capacity. The dual server approach can be applied to the sporadic
server (SS) and the deferrable server (DS).

The first step is to find the safe capacity of the secondary server. This procedure
is applied to each priority level of periodic tasks in given task set for simplicity. In
doing so, we assume that the priority of the secondary server is assigned according
to the RM policy. There is always a task of which period is identical to the period of
the secondary server because we compute the capacity of the secondary server for the
periods of periodic tasks. In this case, the priority of secondary server is always higher
than that of such a task.

The maximum idle time at priority level i, denoted by δ(Di), is set to the initial value
of the capacity. For each possible capacity of the secondary server Cs2 ∈ [1, δ(Di)], we
can find the maximum capacity at priority level i which can guarantee the schedulability
of given task set using binary search.As a result, we have n alternatives for the parameters
of the secondary server. The selection of the parameter is dependent on the primary
consideration of system designer. In general, the primary goal is to achieve maximum
server utilization. However, our goal is to minimize the memory requirement as long as
there exists a feasible schedule for hard real-time mutators.

As mentioned in Sect. 2, the system memory requirement is derived from Mresv

and L∗
k. The worst-case memory reservation is derived from RGC under the scheduling

policy used. Hence, we need a new algorithm to find RGC under the dual server approach
to derive the memory requirement.

For this purpose, we use the schedulability analysis which is originally presented by
Bernat [5]. Let the pair of parameters (period, capacity) = (Ts, Cs) of the primary server
and the secondary server be (Ts1, Cs1) and (Ts2, Cs2), respectively. Then, we assign
Ts1 = T1 and Cs1 = σ such that σ is the smallest time required for flipping and atomic

6 T. Kim and H. Shin

2

1

Task

Execution

Cs1

Cs2

Gk−1 Gk

Rgc
k

Rκ ϑ

t t+10 t+20 t+30 t+40

tk
s tk

e

time
Δ

Fig. 1. Response time of Gk (Ts1 = 6, Cs1 = 1, Ts2 = 10, Cs2 = 2, CGC = 4)

memory initialization. Traditional worst-case response time formulation can be used to
compute RGC .

In Theorem 1, we show the worst-case response time of GC under the SS policy.

Theorem 1. Under the SS, for fixed CGC , Cs1, Ts1, Cs2, and Ts2, the response time of
the garbage collector RGC of the dual server approach is bounded by the kth completion
time of a virtual server task SSs2 with T ′

s2 = Ts2 + Rκ period, C ′
s2 = ϑ capacity, and

(Ts2 − Cs2) offset such that Rκ is the worst-case response time of a task Mκ which
is the lowest priority task among the higher priority tasks than the secondary server,

ϑ = CGC − Cs1 −
(⌈

CGC − Cs1

Cs2

⌉
− 1
)

Cs2 and k =
⌈

CGC − Cs1

Cs2

⌉
.

Proof. Let ε(> 0) be the available capacity of the secondary server when a new GC
request is released. If the condition CGC − Cs1 ≤ ε is satisfied, then the GC request Gk

is completely serviced within one period of the secondary server. Otherwise, additional
server periods are required to complete Gk. The remaining GC work must be processed
after the capacity of the secondary server is replenished. We assume that there is always
Cs1 capacity available when a new GC request arrives. This is because the replenishment
period of the primary server will always be shorter than or equal to that of the secondary
server. If this assumption is not valid, GC requests will always fail.

The interval, say Δ, between the beginning of Gk and the first replenishment of the
secondary server is at most (Ts2 −Cs2). In other words, the first period of the secondary
server is released Δ time units after Gk was requested because the secondary server may
not be released immediately due to interference caused by higher priority tasks. In the
proof of Theorem 1, RGC is computed by using the capacity of the sporadic server and
the replenishment period.

Roughly, the worst-case response time of Gk coincides with the kth completion time

of the secondary server with Δ offset such that k =
⌈

CGC − Cs1

Cs2

⌉
. More correctly,

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 7

it is the sum of Δ, any additional server periods required for replenishment, and the
CPU demand remaining at the end of GC cycle. It results from the assumption that
all the mutator tasks arrive exactly at which the first replenishment of the secondary
server occurs. In this case, the second replenishment of the secondary server occurs at
the time when all the higher priority tasks have been completed. Formally, in the worst-
case, the longest replenishment period of the secondary server is equal to the worst-case
response time of Mκ denoted by Rκ where Mκ is the lowest priority task among the
higher priority tasks. Because the interference is always smaller than the worst-case
interference at the critical instant, the following replenishment periods are always less
than or equal to the first replenishment period. Hence, we can safely set the period of
a virtual task SS2 to (Ts2 + Rκ). The CPU demand remaining at the end of GC cycle,
say ϑ, is given by:

ϑ = CGC − Cs1 −
(⌈

CGC − Cs1

Cs2

⌉
− 1
)

Cs2 .

It follows that the sum of the server periods required and the CPU demand remaining
at the end of GC cycle actually corresponds to the worst-case response time of the kth

response time of a virtual server task SSs2 with T ′
s2 period and ϑ capacity. Because

a task’s response time is only affected by higher priority tasks, this conversion is safe
without loss of generality. Fig. 1 illustrates the worst-case situation.
�

Since the DS has different server capacity replenishment policy, we have the follow-
ing theorem.

Theorem 2. Under the DS, for fixed CGC , Cs1, Ts1, Cs2, and Ts2, the response time of
the garbage collector RGC of the dual server approach is bounded by the kth completion
time of a virtual server task SSs2 with T ′

s2 = Ts2 period, C ′
s2 = ϑ capacity, and

(Ts2 − Cs2) offset such that ϑ = CGC − Cs1 −
(⌈

CGC − Cs1

Cs2

⌉
− 1
)

Cs2 and k =⌈
CGC − Cs1

Cs2

⌉
.

Proof. The server capacity for the DS is fully replenished at the beginning of server’s
period while the SS replenishes the server capacity exactly Ts time units after the ape-
riodic request was released. For this reason, the period of a virtual task T ′

s2 equals Ts2.
�

For the dual server approach, we do not need to consider the replenishment of server
capacity in computing Mresv . This is because there is always sufficiently large time
interval to replenish the capacity of the primary server between two consecutive GC
cycles. Finally we have:

Mresv =
n∑

i=1

⌈
RGC

Ti

⌉
Ai . (3)

Let F ′
s2(k) denote the kth completion time of a virtual secondary server task SSs2.

As shown above, F ′
s2(k) is equal to RGC . To derive the memory requirement, we now

8 T. Kim and H. Shin

present how we can find F ′
s2(k) with given parameters of the secondary server. We

now apply Bernat’s analysis to find F ′
s2(k). Bernat presents an extended formulation to

compute the worst-case completion time of Mi at its kth invocation.
We explain briefly the extended worst-case response time formulation. Let us first

consider the worst-case completion time of Mi at the second invocation. The completion
time of the second invocationFi(2) includes its execution time and interference caused by
higher priority tasks. The interference is always smaller than the worst-case interference
at the critical instant. Formally, the idle time at priority level i at w, denoted by δi(w),
is defined as the amount of CPU time can be used by tasks with lower priority than Mi

during the period [0, w) in [5]. Again, the amount of idle time at the start of each task
invocation is written as:

δi(k) = δi(Si(k)) .

Based on the above definitions, Fi(2) includes the time required to complete two invo-
cations of Mi, the CPU time used by lower priority tasks (level-i idle time), and the
interference due to higher priority tasks. Thus, it is given by the following recurrence
relation: {

w(0) = Si(2) + Ci

w(n+1) = 2Ci + δi(2) + Ii(w(n))
(4)

where Ii(w(n)) denotes the interference caused by tasks with higher priority than task
i. The correctness of Eq. (4) is proved in [5].

Similarly, the completion time of the kth invocation of Mi, Fi(k) is the sum of the
time required to complete k invocations of Mi, the CPU time used by lower priority
tasks, and the interference due to higher priority tasks. Thus, we have Fi(k) as the
smallest w (≥ 0) such that:

w = kCi + δi(k) + Ii(w) . (5)

More formally, Fi(k) corresponds to the smallest solution to the following recurrence
relation: {

w(0) = Si(k) + Ci

w(n+1) = kCi + δi(k) + Ii(w(n)) .
(6)

As mentioned earlier, the worst-case response time of garbage collector equals
F ′

s2(k). Following the definition of F ′
s2(k), it can be found by the worst-case response

time analysis at the critical instant. For this reason, we can apply the Bernat’s extended
worst-case response time formulation to our approach without loss of generality. F ′

s2(k)
is the smallest solution w (≥ 0) where w(n+1) = w(n) to the following recurrence
relation: {

w(0) = Ss2(k) + C ′
s2

w(n+1) = kC ′
s2 + δs2(k) + Is2(w(n)),

(7)

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 9

where Ss2(k) = (k − 1)T ′
s2, C ′

s2 = CGC − Cs1 −
(⌈

CGC − Cs1

Cs2

⌉
− 1
)

Cs2,

δs2(k) = δs2(Ss2(k)), and Is2(w(n)) =
∑

Mj∈hp(SSs2)

⌈
w(n)

Tj

⌉
Cj . In Eq. (7), Ss2(k)

and Is2(w(n)) can be easily computed because T ′
s2 is known a priori. Hence, we need

only to compute δs2(k) in order to compute F ′
s2(k).

To compute δs2(k), we assume another virtual task M̄ as follows:

M̄ = (C̄, T̄ , D̄),
where T̄ = Ss2(k), D̄ = T̄ .

At the beginning of this section, we compute the safe capacity of the secondary server
at priority level i by computing δi(Di). Similarly, the amount of idle time between
[0, Ss2(k)) which has been unused by the tasks with priorities higher than or equal to
Mi corresponds to the upper bound for the execution time of the virtual task M̄. Then,
δs2(k) is computed by obtaining the maximum C̄ which can guarantee that the virtual
task M̄ is schedulable. Formally, we have:

δs2(Ss2(k)) = max{C̄ | M̄ is schedulable} . (8)

The maximum C̄ which satisfies the condition in Eq. (8) is the solution w where
w(n+1) = w(n) and wn ≤ D̄ to the following equation:

w = C̄ + I ′
i(w) (9)

where I ′
i(w) denotes the interference caused by the tasks with higher than or equal

priority to task i. A simple way of finding C̄ is to perform binary search for the interval
[0, D̄) of which complexity is O(log2D̄). Actually, this approach may be somewhat
expensive because, for each value t ∈ [0, D̄), the worst-case response time formulation
must be done for higher priority tasks. To avoid this complexity, Bernat also presents an
effective way of computing δi(k) by finding more tighter bounds. However, his approach
is not so cost-effective for our case which targets at finding a specific Fi(k).

We present a simple approach to reduce the test space. It is possible by using the fact
that C̄ is actually the idle time unused by the tasks with higher than or equal to priorities
than the secondary server. Using the definition of I

′
i(w), the interference of tasks with

higher than or equal priority to Mi, the upper bound for C̄ is given by:

C̄ ≤ Ss2(k) − I
′
i(Ss2(k)) < Ss2(k) −

∑
j∈hep(SS2)

⌊
Ss2(k)

Tj

⌋
Cj (10)

where hep(SS2) denotes the set of tasks with higher than or equal priority to the sec-
ondary server.

The lower bound for C̄ can also be tightened as follows. Given any time interval w =
[t1, t2), the worst-case number of instances of Mj within the interval can approximate⌈

t2 − t1
Tj

⌉
+1. We can optimize this trivial bound using the analysis in [3]. The analysis

10 T. Kim and H. Shin

uses the worst-case response time of Mj , Rj . It classifies the instances into three cases
according to their invocation time. As a result of analysis, it follows that the number of
instances of Mj within a given time interval w, denoted by φj is given by:

φj =
⌈

w

Tj

⌉
+ f(j), where

f(j) =

⎧⎨
⎩1 if Rj ≥ Tj −

{
w − (

⌊
w

Tj

⌋
Tj + 1)

}
0 otherwise .

(11)

For details, refer to [3].
The above formulation can be directly applied to finding the lower bound for δi(k)

by substituting w for Ss2(k). Finally, we have:

C̄ ≥ Ss2(k) −
∑

j∈hep(SS2)

(⌈
Ss2(k)

Tj

⌉
+ f(j)

)
Cj . (12)

3.3 Live Memory Analysis

We have proposed a three-step approach to find the worst-case live memory for the
single server approach in [4]. According to the live memory analysis, the worst-case live
memory L∗

k equals the sum of the worst-case global live memory L∗
k,glob and the worst-

case local live memory L∗
k,local. Usually, the amount of global live objects is relatively

stable throughout the execution of application because global objects are significantly
longer-lived than local objects. On the other hand, the amount of local live objects
continues to vary until the time at which the garbage collector is triggered. For this
reason, we concentrate on the analysis of the worst-case local live memory.

The amount of live objects for each task depends not on the heap size but on the state
of each task. Although the amount of live memory is a function of Ai and varies during
the execution of a task instance, it is stabilized at the end of the instance. Therefore, we
find the worst-case live local memory by classifying the task instances into two classes:
active and inactive2. Accordingly, we set the amount of live memory for an active task
Mi to Ai in order to cover an arbitrary live memory distribution. By contrast, the amount
of live memory for an inactive task Mj converges γjAj where γj denotes the stable live
factor out of Aj . Consequently, the worst-case live local live memory is bounded by:

L∗
k,local = max(

∑
Mi∈active(tk

s)

Ai +
∑

Mj∈inactive(tk
s)

γjAj) (13)

where active(t) and inactive(t) denote the set of active tasks and the set of inactive
tasks at time t, respectively. We also assume the amount of global live memory to be a
constant L∗

k,glob because it is known to be relatively stable throughout the execution of
the application. Then, L∗

k equals the sum of L∗
k,local and L∗

k,glob.
We now modify the live memory analysis slightly to cover the dual server approach.

We first summarize the three-step approach as follows:
2 We regard a task as active if the task is running or preempted by higher priority tasks at time

instant t. Otherwise, the task is regarded as inactive.

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 11

– Step 1. Find the active windows: For each tasks, find the time intervals in which the
task instances are running or preempted by higher priority tasks, i.e., active. Those
time intervals are referred as active windows and represented by Ai,j = [Si,j , Fi,j]
where Si,j and Fi,j denote the earliest start time and the latest completion time
of Mi,j , respectively. First, we put a restriction on the periods of mutators; Mi is
harmonic with respect to M1 [6]. This constraint helps to prune the search space.
Second, the search space is limited to a hyperperiod H . We compute Si,j from
the worst-case completion time of a task instance Mκ,l where Mκ is the lowest
priority task among the tasks such that their priorities are higher than that of Mi and
∃l, (j − 1)Ti = lTk for 1 ≤ l ≤ H

Tk
. We also compute Fi,j under the assumption

that the total capacity of aperiodic server is used for GC, i.e., the garbage collector
behaves like a periodic task. Then, Fi,j equals the sum of (j − 1)Ti and the worst-
case response time of Mi, denoted by Rs

i , including the interference caused by
another periodic task with (Ci, Ti, Di, Ai) = (server capacity, T1, T1, 0).

– Step 2. Find the transitive preemption windows: Using the active windows
found in Step 1, this step finds the preemption windows. The preemption win-
dow PMi�...�Mk

is the set of time intervals in which tasks Mi, ..., Mk are all
active. They are equivalent to the intervals overlapped among active windows for
mutator tasks. Those tasks are active because one of them is running and the others
are preempted by higher priority tasks.

– Step 3. Compute the worst-case live memory: This step computes the worst-case
local live memory using Eq. (13).

As to the live memory, the worst-case scenario is that a GC request is issued when all the
tasks are active. Generally, the possibility of a certain task being active 3 is proportional
to CPU utilization of given task set. Hence, we try to find the worst-case local live
memory under the highest utilization attainable. For this purpose, we assume the CPU
bandwidth reserved for GC is fully utilized because the CPU utilization of periodic tasks
for given task set is fixed.

And therefore, we need a simple modification on the computation of active windows
in order that it may include the interference caused by the secondary server. In Step
1 of our live-memory analysis, Si,j and Fi,j determine the active window of Mi,j .
Because the computation of Si,j ignores the bandwidth reserved for GC, only the latest
completion time Fi,j should be recomputed. Suppose that Rs′

i denotes the worst-case
response (completion) time of Mi. Then, we can compute Rs′

i = w using the following
recurrence relation:

w = Ci +
∑

l∈hp(i)

⌈
w

Tl

⌉
Cl (14)

where hp(i) is the set of tasks, including the aperiodic servers, whose priorities are
higher than that of Mi. The only difference from the single server approach is that hp(i)
does not always include the secondary server although it does include the primary server.
This is because the secondary server may not have higher priority than that of Mi whilst

3 In most cases, it means that the task is preempted by a higher priority task.

12 T. Kim and H. Shin

the primary server has the highest priority. Steps 2 and 3 are applied to the dual server
approach without any modification. Example 1 clarifies the modified approach.

Example 1. Consider the task set whose parameters are as given in Table 2.

Table 2. Example task set: Ts1 = 10, Cs1 = 1, Ts2 = 30, Cs2 = 6

Ci Ti Di Ai γi Rs
i

M1 2 10 10 988 0.43 3
M2 4 30 30 1028 0.36 16
M3 10 60 60 1200 0.38 29
M4 15 120 120 1696 0.27 108

– Step 1. The active windows of periodic tasks in the example are

A1,j = [10(j − 1), 10(j − 1) + 3],
A2,j = [30(j − 1) + 2, 30(j − 1) + 16],
A3,j = [60(j − 1) + 6, 60(j − 1) + 29],

A4,j = [120(j − 1) + 18, 120(j − 1) + 108], where 1 ≤ j ≤ 120
Ti

.

– Step 2. Using the active windows found in Step 1, we can determine the preemption
windows for the following combinations: M1 � M2, M1 � M3, M1 �
M4, M2 � M4,M3 � M4, and M1 � M3 � M4.

– Step 3. As a result of Eq. (13), M1 � M3 � M4 is the combination that max-
imizes the amount of local live memory. In this case, L∗

k,local is reduced by up to
13% compared with the trivial bound.

3.4 Worst-Case Memory Requirement

As mentioned in Sect. 3.2, the worst-case memory requirement is derived from the sum of
the amount of memory reserved for hard real-time periodic mutators and the worst-case
live memory. Because the reserved memory depends on the worst-case GC time CGC

and vice versa, we need to compute the amount of reserved memory, Mresv , iteratively.
First, we set the amount of memory allocated by all the mutators during a hyperperiod
to the initial value of Mresv . This is because, even in the worst-case, a GC cycle must be
completed within a hyperperiod. Thereafter, the algorithm computes Mresv using CGC

and RGC recursively until M
(n+1)
resv = M

(n)
resv . We can easily compute CGC using L∗

k

obtained from the off-line live memory analysis [4]. The worst-case response time for
GC can also be computed using Theorem 1 and 2. In summary, Mresv is the smallest

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 13

solution to the following recurrence relation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(0) =
n∑

i=1

H

Ti
Ai

w(n+1) =
n∑

i=1

⌈
RGC(w(n))

Ti

⌉
Ai

(15)

where RGC(w(n)) denotes the worst-case GC response time derived from the amount
of memory reservation computed in the previous iteration. Finally, we can compute the
system memory requirement using Eq. (15) in Sect. 2.

4 Performance Evaluation

This section presents the performance evaluation of our scheme. We show the efficiency
of our approach by evaluating memory requirement through extensive analysis. Analytic
results are verified by simulation based on trace-driven data. Experiments are performed
on the trace-driven data acquired from five control applications written in Java and three
sets of periodic tasks created out of the sample applications. The CPU utilization for
those three task sets of TS1, TS2, and TS3 are 0.673, 0.738, and 0.792, respectively.
The parameters used in the computation of the worst-case garbage collection work are

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10

S
er

ve
r

U
til

iz
at

io
n(

C
s/

T
s)

Priority

SS
DS

(a) TS1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11 13 15

S
er

ve
r

U
til

iz
at

io
n(

C
s/

T
s)

Priority

SS
DS

(b) TS2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 5 10 15 20

S
er

ve
r

U
til

iz
at

io
n(

C
s/

T
s)

Priority

SS
DS

(c) TS3

Fig. 2. Capacity of the secondary server at each priority level.

14 T. Kim and H. Shin

40000

42000

44000

46000

48000

50000

52000

54000

1 2 3 4 5 6 7 8 9 10

Li
ve

 M
em

or
y

Priority

Dual Server(Analysis)
Dual Server(Simulation)
Single Server(Analysis)

Single Server(Simulation)

(a) TS1

48000

50000

52000

54000

56000

58000

60000

62000

64000

66000

1 3 5 7 9 11 13 15

Li
ve

 M
em

or
y

Priority

Dual Server(Analysis)
Dual Server(Simulation)
Single Server(Analysis)

Single Server(Simulation)

(b) TS2

60000

65000

70000

75000

80000

1 5 10 15 20

Li
ve

 M
em

or
y

Priority

Dual Server(Analysis)
Dual Server(Simulation)
Single Server(Analysis)

Single Server(Simulation)

(c) TS3

Fig. 3. Live memory of each task sets for the dual server approach.

derived from a static measurement of the prototype garbage collector running on 50
MHz MPC860 with SGRAM. For details on the experiment environment, refer to [1].
Because the major goal of our approach is to reduce the worst-case memory requirement,
our interest lies in the following three parameters. First, we compare the worst-case live
memory of the dual server with that of the single server. Second, we analyze the worst-
case memory reservation of both schemes. Third, we conduct a series of simulations to
compare the feasible memory requirement. Figs. 3, 4, and 5 show performance evaluation
results.

We first compute the capacity of the secondary server at each priority level using
traditional worst-case response time formulation. For this purpose, the capacity of the
primary server is set to Cs1 = 1 for simplicity. The only job of the primary server is to
flip two semispaces and to initialize the heap space. As shown in [3], efficient hardware
support enables the memory initialization to be done within hundreds of microseconds.
Hence, we make this assumption without loss of generality. Fig. 2 illustrates the capacity
of the secondary server for the SS and the DS. The x axis is the priority level and the
y axis is the maximum utilization that can be allocated to the secondary server. In all
the graphs shown in this section, the lower the priority level in the graph the higher the
actual priority is. And, the secondary server has higher priority than that of a periodic
task which has identical period with it. The DS algorithm can also be directly applied
to our approach. The graphs in Fig. 2 show that the capacity of the secondary server for
the DS is generally smaller than that of the SS. As pointed out in [7], for the DS, the

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 15

maximum server utilization occurs at low capacities; in other words, at high priorities
under the RM policy. This is because the larger the capacity the larger the double hit
effect, and therefore the lower the total utilization. However, as can be seen in Fig. 2,
there is little difference in maximum server utilization of both schemes.

Fig. 3 illustrates the worst-case local live memory derived from the simulation and
the analysis for the dual server approach. For comparison, the worst-case local live
memory acquired from the simulation and the analysis for the single server approach is
also presented. These results demonstrate that the analytic bound accords well with the
simulation bound. The dual server approach also may reduce the worst-case local live
memory by up to 8 % compared with the single server approach. It results from the fact
that the dual server approach causes smaller interference over mutator tasks compared
with the single server approach.

We also compare the memory reservation of the dual server approach with that of
the single server approach. Fig. 4 illustrates the worst-case memory reservation for each
task set. The graphs show that, at relatively high priority level, the dual server approach
can provide comparable performance to the single server approach. The results also
demonstrate that noticeable differences in memory reservation are observed from the
priority levels 5 in TS1, 7 in TS2, and 7 in TS3, respectively. For the DS, we can find that
at those priority levels the server utilization starts to decrease. Following Theorem 2 in
Sect. 3.2, this server utilization has a great impact on the worst-case GC response time,
and thus memory reservation. On the other hand, for the SS, the performance begins

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10

M
em

or
y

R
es

er
va

tio
n

Priority

Single Server
Dual Server(SS)
Dual Server(DS)

(a) TS1

0

50000

100000

150000

200000

250000

300000

350000

1 3 5 7 9 11 13 15

M
em

or
y

R
es

er
va

tio
n

Priority

Single Server
Dual Server(SS)
Dual Server(DS)

(b) TS2

0

100000

200000

300000

400000

500000

600000

700000

1 5 10 15 20

M
em

or
y

R
es

er
va

tio
n

Priority

Single Server
Dual Server(SS)
Dual Server(DS)

(c) TS3

Fig. 4. Memory reservation of given task sets.

16 T. Kim and H. Shin

to degrade at certain priority level though the server utilization has relatively uniform
distribution. This is because the period of a virtual task representing the SS dual server
is much longer than that of the DS server, which yields longer GC response time. For
details, see Theorem 1 in Sect. 3.2.

Fig. 5 compares the feasible memory requirements of both schemes. We mean fea-
sible memory requirement by the amount of heap memory to guarantee hard deadlines
without memory shortage under a specific memory consumption behavior. In our study,
the feasible memory requirement is found by iterative simulation runs. We regard a given
memory requirement as feasible if no garbage collection errors and deadline misses are
reported after 100 hyperperiods runs. In Fig. 5, the SS-based dual server approach pro-
vides feasible memory requirement comparable to the single server approach for all the
task sets. For TS3, the single server approach remarkably outperforms the dual server
approach. This is because the periodic utilization of TS3 is relatively high, and therefore
the CPU utilization allocated for the secondary server is smaller than the cases for TS1
and TS2. A noticeable performance gap between the SS-based single server and the
SS-based dual server is found in Fig. 5 (c). At the priority level 18, the performance
gap between two approaches is maximized because the CPU utilization allocated for
the secondary server is minimized at this priority level as shown in Fig. 2. It results in
longer GC response time, and thus large heap memory is needed.

The results also report that the DS provides comparable performance to the SS at
high priorities although, at low priorities, the SS generally outperforms the DS. For TS1,

60000

70000

80000

90000

100000

110000

120000

130000

140000

1 2 3 4 5 6 7 8 9 10

M
em

or
y

R
eq

ui
re

m
en

t

Priority

Dual Server(SS)
Single Server(SS)

Dual Server(DS)
Single Server(DS)

(a) TS1

0

50000

100000

150000

200000

250000

1 3 5 7 9 11 13 15

M
em

or
y

R
eq

ui
re

m
en

t

Priority

Dual Server(SS)
Single Server(SS)

Dual Server(DS)
Single Server(DS)

(b) TS2

0

50000

100000

150000

200000

250000

300000

350000

1 5 10 15 20

M
em

or
y

R
eq

ui
re

m
en

t

Priority

Dual Server(SS)
Single Server(SS)

Dual Server(DS)
Single Server(DS)

(c) TS3

Fig. 5. Feasible memory requirement of given task sets for the dual server.

Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers 17

the performance gap between two schemes is within 2.8 %. Although the capacities of
the SS is much larger than those of the DS at low priority levels, the double hit effect
offsets the difference. However, for TS3, a noticeable performance gap is observed at low
priority levels. This is because the periodic utilization of TS3 is quite high, and therefore
the double hit effect diminishes at low priorities. Although the DS may not provide
stable performance compared with the SS, it can provide comparable performance to,
even better than at some configuration, the SS. And, it has another advantage over the
SS; its implementation and run-time overheads are quite low. In summary, the DS is still
an attractive alternative to the SS in terms of scheduling-based garbage collection.

5 Conclusions

We have proposed a new scheduling-aware real-time garbage collection scheme. Our pre-
vious work [1] employed single aperiodic server to service garbage collection requests.
By integrating task scheduling with garbage collection algorithm, the scheme achieves
small memory footprint while guaranteeing hard deadlines. However, this scheme is
sometimes impractical because it may inevitably not reserve sufficiently large server
capacity. A new scheduling-aware garbage collection scheme based on dual aperiodic
servers is introduced to overcome the limitation of the single server approach while
achieving similar performance compared with the single server approach. The results
obtained in this paper are summarized as follows. In general, the dual server approach
shows comparable performance to the single server whilst it enables more flexible system
design. In addition, the DS can be an alternative solution to the scheduling-aware garbage
collection scheme. Simulation results show that it can provide similar performance to
the SS with smaller implementation and run-time overheads.

References

1. Kim, T., Chang, N., Shin, H.: Joint scheduling of garbage collector and hard real-time tasks
for embedded applications. Journal of Systems and Software 58 (2001) 245–258

2. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM 20 (1973) 46–61

3. Kim, T., Chang, N., Kim, N., Shin, H.: Scheduling garbage collector for embedded real-time
systems. In: Proceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers
and Tools for Embedded Systems. (1999) 55–64

4. Kim, T., Chang, N., Shin, H.: Bounding worst case garbage collection time for embedded
real-time systems. In: Proceedings of The 6th IEEE Real-Time Technology and Applications
Symposium. (2000) 46–55

5. Bernat, G.: Specification and Analysis of Weakly Hard Real-Time Systems. Ph.D. Thesis,
Universitat de les Illes Balears, Spain (1998)

6. Gerber, R., Hong, S., Saksena, M.: Guaranteeing end-to-end timing constraints by calibrating
intermediate processes. In: Proceedings of Real-Time Systems Symposium. (1994) 192–203

7. Bernat, G., Burns, A.: New results on fixed priority aperiodic servers. In: Proceedings of
Real-Time Systems Symposium. (1999) 68–78

On the Composition of Real-Time Schedulers�

Weirong Wang and Aloysius K. Mok

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188
{weirongw,mok}@cs.utexas.edu

Abstract. A complex real-time embedded system may consist of multi-
ple application components each of which has its own timeliness require-
ments and is scheduled by component-specific schedulers. At run-time,
the schedules of the components are integrated to produce a system-
level schedule of jobs to be executed. We formalize the notions of sched-
ule composition, task group composition and component composition.
Two algorithms for performing composition are proposed. The first one
is an extended Earliest Deadline First algorithm which can be used as
a composability test for schedules. The second algorithm, the Harmonic
Component Composition algorithm (HCC) provides an online admis-
sion test for components. HCC applies a rate monotonic classification
of workloads and is a hard real-time solution because responsive supply
of a shared resource is guaranteed for in-budget workloads. HCC is also
efficient in terms of composability and requires low computation cost for
both admission control and dispatch of resources.

1 Introduction

The integration of components in complex real-time and embedded systems has
become an important topic of study in recent years. Such a system may be made
up of independent application (functional) components each of which consists
of a set of tasks with its own specific timeliness requirements. The timeliness
requirements of the task group of a component is guaranteed by a scheduling
policy specific to the component, and thus the scheduler of a complex embedded
system may be composed of multiple schedulers. If these components share some
common resource such as the CPU, then the schedules of the individual compo-
nents are interleaved in some way. In extant work, a number of researchers have
proposed algorithms to integrate real-time schedulers such that the timeliness
requirements of all the application task groups can be simultaneously met. The
most relevant work in this area includes work in “open systems” and “hierarchi-
cal schedulers” which we can only briefly review here. Deng and Liu proposed
the open system environment, where application components may be admitted
� This work is supported in part by a grant from the US Office of Naval Research under

grant number N00014-99-1-0402 and N00014-98-1-0704, and by a research contract
from SRI International under a grant from the NEST program of DARPA

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 18–37, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Composition of Real-Time Schedulers 19

online and the scheduling of the component schedulers is performed by a ker-
nel scheduler [2]. Mok and Feng exploited the idea of temporal partitioning [6],
by which individual applications and schedulers work as if each one of them
owns a dedicated “real-time virtual resource”. Regehr and Stankovic investi-
gated hierarchical schedulers [8]. Fohler addressed the issue of how to dynami-
cally schedule event-triggered tasks together with an offline-produced schedule
for time-triggered computation [3]. In [10] by Wang and Mok, two popular sched-
ulers: the cyclic executive and fixed-priority schedulers form a hybrid scheduling
system to accommodate a combination of periodic and sporadic tasks.

All of the works cited above address the issue of schedule/scheduler composi-
tion based on different assumptions. But what exactly are the conditions under
which the composition of two components is correct? Intuitively, the minimum
guarantee is that the composition preserves the timeliness of the tasks in all
the task groups. But in the case an application scheduler may produce differ-
ent schedules depending on the exact time instants at which scheduling decisions
are made, must the composition of components also preserve the exact schedules
that would be produced by the individual application schedulers if they were to
run on dedicated CPUs? Such considerations may be important if an application
programmer relies on the exact sequencing of jobs that is produced by the ap-
plication scheduler and not only the semantics of the scheduler to guarantee the
correct functioning of the application component. For example, an application
programmer might manipulate the assignment of priorities such that a fixed pri-
ority scheduler produces a schedule that is the same as that produced by a cyclic
executive for an application task group; this simulation of a cyclic executive by a
fixed priority scheduler may create trouble if the fixed priority scheduler is later
on composed with other schedulers and produces a different schedule which does
not preserve the task ordering in the simulated cyclic executive. Hence, we need
to pay attention to semantic issues in scheduler composition.

In this paper, we propose to formalize the notions of composition on three
levels: schedule composition, task group composition and component compo-
sition. Based on the formalization, we consider the questions of whether two
schedules are composable, and how components may be efficiently composed.
Our formalization takes into account the execution order dependencies (explicit
or implicit) between tasks in the same component. For example, in cyclic exec-
utive schedulers, a deterministic order is imposed on the execution of tasks so
as to satisfy precedence, mutual exclusion and other relations. As is common
practice to handle such dependencies, sophisticated search-based algorithms are
used to produce the deterministic schedules offline, e.g., [9]. To integrate such
components into a complex system, we consider composition with the view that:
First, the correctness of composition should not depend on knowledge about how
the component schedules are produced, i.e., compositionality is fundamentally a
predicate on schedules and not schedulers. Second, the composition of schedules
should be order preserving with respect to its components, i.e., if job x is sched-
uled before job y in a component schedule, then job x is still scheduled before

20 W. Wang and A.K. Mok

y in the integrated system schedule. Our notion of schedule composition is an
interleaving of component schedules that allows preemptions between jobs from
different components.

The contributions of this paper include: formal definitions of schedule compo-
sition, task group composition and component composition, an optimal schedule
composition algorithm for static schedules and a harmonic component composi-
tion algorithm that has low computation cost and also provides a responsiveness
guarantee. The rest of the paper is organized as follows. Section 2 defines basic
concepts used in the rest of the paper. Section 3 addresses schedule composition.
Section 4 defines and compares task group composition and component com-
position. Section 5 defines, illustrates and analyzes the Harmonic Component
Composition approach. Section 6 compares HCC with related works. Section 7
concludes the paper by proposing future work.

2 Definitions

2.1 Task Models

Time is defined on the domain of non-negative real numbers, and the time
interval between time b and time e is denoted by (b, e). We shall also refer to a
time interval (i, i+1) where i is a non-negative integer as a time unit. A resource
is an object to be allocated to tasks. It can be a CPU, a bus, or a packet switch,
etc. In this paper, we shall consider the case of a single resource which can be
shared by the tasks and components, and preemption is allowed. We assume that
context switching takes zero time; this assumption can be removed in practice
by adding the appropriate overhead to the task execution time.

A job is defined by a tuple of three attributes (c, r, d) each of which is a
non-negative real number:

– c is the execution time of a job, which defines the amount of time that must
be allocated to the job;

– r is the ready time or arrival time of the job which is the earliest time at
which the job can be scheduled;

– d is the deadline of the job which is the latest time by which the job must
be completed.

A task is an infinite sequence of jobs. Each task is identified by a unique ID
i. A task is either periodic or sporadic.

The set of periodic tasks in a system is represented by Tp. A periodic task is
denoted by (i, (c, p, d)), where i identifies the task, and tuple (c, p, d) defines the
attributes of its jobs. The jth job of i is denoted by job (i, j).

Suppose X identifies an object and Y is one of the attributes of the object.
we shall use the notation X.Y to denote the attribute Y of X. For instance, if
(i, j) identifies a job, then (i, j).d denotes the deadline of job (i, j).

The attributes in the definition of a periodic task, c, p and d, are non-negative
real numbers:

On the Composition of Real-Time Schedulers 21

– c is the execution time of a task, which defines the amount of time that must
be allocated to each job of the task;

– p is the period of the task;
– d is the relative deadline of the task, which is the maximal length of time by

which a job must be completed after its arrival. We assume that for every
periodic task, c ≤ d ≤ p.

If a periodic task i is defined by (c, p, d), job (i, j) is defined by (c, j · p, j · p+ d).
A sporadic task is denoted by a tuple (i, (c, p, d)), where i identifies the task,

and (c, p, d) defines the attributes of its jobs, as follows: The jth job of sporadic
task i is identified as job (i, j), j ≥ 0. The arrival times of jobs of a sporadic task
are not known a priori and are determined at run time by an arrival function A
that maps each job of a sporadic task to its arrival time for the particular run:

A :: Ts × N → R, where N is the set of natural numbers and R is the set of
real numbers.

A(i, j) = t if the job (i, j) arrives at time t.
A(i, j) =⊥ if the job (i, j) never arrivals.

The attributes c and d of a sporadic task are defined the same as those of
a periodic task. However, attribute p of a sporadic task represents the minimal
interval between the arrival times of any two consecutive jobs. In terms of the
function A, A(i, (j + 1)) − A(i, j) ≥ p if A(i, (j + 1)) is defined.

For a sporadic task (i, (c, p, d)), job (i, j) is defined as (c, A(i, j), A(i, j) + d).
A task group TG consists of a set of tasks (either periodic or sporadic). We

shall use STG to denote a set of task groups. The term component denotes a
task group and its scheduler. Sometimes we call a task group an application
task group to emphasize its association with a component which is one of many
applications in the system.

2.2 Schedule

A resource supply function Sup defines the maximal time that can be supplied to
a component from time 0 to time t. Time supply function must be monotonically
non-decreasing. In other words, if t ≤ t′, then Sup(t) ≤ Sup(t′).

The function S maps each job to a set of time intervals:

S :: TG × N → {(R,R)} where TG is a task group, and N and R represent
the set of natural numbers and the set of real numbers respectively.

S(i, j) = {(bi,j,k, ei,j,k)|0 ≤ k < h} where k and h are natural numbers.

S is a schedule of TG under supply function Sup if and only if all of the
following conditions are satisfied:

– Constraint 1: For every job (i, j), every time interval assigned to it in the
schedule must be assigned in a time interval allowed by the supply function,
i.e., for all (b, e) ∈ S(i, j), Sup(e) − Sup(b) = e − b.

22 W. Wang and A.K. Mok

– Constraint 2: The resource is allocated to at most one job at a time, i.e.,
time intervals do not overlap: For every (bi,j,k, ei,j,k) ∈ S(i, j) and for every
(bi′,j′,k′ , ei′,j′,k′) ∈ S(i′, j′), one of the following cases must be true:

• ei,j,k ≤ bi′,j′,k′ ; or
• ei′,j′,k′ ≤ bi,j,k; or
• i = i′, j = j′ and k = k′.

– Constraint 3: A job must be scheduled between its ready time and deadline:
for every (b, e) ∈ S(i, j),

(i, j).r ≤ b < e ≤ (i, j).d

– Constraint 4: For every job (i, j), the total length of all time intervals in
S(i, j) is sufficient for executing the job, i.e.,∑

(b,e)∈S(i,j)

(e − b) ≥ (i, j).c

Given a time t, if there exists a time interval (b, e) in S(i, j) such that b ≤
t < e, then job (i, j) is scheduled at time t, and task i is scheduled at time t.

An algorithm Sch is a scheduler if and only if it produces a schedule S for
T under A and Sup.

A component C of a system is defined by a tuple (TG, Sch) which specifies the
task group to be scheduled and the task group’s scheduler. A set of components
will be written as SC.

3 Schedule Composition

Suppose Sh is a schedule of a component task group TGh. We say that the
schedule S integrating the component schedules in

⋃
TGh is a composed schedule

of all component schedules {Sh|0 ≤ h ≤ n − 1} if and only if there exists a
function M which maps each scheduled time interval in Sh to a time window
subject to the following conditions:

– For each time interval (b, e) ∈ Sh(i, j), M(h, (b, e)) = (bh, eh), and (bh, eh) is
within the ready time and deadline of job (i, j);

– The time scheduled to job (i, j) by S between (bh, eh) is equal to e − b:∑
(x,y)∈S(i,j) and bh≤x≤y≤eh

(y − x) = e − b

– M(h, (b, e)) is before M(h, (b′, e′)) if and only if (b, e) ∈ Sh(i, j) is before
(b′, e′) ∈ Sh(i′, j′).

The notion of schedule composition is illustrated in Figure 1 where the compo-
nent schedule S0 is interleaved with other component schedules into a composed

On the Composition of Real-Time Schedulers 23

Mapping
Function M:

Idle

Schedule S0:

Occupied by Other Schedules

Systen Schedule S:

‘‘Occupied by S0

Fig. 1. Definition of Schedule Composition

schedule S. Notice that the time intervals occupied by S0 can be mapped into
S without changing the order of these time intervals.

To test whether a set of schedules can be integrated into a composed sched-
ule, we now propose an extended Earliest Deadline First algorithm for schedule
composition. From the definition of a schedule, the execution of a job (i, j) can be
scheduled into a set of time intervals by a schedule S. We use the term S(i, j) to
denote the set of time intervals job (i, j) occupies. In the following, we shall refer
to a time interval in S(i, j) as a job fragment of the job (i, j). The schedule com-
position algorithm works as follows. A job fragment is created corresponding to
the first time interval of the first job in each component schedule Sh that has not
been integrated into S, and the job fragments from all schedules are scheduled
together by EDF. After the job fragment, say for schedule Sh has completed,
the job fragment is deleted and another job fragment is created corresponding
to the next time interval in schedule Sh.

The schedule composition algorithm is defined below.

– Initially, all job fragments from all component schedules are unmarked.
– At any time t, Ready is a set that contains all the job fragments from all

the component schedules that are ready to be composed. Initially, Ready is
empty.

– At any time t, if there is no job fragment from component schedule Sh in
Ready, construct one denoted as (h, c, r, d) by the following steps:

• Let (b, e) be an unmarked time interval such that (b, e) ∈ Sh(i, j) and
for all unmarked time interval (b′, e′) ∈ Sh(i′, j′), b ≤ b′;

• Define the execution time of the job fragment as the length of the sched-
uled time interval: c := e − b;

• Define ready time of the job fragment as the ready time of the job sched-
uled at (b, e): r := (i, j).r;

• Define deadline of the job fragment as the earliest deadline among all
jobs scheduled after time b by Sh:

d := min({(i′, j′).d|(b′, e′) ∈ Sh(i′, j′) and b ≤ b′})

• Mark interval (b, e).

24 W. Wang and A.K. Mok

– Allocate the resource to the job fragment in Ready that is ready and has
the earliest deadline.

– If the accumulated time allocated to job fragment is equal to the execution
time of the job fragment, delete the job fragment from Ready.

– If t is equal to the deadline of a job fragment before the completion of the
corresponding job in Ready, the schedule composition fails.

In the above, the time intervals within a component schedule Sh are trans-
formed into job fragments and put into Ready one by one in their original order
in Sh. At any time t, just one job fragment from Sh is in Ready. Therefore, the
order of time intervals in a component schedule is preserved in the composed
schedule.

The extended EDF is optimal in terms of composability. In other words, if
a composed schedule exists for a given set of component schedules, then the
extended EDF produces one.

Theorem 1. The extended EDF is an optimal schedule composition algorithm.

Proof: If the extended EDF for composition fails at time f , then let s be
the latest time that following conditions are all true: for any Sh, there exists
(b, e) ∈ Sh(i, j), (i, j).r ≥ s, all time intervals before b in Sh are composed
into S no later than time s, and for all (b′, e′) composed between s and f , the
corresponding job fragment has deadline no later than f . Then for any time t
between (s, f), there is a (b′, e′) ∈ S(i′, j′) and b′ ≤ t ≤ e′. The aggregate length
of time intervals from component schedules that must be integrated between
(s, f) is larger than f − s, therefore no schedule composition exists.

Because of its optimality, the extended EDF is a composability test for any
set of schedules. Although extend EDF is optimal, this approach, however, has
a limitation: the input component schedules must be static. In other words, to
generate system schedule at time t, the component schedules after time t need to
be known. Otherwise, the deadline of the pseudo job in Ready cannot be decided
optimally. Therefore, the extended EDF schedule composition approach cannot
be applied optimally to dynamically produced schedules.

4 Task Group Composability and Component
Composability

We say that a set of task groups STG={TG0, .., TGn−1} is weakly composable if
and only if the following holds: Given any set of arrival functions {A0, .., An−1}
for the task groups in STG, for any 0 ≤ k ≤ n − 1, there exists a schedule
Sk for TGk under Ak, and SS = {S0, .., Sn−1} is composable. Obviously, weak
composability is equivalent to the schedulability of task group

⋃
STG TGk. We

say that a set of task groups STG is strongly composable if and only if the
following holds: Given any schedule Sk of TGk under any Ak, SS = {S0, .., Sn−1}
is composable. The following is a simple example of strong composability.

On the Composition of Real-Time Schedulers 25

Suppose there are two task groups. TG0 consists of a periodic task T0 =
(1, 5, 5), and TG1 consists of a sporadic task T1 = (1, 5, 5). Then an arbitrary
schedule S0 for TG0 and an arbitrary schedule S1 of TG1 can always be composed
into a schedule S by the extended EDF no matter what the arrival function is.
Therefore, this set of task groups are strongly composable.

Not all weakly composable sets of task groups are strongly composable. Sup-
pose we change the above example of strongly composable set of task groups by
adding another periodic task T2 = (4, 10, 10) to task group TG0. Two schedules
can be produced for TG0 by a fixed priority schedulers: S0 and S′

0. In S0, suppose
we give a higher priority to T0, and therefore for all j, S0(0, j) = (5 · j, 5 · j + 1),
and S0(2, j) = (10 · j + 1, 10 · j + 5). For S′

0, suppose we give higher prior-
ity to T2, and therefore for any number j, S′

0(0, 2j) = (10 · j + 4, 10 · j + 5),
S′

0(0, 2j + 1) = (10 · j + 5, 10 · j + 6); S′
0(2, j) = (10 · j, 10 · j + 4).

S0 is composable with any schedule S1 of TG1, but S′
0 is not. In S′

0, for any
j, the deadline of job (0, 2 · j) is at 10 · j + 5, and yet it is scheduled after job
(2, j) whose deadline is at 10 ·j +10. Because of the order-preserving property of
schedule composition, it follows that every time interval (10 · j, 10 · j + 5) must
be assigned to S′

0. Thus, if a job of T1 arrives at time 10 ·j, schedule composition
becomes impossible.

We say that a set of supply functions SSup={Sup0, .., Supn−1} is consistent
if and only if the aggregate time supply of all functions between any time interval
(b, e) is less than or equal to the length:∑

(Supk(e) − Supk(b)) ≤ e − b

Suppose SC = {(Sch0, TG0), .., (Schn−1, TGn−1)} is a set of components.
SC is composable if and only if given any set of arrival functions SA =
{A0, .., An−1}, there exists a set of consistent supply functions SSup =
{Sup0, .., Supn−1} such that Schk produces schedule Sk of TGk under arrival
function Ak and supply function Supk, and SS = {S0, .., Sn−1} is composable.

Component composability lies between weak composability and strong com-
posability of task groups in the following sense. A component has its own sched-
uler which may produce for a given arrival function, a schedule among a number
of valid schedules under the arrival function. Therefore, given a set of compo-
nents, if the corresponding set of task groups of these components are strongly
composable, then the components are composable; if the task groups are not
even weakly composable, the components are not composable. However, when
the task groups are weakly but not strongly composable, component compos-
ability depends on the specifics of component schedulers.

To illustrate these concepts, we compare weak task group composability,
strong task group composability and component composability in the following
example which is depicted in Figure 2. Suppose there are two components C0 =
(TG0, Sch0) and C1 = (TG1, Sch1). For any valid arrival function A for each of
the task groups, there exists in general a set of schedules that may correspond to
the execution of the task group under the arrival function set. In Figure 2, the

26 W. Wang and A.K. Mok

circle marked as SS0,0 represents the set for all possible schedules of TG0 under
A0; and SS0,1, SS1,0, SS1,1 are defined similarly. If TG0 and TG1 are strongly
composable, then randomly pick a schedule S0 from SS0,x and a schedule S1

from SS1,y where x and y are variable and S0 and S1 are composable. If TG0

and TG1 are weakly composable, then for any x and y, there exists a schedule
S0 from SS0,x and there exists a schedule S1 from SS1,y such that S0 and S1 are
composable. The small circle marked as SS0,0,s is the set of all schedules that can
be produced by the scheduler Sch0 under A0. Each point in SS0,0,s corresponds
to one schedule, and one or multiple supply functions upon which Sch0 produces
SS0,0,s. Circle SS0,1,s, SS1,0,s, SS1,1,s are defined similarly. If components C0

and C1 are composable, then for any pair of x and y, there exists a schedule S0

in SS0,x,s, and a schedule S1 in SS1,y,s, S0 and S1 are composable, and there
exists a supply function Sup0 corresponding to S0 and a supply function Sup1

corresponding to S1, and Sup0 and Sup1 are consistent.

SS0, 1
SS0,1,s

SS0, 0,s

SS0, 0

SS1, 0

SS1, 0, s

SS1, 1

SS1, 1, s

Fig. 2. Composability

In many scheduler composition paradigms, the resource supply functions can
be determined only online for components that have unpredictable arrivals of
jobs. Therefore it is often hard to define resource supply function a priori. How-
ever, we can introduce the notion of contracts to express the requirements im-
posed on the supply function by a component, as the interface between a com-
ponent and the composition coordinator. In the next section, we shall discuss
Harmonic Component Composition which makes use of explicit supply function
contracts.

5 Harmonic Component Composition

We consider the tradeoff between composability and the simplicity in the design
of the system-level scheduler to be a significant challenge in component com-
position. As an extreme case in pursuing simplicity, a coordinator may allocate
resources among components based on a few coarse-grain parameters of each

On the Composition of Real-Time Schedulers 27

component, such as the worst case response time and bandwidth requirement.
This type of solutions often does not achieve composability, i.e., admission of
new components may be disallowed even when the aggregate resource utiliza-
tion is low because of previous overly conservative capacity commitments. At
the opposite extreme, the coordinator may depend on details about the com-
ponents to perform complex analysis and may take on too many obligations
from individual components, such that the system performance may eventually
be degraded. We now propose a solution to meet the challenge by introducing
class-based workloads. We call this approach Harmonic Component Composition
(HCC).

5.1 Coordinator Algorithm

The system designer will select a constant K as the number of resource classes. A
class k (k ∈ [0, K)) is defined by a class period Pk = mk, where m is a designer-
selected constant. We require a rate monotonic relation between the periods of
classes: For any 0 ≤ l ≤ k ≤ K − 1, Pk

Pl
= ml−k. Lower class has larger class

number and longer class period.
When a component C is ready to run, it generates a supply contract and sends

it to the coordinator. The supply contract is a list of workload defined as (k, l, w),
where k ≤ l. The workload permits that up to w time units of resource supply
can be on demand within any time interval of length ml; and once a demand
occurs, it must be met within mk time units. Upon receiving a supply contract,
the coordinator will admit a component if and only if it can satisfy the contract
without compromising the contracts with previously admitted components.

When a demand is proposed to class k, it will be served within mk time. To
keep this guarantee, HCC maintains a straightforward invariant to make sure
that supply needed online for class k or higher in any time interval with length
mk is less than or equal to mk. To accomplish this, the aggregate workload
admitted to class k or higher is constrained as if there is a conceptual resource
associated with class k which is consumed by admitting any workload with class
k or higher. Suppose that Rk represents the conceptual resource of class k. Rk

is initiated as Pk. A workload (k, l, w) requires no conceptual resource from the
classes higher than k, but requires that from every class lower than or equal to
k. The value of the conceptual resource requirement of a workload (k, l, w) on
class i is derived from the worst case occupation in a time interval of length Pi

by the workload.
If a component Ch is admitted, the coordinator establishes a server identified

with (h, k, l) for each workload (k, l, w) in the contract. The component to which
the server belongs is identified by h, the class of the server is k, and (k, l) defines
a subclass. All servers of class i are in a list Li. The server is defined with a
budget limit w and replenishment period of ml. A server have four registers,
load, carry, budget and replenish.

28 W. Wang and A.K. Mok

Initialization:

(1) foreach 0 ≤ k ≤ K − 1
(2) Rk := Pk

(3) Lk is set as an empty list

Contract Admission:

(1) Upon component Ch proposes a contract Vh, which is a
list of (k, l, w)

(2) foreach 0 ≤ i ≤ K − 1
(3) R′

i := Ri

(4) foreach (k, l, w) ∈ Vh

(5) foreach k ≤ i ≤ l
(6) R′

i := R′
i − w

(7) foreach l + 1 ≤ i ≤ K − 1
(8) R′

i := R′
i − w · (mi−l)

(9) if ∃R′
i < 0

(10) reject component Ch and terminate this run of
contract admission;

(11) foreach i ∈ [0, K − 1]
(12) Ri := R′

i

(13) foreach (k, l, w) ∈ Vh

(14) construct server (h, k, l) and add to the end of Lk,
with the following initial values:

(15) budget = w, loaded = carry = 0, replenish as
empty queue.

Referring to the algorithm specification above, a component Ch may load a
server (h, k, l) by adding a value to its register load when the component Ch

demands usage on the resource. If the value of the load register is positive, the
server is loaded. If a loaded server has budget(budget > 0), then the budget
is consumed on the load and all or part of the loaded value becomes carried
(carry > 0). At the start of a time unit (t, t + 1) (which means t is a non-
negative integer), if class k is the highest class with a carried server, then the
first carried server in Lk supplies resource in the time unit (t, t + 1).

The existing budget of a server is held in budget. When load and budget are
both positive and v = min(load, budget), both of them are reduced by v and
carry is increased by v. Consumed budget will be replenished after ml units of
time. The queue replenish records the scheduled replenishments in the future.

On the Composition of Real-Time Schedulers 29

Online Execution:

(1) Upon the start of time unit (t, t + 1):
(2) foreach server (h, k, l)
(3) Replenish budget:
(4) if the head of queue in replenish is (t, val)
(5) budget := budget + val
(6) dequeue (t, val) from repenish
(7) Carry work load:
(8) if load > 0 and budget > 0
(9) v := min(load, budget)
(10) carry := carry + v
(11) budget := budget − v
(12) load := load − v
(13) enqueue (v, t + ml) to replenish
(14) Supply Resource:
(15) Select server (h, k, l), such that k is the highest class

with at least one carried server, and (h, k, l) is the first
carried server in Lk.

(16) carry := carry − 1
(17) Supply resource to component Ch in time unit (t, t+

1)

When a component terminates, the coordinator reclaims the conceptual re-
sources from the component.

Component termination:

(1) Upon the termination of component Ch

(2) foreach (k, l, w) ∈ Vh

(3) delete server (h, k, l) from Lk

(4) foreach k ≤ i ≤ l
(5) Ri := Ri + w
(6) foreach l + 1 ≤ i ≤ K − 1
(7) Ri := Ri + w · (mi−l)

5.2 Component Algorithm

In the HCC approach, a component generates a supply contract, and if admitted,
it may demand supply from its servers. Different algorithms may be applied for
different components in a composition. We describe one solution here as an
example.

30 W. Wang and A.K. Mok

Assume that there is a component Ch, and its component scheduler is EDF.
A task (c, p, d) is categorized to subclass (�logmd	, �logmp), and its execution
time is added to the weight w of the workload with that subclass.

Supply Contract Generation:

(1) foreach (k, l) such that 0 ≤ k ≤ l ≤ K − 1
(2) wk,l := 0
(3) foreach i ∈ Th

(4) k := �logm i.d	
(5) l := �logm i.p	
(6) wk,l := wk,l + i.c
(7) foreach wk,l
= 0
(8) add workload (k, l, wk,l) into contract Vh

At run time, upon the arrival of a job (i, j), a demand for resource supply is
added to the server corresponding to task i at the start of the next time unit.

Online execution:

(1) Initialization:
(2) foreach (k, l)
(3) wk,l := 0;
(4) Upon the arrival of job (i, j),
(5) k := �logm i.d	
(6) l := �logm i.p	
(7) wk,l := wk,l + i.c
(8) Upon the start of time unit (t, t + 1)
(9) foreach server (k, l) such that wk,l > 0
(10) load := load + wk,l;
(11) wk,l := 0;

5.3 Example

Having described how HCC works, we illustrate the HCC approach by an exam-
ple below.

In this example, we design a system with four components with the following
specifications.

– Component C0 consists of one task for emergency action and 2 periodic
routine tasks. The emergency action takes little execution time and rarely
happens, but when a malfunction occurs, the action must be performed
immediately. We abstract this action by a sporadic task T0 = (1,∞, 1),
which means that the execution time and relative deadline are both 1, and

On the Composition of Real-Time Schedulers 31

the minimum interval between consecutive arrivals are infinite. The periodic
routine tasks are given by T1 = (1, 80, 8), T2 = (1, 100, 10).

– Component C1 is a group of periodic routine tasks defined as follows: T3 =
(1, 3, 3), T4 = (1, 10, 10).

– Component C2 is a bandwidth-intensive application, which needs 25 percent
of the resource. It can be modeled as T5 = (16, 64, 64).

– Component C3 has one periodic task T6 = (3, 30, 30).

The value of m and K are arbitrarily selected as 2 and 6 by the system
designer, based on estimations of the potential workloads. Let us apply the
contract generation as defined in this paper. Four contracts will be produced as
follows. Recall that workload is defined as (k, l, w).

– V0 = {(0, 6, 1), (3, 6, 2)}, where T0 is mapped to workload (0, 6, 1), T1 and T2

are mapped to (3, 6, 2).
– V1 = {(1, 1, 1), (3, 3, 1)}, where T3 is mapped to (1, 1, 1), and T4 is mapped

to (3, 3, 1).
– V2 = {(6, 6, 16)}.
– V3 = {(4, 4, 3)}.

Suppose that all components become ready at time 0, and the admission
decisions are made according to their index order. For all 0 ≤ k ≤ 6, Rk remains
non-negative when C0, C1, C2 are admitted. However, during the admission of
C3, R′

6 < 0, therefore C3 is not admitted. Table 1 shows the change of Rk

during admission procedure, and Table 2 shows the established servers on all
classes after that.

Assume that the first job of T0 arrives at time 4 and the online executions
of all components are defined as in this paper. We now show a step by step
execution from time 0 to time 4.

At time 0, the budget registers of all servers have been initialized according to
their weights, and the components add their current demands to the correspond-
ing load registers, as shown in Table 3. Coordinator moves the in-budget loads
into register carry, and the consumed budget are recorded for replenishments in

Table 1. Component Admission

Component 0 Component 1 Component 2 Component 3
initial (0, 6, 1) (3, 6, 2) (1, 1, 1) (3, 3, 1) (6, 6, 16) (4, 4, 3)

R0 1 0 0 0 0 0 R′
0 0

R1 2 1 1 0 0 0 R′
1 0

R2 4 3 3 1 1 1 R′
2 1

R3 8 7 5 1 0 0 R′
3 0

R4 16 15 13 5 3 3 R′
4 0

R5 32 31 29 13 9 9 R′
5 3

R6 64 63 61 29 21 5 R′
6 -7

32 W. Wang and A.K. Mok

Table 2. Servers on All Classes

L0 {(0, 0, 6)}
L1 {(1, 1, 1)}
L2

L3 {(0, 3, 6), (1, 3, 3)}
L4

L5

L6 {(2, 6, 6)}

Table 3. Register Image Right After Component Loading At Time 0

budget load carry replenish
(0, 0, 6) 1 0 0
(1, 1, 1) 1 1 0
(0, 3, 6) 2 2 0
(1, 3, 3) 1 1 0
(2, 6, 6) 16 16 0

the future. The carried value of server (1, 1, 1) becomes 1. Server (0, 0, 6) is not
carried, therefore server (1, 1, 1) is selected to supply time between time (0, 1).
Its carry is then decremented back to 0. Table 4 shows the register image after
the execution of the coordinator.

Between time (0, 1), no load is added from any component. At time 1, server
(0, 3, 6) is selected to supply between (1, 2) so its carry is decremented, as shown
in Table 5.

At time 2, server (1, 1, 1) replenishes its budget, and server (0, 3, 6) is selected
as supplier and so its value of carry is decremented, as shown in Table 6.

At time 3, the second job of T3 is ready, so C1 loads server (1, 1, 1) by 1,
as shown in Table 7. On the coordinator side, budget is available for server
(1, 1, 1), therefore budget is consumed for the load and carry is incremented by
1. Budget is consumed, and therefore future replenishment is added to replenish.
Then server (1, 1, 1) is selected as supplier, and its carry is decremented by 1.
Table 8 shows the register image after the coordinator execution.

At time 4, a job of task T0 arrives. Therefore server (0, 0, 6) is loaded by 1,
as shown in Table 9. During the coordinator execution, budget is available for
(0, 0, 6) and consumed, future replenishment is stored, and the value of carry
is incremented by 1. Then server (0, 0, 6) is selected to supply, and its carry is
decremented back to 0. Table 10 shows the register image after these executions.

It is noteworthy that a simple fixed-priority composition scheme cannot even
compose C0 and C1 together for the following reason. Because of the short dead-
line of task T0, C0 must have the highest priority. Then there is a possibility
that 3 continuous time units may be supplied to C0, in which case task T3 in
C1 may miss its deadline. The low composability is a result of not distinguish-

On the Composition of Real-Time Schedulers 33

Table 4. Register Image Right After Coordinator Execution At Time 0

budget load carry replenish
(0, 0, 6) 1 0 0
(1, 1, 1) 0 0 0 {(1, 2)}
(0, 3, 6) 0 0 2 {(2, 64)}
(1, 3, 3) 0 0 1 {(1, 8)}
(2, 6, 6) 0 0 16 {(16, 64)}

Table 5. Register Image Right After Coordinator Execution At Time 1

budget load carry replenish
(0, 0, 6) 1 0 0
(1, 1, 1) 0 0 0 {(1, 2)}
(0, 3, 6) 0 0 1 {(2, 64)}
(1, 3, 3) 0 0 1 {(1, 8)}
(2, 6, 6) 0 0 16 {(16, 64)}

Table 6. Register Image Right After Coordinator Execution At Time 2

budget load carry replenish
(0, 0, 6) 1 0 0
(1, 1, 1) 1 0 0
(0, 3, 6) 0 0 0 {(2, 64)}
(1, 3, 3) 0 0 1 {(1, 8)}
(2, 6, 6) 0 0 16 {(16, 64)}

Table 7. Register Image Right After Component Loading At Time 3

budget load carry replenish
(0, 0, 6) 1 0 0
(1, 1, 1) 1 1 0
(0, 3, 6) 0 0 0 {(2, 64)}
(1, 3, 3) 0 0 1 {(1, 8)}
(2, 6, 6) 0 0 16 {(16, 64)}

ing the different types of workloads in C0. In contrast, by Harmonic scheduler
composition, C0, C1 and C2 can be admitted one by one and served in the same
time.

5.4 Analysis

If a component Ch is admitted by the coordinator, then the coordinator will
supply resources to Ch according to the supply contract Vh. Assuming that

34 W. Wang and A.K. Mok

Table 8. Register Image Right After Coordinator Execution At Time 3

budget load carry replenish
(0, 0, 6) 1 0 0
(1, 1, 1) 0 0 0 {(1, 5)}
(0, 3, 6) 0 0 0 {(2, 64)}
(1, 3, 3) 0 0 1 {(1, 8)}
(2, 6, 6) 0 0 16 {(16, 64)}

Table 9. Register Image Right After Component Loading At Time 4

budget load carry replenish
(0, 0, 6) 1 1 0
(1, 1, 1) 0 0 0 {(1, 5)}
(0, 3, 6) 0 0 0 {(2, 64)}
(1, 3, 3) 0 0 1 {(1, 8)}
(2, 6, 6) 0 0 16 {(16, 64)}

Table 10. Register Image Right After Coordinator Execution At Time 4

budget load carry replenish
(0, 0, 6) 0 0 0 {(1, 68)}
(1, 1, 1) 0 0 0 {(1, 5)}
(0, 3, 6) 0 0 0 {(2, 64)}
(1, 3, 3) 0 0 1 {(1, 8)}
(2, 6, 6) 0 0 16 {(16, 64)}

there is a workload (k, l, w) in Vh, then a server (h, k, l) is established. Within
any time interval of length ml, up to w time units of supply may be loaded to
the server, and every demand will obtain supply within mk units of time since
the demand is loaded. We call this the responsiveness guarantee. However, if
the accumulated load exceeds w time units within a time interval of length ml,
the server is overloaded and the responsiveness guarantee will not be provided
anymore. The rationale here is that if the component breaks the supply contract
by overloading, the coordinator cannot guarantee prompt supply. On the other
hand, A non-overloaded server always provides the responsiveness guarantee,
even when other servers (including other servers of the same component) are
overloaded. We shall prove the responsiveness guarantee.

First, we prove that in a non-overloaded server, load never waits for budget.

Lemma 1. For a non-overloaded server (h, k, l), load ≤ budget at any non-
negative integer time t after budget replenishment.

On the Composition of Real-Time Schedulers 35

Proof: Base Case: At time 0, Register budget is initialized to w, and a non-
overloading component loads less than or equal to w at time 0. The lemma is
true.

Induction case: Assume that for any non-negative integer t ≤ n, the lemma
is true. We now prove that the lemma is still true at time n+1 by contradiction.

Assume the contrary: The value of load and the value of budget at time n+1
after replenishment is x and y, and x > y.

Let n′ = max(0, (n+1−ml)). Assume that the budget consumed after time
n′ but before or at time n is z, then y + z = w;

Because the lemma is true at time n′, all loads arrived before or equal to
time n′ are carried before or at time n′, so budget consumed between (n′, n) is
for load arrived after n′ and before or at time n. Because the lemma is true for
time n, load is decreased to 0 after the execution of the coordinator at time n.
Therefore, the aggregate load after time n′ and before or at time n is equal to
the budget consumption during the the same interval of time, which is z.

Also, the aggregate arrival of load after time n but before or at time n + 1
is x. The aggregate arrival of load after time n′ and before or at time n + 1 is
x + z. Thus x + z > y + z = w, and the server is overloaded, a contradiction.

A non-negative integer time t is class k un-carried if all servers of class k or
higher have zero value for carry before the coordinator execution at time t. At
a class k un-carried time t, all previously loaded in-budget work for servers of
class k or higher is completely supplied.

Lemma 2. If t is a class k un-carried time, then there exists another class k
un-carried time t′ such that t′ ≤ t + mk.

Proof: According to the admission control algorithm, the aggregation of exist-
ing budget from all servers of class k or higher at time t before the coordinator
execution and replenishment at or after time t and before t+mk will not exceed
Pk = mk. Therefore, the maximal aggregate value that can be added to carry
of all servers of class k or higher will not exceed mk. At any integer time t, if
there exists a server of class k or higher with carry > 0, a supply is drawn from
a server with class k or higher made and a carry is decreasing. If t′ does not
exist after time t and before time t + mk, then carry is decreased by mk at or
after time t and before t + mk, and time t + mk must be an class k un-carried
time. Therefore the lemma holds.

Theorem 2. If server (h, k, l) is not overloaded at any time, it provides the
responsiveness guarantee.

Proof: Time 0 is a class k un-carried time. According to Lemma 2, at any
time t, there exists another un-carried time t′ for class k before or at time t+mk.
According to Lemma 1, if component Ch adds load at time t, the complete load is
moved to carry at time t. Because carry = 0 at time t′, the supply corresponding
to the demand loaded at time t is made before time t′. Therefore responsiveness
guarantee is maintained.

36 W. Wang and A.K. Mok

The computational complexity of admission for a component Ch is bounded
by O(K ·|Vh|), where K is the maximal number of classes, and |Vh| is the number
of workloads in the contract which is bounded by K2. The online coordinator
overhead for each time unit is bounded by O(n · s), where n is the number of
components and s is the maximal number of servers for a component which is
bounded by K2. Because the period of classes increases exponentially, K should
be a small number.

6 Comparison with Related Work

There has been a significant amount of work on compositions in the last few years
as has been pointed out in Section 1 of this paper. Instead of using EDF online for
scheduling resource supply among components such as is in [2] and [5], our HCC
approach distinguishes itself from these previous works by using a rate monotonic
classification of workloads; the coordinator applies a fixed priority policy among
workload classes. The urgency of workloads from components is expressed by
their classes instead of explicit deadlines. The rate monotonic design of HCC
makes admission control and budget management simple, yet maintains good
composability. Many hard and/or soft real-time scheduling approaches depend
on a server budget to control the resource supply to a component to maintain
a fair share. Total Bandwidth Server [7] is one example of this approach. Like
servers, HCC also makes use of the budget idea. Because HCC is not deadline-
based and temporal workload control depends totally on budget control, HCC
does not require as much communication (e.g., deadlines of newly arrived jobs)
between the system-level scheduler and the component schedulers and is hence
a less costly and easier to implement budget-enforcement strategy.

POSIX.4 [4] defines two fixed priority schedulers, which are SCHD FIFO
and SCHD RR. For both of them, there may exist multiple fixed priorities, and
multiple tasks may be assigned to each priority. The tasks with the same priority
are scheduled with First-In-First-Out by SCHD FIFO, and with Round Robin
by SCHD RR. However, POSIX.4 defines neither priority assignment algorithm
nor schedulability guarantee mechanism. Cayssials et al. propose an approach
to minimize the number of priorities in a rate-monotonic fixed priority scheme,
assuming that multiple tasks may be scheduled on the same priority [1]. HCC
not only classifies tasks into priorities but also regulates tasks by servers.

7 Future Work

Whereas the Harmonic Component Composition is a dynamic approach in which
the coordinator does not depend on internal knowledge of components, we are
also investigating another approach to composition that improves composability
and online resource supply efficiency by exploiting a priori knowledge of the com-
ponents. Unlike the approach described in this paper, this alternative approach
requires extensive offline computation. We believe that these two composition

On the Composition of Real-Time Schedulers 37

approaches span the two far ends of a wide spectrum of practical solutions for
composing real-time schedulers. There is still much to be explored in the spec-
trum of solutions by a combination of the approaches. This is a subject for
further investigation.

References

1. R.Cayssials, J. Orozco, J.Santos and R.Santos. Rate Monotonic Schedule of Real-
Time Control Systems with the Minimum Number of Priority Levels, Euromicro
Conference on Real Time Systems, pp. 54-59, 1999.

2. Z. Deng and J. Liu. Scheduling Real-Time Applications in an Open Environment.
Real-Time Systems Symposium, pp. 308-319, December 1997.

3. G. Fohler. Joint Scheduling of Distributed Complex Periodic and Hard Aperiodic
Tasks in Statically Scheduled Systems, Real-Time Systems Symposium, pp. 152-
161, December 1995.

4. IEEE. Portable Operating System Interface(POSIX)—Part 1: Application Pro-
gram Interface(API) [C Language] —Amendment: Realtime Extensions. IEEE 1-
55937-375-X.

5. G. Lipari, J. Carpenter, S. Baruah. A Framework for Archieving Inter-Application
Isolation in Multiprogrammed, Hard Real-Time Environment, Real-Time Systems
Symposium, pp. 217-226, 2000.

6. A. K. Mok, X. Feng. Towards Compositionality in Real-Time Resource Partitioning
Based on Regularity Bounds. Real-Time Systems Symposium, pp. 129-138, 2001.

7. M. Spuri, G. Buttazzo. Scheduling Aperiodic Tasks in Dynamic Priority Systems,
Real-Time Systems Journal, Vol,10, pp.179-210, 1996.

8. J. Regehr, J. A. Stankovic. HLS: A Framework for Composing Soft Real-Time
Schedulers. Real-Time Systems Symposium, pp. 3-14, 2001.

9. Duu-Chung Tsou. Execution Environment for Real-Time Rule-Based Decision Sys-
tems. PhD thesis, Department of Computer Sciences, The University of Texas at
Austin, 1997.

10. W. Wang, A. K. Mok, Pre-Scheduling: Balancing Between Static and Dynamic
Schedulers, UTCS Technical Report RTS-TR-02-01, 2002,
http://www.cs.utexas.edu/users/mok/RTS/pubs.html.

An Approximation Algorithm for Broadcast
Scheduling in Heterogeneous Clusters

Pangfeng Liu1, Da-Wei Wang2, and Yi-Heng Guo3

1 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan

2 Institute of Information Science, Academia Sinica
3 Department of Computer Science and Information Engineering, National Chung

Cheng University, Chiayi, Taiwan.

Abstract. Network of workstation (NOW) is a cost-effective alternative
to massively parallel supercomputers. As commercially available off-the-
shelf processors become cheaper and faster, it is now possible to build
a PC or workstation cluster that provides high computing power within
a limited budget. However, a cluster may consist of different types of
processors and this heterogeneity within a cluster complicates the design
of efficient collective communication protocols.
This paper shows that a simple heuristic called fastest-node-first
(FNF) [2] is very effective in reducing broadcast time for heterogeneous
cluster systems. Despite the fact that FNF heuristic does not guarantee
an optimal broadcast time for general heterogeneous network of work-
station, we prove that FNF always gives near optimal broadcast time
in a special case of cluster, and this finding helps us show that FNF
delivers guaranteed performance for general clusters. In a previous pa-
per we showed a similar bound on the competitive ratio in a send-only
communication model. This paper extends the result to a more realis-
tic sender-receiver model. We show that FNF gives a total broadcast of
2T +β, where T is the optimum time and β is a constant. This improves
over the previous bound on 2αT + β [17], where α is a theoretically
unbounded ratio of the processor performance in the cluster.

1 Introduction

Network of workstation (NOW) is a cost-effective alternative to massively paral-
lel supercomputers [1]. As commercially available off-the-shelf processors become
cheaper and faster, it is now possible to build a PC or workstation cluster that
provides high computing power within a limited budget. High performance par-
allelism is achieved by dividing the computation into manageable subtasks, and
distributing these subtasks to the processors within the cluster. These off-the-
shelf high-performance processors provide a much higher performance-to-cost
ratio so that high performance clusters can be built inexpensively. In addition,
the processors can be conveniently connected by industry standard network com-
ponents. For example, Fast Ethernet technology provides up to 100 Mega bits
per second of bandwidth with inexpensive Fast Ethernet adaptors and hubs.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 38–52, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Approximation Algorithm for Broadcast Scheduling 39

Parallel to the development of inexpensive and standardized hardware com-
ponents for NOW, system software for programming on NOW is also advancing
rapidly. For example, the Message Passing Interface (MPI) library has evolved
into a standard for writing message-passing parallel codes [9,8,13]. An MPI pro-
grammer uses a standardized high-level programming interface to exchange in-
formation among processes, instead of native machine-specific communication
libraries. An MPI programmer can write highly portable parallel codes and run
them on any parallel machine (including network of workstation) that has MPI
implementation.

Most of the literature on cluster computing emphasizes on homogeneous clus-
ter – a cluster consisting of the same type of processors. However, we argue that
heterogeneity is one of the key issues that must be addressed in improving par-
allel performance of NOW. Firstly, it is always the case that one wishes to
connect as many processors as possible into a cluster to increase parallelism and
reduce execution time. Despite the increased computing power, the scheduling
management of such a heterogeneous network of workstation (HNOW) becomes
complicated since these processors will have different performances in computa-
tion and communication. Secondly, since most of the processors that are used to
build a cluster are commercially off-the-shelf products, they will very likely be
outdated by faster successors before they become unusable. Very often a cluster
consists of “leftovers” from the previous installation, and “new comers” that are
recently purchased. The issue of heterogeneity is both scientific and economic.

Every workstation cluster, be it homogeneous or heterogeneous, requires ef-
ficient collective communication [2]. For example, a barrier synchronization is
often placed between two successive phases of computation to make sure that all
processors finish the first phase before any can go to the next phase. In addition,
a scatter operation distributes input data from the source to all the other pro-
cessors for parallel processing, then a global reduction operation combines the
partial solutions obtained from individual processors into the final answer. The
efficiency of these collective communications will affect the overall performance,
sometimes dramatically.

Heterogeneity of a cluster complicates the design of efficient collective com-
munication protocols. When the processors send and receive messages at different
rates, it is difficult to synchronize them so that the message can arrive at the
right processor at the right time for maximum communication throughput. On
the other hand, in homogeneous NOW every processor requires the same amount
of time to transmit a message. For example, it is straightforward to implement
a broadcast operation as a series of sending and receiving messages, and in each
phase we double the number of processors that have received the broadcast mes-
sage. In a heterogeneous environment it is no longer clear how we should proceed
to complete the same task.

This paper shows that a simple heuristic called fastest-node-first (FNF), in-
troduced by Banikazemi et. al. [2], is very effective in designing broadcast proto-
cols for heterogeneous cluster systems. The fastest-node-first technique schedules
the processors to receive the broadcast in the order of their communication speed,

40 P. Liu, D.-W. Wang, and Y.-H. Guo

that is, the faster node should be scheduled earlier. Despite the fact that the FNF
heuristic does not guarantee optimal broadcast time for every heterogeneous net-
work of workstations, we show that FNF does give near optimal broadcast time
when the communication time of any slower processor in the cluster is a multiple
of any faster processor. Based on this result, we show that FNF is actually an
approximation algorithm that guarantees a broadcast time within 2T +β, where
T is the optimal broadcast time and β is the maximum difference between two
processors. This improves over the previous bound 2αT + β [17] where α is the
maximum ratio between receiving and sending costs, and can be arbitrarily large
theoretically. In a previous paper [19] we show a similar result for a communi-
cation model where the communication cost is determined by the sender only.
This paper shows that FNF can still achieve guaranteed performance when the
model determines the communication costs based on both the sender and the
receiver.

We also conduct experiments on the performance of the fastest-node-first
technique. The cluster we construct in our simulation consists of three types of
processors, and the number of nodes is 100. We construct the schedules from a
random selection and FNF, and apply them on the heterogeneous cluster model.
Experimental results indicate that FNF gives superior performance over random
selection, for up to 2 times of throughput.

The rest of the paper is organized as follows: Section 2 describes the com-
munication model in our treatment of broadcast problem in HNOW. Section 3
describes the fastest-node-first heuristic for broadcast in HNOW. Section 4 gives
the theoretical results for broadcast. Section 5 describe the experimental results
that we compare the completion time of our heuristics(FNF) with the random-
select algorithms, and Section 6 concludes.

2 Communication Model

There have been two classes of models for collective communication in homo-
geneous cluster environments. The first group of models assumes that all the
processors are fully connected. As a result it takes the same amount of time for
a processor to send a message to any other processor. For example, both the
Postal model [5] and LogP model [15] use a set of parameters to capture the
communication costs. In addition the Postal and LogP model assume that the
sender can engage in other activities after a fixed startup cost, during which
the sender injects the message into the network and is ready for the next mes-
sage. Optimal broadcast scheduling for these homogeneous models can be found
in [5,15]. The second group of models assume that the processors are connected
by an arbitrary network. It has been shown that even when every edge has a
unit communication cost (denoted as the Telephone model), finding an opti-
mal broadcast schedule remains NP-hard [10]. Efficient algorithms and network
topologies for other similar problems related to broadcast, including multiple
broadcast, gossiping and reduction, can be found in [7,11,12,14,18,21,22,23].

An Approximation Algorithm for Broadcast Scheduling 41

Various models for heterogeneous environments have also been proposed in
the literature. Bar-Nod et al. introduced a heterogeneous postal model [4] in
which the communication costs among links are not uniform. In addition, the
sender may engage another communication before the current one is finished,
just like homogeneous postal and LogP model. An approximation algorithm for
multicast is given, with a competitive ratio logk where k is the number of destina-
tion of the multicast [4]. Banikazemi et al. [2] proposed a simple model in which
the heterogeneity among processors is characterized by the speed of sending pro-
cessors, and show that a broadcast technique called fastest-node-first works well
in practice. We will refer to this model as the sender-only model. Based on the
sender-only model, an approximation algorithm for reduction with competitive
ratio 2 is reported in [20], and the fastest- node-first technique is shown to be
also 2-competitive [19]. Despite the fact that the sender-only model is simple
and has a high level abstraction of network topology, the speed of the receiving
processor is not accounted for. In a refined model proposed by Banikazemi et al.
[3], communication overheads consists of both sending and receiving time, which
we will refer to as the sender-receiver model. For the sender-receiver model the
same fastest- node-first is proven (Libeskind-Hadas and Hartline [17]) to have
a total time of no more than 2αT + β, where α is the maximum ratio between
receiving and sending time, β is the maximum difference between two receiving
time, and T is the optimal time. We adopt the sender- receiver model in this pa-
per and improve this bound to 2T + β. Other models for heterogeneous clusters
include [6,16].

2.1 Model Definition

The model is defined as follows: A heterogeneous cluster is defined as a collection
of processors p0, p1, ..., pn−1, each capable of point-to-point communication with
any other processor in the cluster. Each processor is characterized by its speed
of sending and receiving messages, and the network is characterized by the speed
to route a message from the source to the destination. Formally, we define the
sending time of a processor p, denoted by s(p), to be the time it needs for p
to send a unit of message into the network. The network is characterized by
its latency L, which is the time for the message to go from its source to its
destination. Finally we define the receiving time of a processor p, denoted by
r(p), to be the time it takes for p to retrieve the message from the network
interface. We further assume that the processor speed is consistent, that is, if
a processor p can send messages faster than another processor q, it can also
receive the messages faster. Formally we assume that for two processors p and
q, s(p) ≤ s(q) if and only if r(p) ≤ r(q).

The communication model dictates that the sender and receiver processors
cannot engage in multiple message transmissions simultaneously. That is, a
sender processor must complete its data transmission to the network before
sending the next message, that is, a processor can only inject messages into the
network at an interval specified by its sending time. This restriction is due to
the fact that processor and communication networks have limited bandwidth,

42 P. Liu, D.-W. Wang, and Y.-H. Guo

therefore we would like to exclude from our model the unrealistic algorithm that
a processor simply sends the broadcast message to all the other processors simul-
taneously. Similarly, the model prohibits the simultaneous receiving of multiple
messages by any processor.

p0 s(p0) s(p0)

0 41 2 3 5

r(p1)L

L r(p2)

p1

p2

Fig. 1. A broadcast send-receive communication model.

2.2 Broadcast Problem Description

We consider an example with two fast processors p0, and p1, and one slow pro-
cessor p2. The fast processors have sending time 1 and receiving time 2, the slow
processor has sending time 2 and receiving time 3, and the network latency L is
1. We assume that p0 is the source and that it sends a message to p2 at time 0.
The message enters the network at time 1 since s(p0) is 1, and leaves the network
at time 1 + L = 2, and is received by p2 at time 2 + r(p2) = 5. After sending a
message into the network at time 1, p0 can immediately send another message
to p1 and inject it into the network at time 1+ s(p0) = 2. The message is finally
received by p1 at time 2 + L + r(p1) = 5. See Figure 1 for an illustration.

2.3 Simplified Model Description

We can simplify the model as follows: Since a receiving node p always has to wait
for L + r(p) time steps before it actually receives the message, we can add the
network latency L into the receiving time. The processor p2 therefore receives
its message at time s(p0) + r(p2) = 1 + 4 = 5, and p1 receives its message from
p0 at time 2s(p0) + r(p1) = 5. See Figure 2 for an illustration.

Assume that a processor q sends a message to the other processor p at time
t, then p becomes ready to receive at time t + s(q), since p now can start re-
ceiving the message, and we denote the ready to receive time of p by R(p).
At time t + s(q) + r(p) p becomes ready to send because it can start sending
its own message now, and we use S(p) to denote the ready to send time of p.
That is, a processor p can finish sending messages into the network at time
S(p) + s(p), S(p) + 2s(p), ..., S(p) + i ∗ s(p), where i is a positive integer, until
the broadcast is finished.

An Approximation Algorithm for Broadcast Scheduling 43

p0 s(p0) s(p0)

0 41 2 3 5

p1

p2

r(p1)

r(p2)

Fig. 2. A simplified send-receive communication model.

3 Fastest-Node-First Technique

It is difficult to find the optimal broadcast tree that minimizes the total broadcast
time in a heterogeneous cluster, therefore a simple heuristic called fastest-node-
first (FNF) is proposed in [2] to find a reasonably good broadcast schedule for
the original sender-only heterogeneous model [2].

3.1 Fastest-Node-First Scheduling for Broadcast

The FNF heuristic works as follows: In each iteration the algorithm chooses
a sender from the set of processors that have received the broadcast message
(denoted by A), and a receiver from the set that have not (denoted by B). The
algorithm picks the sender s from A because, as the chosen one, it can inject the
message into the network as early as possible. The algorithm then chooses the
fastest processor in B as the destination of s. After the assignment, r is moved
from B to A and the algorithm iterates to find the next sender/receiver pair.
Note that this same technique can be applied to both models – the sender only
and the sender-receiver heterogeneous models – since we assume that the sending
and receiving times are consistent among processors. The intuition behind this
heuristic is that, by sending the message to those fast processors first, it is likely
that the messages will propagate more rapidly.

The fastest-node-first technique is very effective in reducing broadcast
time [2,17,19]. The FNF has been shown in simulation to have a high probability
to find the optimal broadcast time when the transmission time is randomly cho-
sen from a given table [2]. The FNF technique also delivers good communication
efficiency in actual experiments. In addition, FNF is simple to implement and
easy to compute.

3.2 FNF Not Guarantee Optimal Broadcast Time

Despite its efficiency in scheduling broadcast in heterogeneous systems, the FNF
heuristic does not guarantee optimal broadcast time [2,6] in sender-only model.
Since the sender-only model is a special case of the sender-receiver model, FNF
is not optimal in the sender-receiver model either. For example, in the situation
of Figure 1 FNF will not achieve optimal time, as Figure 3 indicates.

44 P. Liu, D.-W. Wang, and Y.-H. Guo

Fig. 3. A counterexample that FNF always produces the optimal broadcast time since
the fast processor p0 sends message to the faster p1 first, instead of the slower p2.

4 Theoretical Results

Despite the fact that FNF cannot guarantee optimal broadcast time, we show
that FNF is optimal in some special cases of heterogeneous clusters. Based on
the results of these special cases, we show that the fastest-node-first algorithm
produces a schedule with guaranteed performance.

Theorem 1. [2]
There exists an optimal schedule in which all processors sends messages with-

out delay. That is, for all processor p in T , starting from its ready to send time,
p repeatedly sends a message with a period of its sending time until the broadcast
ends.

With Theorem 1, we can simply discard those schedules that will delay mes-
sages, and still find the optimal one. Since there is no delay, we can characterize
a schedule as a sequence of processors sorted in their ready to receive time. Since
no delay is allowed, any scheduling method must schedule s, the processor in A
that could have completed the sending at the earliest time, to send a message
immediately. Formally we define P = (p0, ..., pn−1) to be a sequence of n pro-
cessors sorted in their ready to receive time and the processors appear in P in
non-decreasing sending speed, except for the source s0. The total broadcast
time of P (denoted by T (P)) is by definition maxn−1

i=1 S(pi), the latest ready to
send time among all the processors1. A broadcast sequence P is optimal if and
only if for any other permutation of P (denoted by P ′), T (P) ≤ T (P ′).

Let p be a processor and NSP (p, t) be the number of messages successfully
sent at and before time t by p in the sequence P . Formally, NSP (p, t) = � t−S(p)

s(p) 	,
for t ≥ S(p). We can define ready to receive time R(pi) and ready to send time
S(pi) recursively (Eqn. 1). that is, the ready to receive time of the i-th processor
in P is the earliest time when the total number of messages sent by the first i−1
processors reaches i.
1 Note that the processor that has the latest ready to receive time may not have the

latest ready to send time.

An Approximation Algorithm for Broadcast Scheduling 45

R(p0) = 0 and S(p0) = 0

R(pi) = min{t|
i−1∑
j=0

NSP (pj , t) ≥ i}, 1 ≤ i ≤ n − 1

S(pi) = R(pi) + r(pi), 1 ≤ i ≤ n − 1 (1)

4.1 Power 2 Clusters

In this section we consider a special case of heterogeneous clusters in which all
the sending and receiving costs are power of 2, and we refer to such clusters as
power 2 clusters [19]. Similar notation is also used in [17]. We show that FNF
technique does guarantee minimum ready to receive time for the last processor
receiving the broadcast message in a power 2 cluster, and this is the foundation
of our competitive ratio analysis.

Henceforth we will focus on minimizing the ready to receive time of the
last processor in a sequence P = (p0, ..., pn−1), which is denoted as TR(P) =
R(pn−1). We will later relate our finding with the latest ready to send time
among all the processors, denoted by TS(P) = maxn−1

i=0 S(pi), which is the time
the broadcast actually takes. We choose this approach since TR(P) is much
easier to handle in our mathematical analysis than TS(P).

We first establish a lemma that it is always possible to switch a processor p
with a slower processor q that became ready to receive right ahead of p (with
the exception that q is the source) so that p and q will contribute more on the
NS function after the switch. We then use an induction to show that this mod-
ification will not increase the ready to receive time of the processors thereafter,
including the last one in the sequence. This leads to the optimality of FNF for
the last ready to receive time in a power 2 cluster.

Lemma 1. Let p be a first faster processor that became ready to receive right
after a slower processor q in a sequence P , that is, R(p) = t1 > R(q) = t0, and
s(p) < s(q). By switching p with q in P we obtain a new sequence P ′. Then, in
this new sequence P ′, R(p) is moved forward from t1 to t0, and R(q) is delayed
from t0 to no later than t1, and NSP ′(p, t)+NSP ′(q, t) ≥ NSP (p, t)+NSP (q, t),
for t ≥ t0.

Proof. Let’s consider the time interval from t0 to t1. Since p is the first faster
processor that becomes ready to receive right after a slower processor q, no
processor becomes ready to receive between t0 and t1. Since, in P ′, p is moved
to q’s position in P , p has R(p) = t0. As p is faster in sending and receiving, q
becomes ready at or before t1 from Equation 1. For our purpose we will assume
that q becomes ready to receive at time t1 since if the time is earlier, it is more
likely that NSP ′(p, t) + NSP ′(q, t) ≥ NSP (p, t) + NSP (q, t), for t ≥ t0.

Let d = t1 − t0. Since all the ready to receive time is integer, d is at least
1. It is easy to see that when d is larger, NSP ′(p, t) + NSP ′(q, t) is more likely
to be larger than NSS(p, t) + NSS(q, t), when t > t0. In fact, from p’s point of
view, when the sequence changes from P to P ′, the NS(p) increases between

46 P. Liu, D.-W. Wang, and Y.-H. Guo

r(q) s(q) s(q) s(q)

r(q) s(q) s(q) s(q)

P

P’

t1t0

r(p) s(p) s(p) s(p)s(p)s(p) s(p)

r(p) s(p) s(p) s(p)s(p)s(p) s(p)

Fig. 4. An illustration that the NS function in P and P ′.The black squares indicate
where the NS function increases by 1. Note that the NS function in P ′ is no less than
in P for all time later than t0. In this example r(p) = r(q) = 4, s(p) = 2, s(q) = 4, and
d = 1.

� d
s(p)	 and d

s(p)�, but the decrease in NS(q) is only between � d
s(q)	 and d

s(q)�.
The increase in NS(p) is larger than the decrease in NS(q) when d is sufficiently
large, since s(q) is at least twice as large as s(p). In addition, r(p) is no larger
than r(q), and that means NS(p) increases earlier than the decrease of NS(q).
Therefore, by moving p further ahead in time, it becomes easier for the increase
of the NS function from p to compensate the decrease of the NS function from
q, when the sequence changes from P to P ′. Therefore it suffices to consider the
worst case when d = 1.

Let us consider the change of NS function from q’s point of view. q is delayed
by only one time step, so NSS(q) is at most greater than NSS′(q) by 1, which
only happens at time interval [t0 + r(q)+ks(q), t0 + r(q)+ks(q)+1), where k is
a positive integer, r(q) is the receiving time of q, and s(q) is the sending time of
q. See Figure 4 for an illustration. However, during this interval NSP ′(p) will be
larger than NSP (p) by one since s(q) is a multiple of s(p), and r(q) is a multiple
of r(p) due to speed consistency. This increase compensates the decrease due to
q and the Lemma follows.

After establishing the effects of exchanging the two processors on the NS
function, we argue that the ready to receive time of the processors after p and q
will not be delayed from P to P ′. We prove this statement by an induction and
the following lemma serves as the induction base:

Lemma 2. Let p and q be the (j − 1)th and jth processor in P , then the ready
to receive time of pj+1 in P ′ is no later than in P .

Proof. The lemma follows from Lemma 1 and the fact that the ready to receive
time of the first j +1 processors in the sequence is not changed, except for p and
q. Here we use the subscript to indicate whether the NS function is defined on
P or P ′, and for ease of notation we remove the same second parameter t from
all occurrences of NS functions.

An Approximation Algorithm for Broadcast Scheduling 47

RP ′(pj+1) = min{t|
j∑

l=0

NSP ′(pl) ≥ j + 1}

= min{t|(
j−2∑
l=0

NSP ′(pl)) + NSP ′(p) + NSP ′(q) ≥ j + 1}

= min{t|(
j−2∑
l=0

NSP (pl)) + NSP ′(p) + NSP ′(q) ≥ j + 1}

≤ min{t|(
j−2∑
l=0

NSP (pl)) + NSP (p) + NSP (q) ≥ j + 1}

= RP (pj+1)

Lemma 3. The ready to receive time of pl in P ′ is no later than in P , for
j + 1 ≤ l ≤ n − 1.

Proof. We complete the proof by the induction step. Assume that the ready to
receive time of pj+m in P ′ is no later than in P , for 1 ≤ m ≤ n− j −1. Again for
ease of notation, we remove the same second parameter t from all occurrences
of NS functions.

RP ′(pj+m+1)

= min{t|
j+m∑
l=0

NSP ′(pl) ≥ j + m + 1}

= min{t|((
j−2∑
l=0

NSP ′(pl)) + NSP ′(p) + NSP ′(q) +
j+m∑

l=j+1

NSP ′(pl)) ≥ j + m + 1}

≤ min{t|((
j−2∑
l=0

NSP (pl)) + NSP (p) + NSP (q) +
j+m∑

l=j+1

NSP ′(pl)) ≥ j + m + 1}

≤ min{t|((
j−2∑
l=0

NSP (pl)) + NSP (p) + NSP (q) +
j+m∑

l=j+1

NSP (pl)) ≥ j + m + 1}

= RP (pj+m+1)

The second-to-the-last inequality follows from Lemma 1, and the last in-
equality follows from the induction hypothesis that all the processors from pj+1
to pj+m have earlier ready to receive time (hence earlier ready to send time) in
P ′ than in P , so they will have larger NS function, and a smaller t to satisfy
Equation 1. One immediate result from Lemma 2 and 3 is that for any processor
sequence of a power 2 cluster, including the optimal ones, the final ready to
receive time will never be increased by making the faster processors ready to
receive earlier than slower ones. Now we have the following theorem:

48 P. Liu, D.-W. Wang, and Y.-H. Guo

Theorem 2. The fastest-node-first algorithm gives optimal final ready to receive
time for a power 2 cluster.

4.2 An Approximation Algorithm

We can use Theorem 2 to show that FNF is actually an approximation algorithm
of competitive ratio 2 for the final ready to receive time. By increasing the
transmission time of processors, we can transform any heterogeneous cluster into
a power 2 cluster. We increase the sending and receiving time of each processor
p to be 2�log s(p)� and 2�log r(p)� respectively. We will show that FNF, optimal for
the transformed cluster, also gives a schedule at most twice that of the optimal
final ready to receive time for the original cluster.

Theorem 3. The fastest-node-first scheduling has a final ready to receive time
no greater than twice that of the optimal final ready to receive time.

Proof. Let P be a sequence that gives optimal final ready to receive time for
a heterogeneous cluster C, and C ′ be the power 2 cluster transformed from C.
We apply the same sequence P on C and C ′ and let T and T ′ be the final
ready to receive time TR respectively, that is, before and after the power 2
cluster transformation. We argue that this increase in transmission time will at
most double the TR, that is, T ′ ≤ 2T . This is achieved by an induction on the
processor index i. We argue that pi, which is ready to receive at time R(pi) for
C, becomes ready to receive no later then 2R(pi) for C ′. The induction step
follows from the fact that all the previous pj for j < i, become ready no later
than 2R(pj) for C ′, and that both the sending time of the previous pj , j < i,
and the receiving time of pi are, at most doubled from C to C ′.

Now we apply FNF scheduling on C ′ and let T ′′ be the resulting final ready
to receive time. Since C ′ is a power 2 cluster, it follows from Theorem 2 that T ′′

is no more than T ′. Finally, we apply the same FNF scheduling on C and let T ∗

be the resulting final ready to receive time. T ∗ should be no more than T ′′ since
the sending and receiving times of each corresponding processor are higher in
C ′ than in C. As a result T ∗ is no greater than T ′′, which in turn is no greater
than T ′, which in turn is no more than 2T .

Theorem 4. The total broadcast time from fast-node-first technique is at most
2T + β, where T is the optimal total broadcast time, and β is max{r(pi)} −
2 min{r(pi)}.

Proof. Let P be an optimal schedule in total broadcast time. Let p be the
last processor that became ready to receive in P . As a result the optimal to-
tal broadcast time T is at least RP (p) + r(p). Let p′ be the last processor
that became ready to receive according to FNF. From Theorem 3 we have
RP ′(p′) < 2RP (p). Note that this inequality holds when P is any sched-
ule, and not necessarily the optimal schedule for the final ready to receive
time. The total broadcast time using FNF is RP ′(p′) + r(p′), which is at most
2RP (p) + r(p′) = 2RP (p) + 2r(p) + r(p′) − 2r(p) ≤ 2T + β.

An Approximation Algorithm for Broadcast Scheduling 49

5 Experimental Results

This section describes the experimental results and compare the completion
times of our heuristics (FNF) with those of a random-selection algorithm and
a trivial lower bound. The experimental results indicate that FNF outperforms
the random-selection algorithm by a factor of 2 in average, and is not very far
away from the lower bound.

5.1 Experimental Environment

The input cluster configurations for our experiments are generated as follow: We
assume that the number of classes in a cluster is 3. We vary the cluster size
from 6 to 100, and set one third of the nodes to be fast processors, one third to
be normal processors, and the others to be slow processors. For each processor
in the same class, we assign the same sending time and receiving cost to it, that
is, each node in the fast processor group has sending time 1 and receiving time
2, the sending and receiving time for normal processors are 5 and 6 respectively,
finally the time for slow processors are 10 and 11.

We compare the results from FNF and random selection. We repeat the ex-
periments for random-selection algorithm for 200 times and compute the average
broadcast time. On the other hand since FNF is a deterministic algorithm, for
each cluster size we test the FNF algorithm for only once.

5.2 FNF Heuristics and Random-Select Algorithm

We describe our implementation of FNF as follows: The program uses an array
to represent the set of processors that have not yet received broadcast message
(denoted by R-set), and a priority queue for the set of processors that have
received the broadcast message (denoted by S-set). The elements in the R-set
array are sorted according to their communication speed, and the elements in
the S-set are ordered so that the processor that could send out the next message
fastest has the highest priority. In other words, the processors in the S-set are
sorted according to their availability in time. Initially the S-set has the broadcast
source and the R-set is empty, and the simulation time is set to zero. The priority
queue design simplifies and speeds up the simulation, since the simulator can be
driven by events, not by time.

In each iteration we check if all nodes have received the broadcast message.
If this is not the case then we will schedule the next message. We pick the next
sender (with the highest priority) from the S-set priority queue, and the receiver
that has the minimum receiving time from the R-set. After choosing the sender
and the receiver, we calculate the updated available time for the sender and new
available time for the receiver, and place them into the S-Set (the chosen receiver
is therefore removed from the R-set). At the end the R-set will be empty and
the ready-to-send time of the last receiver is the total broadcast time. Figure 5
gives an example of a broadcast scheduling among 6 node.

50 P. Liu, D.-W. Wang, and Y.-H. Guo

Fig. 5. The example of FNF algorithm under 6 node case.

We now describe the random-selection algorithm. Due to the random nature
of this algorithm, we will not need to maintain any priority queue or sorted array.
We randomly choose a sender from the S-set and a receiver from the R-set for
the next message. We repeatedly schedule the transmission until all processors
receive the message. The average time for the last receiver to receive its messages
is the time that we are interested in.

5.3 Timing Comparison

Figure 6 shows the experimental results. The completion time of FNF is about
half of the average time of random-selection algorithm.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

C
om

m
un

ic
at

io
n

co
m

pl
et

io
n

tim
e

Total number of processors

FNF
Random-Select

Lower-bound

Fig. 6. The comparison of two scheduling algorithms.

We also give a lower bound on the optimal communication time for our
experimental cluster. No matter how the processors are scheduled, the broadcast
source must spend at least one unit of time to send the message, and a slow
destination processor must at least spend eleven units of time to receive the
message. As a result, the lower bound is at least 12 Figure 6 shows that the total
time of FNF is no more than twice that of the lower bound in our experiments.

From our experiments, we observed that it is almost impossible to find a single
case from 200 times of random-selection that gives a better broadcast time than

An Approximation Algorithm for Broadcast Scheduling 51

the FNF algorithm. In addition, the broadcast time of the FNF algorithm might
be very close to optimal since our lower bound estimate is very rough. These
timing results also indicate that the completion time grows very slowly when the
size of the cluster increases, even when the cluster has up to 100 processors. Our
experimental results are consistent with those obtained by previous theoretical
sections. In addition, the FNF schedule is very easy to compute and efficient to
use.

6 Conclusion

FNF is a very useful technique in reducing broadcast time. In a previous paper
we show that FNF gives a broadcast schedule at most twice that of the optimal
time for the sender-only communication model[19]. For a more realistic sender-
receiver model adapted by this paper, we show that FNF gives a broadcast
schedule at most twice that of the optimal time plus a constant. This improves
over the previous bound by a performance ratio factor. In practice this factor is
bounded by 1.85 [17], but could be unbounded theoretically.

We also describe the experimental results in which we compare the com-
pletion time of our heuristics (FNF) with a random-selection algorithm. The
experimental results indicate that FNF outperforms the random-selection algo-
rithm by a factor of 2 in average. In addition, we also compare the timing results
of FNF with a very roughly estimated lower bound, and FNF always gives a total
broadcast time within twice of the lower bound.

There are many research issues open for investigation. For example, it will
be interesting to extend this technique to other communication protocols, in-
cluding reduction and all-to-all communication. For example, we showed that
for reduction there is a technique called “slowest-node-first” [20] that also guar-
antees 2-competitiveness in sender-only model. It would be interesting to extend
the result to the sender-receiver model, as we did for broadcasting in this paper.
In addition, it will be worthwhile to investigate the possibility to extend the
analysis to similar protocols like parallel prefix, all-to-all reduction, or all-to-all
broadcasting. These questions are very fundamental in designing collective com-
munication protocols in heterogeneous clusters, and will certainly be the focus
of further investigations in this area.

References

1. T. Anderson, D. Culler, and D. Patterson. A case for networks of workstations
(now). In IEEE Micro, Feb 1995.

2. M. Banikazemi, V. Moorthy, and D.K. Panda. Efficient collective communication
on heterogeneous networks of workstations. In Proceedings of International Parallel
Processing Conference, 1998.

3. M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, and P. Sadayappan. Com-
munication modeling of heterogenous networks of workstations for performance
characterization of collective operations. In Proceedings of International Work-
shop on Heterogeneous Computing, 1999.

52 P. Liu, D.-W. Wang, and Y.-H. Guo

4. A. Bar-Noy, S. Guha, J. Naor, and Schieber B. Multicast in heterogeneous net-
works. In Proceedings of the 13th Annual ACM Symposium on theory of computing,
1998.

5. A. Bar-Noy and S. Kipnis. Designing broadcast algorithms in the postal model for
message-passing systems. Mathematical Systems Theory, 27(5), 1994.

6. P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communi-
cation in distributed heterogeneous systems. In Proceedings of the International
Conference on Distributed Computing Systems, 1999.

7. M. Dinneen, M. Fellows, and V. Faber. Algebraic construction of efficient networks.
Applied Algebra, Algebraic Algorithms, and Error Correcting codes, 9(LNCS 539),
1991.

8. J. Bruck et al. Efficient message passing interface(mpi) for parallel computing on
clusters of workstations. Journal of Parallel and Distributed Computing, Jan 1997.

9. Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, 1994.

10. M. R. Garey and D. S. Johnson. Computer and Intractability: A guide to the theory
of NP-Completeness. W. H. Freeman, 1979.

11. L. Gargang and U. Vaccaro. On the construction of minimal broadcast networks.
Network, 19, 1989.

12. M. Grigni and D. Peleg. Tight bounds on minimum broadcast networks. SIAM J.
Discrete Math., 4, 1991.

13. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-performance, portable imple-
mentation of the MPI Message Passing Interface Standard. Parallel Computing,
22(6):789–828, 1996.

14. S. M. Hedetniemi, S. T. Hedetniem, and A. L. Liestman. A survey of gossiping
and broadcasting in communication networks. Networks., 18, 1991.

15. R. Karp, A. Sahay, E. Santos, and K. E. Schauser. Optimal broadcast and sum-
mation in the logp model. In Proceedings of 5th Ann. Symposium on Parallel
Algorithms and Architectures, 1993.

16. R. Kesavan, K. Bondalapati, and D. Panda. Multicast on irregular switch-based
networks with wormhole routing. In Proceedings of International Symposium on
high performance computer architecture, 1997.

17. R. Libeskind-Hadas and J. Hartline. Efficient multicast in heterogeneous networks
of wrokstations. In Proceedings of 2000 International Workshop on Parallel Pro-
cessing, 2000.

18. A. L. Liestman and J. G. Peters. Broadcast networks of bounded degree. SIAM
J. Discrete Math., 1, 1988.

19. P. Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Jour-
nal of Algorithms, 42, 2002.

20. P. Liu and D. Wang. Reduction optimization in heterogeneous cluster environ-
ments. In Proceedings of the International Parallel and Distributed Processing
Symposium, 2000.

21. D. Richards and A. L. Liestman. Generalization of broadcast and gossiping. Net-
works, 18, 1988.

22. J.A. Ventura and X. Weng. A new method for constructing minimal broadcast
networks. Networks, 23, 1993.

23. D. B. West. A class of solutions to the gossip problem. Discrete Math., 39, 1992.

Scheduling Jobs with Multiple Feasible Intervals

Chi-sheng Shih1, Jane W.S. Liu2, and Infan Kuok Cheong3

1 University of Illinois, Urbana IL 61801, USA
cshih@uiuc.edu

2 Microsoft Corporation, Redmond, WA 98052, USA
janeliu@microsoft.com

3 BMC Software, Inc., Austin, Texas 78759, USA
Infan Cheong@bmc.com

Abstract. This paper addresses the problem of scheduling real-time
jobs that have multiple feasible intervals. The problem is NP-hard. We
present an optimal branch-and-bound algorithm. When there is time
to compute the schedule, this algorithm can be used. Otherwise, the
simple heuristics presented here can be used. In addition, a priority-
boosting EDF algorithm is designed to enhance the timeliness of jobs.
Simulation results show that the combined use of the heuristics and the
priority boosting EDF algorithm performs nearly as well as the optimal
algorithm.

1 Introduction

In some real-time applications, a job may have more than one feasible interval.
Such a job can be scheduled to begin its execution in any of its feasible intervals.
It is said to complete in time if the job completes by the end of the interval. If the
job remains incomplete at the end of the interval, the scheduler terminates the
job, and the partial work done by the job is lost. The scheduler then schedules
the job to execute from the start in a later feasible interval. The job misses its
deadline if it remains incomplete by the end of its latest feasible interval.

An example of such an application is missile jamming. A missile jamming
system tries to intercept each cruise missile before it hits its target by jamming
the missile’s guidance system. In general, a cruise missile flies for a long distance
and may pass several jamming-prohibited areas, such as metropolitan areas,
before reaching its target. Destroying the missile’s guidance system close to such
an area may cause unacceptably large collateral damages. Hence, the missile can
be jammed only before or after it flies over these areas. The time intervals when
the missile is not over or close to any jamming-prohibited area are the feasible
intervals of the job. The starts and ends of the intervals are either known a prior
or can be estimated from past information. The jamming job only needs to be
executed to completion once in one of its feasible intervals.

The optional jobs in the error-cumulative imprecise computation model stud-
ied by Choeng[1] are also examples of jobs with multiple feasible intervals. In the
imprecise computation model, a job consists of two parts: mandatory and op-
tional part. The mandatory part must complete by its deadline and the optional

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 53–71, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

54 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

part can be skipped if there are not enough resources. Skipping the optional
part introduces error into the result produced by the job. In some real-time ap-
plications like radar tracking, the error from the incomplete optional parts of
jobs in a periodic task accumulates. The error-cumulative model introduces a
threshold for the cumulative error of the task. When the cumulative error be-
comes greater than the threshold, the task fails. (In a radar tracking system,
the system may lost the tracked target if the cumulative error becomes greater
than a given threshold.) To confine the error within the threshold, the optional
part must execute completely at least once in every predetermined number N of
periods. We can view the optional part of one job in N periods as a job with N
feasible intervals, which are intervals left over after the mandatory parts of the
jobs complete. As long as the job with N feasible intervals completes in time,
the error of the periodic task is under the allowed threshold.

Our model resembles real-time workload models that allow some jobs to be
skipped. Examples of these models are the skip-over model [2], reward-based
model [3], (error-cumulative) imprecise computation model [1,4], and (m,k)-firm
guarantee model [5]. However, these models are concerned with periodic tasks.
The relative deadlines of (optional) jobs in all periods of a task are the same.
Optional jobs are not required to complete in some of these models: These jobs
can be terminated at any time or discarded entirely and produce results with
different levels of precision. In contrast, our model assumes that the length of
feasible intervals (i.e., the relative deadlines) are arbitrary. This factor introduces
another dimension of complexity. In addition, jobs are not optional: Each job
must execute from start to completion in one of its feasible intervals, and the
job fails to meet its timing requirement if it does not complete by the end of its
latest feasible interval.

This paper presents an exponential optimal algorithm and several simple
heuristics for finding a feasible schedule for jobs with multiple feasible intervals.
The optimal algorithm uses the branch and bound approach to reduce the time
required for finding a feasible schedule for a given job set. This algorithm is
optimal in the sense that there is no feasible schedule if the algorithm cannot
find one. These heuristics are extensions of traditional bin-packing heuristics:
First Fit Decreasing (FFD), Last Fit Decreasing (LFD), Best Fit Decreasing
(BFD), and Worst Fit Decreasing (WFD).

The paper also presents a priority-boosting EDF algorithm that is designed to
enhance the timeliness of jobs. The algorithm makes use of the result produced by
the optimal algorithm or a heuristic algorithm, which is the selection of a feasible
interval for each job that is schedulable. According to the priority-boosting EDF
algorithm, jobs are prioritized based on (1) the feasible interval selected for each
job and (2) job deadlines: The closer the selected feasible interval of a job is to the
scheduling time, the higher priority of the job. The heuristics and the priority-
boosting algorithm are evaluated by extensive simulations. The performances
are compared against that of the optimal algorithm.

Following this introduction, Section 2 describes the task model and defines
the terms used here. The section also states the problems of scheduling jobs with

Scheduling Jobs with Multiple Feasible Intervals 55

multiple feasible intervals. Section 3 presents an exponential optimal algorithm,
several polynomial-time heuristics, and the priority-boosting EDF algorithm.
Section 4 evaluates the heuristics and the combined use of the heuristics and the
priority-boosting EDF algorithm. Finally, Section 5 summarizes the paper.

2 Formal Models and Problem Statements

Thus far, and in our subsequent discussion, we use the term job as it is commonly
used in real-time systems literature [6,7,8]: A job is an instance of computation,
or the transmission of a data packet, or the retrieval of a file, and so on. We
focus here on scheduling jobs and call the jobs J1, J2, and so on.

Multiple Feasible Interval Jobs. Each multiple feasible interval job is char-
acterized by its temporal parameters including its execution time, release time,
and a set of feasible intervals. The execution time, denoted by e, is the amount
of time required to complete the execution of the job when it executes alone
and has all the resources it requires. Throughout our discussion, we assume that
for the purpose of determining whether each job can complete by its deadline,
knowing its worst case execution time (WCET) is sufficient. By the execution
time of a job, we mean its WCET.

The release time of a job, denoted by r, is the instant of time at which the job
becomes known to the scheduler. A job is said to be eligible in the time interval
from its release time to the instant when the job completes.

Associated with each job is a set of disjoint time intervals, called feasible
intervals. The earliest feasible interval of a job begins at or after its release time.
The job can be scheduled and executed only in its feasible intervals. Once a
job begins to execute in a feasible interval, it must complete by the end of the
interval in order to produce a correct result. The scheduler may terminate the
job (and the partial work done by the job is lost) if the job remains incomplete
at the end of the interval. In that case, the scheduler will reschedule the job to
execute from the start in a later feasible interval of the job if such an interval
exists. In this paper, we assume that the scheduler always terminates the job at
the end of its feasible interval if it remains incomplete at the time, regardless
whether it has a later feasible interval or not.

We denote each feasible interval by FI = (L, R] where L and R represents
the start time and end time of the interval, respectively. We use FIi,j to denote
the j-th feasible interval of job Ji. The set of feasible intervals of job Ji is denoted
by FIi = {FIi,1, F Ii,2, . . . , Fi,n(i)} where n(i) is the number of feasible intervals
of job Ji and intervals in the set are indexed in ascending order of their start
times. We represent a multiple feasible interval job Ji by Ji = (ri, ei,FIi). We
focus on this kind of jobs. Hereafter, we omit “multiple feasible interval” as long
as there is no ambiguity.

Figure 1 shows an example. Each box above a time line represents a feasible
interval. In this example, job J1 has only one feasible interval; job J2 has two
feasible intervals; and job J3 and J4 have three feasible intervals. Traditional

56 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

J = {J1, J2, J3, J4}
J1 = (0, 1.5, {(0, 5]})
J2 = (2, 2, {(2, 6], (7, 10]})
J3 = (0, 2, {(0, 3.5], (5, 10], (14, 20]})
J4 = (0, 3, {(0, 4.5], (5, 10], (12, 18]})

J1
0 5 10 15 20

J2
0 5 10 15 20

J3
0 5 10 15 20

J4
0 5 10 15 20

Fig. 1. Example of multiple feasible interval jobs

real-time workload models consider only jobs exemplified by job J1. At any time
t, the term current feasible interval of a job refers to the interval which begins
before t and ends after or at t. Clearly, a job may not have a current feasible
interval at t.

The absolute deadline of a job is the instant of time by which its execution
is required to be completed. For a multiple feasible interval job, we can consider
the end time of each feasible interval as an absolute deadline of that job. In
other words, a job with n(i) feasible intervals has n(i) absolute deadlines. By
the absolute deadline of a job at time t, we mean the end time of the current
feasible interval of the job if the job has current feasible interval at time t. The
deadline of a job at t is infinite if the job does not have current feasible interval
at t. Hereafter, we use the term deadline to mean absolute deadline and denote
it by d.

System workload, denoted by u(t), is the total instantaneous utilization of
eligible jobs in the system at time t. The instantaneous utilization of a multiple
feasible interval job at time t is equal to its execution time divided by the length
of its current feasible interval if it has current feasible interval at time t. The
instantaneous utilization of the job is zero if it does not have a current feasible
interval.

We call a failed attempt to complete the execution of a job in one of its
feasible intervals a deadline miss. More precisely, a deadline miss occurs at the
end of a feasible interval if a job executes in the feasible interval and remains
incomplete at that time. The following definition states the timing constraint of
a job with multiple feasible intervals.

Scheduling Jobs with Multiple Feasible Intervals 57

Definition 1 (In-Time Completion).
An execution of a job J completes in time if and only if there is no deadline

miss between the time when it starts and the time when it completes. A job J
meets its timing constraint, or simply that it completes in time, if and only if
one of its execution completes in time.

When every job only has one feasible interval, Definition 2.1 is same as the
traditional definition of in-time completion.

Problem Formulation. The problem of scheduling jobs with multiple feasible
intervals can be divided into two problems: feasible interval selection and job
scheduling. Since each job must be executed entirely in one of its feasible inter-
vals, the scheduler may first choose for the job an interval among all the feasible
intervals of the job. The feasible interval selection problem is concerned with
how to make this selection. At any time in a system containing jobs with mul-
tiple feasible intervals, eligible jobs may or may not be in their selected feasible
intervals and all eligible jobs compete for the same resources. The job scheduling
problem is concerned with how to schedule these jobs if the scheduler aims to
achieve other performance goals in addition to ensuring the in-time completion
of every job.

These problems are stated more formally below.

1. Feasible Interval Selection: Given a set of multiple feasible interval jobs,
J = {J1, J2, ..., JM}, we want to find a feasible interval FIi ∈ FIi for each
job Ji such that all jobs can meet their real-time requirements defined by
Definition 2.1 when every job executes only in its selected feasible interval.
We refer to such a set of selected intervals collectively as a feasible (interval)
selection.

2. Multiple Feasible Interval Job Scheduling: Given a set of multiple-feasible
interval jobs, J = {J1, J2, ..., JM}, and the selected feasible interval FIi for
each job Ji, we want to schedule these jobs so that they all complete in-time
and their response times are small.

If scheduling is done off-line or the release times of all jobs are identical,
the timing parameters of all jobs are known when the scheduler selects feasible
intervals for them. For this case, we seek a branch-and-bound optimal algorithm
for use when there is time to search for a feasible selection and simple heuristics
for use when there is little time to do search for a selection. In general, the jobs
are not released at the same time or the timing parameters are not available
until the jobs are released. In this case, the branch-and-bound feasible interval
selection algorithm is not suitable. The heuristics are simple enough for use
repeatedly when jobs are released.

In our subsequent discussion, we assume that the jobs are to be executed on
a single processor. Since the preemptive EDF algorithm is known to be optimal
for uniprocessor scheduling, we assume that the scheduler uses this algorithm.
This simplifying assumption can be easily removed by including a schedulability
analysis algorithm that is appropriate for the scheduling scheme used by the
system.

58 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

3 Algorithms

In this section, we first show that the problem of selecting a feasible interval for
every job in a set of multiple feasible interval jobs so that all jobs complete in
time is NP-hard. We then present an exponential optimal algorithm that chooses
a feasible intervals for each job in the job set whenever the job set is schedulable
and a set of heuristics that attempt to find feasible intervals in polynomial time.
Finally, we present an EDF-based algorithm for scheduling the jobs after feasible
intervals have been selected for them.

3.1 NP-Hardness

The following theorem states that finding a feasible schedule for a set of multiple
feasible interval jobs is NP-hard.

Theorem 3.1. Finding a feasible schedule for a set of multiple feasible interval
jobs when timing parameters of the jobs are all known is NP-hard.

Proof. We prove the theorem by showing that a restricted version of this problem
is as hard as the bin-packing problem [9], a NP-complete problem. To do so,
consider a set of multiple feasible interval jobs J = {J1, J2, ..., JM}. The sets
of feasible intervals for all jobs are identical, i.e., FI1 = FI2 = . . . = FIM .
Moreover, the lengths of all feasible intervals are identical.

Each feasible interval can be considered as a bin in the bin-packing problem.
The length of each feasible interval is the bin capacity. Each job is an object
to be packed into a bin; the size of the object is the execution time of the job.
To complete all jobs selected to complete in an interval without any deadline
miss, the sum of execution times of the jobs in the interval must be no greater
than the length of the feasible interval. Clearly, the problem of finding a feasible
interval for each job such that every job can complete within its selected feasible
interval is as same as finding a bin for each object such that all objects can be
packed into the bins.

Since the restricted version of the problem of finding a feasible schedule of
multiple feasible interval jobs is a bin-packing problem, we can conclude that
the problem is as hard as a NP-complete problem. Hence, the problem is NP-
hard. ��

3.2 Branch and Bound Algorithm

We now describe a branch-and-bound (BB) algorithm. It selects a feasible in-
terval for every job in the given set of jobs when all the jobs are schedulable or
declares the job set infeasible when some jobs in the set are not schedulable.

Scheduling Jobs with Multiple Feasible Intervals 59

Pruning Condition. The condition of pruning the search space is the schedu-
lability condition1. When analyzing the schedulability of a subset of jobs, the
BB algorithm checks whether the jobs in the subset are schedulable (i.e., they
have no deadline miss) when they are scheduled to execute in the EDF order
in their selected feasible intervals. A subset of jobs is said to be feasible if all
the jobs in the subset are schedulable and infeasible if otherwise. When a subset
of jobs is infeasible, the BB algorithm can eliminate all subsets containing the
infeasible subset. This obvious fact allows the BB algorithm to disregard parts
of the search tree.

Branch and Bound Strategy. Figure 2 shows the search tree for a job set
J of M jobs. Each node u in the tree is labeled with a M -tuple vector X. The
vector represents feasible interval selections for a subset of jobs. Specifically, the
i-th element of a vector X is either FIi,∗ or FIi,j for some j = 1, 2, . . . , n(i).
The element being FIi,∗ means that a feasible interval has not yet been selected
for job Ji. The element being FIi,j means that the j-th feasible interval of Ji is
selected. The vector 〈FI1,∗, F I2,∗, . . . , F IM,∗〉 labeling the root represents that
no feasible interval has been selected.

Fig. 2. Search Tree

On the first level of the tree, there are n(1) nodes. Each node represents a
different feasible interval selection for job J1. For a set J of M jobs, the length

1 This condition can be considered as the lower bound in a branch-and-bound algo-
rithm: A solution is disregarded when its bound is greater than the lower bound.

60 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

of the longest path from the root to a leaf node is M . The leaf nodes enumerate
all possible combinations of selected feasible intervals for jobs in the set J. (For
example, the vector labeling the leftmost leaf node indicates that the earliest
feasible interval of every job is selected for that job in the combination.)

The BB algorithm visits the search tree in the depth-first manner starting
from the root. When visiting node u, the algorithm checks if the schedule cor-
responding to Xu (i.e., the schedule of jobs in the selected feasible intervals
represented by Xu) is feasible. While conducting schedulability analysis, the
algorithm ignores the jobs whose feasible intervals are not yet selected. If the
schedule corresponding to Xu is not feasible, the children of node u are not vis-
ited because none of the schedules corresponding to these nodes can be feasible.
Hence, the algorithm returns to the parent of node u. If the schedule correspond-
ing to Xu is feasible, the algorithm continues visiting the children of node u if
there exists any. If node u is a leaf node, the algorithm stops and returns Xu as
a feasible interval selection for the job set J. If none of the children of node u
has a feasible schedule and its parent is not the root, the algorithm returns to its
parent to consider other sibling nodes. If its parent is the root, the algorithm has
exhausted the search space; the algorithm stops and reports a failure of finding
a feasible schedule for the job set J.

Figure 3 shows the pseudo code of the branch-and-bound algorithm. Function
DFSCheck performs a depth-first search starting from job Jk when given a com-
bination of feasible intervals that have been selected for J1, J2, ..., Jk−1. Function
DFSCheck selects one feasible interval at each iteration for job Jk. It selects
j-th feasible interval FIk,j where 1 ≤ j ≤ n(k) for job Jk on line 3 and analyzes
the schedulability of the job set {J1, . . . , Jk} on line 4. If the job set is infeasible,
it continues the next iteration. Otherwise, it continues to visits a child node. If
feasible intervals have been selected for all jobs, the function stops and returns
the selection on line 8. If not, it calls Function DFSCheck to select a feasible
interval for job Jk+1.

Function Branch and Bound FISelection initializes the array of se-
lected feasible intervals and calls Function DFSCheck to visit the search tree
starting from job J1. The function completes and returns the array of selected
feasible intervals produced by Function DFSCheck if the array exists or declares
the given job set infeasible if the array does not exist.

3.3 Fewer Feasible Interval First (FFIF) Based Algorithm

We present in this section several heuristics that are extensions of traditional
bin-packing heuristics such as First Fit Decreasing (FFD), Last Fit Decreasing
(LFD), Best Fit Decreasing (BFD), and Worst Fit Decreasing (WFD) [9]. While
the feasible interval selection problem and the bin-packing problem are similar,
they are differ in many fundamental ways: Feasible intervals are not identical
in length. The feasible interval selected for each job must be from the feasible
interval set of the job. Different jobs may have different feasible intervals. These
factors make it necessary for us to extend the traditional bin-packing heuristics
so they can be used for feasible interval selection.

Scheduling Jobs with Multiple Feasible Intervals 61

DFSCheck(SelectedFI, k)
Input. SelectedFI: the array of the indexes of selected feasible intervals.

k: select one feasible interval for job Jk.
Output. SelectedFI: the array of selected feasible intervals.

1 for each feasible interval FIk,j of job Jk

2 do
3 Select feasible interval FIk,j for job Jk;
4 if {J1, ..., Jk} is schedulable in their selected feasible intervals
5 then
6 if feasible intervals for all jobs are selected
7 then
8 Return SelectedFI;
9 else

10 Call DFSCheck to select one feasible interval for Jk+1;
11 Return SelectedFI if the array exists;
12 end
13 Return NULL as no feasible schedule is founded;

Branch and Bound FISelection(FI[M])
Input. FI: the array of feasible intervals for M jobs
Output. SelectedFI: the array of selected feasible intervals if exists.

1 Initialize the selection array;
2 Call DFSCheck(SelectedFI, 1) to select the feasible interval for job J1;
3 return SelectedFI or the declaration that the job set is not feasible;

Fig. 3. Optimal algorithm for selecting feasible intervals

Fewer Feasible Interval First (FFIF) Based Algorithms process the jobs in
non-descending order according to the number of feasible intervals. Intuitively,
the algorithms may have a better chance to find a feasible schedule of all jobs by
processing jobs having fewer feasible intervals first. This is the rationale behind
the FFIF-based algorithms. All FFIF-based algorithms sort all the eligible jobs
according to the numbers of their feasible intervals and process them in non-
descending order. Similar to the optimal algorithm, when checking whether a
job is schedulable in a feasible interval, the algorithms consider only the job
being processed and jobs for which feasible intervals have already been selected.

As stated earlier, the scheduler uses EDF algorithm. It is well known that all
jobs can be scheduled to complete by their deadlines if at any time t, the total
instantaneous utilization of all eligible jobs that are ready for execution is no
greater than 1 [10] (also Theorem 7.4 in [11]). To reduce the time complexity of
the heuristic algorithms, the scheduler uses this sufficient condition for schedu-
lability analysis. In other words, the scheduler checks the system workload u(t)
for t ≥ 0 to determine whether this condition is met when deciding whether
a job is schedulable in a feasible interval. (More precisely, the scheduler checks
whether u(t) ≤ 1 whenever the system workload changes.)

62 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

The individual algorithms among the FFIF-based algorithms differ in their
selections of a feasible interval for each job. When selecting a feasible interval
for a job, FFIF-First Fit algorithm selects the first feasible interval of the job
in which the job is schedulable. In contrast, FFIF-Last Fit algorithm selects the
last feasible interval in which the job is schedulable. FFIF-First Fit algorithm
should work well when the system is lightly loaded and the release times of jobs
are generally fall apart. Choosing the first schedulable feasible interval allows
eligible jobs to complete before new jobs are released. However, when the system
is heavily loaded, FFIF-First Fit algorithm may not be able to find a feasible
schedule for jobs with fewer feasible intervals. FFIF-Last Fit algorithm generally
delays the executions of jobs if possible. In this case, a job that is released later
and has few feasible intervals is more likely to be schedulable when the system
is heavily loaded.

FFIF-First Fit and FFIF-Last Fit algorithm should work well when feasible
intervals of a job are similar in length. However, these two algorithms may not
work well when the job’s feasible intervals have dramatically different lengths.
FFIF-Best Fit and FFIF-Worst Fit algorithm take into account of this factor.
FFIF-Best Fit algorithm selects the feasible interval which has the largest max-
imal system workload. Specifically, the algorithm computes the maximal system
workload for each feasible interval of the job being processed, assuming that the
job is scheduled in the interval. Then, the algorithm selects the feasible inter-
val which produces the largest maximal system workload among all intervals in
which the job is schedulable. In contrast, FFIF-Worst Fit algorithm selects the
feasible interval during which the maximal system workload is the smallest and
in which the job is schedulable. Hence, FFIF-Worst Fit algorithm distributes
the system workload over the time line.

The time complexity of these four heuristics is O(nM2) where n is the maxi-
mum number of feasible intervals of a job and M is the number of jobs in the job
set: The complexity of sorting the jobs is O(M log M). For each job, the sched-
uler checks if the system workload u(t) is greater than 1 for t ≥ 0. In the worst
case, the scheduler has to check the system workload for M −1 time instants.
Hence, the time complexity of conducting the schedulability analysis for one job
is O(nM). The decision of selecting the feasible interval takes constant time.
Therefore, the time required to find a feasible interval for all jobs is O(nM2).
The complexity can be reduced to O(nM log M) when a range tree is used to
speed up schedulability analysis.

Figure 4 gives an illustrative example. The given job set is the same as the
one given in Figure 1. Feasible intervals (0, 5], (7, 10], and (14, 20] have already
been selected for job J1, J2, and J3, respectively. The system workload u(t) of
this schedule is shown as the solid line in Figure 4(a) and (b). Job J4 is the next
job to be processed. The dash line in Figure 4(b) shows the system workload if
job J4 executes in one of these three intervals. FFIF-First Fit and FFIF-Last Fit
algorithm selects the first interval (0, 4.5] and the last interval (12, 18] for job J4,
respectively. FFIF-Best Fit algorithm selects the first interval (0, 4.5] because
its maximal system workload is less than 1 and is the largest. FFIF-Worst Fit

Scheduling Jobs with Multiple Feasible Intervals 63

0.2

0.4

0.6

0.8

1.0

201410750 Time(t)
Sy

st
em

W
or

kl
oa

d
u
(t

)

(a) System workload for J1, J2, and J3

0.2

0.4

0.6

0.8

1.0

1.2

2018141210750 Time(t)

Sy
st

em
W

or
kl

oa
d

u
(t

)

FI4,1 = (0, 4.5] FI4,2 = (5, 10] FI4,3 = (12, 18]

(b) System workload assuming J4 executes in one of its feasible intervals

Fig. 4. FFIF-based algorithms

algorithm selects the last interval because its maximum system workload is the
smallest.

The optimal algorithm and four FFIF-based heuristics are better suited when
the release times of all jobs are identical or when scheduling is off-line. For on-
line scheduling, the scheduler may repeatedly apply such an algorithm as each
job is released on the new job and all the eligible jobs if the number of jobs
is small. Alternatively, it may process jobs in First-Come-First-Serve (FCFS)
order. Depending on the rule used to select a feasible interval for each job, we
have FCFS-First Fit, FCFS-Last fit, FCFS-Best Fit, and FCFS-Worst Fit.

3.4 Priority Boost EDF Algorithm

We now describe an algorithm, called Priority-Boosting EDF algorithm, that
makes use of the information on selected feasible intervals produced in the selec-
tion step to ensure the in-time completion of every job and to reduce the response
time of the job. One may question why not simply extend the EDF algorithm
a natural way: The scheduler considers each eligible job ready for execution in
each of the job’s feasible intervals and schedules all ready jobs on the EDF basis
based on the current deadlines of the jobs. In other words, the scheduler skips
the feasible interval selection step and schedules jobs solely on the basis of their
feasible intervals and deadlines.

The example in Figure 5 illustrates why this approach may fail, while a
scheduler that first selects a feasible interval for each job and makes use of this

64 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

0 2 4.55 6 9 10 Time(t)

J3 J4 J1 J2 J4 J2

× ×× ×

(a) Schedule by the EDF algorithm solely based on job deadlines.

0 1.5 7 9 12 15 17

Time(t)

J1 J2 J3J4

(b) Schedule by the EDF algorithm based on job deadlines and selected feasible
intervals.

Fig. 5. Schedule by the EDF algorithm

information in its scheduling decision may success. Suppose that the system has
the jobs J1, J2, J3, and J4 given in Figure 1. Each box in Figure 5 represents
an execution of a job and a cross symbol in a box represents an incomplete
execution. Figure 5(a) shows the schedule when ready jobs are scheduled by the
EDF algorithm according to their current deadlines. In this example, job J3 has
the earliest deadline; it executes first and completes at time 2. Job J4 completes
in time in its second attempt at time 9. However, job J1 and J2 cannot complete
in time before the ends of their latest feasible intervals. Figure 5(b) shows the
schedule when jobs are scheduled by the EDF algorithm only when they are in
their selected feasible intervals. In this example, the selected feasible intervals
of job J1, J2, J3, and J4 are (0, 5], (7, 10], (14, 20], and (12, 18], respectively. All
jobs complete in time.

The Priority-Boosting EDF algorithm is designed to take advantage of the
information on selected feasible intervals. It views the selected feasible interval of
each job as a reserved time interval for the job. In this interval, the job executes
in the foreground. Outside of this interval, the job executes in the background.
Specifically, the algorithm considers an eligible job ready for execution only in
its feasible intervals. The algorithm assigns priorities to ready jobs based on
two properties: selected feasible intervals and job deadlines. Each ready job is
assigned a priority within (0, 1]. Suppose that the Q-th feasible interval is selected
for job Ji. In the q-th feasible interval of the job for q = 1, 2, . . . , Q, the priority of
the job is q

Q . The larger the number, the higher the priority. In short, the priority
of a job monotonically increases as long as it remains incomplete. Whenever the
priorities tie, job deadlines are used to break the tie as the traditional EDF
algorithm does.

By assigning a priority within the range (0, 1], Priority-Boosting EDF al-
gorithm simulates the behavior of queuing jobs in multi-level foreground and
background queues by one queue. Jobs in their selected feasible intervals have

Scheduling Jobs with Multiple Feasible Intervals 65

0 1.5

0 1.5 2 4 4.5 5 7 10 Time(t)

Time(t)

J1

J3 J2 J4 J3 J4

× ×

Foreground

Background

Fig. 6. Schedule by Priority-Boosting EDF algorithm

priority 1 and always execute before jobs that are not in their selected feasi-
ble intervals. Hence, Priority-Boosting EDF algorithm guarantees that every job
completes in time in its selected feasible interval or sooner if the schedulability
condition holds. When all jobs are not in their selected feasible intervals, the al-
gorithm gives the highest priority to the job having the least number of feasible
intervals before its selected feasible interval. As a result, the job has a better
chance to complete in time before its selected feasible interval and leaves the
system. The reserved time for the job is released to accommodate new arrivals.

Figure 6 shows the schedule for the jobs in Figure 5 when they are scheduled
by Priority-Boosting EDF algorithm. Jobs scheduled in their selected feasible
intervals execute in the foreground; otherwise, jobs execute in the background.
Job J1 starts at time 0 and completes at time 1.5 because it is the only job
whose priority is 1 in that time interval. At time 1.5, the priorities of job J3 and
J4 are both 1

3 . Job J3 starts because its deadline is earlier. Then, at time 2, job
J2 preempts jobs J3 because its priority 1

2 is higher than the priority 1
3 of job

J3. Job J4 follows at time 4 in the background but is not able to complete in
time. At time 5, job J3 and J4 are ready again and have the identical priority
and deadline. Job J3 is selected arbitrarily and completes at time 7. Finally, job
J4 continues to finish.

When jobs are scheduled only in their selected feasible intervals, each job
executes once and always in the foreground as illustrated in Figure 5(b). Priority-
Boosting EDF algorithm uses the information on the selected feasible intervals
to allow some jobs to execute in the background. Although jobs may execute
more than once, most of them complete earlier. For instance, job J3 completes
at time 7 in this example but completes at 17 in Figure 5(b).

4 Performance Evaluation

We compared the performance of the heuristics through extensive simulations.
Simulation parameters are chosen to ensure broad coverage. The performance of
the heuristics are compared against the performance of the branch-and-bound
algorithm.

66 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

Table 1. Simulation Parameters

Parameters Value
Workload parameters

Number of jobs 10, 15, 20, 25, 30, 35, 40
Average arrival rate λ = 20, 2, .2 job releases per second(Poisson)

Job Parameters
WECT 100 ms
Number of feasible intervals Uniform(1, 5), Uniform(1, 10)
Interval Length Uniform(200ms, 500ms), Uniform(200ms, 1000ms)
Distance between intervals Uniform(100ms, 300ms)

We evaluate the heuristics when jobs are processed in the first-come-first-
serve (FCFS) order and in the fewer-feasible-interval-first (FFIF) order. As
stated earlier, the heuristics use the sufficient condition u(t) ≤ 1 for schedu-
lability test. To make the performance comparison fair, the branch-and-bound
algorithm also uses this sufficient condition rather than the exact test of con-
structing an EDF schedule and checking for in-time completion. Moreover, a job
is rejected if the scheduler cannot find a feasible interval for the job.

We evaluated the priority-boosting EDF algorithm as well as the (2-level)
foreground-background (F/B) EDF algorithm. The F/B EDF algorithm gives
each ready job priority 1 when the job is in its selected feasible interval and
priority 0 when the job is not in its selected feasible interval. Priority ties are
broken on the EDF basis.

Because of space limitation, we present only representative results. Results
for other cases are similar to the ones presented in Figures 7 to 10.

4.1 Workload Generation and Performance Metrics

We generate workloads based on two parameters: the number of jobs and average
arrival rate. The former is the number of jobs in the job set; the latter is the
average number of jobs released within each second on the average. Each job is
characterized by four parameters. They are execution time, number of feasible
intervals, length of each feasible interval, and temporal distance between two
consecutive feasible intervals. By temporal distance, we mean the difference in
time between the start of a feasible interval of the job and the end of an earlier
feasible interval of the job if there is an earlier feasible interval. Before each run
of the simulation starts, timing parameters of jobs in the job set are generated.
For all of the cases simulated, the execution times of all jobs are identical. The
lengths of feasible intervals and the temporal distances between two consecutive
feasible intervals are uniformly distributed. The specific values of the parameters
used in the simulations are listed in Table 1.

We use two metrics to measure the performance of the algorithms. They are
the mean completion rate and the mean last response time. Completion rate is
the fraction of jobs in the job set completing in time as defined in Definition 1.
While computing the mean value, we only count the job sets that are schedulable.
Hence, the mean completion rate for the branch-and-bound algorithm is always

Scheduling Jobs with Multiple Feasible Intervals 67

1. However, the heuristics may not be able to complete all jobs in time. The
higher the completion rate of an algorithm, the better the algorithm..

The last response time is the largest response time of all jobs in a given
job set. When every job in the job set has only one feasible interval, all work-
conservating scheduling algorithms (i.e., priority-driven algorithms) achieve the
same last response time. However, this is not true when jobs have multiple fea-
sible intervals. Figure 5 and 6 illustrates this fact. The last response times for
different scheduling algorithms differ. The last response time measures the effi-
ciency of an algorithm in scheduling jobs to complete in time. If an algorithm is
inefficient in the sense that it frequently schedules jobs to produce void results,
jobs will likely to complete in time late if they complete in time at all. In gen-
eral, an efficient algorithm is able to achieve a smaller last response time. Mean
last response time is the mean value of the last response times collected from
sample job sets. For the sake of fairness, we only count the job sets in which
every algorithm schedules all jobs to complete in time. Otherwise, a smaller last
response time can be achieved by not completing all jobs in time.

4.2 Results and Discussions

The 90% confidence interval for each data point plotted below is no more than
0.1% of data value.

Mean Completion Rate. We simulated a heavy workload in which all jobs
arrive at time 0 and the number of feasible intervals for each job is uniformly
distributed from 1 to 5.

Figure 7 shows the mean completion rates for the algorithms.
We see that the mean completion rates are always lower when jobs are pro-

cessed in the FCFS order (plotted as dashed lines) than when jobs are processed
in the FFIF order (plotted as dotted lines). Specifically, processing jobs in the
FFIF order increases the mean completion rates by about 10% to 15% for the
First-Fit and Best-Fit algorithm. These results suggest that the First-Fit and
Best-Fit should not be used when the scheduler cannot process jobs in the FFIF
order, for instance, when scheduling is done on-line. These two algorithms often
select the first or second feasible interval for each job. When the system is heavily
loaded, the feasible intervals often overlap. When processing jobs in the FCFS
order, First-Fit and Best-Fit algorithm often cannot find feasible schedules for
jobs that are release late and have only one or two feasible intervals.

The FFIF-based heuristic algorithms achieve mean completion rates that
are within 10% of the BB algorithm. In particular, the Worst-Fit algorithm
consistently outperforms other algorithms when jobs are processed in the FFIF
order. Note that the complexities of the Worst-Fit and Best-Fit algorithm are
generally larger because they repeat the schedulability test for every feasible
interval of every job.

When the job arrival rate decreases, the mean completion rates of FFIF-based
algorithms become closer to that of the BB algorithm. The difference between
performances of different heuristics also become smaller.

68 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 15 20 25 30

M
ea

n
C

om
pl

et
io

n
R

at
e

Number of Jobs

Branch-and-Bound
FFIF Worst Fit

FFIF Best Fit
FFIF Last Fit
FFIF First Fit

FCFS Worst Fit
FCFS Best Fit
FCFS Last Fit
FCFS First Fit

Fig. 7. Mean Completion Rates(Number of FIs=1∼5)

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35 40

C
om

pl
et

io
n

R
at

e

Number of Jobs

FFIF order
FCFS order, Priority Boosting EDF

FCFS order, F/B EDF
No Selection Step, EDF

Fig. 8. Mean Completion Rates for Worst Fit algorithm(Number of FIs=1∼10)

Figure 8 shows the mean completion rates when feasible intervals are selected
by the Worst Fit algorithm and jobs are scheduled according to the priority-
boosting EDF and the F/B EDF algorithms.

When jobs are processed in the FFIF order, these scheduling algorithms have
the same performance. Hence only one plot is included here. By giving each
job a monotonically increasing priority as time becomes closer to the selected

Scheduling Jobs with Multiple Feasible Intervals 69

0

1

2

3

4

5

6

7

8

10 15 20 25 30

M
ea

n
L

as
t R

es
po

ns
e

T
im

e(
s)

Number of Jobs

Branch-and-Bound
Worst Fit

Best Fit
Last Fit
First Fit

Fig. 9. Mean Last Response Time with F/B EDF algorithm(Number of FIs=1∼20)

feasible interval of the job, the priority-boosting EDF algorithm can improve
the mean completion rate when jobs are processed in FCFS order. In particular,
the combined use of the FCFS-Worst Fit algorithm and Priority-Boosting EDF
algorithm performs nearly as well as the FFIF-Worst Fit algorithm. We also
show in this figure the mean completion rates when there is no selection step
and jobs are scheduled solely by EDF algorithm as exemplified by Figure 5(a).
As we can see, when jobs are thus scheduled, the mean completion rate drops
dramatically as the number of jobs in the job set increases.

Mean Last Response Time. Figure 9 shows the mean last response times
for the BB algorithm and the heuristics. Ready jobs are scheduled according to
the F/B EDF algorithm. In this simulation, when feasible intervals are selected
by the branch-and-bound algorithm, jobs are scheduled only in their selected
feasible intervals. As a result, the mean last response times for the branch-
and-bound algorithm may not be the minimal. Not surprisingly, the mean last
response time is the smallest and largest when feasible intervals are selected by
the First-Fit and Last-Fit algorithm, respectively. Moreover, when the feasible
intervals are selected by the Worst Fit algorithm, the mean last response time is
large in general because the Worst Fit algorithm distributes the workload over
the time line.

Figure 10 shows the mean last response time when the Priority-Boosting
EDF algorithm is used. As we can see, jobs complete earlier in general when
compared with the F/B EDF algorithm. The mean last response times achieved
by all four hueristics are close. The result shows that Priority-Boosting EDF
algorithm not only completes jobs earlier but also increases the completion rate.

70 C.-s. Shih, J.W.S. Liu, and I.K. Cheong

0

1

2

3

4

5

6

7

8

10 15 20 25 30

M
ea

n
L

as
t R

es
po

ns
e

T
im

e(
s)

Number of Jobs

Branch-and-Bound
Worst Fit

Best Fit
Last Fit
First Fit

Fig. 10. Mean Last Response Time with Priority-Boosting EDF algorithm(Number of
FIs=1∼20)

In summary, our simulation results show that the FFIF-Worst Fit algorithm
can select feasible intervals such that the completion rate is close to that by the
branch-and-bound algorithm. When the system is heavily loaded, the difference
of mean completion rates is always less than 10%. When jobs are processed in the
FCFS order, the combination of the Worst-Fit algorithm and Priority-Boosting
EDF algorithm performs as well as the FFIF-Worst Fit algorithm.

5 Summary

We presented here the multiple feasible interval job model which characterizes
real-time applications in which a job is constrained to execute in disjoint time in-
tervals. These intervals are called feasible intervals. We developed an exponential-
time branch-and-bound algorithm and several polynomial-time heuristics for se-
lecting a feasible interval for each job so that all jobs can complete in time.
After feasible intervals have been selected for all jobs that are schedulable, the
Priority-Boosting EDF algorithm presented here improves the timeliness of jobs.

We evaluated the proposed heuristics by extensive simulations and compared
their performance against that of the branch-and-bound algorithm. The result
shows that FFIF-Worst Fit algorithm performs as well as the branch-and-bound
algorithm. Whenever it is not possible to sort the jobs based on the number of
feasible intervals of jobs, the combined use of the FCFS Worst-Fit algorithm and
Priority-Boosting algorithm achieves the similar performance of the FFIF-Worst
Fit algorithm.

Scheduling Jobs with Multiple Feasible Intervals 71

Acknowledgment. This work is supported in part by a grant from the MURI
program N00014-01-0576, in part by ONR N0004-02-0102, and in part by Lock-
heed Martin Corporation 1-5-36137.

References

[1] I. K. Cheong. Scheduling Imprecise Hard Real-Time Jobs with Cumulative Error.
PhD thesis, University of Illinois at Urbana-Champaign, 1992.

[2] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded
systems that allow skips. In Proceedings of the IEEE Real-Time Systems Sympo-
sium, pages 110–117, 1995.

[3] H. Aydin, P. Mejia-Alvarez, R. G. Melhem, and D. Mossè. Optimal reward-based
scheduling of periodic real-time tasks. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 79–89, 1999.

[4] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow
imprecise results. IEEE Transaction on Computers, 39(9):1156 – 1175, September
1990.

[5] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for
streams with (m, k)-firm deadlines. IEEE Transaction on Computers, 44(12):1443
– 1451, December 1995.

[6] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[7] C.-C. Han and K.-J. Lin. Scheduling distance-constrained real-time tasks. In
Proceedings of the IEEE Real-Time Systems Symposium, pages 300 – 308, Dec.
1992.

[8] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time
systems. Real-time Systems Journal, July 1989.

[9] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the
theory of NP-completeness. W. H. Freeman, 1979.

[10] Z. Deng, J. W.-S. Liu, and J. Sun. A scheme for scheduling hard real-time applica-
tion in open system environment. In Proceedings of the 9th Euromicro Conference
on Real-Time Systems, pages 191–199, Toledo, Spain, June 1997. IEEE.

[11] J. W.-S. Liu. Real-Time Systems. Prentice Hall Inc., 2000.

Deterministic and Statistical Deadline
Guarantees for a Mixed Set of Periodic and

Aperiodic Tasks�

Minsoo Ryu1 and Seongsoo Hong2

1 College of Information and Communications,
Hanyang University, Haengdang-Dong 17,

Seongdong-Gu, Seoul 133-791, Korea
msryu@redwood.snu.ac.kr

2 School of Electrical Engineering and Computer Science,
Seoul National University, San 56-1,

Shillim-Dong, Gwanak-Gu, Seoul 151-742, Korea
sshong@redwood.snu.ac.kr

Abstract. Current hard real-time technologies are unable to support
a new class of applications that have real-time constraints but with
dynamic request arrivals and unpredictable resource requirements. We
propose two new admission control approaches to address this problem.
First, we present an efficient schedulability test, called utilization de-
mand analysis, to handle periodic and aperiodic tasks with deterministic
execution times. The utilization demand is defined as the processor uti-
lization required for a mixed task set to meet deadlines with certainty,
thus for deterministic deadline guarantees. We show that the utiliza-
tion demand analysis eliminates the need for complicated schedulability
analysis and enables on-line admission control. Second, we present a sta-
tistical admission control scheme using effective execution times to han-
dle stochastic execution times. Effective execution times are determined
from the deadline miss probability demanded by the application and
stochastic properties of task execution times. Every task is associated
with an effective execution time and is restricted to using processor time
not exceeding its effective execution time. This scheme allows every task
to meet its deadline with a specified probability without being interfered
with, and greatly simplifies the admission control when combined with
the utilization demand analysis.

1 Introduction

The emergence of distributed multimedia applications with demanding QoS re-
quirements is setting forth new challenges for real-time systems. Such new ap-
� The work reported in this paper was supported in part by the Korea Research Foun-

dation Grant (KRF-2003-003-D00340), by the research fund of Hanyang University
(HY-2003-T), by the National Research Laboratory (NRL) Grant M1-9911-00-0120,
by the Institute of Computer Technology (ICT), and by the Automation and Systems
Research Institute (ASRI).

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 72–87, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Deterministic and Statistical Deadline Guarantees 73

plications including video conferencing and interactive distance learning require
real-time performance guarantees for the delivery and processing of continuous
media data. However, despite recent developments in real-time computing, cur-
rent hard real-time solutions cannot be directly applied to these applications.
While most real-time research has put an emphasis on the periodic task model
[15,2,12,3,14] in which task arrivals and execution times are deterministic, multi-
media applications have two distinguishing characteristics. First, processor usage
patterns include both periodic and aperiodic tasks. For example, a query for con-
tinuous media requires periodic tasks for delivery and processing of continuous
data, and a query on a database of static data types requires aperiodic tasks.
Second, task execution times are either deterministic or stochastic, such as CBR
(constant bit rate) video data versus VBR (variable bit rate) data. In this paper,
we attempt to provide deadline guarantees via admission control for real-time
tasks while allowing randomness in arrivals and execution times. Such deadline
guarantees can be either deterministic or statistical depending on the charac-
teristics of task execution times. When task execution times are upper bounded
and their bounds are known, deterministic deadline guarantees can be provided
so that all tasks meet deadlines at run-time. The deterministic guarantee pro-
vides the highest level of deadline guarantees, however, it may be an overly
conservative approach for some multimedia applications which are not greatly
impacted by infrequent deadline misses. This necessitates statistical deadline
guarantees. When task execution times are not bounded or exhibit great vari-
ability, a statistical approach provides probabilistic deadline guarantees with a
specified probability.

We present new admission control approaches for both types of deadline
guarantees. First, we propose an efficient schedulability test, called utilization
demand analysis, to handle periodic and aperiodic tasks with deterministic ex-
ecution times. The utilization demand is defined as the processor utilization
required for a mixed task set to meet all deadlines. We use the utilization de-
mand to develop a schedulability test for deterministic deadline guarantees under
EDF. We show that the utilization demand analysis eliminates the need for com-
plicated schedulability analysis and enables on-line admission control. Also, as
we will see later, the utilization demand provides a useful means for statistical
deadline guarantees.

Second, we present two admission control schemes to provide statistical dead-
line guarantees by bounding the probability that tasks miss deadlines. In gen-
eral, priority driven scheduling algorithms like EDF, unlike WFQ (weighted fair
queueing), inherently lack the “isolation” mechanism to protect tasks from one
another. If a task runs arbitrarily long, bounding deadline miss probabilities of
its subsequent tasks is significantly problematic. To overcome this problem, we
propose to discard tasks that match specific criteria. Our first approach is to
discard tasks missing deadlines, and this allows us to compute deadline miss
probabilities under the worst case. The shortcoming of this approach, however,
is that it leads to computationally complex algorithms since computing probabil-
ities generally requires expensive convolution operations. Our second approach

74 M. Ryu and S. Hong

improves upon the first one by aggressively discarding tasks. We use effective exe-
cution times which are determined from the deadline miss probability demanded
by the application and stochastic properties of execution times. Every task is
associated with an effective execution time and is restricted to using processor
time not exceeding its effective execution time. If a task consumes processor time
more than its effective execution time, it is immediately discarded. This scheme
allows every task to meet its deadline with a specified probability without being
interfered with, and greatly simplifies the admission control when combined with
the utilization demand analysis.

1.1 Related Work

A number of techniques have been proposed to handle mixes of periodic and
aperiodic tasks [13,16,6,17,7,8]. The algorithms in [13,16,6,17] assume that ape-
riodic tasks are soft real-time and give preferential treatment to periodic tasks.
In these aproaches, aperiodic tasks are handled at a lower priority level in the
background, or at a some fixed priority level by a special periodic task which
serves aperiodic requests with its limited capacity. The algorithms proposed in
[11,5] handle aperiodic tasks with explicit deadlines. Also, they are known to
be optimal with regard to specific criteria, for example, of the response time or
processor utilization. However, they not only require complete knowledge of the
periodic tasks, but also have high computational complexities when used on-line.
In our model, all aperiodic tasks have explicit deadlines and are scheduled by
the same scheduling policy as periodic tasks. Moreover, our utilization demand
method eliminates the need for complicated schedulability analysis, requiring
low run-time overhead.

In the meantime, several researchers have worked on non-deterministic so-
lutions to real-time scheduling problems with stochastic execution times. The
statistical rate monotonic scheduling (SRMS) in [1] is a non-deterministic ver-
sion of the classical rate monotonic scheduling. Under the assumption that the
accurate execution time of a task is known when the task arrives, SRMS allows
one to compute the percentage of deadline misses. Tia et al. [18] proposed two
methods to handle stochastic task execution times, probabilistic time-demand
analysis and transform-task method. The probabilistic time-demand analysis at-
tempts to provide a lower bound on the probability that a periodic task meets
its deadline under fixed priority scheduling. The probabilistic time-demand anal-
ysis is based on the notion of critical instant at which the first instances in all
periodic tasks are released simultaneously. The critical instant leads to the worst
case when all tasks complete before their deadlines, i.e., when no backlog exists.
However, it has not been proven for unbounded execution times that the crit-
ical instant is the worst case. Another method, called transform-task method,
divides each task into a periodic task and a sporadic task. The periodic task has
the same period as the original task and has a fixed execution time that should
be chosen such that all the periodic tasks in the system are schedulable. If the
actual execution time of a periodic task is larger than the fixed execution time

Deterministic and Statistical Deadline Guarantees 75

at run-time, the excessive portion of the task is modeled as a sporadic task that
can be scheduled by either a sporadic server or a slack stealing algorithm.

The key idea of our effective execution time method is similar to that of the
transform-task method in that each task is associated with a fixed amount of
execution time and its processor usage is enforced accordingly. Our contribution
is to give a formal definition of effective execution times based on the notion
of statistical schedulability and to combine effective execution times with the
utilization demand analysis in order to provide an efficient, statistical version
of admission control scheme. In fact, the use of effective execution times allows
us to easily extend existing deterministic scheduling algorithms and analysis
techniques to handle stochastic execution times.

The remainder of this paper is organized as follows. In Section 2, we discuss
our models and assumptions. Section 3 describes the utilization demand method
for schedulability analysis of aperiodic tasks with known worst case execution
times. This method is then applied to a mixed set of periodic and aperiodic
tasks. Section 4 introduces two techniques for statistical deadline guarantees. The
first technique bounds deadline miss probabilities by discarding tasks missing
deadlines. The second technique uses effective execution times as its discard
criterion. We will combine effective execution times with utilization demands to
provide an efficient admission test. We then conclude in Section 5.

2 Models and Assumptions

Consider a set of aperiodic tasks Q = {τ1, τ2, . . . , τi, . . .} where tasks are in
arrival order, i.e., τi arrives earlier than τi+1. We use Q(t) ⊂ Q to denote the
set of tasks that have arrived before t and have not completed by t. Every
aperiodic task τi ∈ Q has an arrival time Ai, an execution time requirement ei,
and a relative deadline di from its arrival time. The absolute deadline Di of τi

is computed by Di = Ai + di. If the execution time ei is bounded from above,
then its least upper bound is denoted by emax

i . Otherwise, we assume that ei

is an independent random variable and is distributed according to probability
density function (pdf) gei(e).

We use similar notation for periodic tasks. Periodic task τ̃i with period T̃i

can be considered as a finite or infinite sequence of aperiodic requests. Such
aperiodic requests are referred to as periodic task instances which are denoted
by τ̃i,j . Each periodic task instance τ̃i,j has an execution time requirement ẽi,j

and a common relative deadline d̃i. Note that we use the periodic task model
[15] where the relative deadline of a task is equal to its period, i.e., d̃i = T̃i.
If ẽi,j is upper bounded for all j, then the least upper bound is denoted by
ẽmax

i . Otherwise, we assume that all ẽi,j are independent random variables that
are identically distributed according to the same probability density function
gẽi

(e). Unlike aperiodic tasks, we use Ãi to denote the release time of the first
instance τ̃i,1. Using this, the absolute deadline D̃i,j of τ̃i,j is computed by D̃i,j =
Ãi + (j − 1)T̃i + d̃i.

76 M. Ryu and S. Hong

In our discussions, we assume a simple system architecture consisting of two
components, an admission controller and a processor scheduler, as in Figure 1.
The admission controller, through admit or reject, is responsible for ensuring
that the system can provide promised deadline guarantees for all tasks accepted.
The processor scheduler in turn allocates processor time to tasks according a
particular scheduling algorithm. This simple architecture allows us to consider
a wide variety of models for end system operation and configuration. Note that
in the case of deterministic deadline guarantees, a periodic task is said to be
schedulable if all instances meet their deadlines. To do so, the admission con-
troller is responsible for admission of all future instances of accepted periodic
tasks.

Admission
ControllerArrive

RejectReject

Queue

Scheduler Depart

Task

EDF

Fig. 1. End system architecture

The scheduling algorithm considered here is earliest deadline first (EDF)[15].
EDF was selected for two reasons. First, EDF is known to be optimal for de-
terministic deadline guarantees in the sense that it can schedule any task set
which is schedulable by any other algorithm. Even though optimality of EDF
has not been proven in a statistical environment, it still serves as a benchmark
for other scheduling algorithms. Second, EDF algorithm allows for utilization-
based schedulability tests which incur little run-time overhead. Under EDF, if
the utilization of a task set does not exceed one, then the set is schedulable. We
will show that, in the next section, the utilization-based test and our utilization
demand analysis can be combined successfully into an integrated schedulability
test. Note that though we choose EDF for task scheduling, most of our techniques
are applicable to a variety of priority driven scheduling algorithms.

3 Utilization Demand Analysis and Deterministic
Deadline Guarantees

In this section we introduce the utilization demand analysis which provides a
schedulability test for a mixed task set. We first define utilization demands for
aperiodic tasks, and derive a necessary and sufficient schedulability condition. We
then develop an integrated schedulability test for a mixed set. The schedulability
tests developed in this section are used for deterministic deadline guarantees.

Deterministic and Statistical Deadline Guarantees 77

Table 1. Summary of notation

Notation Meaning
Q Set of aperiodic tasks

Q(t) Set of aperiodic tasks that have arrived before t and have not
completed by t

Q(t, hp(τ)) Set of aperiodic tasks that have higher priorities than τi in Q(t)
τi, τ̃i, τ̃i,j Aperiodic task, periodic task, periodic task instance

Ai, ei, di, Di Arrival time, execution time, relative deadline, and absolute
deadline of τi

fi Finish time of τi

emax
i Worst case execution time of τi

epast
i,t Allocated processor time for τi by t

eres
i,t Maximum residual execution time of τi at t (eres

i,t = emax
i − epast

i,t)
dres

i,t Lead time of τi at t (Di − t)
Ãi, ẽi,j , d̃i, D̃i,j Release time, execution time, relative deadline, and absolute

deadline of τ̃i,j

T̃i Period of τ̃i

ẽmax
i Worst case execution time of τ̃i

gei(e), geres
i,t

(e) pdf of ei, pdf of eres
i,t

uQ(t)(τi) Utilization demand of τi ∈ Q(t)
UQ(t) Maximum utilization demand of Q(t)

3.1 Utilization Demands for Aperiodic Tasks

Consider a set of aperiodic tasks Q = {τ1, τ2, . . . , τi, . . .} under priority driven
scheduling policy. In order to determine Q(t) is schedulable at t, we need to con-
sider two dynamic variables for each task τi ∈ Q(t), maximum residual execution
time eres

i,t and lead time dres
i,t . At time t, the maximum residual execution time

eres
i,t of τi is the maximum of remaining processor time to complete τi. The lead

time dres
i,t of τi is the difference between its absolute deadline Di and the current

time t [10], i.e., Di − t. Keeping these two dynamic variables provides sufficient
information for the schedulability test of Q(t). Table 1 summarizes the notation
used throughout this paper.

We are now ready to define utilization demands for aperiodic tasks. Roughly,
a utilization demand of τi ∈ Q(t) is defined as the processor time required to
meet its deadline divided by its lead time. Since τi can start only after its higher-
priority tasks complete, we need to consider the sum of residual execution times
of itself and its higher-priority tasks. Let Q(t, hp(τi)) ⊂ Q(t) be the set of tasks
that have higher priorities than τi. The utilization demand of τi is defined by

uQ(t)(τi)
def=

∑
τj∈Q(t,hp(τi)) eres

j,t + eres
i,t

dres
i,t

. (1)

78 M. Ryu and S. Hong

The maximum utilization demand UQ(t) is defined for the set Q(t) as below.

UQ(t)
def= max

i
[uQ(t)(τi)]. (2)

The following theorem shows a necessary and sufficient schedulability
condition for an aperiodic task set.

Theorem 3.1. Aperiodic task set Q(t) = {τm, τm+1, . . . , τn} is schedulable if
and only if

UQ(t) ≤ 1. (3)

Proof. We consider the “if” part first. Let fi be the worst case finish time
of τi ∈ Q(t). The finish time fi will be current time plus the sum of residual
execution times of higher priority tasks including τi’s execution time. By the
definition of utilization demand in Eq.(1), we have

fi = t +
∑

τj∈Q(t,hp(τi))

eres
j,t + eres

i,t

= t + dres
i,t · uQ(t)(τi)

= t + (Di − t) · uQ(t)(τi).

Since uQ(τi,ti) ≤ UQ(t) ≤ 1,

t + (Di − t) · uQ(t)(τi) ≤ t + (Di − t)
≤ Di.

Next, we consider the “only if” part. The proof is by contradiction. If we assume
that Q(t) = {τ1, τ2, . . . , τn} is schedulable and UQ(ti) > 1, then there exists τi

such that uQ(τi, t) > 1. Hence,

fi = t +
∑

τj∈Q(t,hp(τi))

eres
j,t + eres

i,t

= t + (Di − t) · uQ(t)(τi)
> t + (Di − t) = Di.

This contradicts the assumption that Q(t) is schedulable. ��
Obviously, a new task arrival affects the schedulability of Q(t) while task

departures do not. Therefore, the above schedulability test is valid only until
the next arrival time of a new task. This necessitates testing of schedulability at
every task arrival. Figure 2 illustrates the maximum utilization demand UQ(t)
with several task arrivals and departures. At t3, the utilization demand jumps
to above one. It is easy to show that if UQ(t) is less than one at t, UQ(t) is a
decreasing function of time until the next arrival time.

Deterministic and Statistical Deadline Guarantees 79

1

arrive

t1 t2 t3 time

depart

depart depart

arrive arrive

Fig. 2. Utilization demand for a dynamic task set with arrivals and departures

Our second theorem shows the subadditivity property of the utilization de-
mand function. This property is essential in devising an integrated shedulability
condition for a mixed set of periodic and aperiodic tasks.

Theorem 3.2. For any two aperiodic task sets,

UQ1(t)∪Q2(t) ≤ UQ1(t) + UQ2(t). (4)

Proof. See Appendix A.

3.2 Schedulabiltiy Condition for a Mixed Task Set

We now generalize the utilization demand analysis for a mixed set of periodic
and aperiodic tasks. Basically, all instances of periodic tasks can be considered as
aperiodic tasks. This gives a possibility to apply the utilization demand method
to periodic tasks. Suppose that P = {τ̃1, τ̃2, . . . , τ̃N} is a set of periodic tasks.
This periodic task set can be associated with an equivalent aperiodic task set
QP which consists of all task instances generated by P . Thus, P is schedulable
if and only if all tasks in QP are schedulable.

In the following theorem, we show an important relationship between the
utilization demand and the utilization of a periodic task set. The following
theorem states that the utilization of P is equal to or greater than the maximum
utilization demand of QP .

Theorem 3.3. Let UP =
∑N

i=1
ẽmax

i

T̃i
be the utilization of periodic task set P =

{τ̃1, τ̃2, . . . , τ̃N}. If P is schedulable by EDF, then

UQP (t) ≤ UP (5)

for all t ≥ 0.

80 M. Ryu and S. Hong

Proof. For an arbitrary t, suppose that QP (t) = {τm, . . . , τi, . . . , τn}. Without
loss of generality, assume that the maximum utilization demand is UQP (t) =
uQP (t)(τi). At this moment t, we inject a new periodic task into P such that P is
still schedulable. Consider a new periodic task τ̃∗ whose period is T̃∗ = Di − Ai.
We set ẽ∗ = T̃∗ · (1−UP) so that UP + ẽ∗

T̃∗
= 1, then P ∪{τ̃∗} will be schedulable

by EDF. If we release the first instance τ̃∗,1 immediately before Ai, then τ̃∗,1 has
an absolute deadline earlier than τi. According to EDF policy, the priority of
τ̃∗,1 is higher than that of τi. Hence, τi would be preempted and delayed by the
amount of ẽ∗, but τi still meets its deadline Di. Let fnew

i be the finish time of
delayed τi, then we have

fnew
i = fi + ẽ∗

= t + (Di − t) · uQP (t)(τi) + ẽ∗ ≤ Di. (6)

By subtracting (ti + ẽ∗) from both sides of Ineq.(6) and deviding both sides by
(Di − t), we have

uQP (t)(τi) ≤ Di − ẽ∗ − t

Di − t
(7)

= 1 − ẽ∗
Di − t

(8)

= 1 − (1 − UP) = UP . (9)

Eq.(9) follows from ẽ∗ = T̃∗(1 − UP) = (Di − t)(1 − UP). This completes the
proof. ��

We are now able to derive a schedulability condition for a mixed task set.
Let P be the set of periodic tasks and its utilization be UP . The following
theorem gives a sufficient condition.

Theorem 3.4. Given periodic task set P and aperiodic task set Q(t), if UP +
UQ(t) ≤ 1, then P ∪ Q(t) is schedulable by an EDF scheduler.
Proof. Let QP be the equivalent aperiodic task set of P . It suffices to show that
QP (t) ∪ Q(t) is schedulable for any t. We show that UQP (t)∪Q(t) ≤ 1.

UQP (t)∪Q(t) ≤ UQP (t) + UQ(t) (10)
≤ UP + UQ(t) ≤ 1. (11)

Ineq.(11) follows from Theorem 3.2 and Ineq.(11) follows from Theorem 3.3.
This completes the proof. ��

Using Theorem 3.4 one can easily determine the schedulability for a mixed
task set in a similar fashion as with the utilization-based test for periodic task
sets. Note that all periodic tasks can meet deadlines under EDF algorithm if the
sum of their utilization factors does not exceed one. It is easy to see that the
algorithm for the utilization demand analysis has a run time of O(n) where n
is the number of aperiodic tasks in the system. Computing utilization demands
requires maintaining small data structure for residual execution times and lead
times. Also, this requires low run-time overhead, since these variables need to
be computed only when new tasks arrive.

Deterministic and Statistical Deadline Guarantees 81

4 Effective Execution Times and Statistical Deadline
Guarantees

In this section, we present two statistical approaches to handling stochastic ex-
ecution times. We use two task discard policies to bound deadline miss proba-
bilities. The first approach is based on deadline miss handling. It discards tasks
missing deadlines, and this allows us to bound deadline miss probabilities of
tasks. The second approach associates each task with a fixed amount of pro-
cessor time, effective execution time, that is allocated to the task. It discards
any task whose processor usage exceeds its allocated processor time. Combined
with the utilization demand analysis, effective execution times enable an efficient
admission control with a surprising simplicity.

4.1 Statistical Deadline Guarantees with Deadline Miss Handling

A statistical approach allows for a small deadline miss probability. Specifically,
the probabilistic deadline guarantee is provided in the form of

Pr(fi > Di) ≤ ε (12)

where ε is generally small, e.g., ε = 0.01. Using this condition, we can formally
define the statistical version of schedulability.

Definition 1. If the probability that a task τi misses its deadline is equal to or
less than ε, τi is said to be statistically schedulable with probability 1 − ε

Consider a task τi and a task set Q. We will use the execution time ei and
residual execution eres

i,t as random variables throughout this section. The deadline
miss probability of τi can be stated as

Pr(fi > Di) = Pr(
∑

τj∈Q(Ai,hp(τi))

eres
j,Ai

+
∑

τk∈Q((Ai,fi],hp(τi))

ek + ei > di) (13)

where Q((Ai, fi], hp(τi)) contains τi’s higher priority tasks that will be admit-
ted between the arrival and completion of τi. Thus, to provide the statistical
guarantee for τi, an admission policy must always ensure Pr(fi > Di) ≤ ε by
appropriately maintaining the future task set Q((Ai, fi], hp(τi)). Whenever a
new task τk arrives, the system needs to ensure Pr(fi > Di) ≤ ε for every τi as
well as Pr(fk > Dk) ≤ ε for τk.

We now apply Eq.(13) to periodic tasks. As mentioned above, we assume
that tasks missing deadlines are immediately discarded. Without this as-
sumption, a periodic task instance τ̃i,j may not complete by the release of a
subsequent instance τ̃i,j+1. Since such a backlog τ̃i,j can be arbitrarily long, all
the subsequent task instances may miss deadlines. This is called the domino
effect [4]. Discarding tasks that miss deadlines avoids such domino effects and
keeps the system predictable. The following theorem provides a statistical

82 M. Ryu and S. Hong

schedulability condition for a periodic task set. The intuition that motivates
the theorem is that we can find the worst case since future arrivals are known
due to the periodicity.

Theorem 4.1. Suppose tasks missing deadlines are immediately discarded for a
given periodic task set P = {τ̃1, τ̃2, . . . , τ̃N}. Task τi ∈ P is statistically schedu-
lable with probability 1 − ε if the following holds.

Pr(f̃i,j > D̃i,j) ≤ Pr(
N∑

k=1

ẽk · (� T̃i

T̃k

	 + 1) ≥ T̃i). (14)

Proof. Consider the equivalent aperiodic task set QP of P . At time Ãi,j , we
have QP (Ãi,j) = {τm, . . . , τn} where τn is τ̃i,j . Since dn = d̃i = T̃i for τn, we can
write Ineq.(13)

Pr(fn > Dn)

= Pr(
∑

τk∈QP (An,hp(τn))

eres
k,An

+
∑

τk∈QP ((An,fn],hp(τn))

ek + en > T̃i).

We can see that QP (An, hp(τn)) can include no more than one instance per each
periodic task τ̃k ∈ P , since all the previous instances are finished or discarded
before their deadlines. Thus, we have∑

τk∈QP (An,hp(τn))

eres
k,An

≤
∑

τ̃k∈P

ẽk. (15)

We then find the worst-case workload of
∑

τk∈QP ((An,fn],hp(τn)) ek +en. For each

periodic task τ̃k ∈ P , there are at most � T̃i

T̃k
	 new arrivals at QP in the interval

(An, fn] where T̃i = d̃i ≥ fn − An. Thus,

∑
τk∈QP (An,hp(τn))

ek + en ≤
∑

τ̃k∈P

� T̃i

T̃k

	ẽk. (16)

It immediately follows from Eq.(15) and Eq.(16)

∑
τk∈QP (An,hp(τn))

eres
k,An

+
∑

τk∈QP (An,hp(τn))

ek + en

≤
∑

τ̃k∈P

ẽk +
∑

τ̃k∈P

� T̃i

T̃k

	ẽk. (17)

This leads to Ineq.(14). ��
By combining Eq.(13) and Eq.(14), we can obtain the following admission

condition for a mixture of a periodic task set P = {τ̃1, τ̃2, . . . , τ̃i, . . . , τ̃N} and an

Deterministic and Statistical Deadline Guarantees 83

aperiodic task set Q(t) = {τm, . . . , τj , . . . , τn}. Aperiodic task τi ∈ Q(t) can be
admitted if the following can be satisfied.

Pr(fi > Di) = Pr(
∑

τj∈Q(Ai,hp(τi))∪QP (Ai,hp(τi))

eres
j,Ai

+
∑
τ̃j∈P

� di

T̃j

	ẽj

+
∑

τk∈Q(Ai,fi],hp(τi))

ek + ei > di) ≤ ε (18)

where
∑

τ̃i∈P �dj

T̃i
	ẽi represents the sum of execution times of periodic task in-

stances that arrive with higher priorities than τi during the execution of τi.
Applying the above condition to admission control requires computing dead-

line miss probabilities at run-time. If task execution times are statistically in-
dependent, we can compute deadline miss probabilities by convolving sum of
random variables. For instance, the probability given in Eq.(13) can be written
as below.

Pr(fi > Di)

= Pr(
∑

τj∈Q(Ai,hp(τi))

eres
j,Ai

+
∑

τk∈Q((Ai,fi],hp(τi))

ek + ei > di) (19)

= 1 −
∫

Q(Ai,hp(τi))∪Q[Ai,fi]∪{τi}
gres

ej,t
(e) ∗ . . . gek

(e) ∗ . . . gei,t
(e)de (20)

where geres
j,t

(e) is the pdf of eres
j,t for τj ∈ Q(Ai, hp(τi)), gek

(e) is the pdf of ek for
τk ∈ Q((Ai, fi], hp(τi)), and gei,t(e) is the pdf of ei. Let epast

j,t be the processor
time consumed by τj from its arrival time to current time t. Given the probability
density function gej

(e), we have

gej,t
(e) =

{
0 if e < 0
gej

(e+epast
j,t

)

1−Gej
(epast

j,t
)

otherwise (21)

where Gej
(epast

j,t) =
∫ epast

j,t

0 gej
(e)de.

In fact, the admission control using Eq.(18) leads to computationally complex
algorithms since it involves expensive convolution operations. Note that convolu-
tion operations are very expensive. For instance, the computational complexity
of convolution g ∗h is known to be O(n2) where n is the number of points in dis-
cretized functions of g and h. Although the run-time overhead can be reduced if
we use FFT (Fast Fourier Transform) [9], the algorithm still requires O(nlog2n)
for g ∗ h. Our next approach eliminates the need for convolutions by taking
advantage of effective execution times, thus enabling efficient on-line admission
control.

4.2 Effective Execution Times and Overrun Handling

The approach in the previous section is based on the assumption that tasks
missing deadlines are discarded. This allows us to bound deadline miss proba-
bilities but leads to computationally complex algorithms. Our second approach

84 M. Ryu and S. Hong

improves upon this by aggressively discarding tasks. Every task is associated
with a particular amount of processor time, called effective execution time, and
the admission control is performed using effective execution times. If any task
overruns its effective execution time, it is immediately discarded. By overrun,
we mean that a task consumes processor time more than its effective execution
time.

The objective of preventing task overruns is to isolate tasks from one another.
Under this scheme, every task can independently receive processor time up to
the amount of its effective execution time. Thus, the deadline miss probability of
a task is not adversely affected by other tasks. If we choose appropriate values for
effective execution times for a given bound ε, tasks can be statistically schedu-
lable with probability 1− ε. To choose the minimal processor time required for a
given bound, we can define the effective execution time eε

i of τi as a function of
the required deadline miss probability ε and probability density function gei

(e).∫ eε

0
gei

(x)dx = 1 − ε. (22)

Clearly, discarding overrun tasks has the implication that execution times
are bounded. The great benefit of this is that it allows us to integrate effective
execution times and the deterministic techniques we developed in section 3.
Using effective execution times, we can define statistical versions of utilization
demand and maximum utilization demand as below.

uε
Q(t)(τi)

def=

∑
τj∈Q(t,hp(τi)) eres,ε

j,t + eε
i

dres
i,t

and U ε
Q(t)

def= max
i

[uε
Q(t)(τi)] (23)

where eres,ε
j,t = eε

j,t − epast
j,t .

Using the above definitions, the following theorem provides a statistical
version of schedulability condition for a mixed set.

Theorem 4.2. Given a periodic task set P and aperiodic task set Q(t), QP ∪Q(t)
is statistically schedulable with probability 1 − ε if the following holds.

U ε
Q(t) + U ε

P ≤ 1 (24)

where U ε
P =

∑
τi∈P

ẽε
i

T̃i
.

Proof. Let S(t) be Q(t) ∪ QP . Thus, it suffices to show that any aperiodic task
τi in S = {τ1, . . . , τi, . . .} is statistically schedulable if U ε

S(t) ≤ 1. Consider the
deadline miss probability of τi ∈ S.

Pr(fi > Di) = Pr(
∑

τj∈S(Ai,hp(τi))

eres
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

ej + ei > Di).(25)

Since eres
j ≤ eres,ε

j and ej ≤ eε
j for any τj , we have

Pr(fi > Di) = Pr(
∑

τj∈S(Ai,hp(τi))

eres
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

ej + ei > Di) (26)

≥ Pr(
∑

τj∈S(Ai,hp(τi))

eres,ε
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

eε
j + ei > Di).(27)

Deterministic and Statistical Deadline Guarantees 85

U ε
S(t) ≤ 1 implies

∑
τj∈S(Ai,hp(τi)) eres,ε

j,Ai
+
∑

τj∈S((Ai,fi],hp(τi)) eε
j + eε

i ≤ Di, thus
we have

Pr(fi > Di) ≥ Pr(
∑

τj∈S(Ai,hp(τi))

eres,ε
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

eε
j + ei >

∑
τj∈S(Ai,hp(τi))

eres,ε
j,Ai

+
∑

τj∈S((Ai,fi],hp(τi))

eε
j + eε

i)

= Pr(ei > eε
i). (28)

This completes the proof. ��
In many applications, it may be unnecessarily stringent to discard overrun

tasks. If the system is not overloaded, it is often advantageous to allow overruns
as long as its further execution does not interfere with other admitted tasks.
There are two other possibilities for handling overruns without affecting
statistical guarantees for other admitted tasks. The first one is to give second
chances to overrun tasks. Under this, the overrun task, whether it is periodic or
aperiodic, is treated as a new aperiodic task. This task can receive processor
time if it passes new admission test. The other one is to provide utilization
slack. The use of utilization slack is similar to the idea of slack stealing [6,
11]. By Theorem 3.4, we can determine utilization slack and estimate available
processor time for an overrun task. The following theorem shows how to
estimate available processor time.

Theorem 4.3. Suppose that τi ∈ Q(t)∪QP under EDF overruns at time t, where
QP is an equivalent aperiodic task set of P . Let eslack

i be the available processor
time for τi such that every task τj in Q(t) ∪ QP is statistically schedulable with
probability 1 − ε. The available processor time eslack

i (t) satisfies the following

eslack
i (t) ≤ dres

i,t · (1 − U ε
P − U ε

Q(t)) (29)

where UP is the utilization of P .
Proof. Let S(t) be Q(t) ∪ QP . Clearly, τi has the highest priority in S(t) at
t, since τi is executing at t. Thus, if we increase the execution time of τi to
ei +eslack

i , this affects utilization demands of all the remaining tasks in S(t). Let
ûS(t)(τj) be a new utilization demand for any τj ∈ S(t), then we can write

ûS(t)(τj) =

∑
τk∈S(t,hp(τj)) eres,ε

k,t + eres,ε
j,t + eslack

i

dres
j,t

(30)

=

∑
τk∈S(t,hp(τj)) eres,ε

k,t + eres,ε
j,t

dres
j,t

+
dres

i,t · (1 − U ε
P − U ε

Q(t))

dres
j,t

. (31)

Since dres
i,j ≤ dres

j,t ,

ûS(t)(τj) ≤
∑

τk∈S(t,hp(τj)) eres,ε
k,t + eres,ε

j,t

dres
j,t

+ (1 − U ε
P − U ε

Q(t)) (32)

≤ UP + U ε
Q(t) + (1 − U ε

P − U ε
Q(t)) = 1. (33)

86 M. Ryu and S. Hong

5 Conclusion

We have proposed three approaches to deadline guarantees for a mixed set of
periodic and aperiodic tasks. First, we have presented a new schedulability anal-
ysis, called utilization demand analysis, which can be applied to periodic and
aperiodic tasks with deterministic execution times. We have shown that the
algorithm for this analysis has a run time of O(n), and thus it enables an effi-
cient on-line admission control. Second, we have presented a statistical admission
control scheme based on deadline miss handling. By discarding tasks missing
deadlines, this scheme allows us to bound deadline miss probabilities of tasks.
Third, we have presented an improved statistical scheme using effective execu-
tion times. By handling overruns, effective execution times allow tasks to meet
deadlines with a specified probability without being interfered with. Combined
with the utilization demand analysis, effective execution times greatly simplify
the admission control.

There are several future research directions. First, we could extend the un-
tilization demand analysis for fixed priority scheduling algorithms such as rate
monotonic (RM) algorithm. Second, we could evaluate a tradeoff between dead-
line miss probability and throughput of the system. Although we have not con-
sidered this problem in this paper, the results presented here will be useful in
such evaluation.

References

1. Atlas, A. K., Bestavros, A.: Statistical Rate Monotonic Scheduling. IEEE Real-
Time Systems Symposium, IEEE Computer Society Press (1998), 123–132

2. Audsley, N., Burns, A., Richardson, M., Wellings, A.: Hard Real-Time Schedul-
ing: The Deadline-Monotonic Approach. IEEE Workshop on Real-Time Operating
Systems and Software (1991), 133–137

3. Baker, T. and Shaw, A.: The Cyclic Executive Model and Ada. The Journal of
Real-Time Systems (1989), 1(1):7–25

4. Buttazzo, G.: Value vs. Deadline Scheduling in Overload Conditions. IEEE Real-
Time Systems Symposium, IEEE Computer Society Press (1995), 90–99

5. Chetto, H., Chetto, M.: Some Results of the Earliest Deadline First Scheduling
Algorithm. IEEE Transactions on Software Engineering, IEEE Computer Society
Press (1989), 15(10):1261–1268

6. Davis, R., Tindell, K., Burns, A.: Scheduling Slack Time in Fixed Priority Pre-
emptive Systems. IEEE Real-Time Systems Symposium, IEEE Computer Society
Press (1993), 222–231

7. Fohler, G.: Joint Scheduling of Distributed Complex Periodic and Hard Aperi-
odic Tasks in Statically Scheduled Systems. IEEE Real-Time Systems Symposium,
IEEE Computer Society Press (1995), 22–33

8. Isovic, D., Fohler, G.: Online Handling of Hard Aperiodic Tasks in Time Triggered
Systems. The 11th Euromicro Conference on Real-Time Systems (1999)

9. Johnson, J. R., Johnson, R. W.: Challenges of Computing the Fast Fourier Trans-
form. Optimized Portable Application Libraries Workshop (1997)

10. Lehoczky, J. P.: Real-Time Queueing Theory. IEEE Real-Time Systems Sympo-
sium, IEEE Computer Society Press (1996), 186–195

Deterministic and Statistical Deadline Guarantees 87

11. Lehoczky, J. P., Ramos-Thuel, S.: An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive Systems. IEEE Real-Time Systems
Symposium, IEEE Computer Society Press (1992), 110–123

12. Lehoczky, J. P., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm: Ex-
act Characterization and Average Case Behavior. IEEE Real-Time Systems Sym-
posium, IEEE Computer Society Press (1989), 166–171

13. Lehoczky, J. P., Sha, L., Strosnider, J.: Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments. IEEE Real-Time Systems Symposium, IEEE Com-
puter Society Press (1987), 261–270

14. Leung, J., Merill, M.: A Note on the Preemptive Scheduling of Periodic, Real-Time
Tasks. Information Processing Letters (1980), 11(3):115–118

15. Liu, C., Layland, J.: Scheduling Algorithm for Multiprogramming in a Hard Real-
Time Environment. Journal of the ACM (1973), 20(1):46–61

16. Sprunt, B., Sha, L., Lehoczky, J. P.: Aperiodic Task Scheduling for Hard-Real-Time
Systems. The Journal of Real-Time Systems (1989), 1(1):27–60

17. Spuri, M., Buttazzo, G.: Scheduling Aperiodic Tasks in Dynamic Priority Systems.
Journal of Real-Time Systems (1996), 10(2):1979–2012

18. Tia, T.-S., Deng, Z., Shankar, M., Storch, M., Sun, J., Liu, L.-C.: Probabilistic
Performance Guarantee for Real-Time Tasks with Varying Computation Times.
IEEE Real-Time Technology and Applications Symposium (1995) 164–173

Appendix: Proof of Theorem 3.2.

Let Q1(t) ∪ Q2(t) = {τm, . . . , τp, . . . , τn}. Using Eq.(1) and Eq.(2), we have

UQ1(t)∪Q2(t) = max{
eres

m,t

dres
m,t

, . . . ,
eres

m,t+, . . . ,+eres
p,t

dres
p,t

,
eres

m,t+, . . . ,+eres
n,t

dres
n,t

} (34)

Suppose that the maximum utilization demand is UQ1(t)∪Q2(t) = eres
1,t +,...,+eres

p,t

dres
p,t

.
Without loss of generality, suppose τp ∈ Q1(t). Let Q∗

1(t) ⊂ Q1(t) be the set
of tasks whose residual execution times eres

i,t appear in eres
m,t+,...,+eres

p,t

dres
p,t

, and let
Q∗

2(t) ⊂ Q2(t) be the set of tasks whose residual execution times eres
j,t appear in

eres
m,t+,...,+eres

p,t

dres
p,t

. Then, we can write

eres
m,t + . . . + eres

p,t

dres
p,t

=

∑
τi∈Q∗

1(t) eres
i,t +

∑
τj∈Q∗

2(t) eres
j,t

dres
p,t

(35)

Since priorities are assigned according to EDF, dres
p,t is the maximum of {dres

i,t :
τi ∈ Q∗

1(t) ∪ Q∗
2(t)}. Let dres

q,t be the maximum of {dres
i,t : τi ∈ Q∗

2(t)}, then we
have dres

q,t ≤ dres
p,t . Hence,∑

τi∈Q∗
1(t) eres

i,t +
∑

τj∈Q∗
2(t) eres

j,t

dres
p,t

≤
∑

τi∈Q∗
1(t) eres

i,t

dres
p,t

+

∑
τj∈Q∗

2(t) eres
j,t

dres
q,t

(36)

≤ UQ1(t) + UQ2(t) (37)

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 88–102, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Real-Time Disk Scheduling with On-Disk Cache
Conscious

Hsung-Pin Chang1, Ray-I Chang 2, Wei-Kuan Shih 3, and Ruei-Chuan Chang 4

1 Department of Electronic Engineering, National Changhua University of Education,
Changhua, Taiwan, R.O.C.
hpchang@cc.ncue.edu.tw

2 Institute of Information Management, National Central University,
Chungli, Taiwan, R.O.C.

rchang@mgt.ncu.edu.tw
3 Department of Computer Science, National Tsing Hau University,

Hsinchu, Taiwan, R.O.C.
wshih@cs.nthu.edu.tw

4 Department of Computer & Information Science, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C
rc@cc.nctu.edu.tw

Abstract. Previous real-time disk scheduling algorithms assume that each disk
request incurs a disk mechanical operation and only consider how to move the
disk head under real-time constraints. However, with the increased capacity of
on-disk cache, modern disk drives read-ahead data aggressively. Thus, the on-
disk cache may service lots of requests without incurring physical disk access.
By exploring the design methodology of on-disk cache, in this paper, we pro-
pose CARDS: a cache-aware real-time disk scheduling algorithm that takes the
on-disk cache into consideration during scheduling. Therefore, the scheduling
algorithm can help to minimize the cache miss ratio. Besides, the service timing
estimation is more accurate in schedulability analysis since the cache effect is
considered. A simulation-based evaluation shows CARDS to be highly success-
ful as compared to the classical real-time disk scheduling algorithms. For ex-
ample, under sequential workload with 10 sequential streams, the data through-
put of CARDS is 1.1 times of DM-SCAN.

1 Introduction

In a computer system, after disk scheduling, disk requests are sent to and served by
the disk drive [14]. However, because the excess delay caused by the disk mechanical
operation, a random access memory, i.e., on-disk cache, is equipped in disk drives to
bridge the speed gap between the main memory and disk and acts as a speed-
matching buffer [8-9, 15]. Nevertheless, in the last couple of years, the drastically
improvement of hardware technology has driven an increased capacity of on-disk
cache. Since caches work on the premise that the issued tasks have spatial and tempo-

Real-Time Disk Scheduling with On-Disk Cache Conscious 89

ral locality, with the hope of repeated or sequential access patterns, the on-disk cache
can service most requested data without incurring physical disk accesses. If the ma-
jority of the accesses to disk are serviced by the on-disk cache, the I/O delay will be
significant reduced.

Cache design methodology gives cache designers a competitive edge in the mar-
ket. Therefore, manufacturers either patent them or consider their implementation a
trade secret. However, if the parameters of on-disk cache are disclosed, the caching
effect would be taken into consideration during the disk scheduling. Consequently,
the scheduling algorithm can help to, not just by cache replacement scheme, preserve
the principles of spatial and temporal locality, which in turn results in a higher hit
ratio. Furthermore, the service timing estimation is more accurate in schedulability
analysis since the caching effect is considered during scheduling. Otherwise, a task’s
execution time must assume in the worst case that a mechanical disk access is in-
curred. This results in an over estimation of system resource usage and decreases
system performance.

The idea of taking the on-disk cache into account in disk scheduling is also seen in
[18]. They mentioned that requests that can be satisfied by the cache should be given
higher priority to be accessed from disk cache. However, they only simulate the
caching effect for the performance evaluations of conventional disk scheduling algo-
rithms, which have no timing requirements.

On the basis of an existing real-time disk scheduling algorithm, DM-SCAN [1], we
propose the CARDS (cache-aware real-time disk scheduling) algorithm that considers
the on-disk cache effect during the scheduling of real-time disk tasks. After the com-
pletion of DM-SCAN algorithm, CARDS algorithm reorders the tasks that can be
served by on-disk cache. That is, disk requests whose accesses have the spatial local-
ity are made closer to meet their temporal locality, and thus increase the cache hit
probability. Experimental results shows that, under sequential accesses, our proposed
cache-aware algorithms obtains larger data throughput than DM-SCAN since the
increased cache hit ratio. For example, under sequential workload with 10 sequential
streams, the data throughput of CARDS is 1.1 times of DM-SCAN.

In the rest of this paper, we shall first introduce the disk service model in a real-
time environment, including on-disk cache design methodology, the timing charac-
teristics of real-time tasks, and the objective of real-time disk scheduling algorithm in
Section 2. Section 3 reviews the related works. In Section 4, we introduce the terms
used for the proposed algorithm. Section 5 presents the proposed CARDS algorithms.
The experimental results are shown in Section 6. Finally, Section 7 summarizes this
paper.

2 Background

2.1 Design Methodology of On-Disk Cache

The on-disk cache is often organized as a number of segments. A segment is a se-
quence of data blocks managed as a unit; that is, each segment contains data that is

90 H.-P. Chang et al.

disjoint from all other segments. Some disk drives dynamically resize the number
(and size) of cache segment based on recent access characteristics to ensure greater
utilization.

With the incorporation of on-disk cache, the data path to the disk will be inter-
posed by the on-disk cache. In addition to retrieve the requested data blocks, most
disks, based on analyzing access and usage pattern of the requests, also perform read-
ahead. It is because that many applications process data sequentially that the next
request will be for data following the current request. By read-ahead, the requested
data of subsequent accesses will have been resided in the cache and shorten the serv-
ice time.

Compared with the capacity of a disk drive, the on-disk cache size is smaller. Con-
sequently, segment replacement occurs when the cache is full of data and a new data
block is requested. Note that, the replacement algorithm has a profound impact on the
cache performance. A good replacement scheme should evict the segment that has no
immediate access and retain the data more likely to be accessed soon. For example,
random replacement (RR), least recently used (LRU), and least frequently used (LFU)
are some of the well-known cache replacement algorithms [10, 17].

2.2 Real-Time System

Assume that the start-time and finish-time denote the actual times at which a task is
started and completed, respectively. To characterize the timing characteristics of a
real-time task, two parameters are associated with it to determine the proper start-time
and finish-time.

 Ready time : the earliest time at which a task can start
 Deadline : the latest time at which a task must be completed

To satisfy the real-time requirements, the start-time of a task should not be earlier
than its ready time. Additionally, its finish-time should not be later than the related
deadline [16]. Depending on the consequence of a missed deadline, real-time tasks
are further classified into hard and soft. A real-time task is said to be hard if missing
its timing constraints will cause serious damage and system will misbehave. In con-
trast, a real-time task is said to be soft if meeting its timing constraints is desirable for
performance, but a missed deadline does not influence the correctness of system be-
havior. A schedule of real-time tasks is said to be feasible if all tasks can be sequen-
tially served according to the specified real-time requirements. In this paper, we ad-
dress the hard real-time system.

2.3 Real-Time Disk Scheduling Problem

As stated above, disk tasks in a real-time system must be associated with timing char-
acteristics to describe their timing constraints. Accordingly, a real-time disk task Ti is
denoted by five parameters (ti, li, bi, ri, di) where ti is the track location, li is the sector
number, bi is the data size, ri is the ready time and di is its deadline. Assume that the

Real-Time Disk Scheduling with On-Disk Cache Conscious 91

schedule sequence is TjTi. Because disk tasks are non-preemptive, the start-time si and
finish-time fi of a real-time task Ti with schedule TjTi are thus computed by si =
max{ri, fj} and fi = si + cj,i, respectively. Note that, cj,i denotes the service time of task
Ti with schedule sequence TjTi. If Ti is a cache hit, cj,i is the value of cache access time.
Otherwise, cj,i represents the time spent to access the physical disk.

Given a set of real-time disk tasks T = {T1, T2, ..., Tn} where n is the number of in-
put disk tasks and the i-th disk task Ti is denoted by (ri, di, ti, li, bi). The objective of a
real-time disk scheduling algorithm is to find a feasible schedule TZ = Tz(1)Tz(2)...Tz(n)

with maximal throughput. The index function Z(i), for i = 1 to n, is a permutation of
{1, 2, …, n}. Define schedule finish-time as the finish time it takes to serve all input
tasks according to their respective timing constraints. Clearly, this is the finish-time of
the latest task fz(n). Therefore, the disk throughput is calculated as follows.

Throughput = () 1
)()(

1
)(

−

=

∝ nznz

n

i
iz ffb . (1)

The obtained disk throughput is related to the inverse of schedule finish-time. If
the input schedule is completed earlier, more data throughput is obtained. The data
throughput improvement of scheduler Z compared with scheduler X can be computed
as

Throughput improvement = (1 – fz(n)/fx(n)) * 100% . (2)

Therefore, the problem objective defined to maximize throughput can be achieved
by minimizing the schedule finish-time. We formally formulate the real-time disk
scheduling problem as follows.

Definition 1: Real-Time Disk Scheduling
Given a set of n real-time disk tasks T = {T1, T2, ..., Tn} where the i-th task Ti = (ri,

di, ti, li, bi), find a feasible schedule TZ = TZ(1)TZ(2)…TZ(n) that resolves min∀Z{ f
Z(n)

 } under

rZ(i) ≤ sZ(i) and fZ(i) ≤ dZ(i) for 1 ≤ z(i) ≤ n.

3 Related Work

The SCAN algorithm was first proposed by Denning for scheduling conventional disk
tasks [5] and has been shown as an optimal algorithm under amortized analysis and
probability model [4]. However, due to the lack of timing consideration, the SCAN
algorithm is not suitable for scheduling real-time disk tasks. To address a task’s real-
time characteristic, EDF (Earliest Deadline First) was proposed and shown to be op-
timal if tasks are independent [11]. Nevertheless, in terms of disk scheduling, the
service time of a disk task depends on its previous task’s track location. The assump-
tion that tasks are independent is not held. Actually, taking only deadlines into ac-
count without considering the cost of service time, EDF incurs excessive seek-time
costs and results in poor disk throughput [13].

92 H.-P. Chang et al.

Consequently, various approaches have been dedicated to combine the features of
SCAN type of seek optimizing algorithms with EDF type of real-time scheduling
algorithms [2-3]. For these algorithms, they start from an EDF schedule and then
reschedule tasks to minimize seek and/or rotational latency under real-time con-
straints. For example, the well-known SCAN-EDF scheme was proposed that first
schedules tasks with the earliest deadlines [13]. If two or more tasks have the same
deadline, these tasks are serviced according to their relative track locations, i.e., by
SCAN algorithm. Since only tasks with the same deadline are seek-optimized, the
obtained data throughput improvement is limited.

To increase the probability of applying SCAN algorithm to reschedule input tasks,
DM-SCAN (Deadline Modification-SCAN) proposed the concept of maximum-
scannable-group (MSG) [1]. An MSG is a set of continuous tasks that can be re-
scheduled by SCAN without missing their respective timing constraints. Given an
EDF schedule T = T1T2...Tn, MSG Gi started from task Ti is defined as the sequent
tasks Gi = TiTi+1Ti+2...Ti+m where task Tj satisfies following criteria

fj ≤ di and rj ≤ si for j = i to i+m . (3)

A simple example to demonstrate the identification of MSGs is shown in Fig. 1.
Given an EDF schedule T=T1T2T3T4T5. To calculate MSG G2, we have f2 ≤ d2, r2 ≤ s2

and f3 ≤ d2, r3 ≤ s2, but f4 > d2 although r4 ≤ s2. Thus, G2=T2T3. Following the same
approach, other MSGs can be obtained as G1=T1, G3=T3T4, G4=T4T5 and G5=T5, re-
spectively.

Ready Time; Dead line; Task Execut ion; MSG

T1

T2

T3

T4

T5

Fig. 1. An example to demonstrate the identification of MSGs.

After the identification of MSGs, DM-SCAN reschedules tasks in each MSG by
seek-optimizing SCAN scheme to minimize total service time. Note that the resched-
uled result destroys the EDF sequence. Because DM-SCAN requires the input tasks
based on EDF order, a deadline modification scheme is proposed to modify tasks’
deadlines and transfers the rescheduled non-EDF sequence into a pseudo EDF order.

Real-Time Disk Scheduling with On-Disk Cache Conscious 93

Here, “pseudo” means that the tasks are ordered by the modified deadlines. For ex-
ample, given the schedule sequence TiTj, a pseudo deadline ds(i) is derived as ds(i) =
min{di, ds(j)}. By the deadline modification scheme, DM-SCAN iteratively resched-
ules tasks from the derived pseudo EDF schedule to obtain more data throughput.

4 CARDS: Cache-Aware Real-Time Disk Scheduling Algorithm

4.1 Preliminaries

In this section, we describe the terms used in this paper. Given a set of n real-time
disk tasks, assume that for each disk access Ti, 1≤ i≤ n, if a cache miss occurs, the
cache logic will bring a data size of into the on-disk cache and the content of data
blocks brought into cache is denoted by Ei. Thus, size(Ei) = . Note that, the value of
depends on the cache segment size, and if read-ahead is performed, also on the read-
ahead size. To distinguish a set of tasks whose accesses having the principles of spa-
tial locality, we define the concept of principal task and cached task.

Definition 2: Principal Task and Cached Task
Given a set of real-time disk tasks T1T2…Tn, if Tj’s requested data block bj is in-

cluded in Ei, where 1 ≤ i < j ≤ n. Then, Ti is called the principal task of Tj and denoted
as P(Tj)=Ti. In addition, Tj is called the cached task of Ti and denoted as C(Ti)=Tj.

Definition 3: Immediate Principal Task and Immediate Cached Task
Given a set of real-time disk tasks T1T2…Tn, assume that P(j)=Ti (i.e., C(i)=Tj),

where 1 ≤ i < j ≤ n. If there exists no Tj’s principal tasks (or Ti’s cached tasks) be-
tween Ti and Tj, then task Ti is called the immediate principal task of Tj and denoted as
G(Tj) = Ti. In addition, task Tj is called the immediate cached task of Ti and denoted as
H(Ti) = Tj.

Therefore, Tj is cache hit if EG(Tj) is resident in the on-disk cache when Tj is issued.
In other words, a cache hit occurs for Tj if the cached data of G(Tj) remains in the
cache, that is, has not yet been replaced when Tj is issued. Consequently, if Tj and
G(Tj) would be scheduled close enough such that the cached data of G(Tj) have not
yet been flushed when Tj is issued, then Tj can be serviced by the on-disk cache and
shorten its access time.

However, in a real-time system, a derived schedule must be feasible. Therefore,
scheduling Tj and G(Tj) to be closer must not viloate both Tj and G(Tj)’s timing con-
straints. In addition, since other tasks may be influenced as this cache-aware sched-
uling, the deadlines of the influenced tasks should not be violated to guarantee a fea-
sible schedule. Therefore, when and how to perform such cache-aware scheduling
scheme under real-time constraints posed a challenge in the design of our scheduling
algorithm.

94 H.-P. Chang et al.

4.2 CARDS Algorithm

On the basis of the DM-SCAN, in this section, we propose the CARDS algorithm. As
described in Section 4, to increase cache hit ratio, G(Ti) and Ti must be close enough
to prevent EG(Ti) from being replaced when Ti is executed. Thus, after the running of
DM-SCAN algorithm, the CARDS reschedules tasks to make G(Ti) and Ti closer
while meeting tasks’ timing constraints.

Suppose that the number of cache segments is m and LRU is used as the cache re-
placement algorithm. Before describing the CARDS algorithm, for task Tk, we first
introduce the miss function f(k) as:

f(k) =
hit cachea introduces if 0

miss cachea introduces if 1

k

k

T

T
. (4)

By the miss function, the concept of flush point of Ti, P(i), is introduced such that

reached is if)(or 1)(
)(

nniPmlf
iP

il

=+=
=

. (5)

As shown in Fig. 2, P(i) represents the position that Ei is flushed to the disk. There-
fore, Tj should be executed before TP(i), if possible, to be cache hit. Therefore, CARDS
schedules Tj just immediately before the flush point of Ti, P(i), if the rescheduling
result does not violate tasks’ timing constraints.

 T i T P (i) T i + 1 T i + 2 T k … …

N u m b e r o f = m + 1

T a sk is a c a c h e h it T a sk is a c a c h e m iss

Fig. 2. The identification of a flush point.

Assume that after the running of DM-SCAN, the derived schedule S = T1T2…Tn.
Then, the CARDS identifies pairs of cached tasks and their immediate principal tasks.
For each pair of cached task Tj, j∈[1, n], and its immediate principal task Ti (= G(Tj)),
CARDS must decide whether Tj should be scheduled to be closer to Ti and, if yes,
which position is suitable for Tj to be scheduled. The steps that are performed by the
CARDS for each pair of cached task Tj and its immediate principal task Ti are shown
in the following.

1. Calculate the value of P(i) by Equation (4) and (5).
2. If Tj is in front of TP(i), as shown in Fig. 3a, Tj can be serviced by the on-disk

cache by the cached data of Ti. Therefore, no rescheduling is needed for Tj.

Real-Time Disk Scheduling with On-Disk Cache Conscious 95

3. However, if Tj is after or equal to TP(i), i.e., P(i) ≤ j, then cache miss will oc-
cur when Tj is issued. Consequently, CARDS tries to schedule Tj to execute
before TP(i). Depending on the values of rj, ready time of Tj, and sP(i), start
time of Tp(i), two different cases may exist:

(a) If sP(i) ≤ rj, as shown in Fig. 3b, then Tj can not be advanced to
execute before TP(i) since its ready time falls behind the start
time of TP(i). Consequently, no reordering is performed for Tj.

(b) If sP(i) > rj, as shown in Fig. 3c, then Tj can be advanced to exe-
cute before TP(i). Although the time at which Tj could be started
is between max(di, rj) and sP(i), CARDS reschedules Tj into the
(P(i)-1)th position, i.e., immediate before TP(i). Note that, the re-
scheduling of Tj may result in an infeasible schedule. There-
fore, a feasibility checking must be performed for each re-
scheduling operation by the techniques described in Section
5.2.

From above algorithm, the increase of cache hit probability thus realized with the
CARDS by rescheduling tasks that have the opportunity to be cache hit after the DM-
SCAN scheme.

 T i T i + 1
T P (i) T j

.
(a)

T i T i + 1
. . .

T P (i) T j r j

(b)

(c)

T i T i + 1
. . .

T j r j T P (i)

. . .

. . .

Fig. 3. Three cases for CARDS algorithm. (a) Tj is guaranteed to be cache hit and thus no
movement is needed as it is scheduled before the T

P(i)
. (b) No movement is needed for Tj be-

cause its ready time is after the start time of T
P(i)

. (c) By moving Tj in front of T
PIi)

, Tj thus can
be cache hit.

4.3 Feasibility Checking

As shown in Fig. 4, when task Ti is rescheduled, some tasks are influenced by an
increased or decreased delay of finish time. Therefore, feasibility checking must be
performed when rescheduling a task and, if an infeasible schedule is produced, this
rescheduling operation cannot be activated. The checking for feasibility involves
computing start-time and finish time for each request in a schedule and thus a naive

96 H.-P. Chang et al.

computation algorithm has O(n) complexity. To accelerate the checking process, the
concept of a conjunction group is introduced.

 T T
…

B
… …
A C

Fig. 4. The condition when a task T is moved from to . Tasks in region A are not influ-
enced. However, tasks in the region B may be delayed. Besides, tasks within the region C may
be delayed or advanced for execution depends on whether T’s access results in a cache hit or
miss at location .

Definition 4: Conjunction Group
Given a set of real-time disk tasks T = T1T2...Tn, a conjunction group Gi is defined

as a number of continuous tasks Gi = TiTi+1...Ti+m with each task Tk for k = i +1 to i+m
satisfies rk ≤ f

k-1
.

Therefore, tasks in a conjunction group will be executed one by one without any
free time slice between them. Note that, as shown in Fig. 5, conjunction groups may
be merged or split when a rescheduling operation is taken place. By the idea of con-
junction group, following lemmas assist to simplify the checking process.

 G a

rb T i

(a) (b)

G c

G b

G a G b

G c rb T i T i

T i

fa

fa = rb fa

Fig. 5. Conjunction groups may be merged or split when a rescheduling operation is occurred.
(a) Ti is rescheduled to the front of Ga. As a result, conjunction group Ga and Gb are merged
into Gc since rb ≤ fa. (b) Ti is rescheduled out from Gc. As a result, conjunction group Gc is
split into Ga and Gb since fa < rb.

Lemma 1. Assume that a conjunction group Gk = TkTk+1…Tl and task Tm is resched-
uled from position to . If Ti, i∈[k, l-1], is influenced by a delayed execution of ,
then for all tasks Tj, j∈[i + 1, l], their execution are also delayed by .

Proof. For a real-time task Ti+1, si+1 = max{ri+1, fi} and fi+1 = si+1 + ei+1, where ei+1 de-
notes Ti+1’s execution time. Since Ti+1∈Gk, from the definition of conjunction group,

Real-Time Disk Scheduling with On-Disk Cache Conscious 97

si+1 = fi and fi+1 = si+1 + ei+1 = fi + ei . (6)

Because Ti is delayed by , i.e., fi is increased by , thus from Equation (6), si+1

and fi+1 are also delayed by . Following the same arguments, task Tj, Tj, j∈[i + 2, l],
is also influenced by an delayed execution of .

Lemma 2. Assume that a conjunction group Gk = TkTk+1…Tl and a task Tm is re-
scheduled from position to . If Ti, i∈[k, l - 1], i.e., Ti is within Gk, is thus influ-
enced by an advanced execution of , then for all tasks Tj, j∈[i + 1, l], their execu-
tion are also advanced by , if Gk is not split.

Proof. The proof can be derived as the proof of Lemma 2.

Given the set of tasks in a schedule, we define the slack li of task Ti as follows.

li = di – fi . (7)

That is, the slack li represents the duration for which Ti can be delayed without vio-
lating its deadline. As lemma 1 and 2 show, the increase/decrease of finish time is the
same for all tasks in a collaboration group. Accordingly, we only maintain the small-
est value of slack for each collaboration group rather than maintaining it for individ-
ual requests. As a result, when a movement operation is done, we only have to check
the task with the smallest value of slack to see whether its deadline is missed, if a
delayed execution is occurred. Besides, the checking process is stopped when a free
time slice, i.e., no task is executed, is encountered. Note that, conjunction groups may
be merged or split as a delayed or advanced execution, and thus the slack value
should be updated correspondingly. From above, the overhead of feasibility checking
is significantly reduced by the introduction of slack and conjunction group. There-
fore, CARDS can quickly verify whether a movement of a task results in an infeasible
schedule or not.

5 Experimental Results

In this section, the performance of the CARDS is evaluated. Section 4.1 shows the
platform used for our experiments and the characteristics of input workload. In Sec-
tion 4.2, the experimental results of the CARDS are presented to compare their per-
formance.

5.1 Experiment Platform

As stated above, the characteristics of on-disk cache must be explored so that cache-
aware scheduling scheme can then be applied. Because disk manufactures consider
their on-disk cache implementation scheme a technical secret, thus we use the disk
drive parameters derived from [7], which uses the techniques of on-line extraction [6,
19]. Table 1 shows some important parameters of Quantum Altas 10K MAG 3091,
which is used as the target disk in our experiments [7, 12]. The seek time cost is cal-

98 H.-P. Chang et al.

culated by the extracted data from [7]. The rotational latency is assumed half of the
time of a full track revolution. The on-disk cache parameters of Quantum Altas 10K
MAG 309, which is based on the extracted data of [7], are shown in Table 2.

Table 1. Quantum Atlas 10K: MAG3091 disk parameters

Year 1999
Capacity 9.1 GB
No. of cylinders 10,042
No. of surface 6
No. of sectors per track 334
Sector size 512 bytes
Revolution speed 10,000 RPM

Table 2. Quantum Atlas 10K: MAG3091 disk cache parameters

Size 2 MB
No. of buffer segments 10
Segment size 374 sectors
Transfer time 0.184 ms

There are two kinds of workloads in our experiments, one is random and the other is
sequential. The workload of random tasks is uniformly distributed over the disk sur-
face. For sequential workload, it consists of a number of sequential streams and ran-
dom requests. Each sequential stream in our simulations emulates the sequential ac-
cess pattern and consists of five sequential requests; the accessed block of first re-
quest is also randomly distributed over the disk surface. Then, the following requests
access the block immediate after their previous tasks. In addition, the number of ran-
dom requests in a sequential workload is selected as one third of the total requests.
The accessed blocks of these random tasks are also uniformly distributed over the
disk surface. The size of data accessed by each request, either sequential or random, is
normally distributed with a mean of 36 KB. For random workload, if there are n ran-
dom tasks, the ready times of tasks are randomly generated from 0 to 6*n ms. After a
random time interval, 0~5*n ms, the related deadlines are uniform distributed within
0~10*n ms. For sequential workload, if there are m sequential streams, the total num-
ber of input tasks n = 1.5 * (5*m). Since there are five sequential tasks in a stream,
the ready time of each sequential task in a stream is randomly generated between 0
and 2*n/5 ms after its previous task and its deadline is uniform distributed within
0~20*n/5 ms after a random time interval, 0~10*n/5 ms. For the random tasks in the
sequential workload, their ready times are random generated between 0 and 2*n ms.
After a random time interval, 0~10*n ms, their related deadlines are uniformly dis-
tributed within 0~20*n ms. The cache replacement scheme is assumed LRU. If a
cache miss occurs, the cache logic will read ahead a data size of 354 sectors (177KB),
including the requested one, into a least-recently-used cache segment. In all following
experiments, fifty experiments are conducted with different seed for random number
generation and the average value is measured.

Real-Time Disk Scheduling with On-Disk Cache Conscious 99

10

11

12

13

14

15

16

20 21 22 23 24 25 26 27 28 29 30
Number of Random Tasks

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

DM-SCAN
CARDS

Fig. 6. Throughput improvement of CARDS under different number of random tasks. The
throughput improvement is compared to EDF.

6

8

10

12

14

16

18

20

22

24

2 3 4 5 6 7 8 9 10

Number of Sequential Streams

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
) DM-SCAN

CARDS

Fig. 7. Throughput improvement of CARDS for sequential workload with different number of
sequential streams. The throughput improvement is compared to EDF.

5.2 Experimental Results

If the same number of real-time tasks is given, a well-behaved scheduling algorithm
must maximize data throughput under guaranteed real-time constraints. Given ran-
dom access workload, the data throughput improvements of DM-SCAN and CARDS
under different number of input tasks are shown in Fig. 6. The derived throughput
improvement is compared with EDF. Fig. 7 presents the same experiment for differ-
ent sequential workloads. Besides, the minimum, maximum, and average schedule
fulfill time of two approaches with a sequence of twenty-five random tasks are also
presented in Table 3. Table 4 presents the same performance metrics but under se-
quential workload with ten streams.

On-disk cache works on the premise that the input workload follows the principles
of temporal and spatial locality. Thus, given random tasks, the throughput improve-
ments presented in Fig. 6 shows little differences between CARDS and DM-SCAN.

100 H.-P. Chang et al.

Table 3. Given 26 random tasks, the minimum, maximum, average schedule fulfill-time, and
throughput improvement compared with EDF for different schemes.

Schedule Fulfill-Time (msec)Algorithms
minimum maximum average improvement

EDF 262.10 355.86 309.74 0.0 %
DM-SCAN 230.48 314.60 267.05 15.66%
CARDS 230.48 314.60 267.05 15.68%

Table 4. Under sequential workload with 10 sequential streams, the minimum, maximum,
average schedule fulfill-time, and throughput improvement compared with EDF for different
schemes.

Schedule Fulfill-Time (msec)Algorithms
minimum maximum average improvement

EDF 453.31 543.15 498.51 0%
DM-SCAN 376.99 473.61 413.24 17.11%
CARDS 327.04 442.02 376.32 24.51%

There is little possibility that a random task will hit the data cached in the on-disk
cache. Therefore, cache-aware scheduling has no means to increase the cache hit
probability.

In contrast, as shown in Fig. 7, if input is sequential workload, CARDS obtains
larger data throughput than DM-SCAN. Observe that, the performance of CARDS
performs better than DM-SCAN with the increase of number of sequential streams.
Since the number of cache segment is ten, when the number of cache segments is
considerably larger than that of sequential streams, the on-disk cache capacity is thus
larger enough to sustain a great deal of blocks accessed by each sequential task. Thus,
the derived throughput difference between DM-SCAN and CARDS is not significant.
However, when the number of sequential streams is increased, CARDS increases the
on-disk cache utilization and obtains further data throughput than DM-SCAN.

6 Conclusions

To be in competitive edge in the market, disk manufactures consider their disk im-
plementation as a technical secret. However, if the information of on-disk cache is
explored, the disk scheduling algorithm can exploit this information to derive a
schedule minimizing the cache miss probability. In this paper, we thus propose the
CARDS algorithm that considers the caching effect during the scheduling. As a re-
sult, the disk scheduling scheme can also be actively involved in reducing the cache
miss ratio. In addition, the timing analysis is more accurate since the on-disk cache is
considered during scheduling and thus, if a cache hit occurs, cache transfer time is
used as the task’s execution time for schedulability analysis without assuming the
worst case that each disk task incurs a physical disk mechanical operation. The ex-

Real-Time Disk Scheduling with On-Disk Cache Conscious 101

periments demonstrate that the proposed schemes indeed obtain larger data through-
put than DM-SCAN. For example, under sequential workload with 10 sequential
streams, the data throughput of CARDS is 1.1 times of DM-SCAN.

The CARDS is based on the static manner of an on-disk cache; that is, the sched-
uling scheme is aligned to the on-disk cache’s behavior. However, in recent design of
on-disk cache, the number (and hence size) of cache segment is configurable. In ad-
dition, read-ahead can be enable/disable dynamically. As a result, our future work
would propose an aggressive cache-aware real-time disk scheduling scheme that
changes the behavior of on-disk cache dynamically during the scheduling.

References

1. Chang, R.I., Shih, W.K., and Chang, R.C., Deadline-Modification-SCAN with Maximum
Scannable-Groups for Multimedia Real-Time Disk Scheduling, Proc. Real-Time Systems
Symp., pp. 40-49, 1998.

2. Chang, H.P., Chang, R.I., Shih, W.K., and Chang, R.C., Enlarged-Maximum-Scannable-
Groups for Real-Time Disk Scheduling in a Multimedia System," Proc. Computer Soft-
ware and Applications Conf. (COMPSAC), IEEE Comput. Soc., pp. 383-388, 2000.

3. Chang, H. P., Chang, R. I., Shih, W. K., and Chang, R. C., "Reschedulable-Group-SCAN
Scheme for Mixed Real-Time/Non-Real-Time Disk Scheduling in a Multimedia System,"
Journal of Systems and Software, Vol. 59, No. 2, pp.143-152, Nov. 2001.

4. Chen, T. S., Yang, W. P., and Lee, R.C.T., “Amortized Analysis of Some Disk-
Scheduling Algorithms: SSTF, SCAN, and N-Step SCAN,” BIT, Vol. 32, No. 4, pp. 546-
558, 1992.

5. Denning, P.L., “Effects of Scheduling on File Memory Operations,” Proc. of AFIPS
SJCC, pp. 9-21, 1967.

6. Ganger, G., “System-Oriented Evaluation of Storage Subsystem Performance,” Ph.D.
Dissertation, CSE-TR243-95, University of Michigan, Ann Arbor, June 1995.

7. Ganger, G. and Schindler, J., “Database for Validated Disk Parameters for DiskSim,”
http://www.ece.cmu.edu/~ganger/disksim/diskspecs.html.

8. Hospodor, Andy, “Hit Ratio of Caching Disk Buffers,” Proc. IEEE Computer Society
International Conf., pp. 427-432, 1992.

9. IBM Corporation, “Larger Disk Cache Improves Performance of Data-Intensive Applica-
tions,” White Paper, October, 1998.

10. Karedla, R., Love, J. S., and Wherry, B. G., “Caching Strategies to Improve Disk System
Performance,” IEEE computer, Vol. 27, No. 3, pp. 38-46, March 1994.

11. Liu, C. L and Layland, J. W., “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment,” Journal of ACM, Vol. 20, No. 1, pp. 46-61, 1973.

12. Quantum Corporation, Quantum Atlas 10K,
http://www.quantum.com/products/hdd/atlas_10k/atlas_10k_specs.htm

13. Reddy, A. L. N. and Wyllie, J. C., “Disk Scheduling in a Multimedia I/O System,” Proc.
ACM International Conf. on Multimedia, pp. 225-233, 1993.

14. Ruemmler, C. and Wyllie, J. C., “An Introduction to Disk Drive Modeling,” IEEE Com-
puter, Vol. 27, No. 3, pp. 17-28, 1994.

102 H.-P. Chang et al.

15. Shriver, E., Merchant, A., and Wilkes, J., “An Analytic Behavior Model for Disk Drives
with Readahead Caches and Requests Reordering,” Proc. ACM SIGMETRICS, pp. 182-
191, 1998.

16. Stankovic, J. A. and Buttazzo, G. C., “Implications of Classical Scheduling Results for
Real-Time Systems,” IEEE Computer, Vol. 28, No. 6, pp. 16-25, June 1995.

17. Thiebaut, D., Stone. S. H, and Wolf, J. L., “Improving Disk Cache Hit-Ratios Through
Cache Partitioning,” IEEE Transaction on Computers, Vol. 41, No. 6, pp. 665-676, 1992.

18. Worthington, B. L., Ganger, G. R., and Patt, Y. N., “Scheduling Algorithms for Modern
Disk Drives,” Proc. ACM SIGMETRICS, pp. 241-151, 1994.

19. Worthington, B. L., Ganger, G. R., Patt, Y. N., and Wilkes, J., “On-Line Extraction of
SCSI Disk Drive Parameters,” Proc. ACM SIGMETRICS, pp. 136-145, 1995.

Probabilistic Analysis of Multi-processor
Scheduling of Tasks with Uncertain Parameters

Amare Leulseged and Nimal Nissanke

School of Computing, Information Systems and Mathematics
South Bank University, 103 Borough Road, London SE1 0AA, UK

Abstract. A new approach is proposed for the probabilistic assessment
of schedulability of periodic tasks with uncertain characteristics in dy-
namic multi–processor scheduling. It is aimed at non–critical real–time
applications such as multimedia, which allow some leeway with respect
to compliance with timing requirements, provided that certain minimum
Quality of Service (QoS) requirements are met. Uncertainties are taken
into account through random variables at the task arrival times and by
characterising subsequent task characteristics in probabilistic terms. By
examining each pair of possible computation time and deadline of a given
task at each time unit in relation to the same of other tasks, an execu-
tion pattern is derived. This forms the basis for computing various QoS
attributes such as probability of successful execution, latency in response
time, jitter, etc. Illustrative examples address, amongst others, the per-
formance of two particular algorithms, edf and llf, in the presence of
uncertainties in task characteristics.

1 Introduction

It is a common practice in real–time scheduling algorithms to assume that task
characteristics such as computation time and deadline are known precisely, some-
times in advance, and remain constant throughout the life time of the task. How-
ever, this is rarely the case in practice and the lack of precise prior knowledge
about task characteristics remains a major concern in scheduling. This applies
especially to non–critical real–time applications such as multimedia systems,
computer vision, real–time tracking based on radar or sonar. Computational
tasks in them tend to vary widely in execution times depending on the com-
plexity of the specific task instance being handled. In addition, tasks may or
may not arrive at fixed periodic intervals. Experiments in [12] show deviations
of actual periods from the nominal ones and a tendency for them to alternate
between short and long periods in consecutive instances. In the face of such un-
predictabilities, task deadlines too are subject to change in order to indirectly
account for uncertainties in task execution times and request times.

A common approach to dealing with uncertainties so arising is to adopt a
worst–case strategy and to assign an extreme value to the computation time,
regardless of its frequency relative to its other possible values and its represen-
tativeness. This is an acceptable solution in critical applications but is an overly

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 103–122, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

104 A. Leulseged and N. Nissanke

demanding one in non–critical applications. In applications such as multimedia
user perception is not affected often by such variation to the same degree, while
in other applications there are more tolerant alternative ways to dealing with
occasional failures. Under such circumstances under–utilisation of computing re-
sources resulting from worst–case considerations could seriously undermine the
cost–effectiveness of such applications. This underlines the importance of arriv-
ing at an acceptable balance between the Quality of Service (QoS) and the over-
all system performance, such as throughput and resource utilisation in terms of
processor workloads. However, uncertainties in task characteristics must still be
dealt with, because missing deadlines result in both QoS violations and wastage
of computing resources, to the detriment of the balance between both factors
mentioned above.

For tasks with uncertain parameters, on–line and off–line scheduling algo-
rithms and schedulability analysis have been proposed in the literature. Zhou et.
al [12] propose a modified rate–monotonic schedulability analysis, incorporating
two new experimentally determined parameters to account for uncertainties in
operating system overheads, namely, a constant representing the CPU utilisation
of operating system activities and a worst–case timer delay factor. A Statisti-
cal Rate-Monotonic Scheduling approach [1], with an implementation described
in [2], allows scheduling of periodic tasks with highly variable execution times
expressed through a probability density function. It also allows the consider-
ation of statistical QoS requirements defined in terms of the probability of a
random instance of the task chosen from an arbitrarily long execution history
meeting its deadline. Recently, Manolache et al [9] have presented an approach
to performance analysis of periodic task sets with their execution times speci-
fied as a continuous probability distribution. Although it is a non preemptable
and is confined to single processor environments, the approach is elegant and
shares the same objective as this paper. Dealing with the so–called monotone
processes, i.e., those where the quality of the result keep improving after sur-
passing a minimum threshold computation time, Chung et. al [3] propose an
imprecise computational model that involves a mandatory initial part and an
optional follow–on part. Mandatory parts of all tasks are to be executed within
the deadline of each task, while the optional part is left free to execute longer,
if it can be accommodated, thus refining and improving the result. Hamann
et. al [7] extends the imprecise computational model by incorporating an addi-
tional minimum reservation time for each task that assures a certain probability
of successfully completing a given percentage of its optional parts. In assessing
computational times of real–time tasks, there have been several attempts such
as [11] based on deterministic code analysis. Recognition of their inappropri-
ateness is evident from works such as [8] devoted to an estimation of execution
times statistically from past observations. As is demonstrated in [6] using Gum-
bel distribution for estimating the worst–case execution time (wcet), statistical
models are likely to result in a more realistic assessment of execution times.

The works devoted to uncertainties in task characteristics are extensive. The
above are a small selection illustrating a range of approaches addressing, in differ-

Probabilistic Analysis of Multi-processor Scheduling 105

ent ways, how to improve the quality of computations, or the QoS as understood
in modern computer applications, while maintaining a high resource utilisation
level.

In this context, our previous work [10] dealt with a probabilistic analysis of
dynamic multi–processor scheduling with emphasis on the overall performance
of the scheduling environment as a whole. In contrast, this paper shifts the focus
to the scheduling of individual tasks, addressing at the same time the overall per-
formance of the scheduling environment. The paper shows how an appropriate
balance between the QoS or system performance and resource utilisation could
be achieved purely from a scheduling perspective. The tasks are periodic but oth-
erwise can be of any general form with respect to uncertainties in computation
times and deadlines. As in [10], the framework is tied to a sufficiently general
scheduling environment, namely, a multi–processor dynamic environment. It is
based on a completely probabilistic characterisation of the problem that can be
achieved within a discrete model. The paper examines, in particular, the perfor-
mance of two well–known scheduling algorithms: Least Laxity First (llf) and
Earliest Deadline First (edf). Using examples, it also illustrates how the QoS
parameters are affected by various factors, among them, the number of avail-
able processors, the scheduling strategy, as well as the effect of computational
requirements of the tasks on one another.

Organisation of this paper is as follows. Section 2 presents the core ideas
of the proposed framework. Following on, Section 3 examines practically useful
performance and QoS indicators. Section 4 presents a detailed illustration of the
potential uses of the proposed framework, with respect to QoS and algorithmic
superiority. Section 5 concludes the paper with a summary of achievements.

2 Analytical Framework

2.1 Representation of Tasks

In this work, computation times and deadlines of tasks are assumed to vary
over time in an unpredictable manner, while their arrival times are left fixed
at periodic intervals. Whatever the sources of uncertainties are, such uncertain
parameters may be expressed in the form of probabilistic distributions. Alterna-
tively, such uncertain parameters may originate from the problem specification,
possibly, in a probabilistic form as Quality of Service targets to be achieved.

As a result, the chosen variable task parameters can be described, in general,
in the form of distribution functions over a given sampling space. Supposing
that there are n tasks in the system, computation time of each of the tasks τi ,
for i = 1, 2, · · · ,n, at its arrival time is denoted by Ci and its laxity (urgency,
measured as the length of time from current time to the deadline minus the
computation time) by Li . Each task τi is requested periodically with a fixed
period of Ti starting from time zero. It is important to note that Ci and Li are
two random variables because at the time of τi ’s arrival their values are totally
unpredictable, except in a probabilistic sense. Let the sampling spaces of Ci and

106 A. Leulseged and N. Nissanke

Li be the sets 1 . . cmax and 0 . . lmax respectively, where the notation x . . y
denotes the set of numbers from x to y inclusively. Subsequent to τi ’s arrival, its
computation time and laxity are still described probabilistically over the same
spaces, though no longer as random variables. Let us refer to the area enclosed
within -1 � l � lmax and 0 � c � cmax in a two–dimensional coordinate
system with axes l and c as the task domain and denote it by S̄ . Note that
the laxity value -1 is intended solely for keeping track of tasks that have failed
so that the line l = -1 contains only those tasks that may have already failed.
Mathematically, S̄ is the Cartesian product -1. .lmax ×0. .cmax , but excluding the
point (-1, 0). S̄ can be partitioned into a scheduling domain, denoted by S , and
an exit domain, denoted by E . The former is defined as S = 0 . . lmax × 1 . . cmax ,
while the latter as E = S̄ − S .

computation
time (c)

outstanding

τ1
τ6

τ4

τ5

2τ τ3

laxity (l)origin: current time

a line of common deadlines

Δ = 1

~

Δ
=

1

in
cr

ea
sin

g d
ea

dl
in

es
: d

Fig. 1. Task representation in the scheduling domain

For the purpose of visualisation, Figure 1 illustrates the above in a determin-
istic setting, with ‘tokens’ showing the location of tasks at a particular instant
in time and the coordinates l and c indicating, respectively, the laxity and the
computation time of each task. As time progresses, each token moves either
downward, signifying its execution, or leftward, signifying its non–execution. In
a multi–processor environment with m identical processors, the scheduler’s task
at each clock tick is to move at most m tokens one division downwards. An
underlying assumption of this execution model is that tasks are not bound to
particular processors and that the migration cost of tasks between processors
is negligibly small. A token reaching the l -axis at such an instant signifies the
successful completion of the relevant task, whereas a token crossing the c-axis its

Probabilistic Analysis of Multi-processor Scheduling 107

failure to meet the deadline. All tasks currently under execution are thus located
within the bounds of the scheduling domain S and the tasks which have already
gone through the system are in the exit domain E . Tasks in E comprise the
tasks which have failed to meet their deadlines (remaining on l = -1 after reach-
ing it) and the tasks which have been successfully executed by their deadlines
(remaining on c = 0 after reaching it), both with certain non–zero probabilities
in the probabilistic setting. The tasks in both S and E are the only ones in the
task domain.

Following the usual convention, the joint probability mass function (pmf) of
the two random variables Li and Ci is denoted by pLi ,Ci (l , c) or, for brevity,
by pi(l , c). As a function of two random variables, it describes the probability
of τi arriving at a point (l , c), i.e., the probability of τi having a laxity l and
computation time c at the time of τi ’s arrival. Thus

pi(l , c) = pLi ,Ci (l , c) = P(Li = l ,Ci = c)
= PLi ,Ci [{ (l ′, c′) : l ′ = l , c′ = c }] . (1)

The jointly distributed random variables Li and Ci are jointly discrete, for it is a
requirement that the sum of the joint probability mass function over the points
(l , c) where pi(l , c) > 0 is equal to one. Though the latter pmf is defined over
the whole task domain, our interest is only in those points where pLi ,Ci (l , c) > 0.

At the time of arrival, every task has, as described by (1), a totally random
value for its pmf. However, as the tasks are executed, the values of their pmfs
change with time. In this respect, let us adopt an extended notation for dealing
with their evolution over time. First, let us refer to the probability of τi having
the value (l , c) in its pmf at time t as pt

i (l , c). At times t when t mod Ti is equal
to zero, that is, when τi is freshly requested, pt

i (l , c) is to have a random value
described in accordance with (1). At other times, pt

i (l , c) is not random and is
determined by pt−1

i (l , c) and the manner in which τi has been executed at time
(t − 1). This can be expressed as

pt
i (l , c) = pinit

i (l , c) if t mod Ti = 0 ,

= next ti (p
t−1
i (l , c)) otherwise . (2)

where pinit
i (l , c) is an initialisation pmf (1) to be used at request times of τi ,

while nexti is a function updating the pmf that existed at time (t − 1) taking
into account whether τi has been executed at (t −1) or not. For any task τi at a
point (l , c) in E , the following holds: pt

i (l , c)
= 0 ⇒ pt+1
i (l , c) � pt

i (l , c) for all
t , with the exception of time values just prior to fresh requests, and either l = -1
or c = 0. In other words, failures and successes are irreversible, despite the fact
that in a probabilistic paradigm their occurrence is not necessarily definite. The
purpose of this study is, essentially, to characterise the functions nextis in (2) for
each and every task in the system and, thereby, to establish execution patterns
of tasks and other execution metrics of practical interest.

108 A. Leulseged and N. Nissanke

2.2 Scheduling Algorithms and Selection of Tasks for Execution

A task τi , which is at a point (l , c) at time t with some non–zero probability,
at time (t + 1) would be either at the point (l , c − 1) with some probability,
say, v t

i (l , c), if τi has been executed (moved vertically downward) at t , or at the
point (l − 1, c) with a probability of ht

i (l , c) = (1 − v t
i (l , c)), if it has not been

executed (moved horizontally leftward) at t . Thus, v t
i (l , c) denotes the execution

probability of τi while at (l , c) at time t . This would depend on several factors,
including the scheduling algorithm being used to schedule the tasks in the system
and, hence, the level of priority the task has been assigned.

For generality, let the scheduling algorithm be expressed using a (linear)
function f (l , c) of l and c defined on natural numbers. Let the scheduler assign
task priorities depending on the value of f at each point. To be specific, for
example, let this function be of the form f (l , c) = a l + b c, with a and b being
constants and let us assume the scheduler to work in such a manner that tasks
with smaller values of f (l , c) are assigned higher priorities. As particular cases,
with a = 1 and b = 1, constant value of f (l , c) corresponds to edf while with
a = 1 and b = 0, it corresponds to llf.

The generality of the function f calls for some clarifications. Firstly, it is to be
noted that the range of f should occupy a contiguous stretch of natural numbers
starting from 0 or 1, depending on the scheduling algorithm. Any non–arbitrary
priority assignment should aim at ensuring that lines of constant values of f (l , c)
result in a regular pattern of contours, each one unit apart, over the schedul-
ing domain. Using appropriate forms for f , a variety of scheduling algorithms
is conceivable within the chosen representation. Despite their theoretical and,
possibly, practical interest, this avenue is not pursued here any further.

For a task τi at (l , c) at time t with a non-zero probability, this would result
in a certain (non–negative) value K for f (l , c). At each point (mass value) (l ′, c′)
in S where pt

i (l
′, c′) is greater than zero, τi will thus generally have a different

value of f . At this point in time, the tasks in the system can be classified into
three sets: Ωt

1 representing the set of all tasks each having a value of f (l ′, c′) <
K , Ωt

2 representing the set of all tasks, including τi(l , c), each having a value
of f (l ′, c′) = K and, finally, Ωt

3 representing the set of all tasks each having
f (l ′, c′) > K or has been already either executed successfully or has failed.

Letting Ω be the set of all tasks in the system, we note that Ω =
3⋃

k=1

Ωt
k .

Provided that pt
i (l , c) > 0, the sets Ωt

k , which are also dependent on (l , c), can
be defined as

Ωt
1(l , c) = {τk | k ∈ 1 . . n ∧ ∃(x , y) ∈ S • (pt

k (x , y) > 0 ∧ f (x , y) < f (l , c))} .(3)
Ωt

2(l , c) = {τk | k ∈ 1 . . n ∧ ∃(x , y) ∈ S • (pt
k (x , y) > 0 ∧ f (x , y) = f (l , c))} .(4)

Ωt
3(l , c) = {τk | k ∈ 1 . . n ∧ ∃(x , y) ∈ S • (pt

k (x , y) > 0 ∧ f (x , y) > f (l , c))} ∪
{τm | m ∈ 1 . . n ∧ ∃(x , y) ∈ E • pt

m(x , y) > 0} . (5)

For better readability, let us simply write from now on Ωt
k instead Ωt

k (l , c)
defined above, for k = 1, 2, 3, unless the omission of (l , c) causes an ambiguity

Probabilistic Analysis of Multi-processor Scheduling 109

otherwise. Let us also write pt
τj

(Ωt
k) for the probability of τj being in the set Ωt

k
at time t .

It is important to note that the sets in (3)–(5) are not necessarily pairwise
disjoint since a task can belong to more than one set at the same time. In other
words, for j = 1, 2, . . . ,n, τj can be in one, two or all three sets of Ωt

k , for
k = 1, 2, 3, simultaneously, in each case with a probability of pt

τj
(Ωt

k). Obviously,

0 � pt
τj

(Ωt
k) � 1 but

3∑
k=1

pt
τj

(Ωt
k) = 1 . As our concern here is to calculate

probability of τi(l , c) being executed at time t , let us introduce the notation
Ω̄t

k = Ωt
k\{τi}, for k = 1, 2, 3, so that as a result τi is excluded from the set Ω̄t

k .
Letting τi continue to be the task under consideration for scheduling, let us

now select the sets ωt
k , for k = 1, 2, 3, such that

a) ωt
k ⊆ Ω̄t

k (i.e., each is a subset of the corresponding set in (3)–(5))
b) ωt

1 ∪ ωt
2 ∪ ωt

3 = Ω\{τi} (i.e., together they account for all the tasks in the
system, except for τi)

c) ωt
j ∩ ωt

k = ∅ for j , k = 1, 2, 3 and j
= k (i.e., they are pairwise mutually
disjoint)

Let pk , a non–negative integer, represents the number of tasks in each of
the sets ωt

k , for k = 1, 2, 3, in such a way that p1 + p2 + p3 = n − 1. As an
implication, task distribution in the scheduling domain is such that at the given
point in time, among the tasks other than τi , at least p1 tasks will be in Ω̄t

1,
at least p2 tasks in Ω̄t

2 and at least p3 tasks in Ω̄t
3. This is one of the possible

scenarios. Since 0 � pk �| Ω̄t
k |, the number of such possible scenarios can be

determined mathematically. For the time being, let Rt,ω
i (l , c) denote the set of

all such possible scenarios, i.e., the set of 3-tuples of the form (ωt
1, ω

t
2, ω

t
3).

2.3 Task Execution Probability

When τi is under consideration for execution at a particular point (l , c) in any
of the scenarios r ∈ Rt,ω

i (l , c) described above, it will be executed with some
probability v t

i,r (l , c), obviously with 0 � v t
i,r (l , c) � 1. The value of v t

i,r (l , c)
depends on three factors: a) the probability of realisation of the scenario r ,
b) the number of processors available for executing the tasks in r , and c) the
number of other tasks in r competing with τi , if any, at the same priority level as
defined by f (l , c). The probability v t

i,r (l , c) is a conditional probability because,
in effect, we are considering external factors affecting τi ’s execution, assuming
that τi is at (l , c).

Dealing with (a) first, let Pωt
k
, k = 1, 2, 3, represents the product of the

probabilities of tasks in ωt
k being in that set. That is

Pωt
k

=

⎧⎪⎨
⎪⎩
∏

τj ∈ ωt
k

pτj (ω
t
k) if ωt

k
= ∅ ,

1 if ωt
k = ∅ .

(6)

110 A. Leulseged and N. Nissanke

Then, the probability of realisation of the particular scenario r is the product
of Pωt

k
values defined above for k = 1, 2 and 3. Turning to (b) and (c), suppose

that there are m processors. Letting ρ be the probability of τi being executed
by any one of the m processors in the face of any competition offered by other
tasks operating at the same priority level, ρ can be determined as

ρ =

⎧⎨
⎩

1 if p1 + p2 � m − 1 ,
m−p1
p2+1 if p1 � m − 1 ∧ p1 + p2 > m − 1 ,

0 otherwise .

(7)

The above constrains the manner in which the tasks can be chosen for execution
and, thus, limits the number of scenarios eligible for execution.

The probability of τi being executed as described above in the scenario r
may now be given as

v t
i,r (l , c) = Pωt

1
× Pωt

2
× Pωt

3
× ρ . (8)

In computing τis overall probability of execution at (l , c) at time t , that is
v t
i (l , c), all possible scenarios in Rt,ω

i (l , c) must be taken into consideration.
That is

v t
i (l , c) =

∑
r ∈ Rt,ω

i (l,c)

v t
i,r (l , c) . (9)

Having obtained the conditional probability v t
i (l , c) of τi at (l , c) at time t ,

it is now possible to derive the actual execution probability of τi as the joint
probability of the event captured in (9) in conjunction with the event that τi is
actually at (l , c). An analogous reasoning applies to the corresponding probabil-
ity of τi missing execution (non-execution) at (l , c) at time t . Let ex t

i (l , c) denote
the probability of τi being executed at (l , c) at time t and, likewise, mst

i (l , c)
the probability of τi missing execution. These can be defined as

ex t
i (l , c) = pt

i (l , c) × v t
i (l , c) . (10)

mst
i (l , c) = pt

i (l , c) × ht
i (l , c) = pt

i (l , c) − ex t
i (l , c) . (11)

Consequently, the probability of τi being at (l , c) at the next time unit (t + 1)
depends on the probability of τi having been executed at (l , c +1) at time t and
the probability of τi having missed execution at (l + 1, c) at time t . This results
in

pt+1
i (l , c) = ex t

i (l , c + 1) + mst
i (l + 1, c) . (12)

With the derivation of (12), it is time to revisit the function next ti , introduced
in (2). In fact, our discussion from Section 2.2 onward, and the derivations made
since then, constitute the definition of next ti , albeit implicitly. The above rea-
soning applies to all the time values over the period of a given instance of every
task. This process of computation can be continued over any desired interval
time.

Probabilistic Analysis of Multi-processor Scheduling 111

Let us outline the computations involved in next in the form of an abstract
algorithm. It is defined here as a recursive algorithm next t with respect to time
t covering all tasks (and not just for τi as indicated by the notation next ti). It
is to be executed for each time value in the simulation period – typically the
Least Common Multiple (lcm) of the task periods. It performs the necessary
calculations for all tasks and, as appropriate, for all points in the task domain.
As its result, next t returns a three-dimensional matrix. If this matrix is referred
to as pt so that its elements can be referred to as pt(i , l , c), it is clear that
pt(i , l , c) is essentially an interchangeable notation for pt

i (l , c).

1. algorithm next t

2. begin
3. if t > 0 then pt := next t−1

4. for i ∈ 1 . . n do
5. if t mod Ti = 0 then pt(i , l , c) := pinit(i , l , c) for (l , c) ∈ S̄
6. end for
7. if t = 0 return pt

8. for i ∈ 1 . . n do
9. for K from Kmin to Kmax do
10. calculate Ωj ,K for j from 1 to 3
11. if i ∈ Ω2,K then calculate ex t

i (l , c) and mst
i (l , c)

12. end for
13. end for
14. for i ∈ 1 . . n do
15. for (l , c) ∈ S̄ do
16. result(i , l , c) := ex t

i (l , c + 1) + mst
i (l + 1, c) if (l , c) ∈ S

17. result(i , l , c) := pt
i (l , c) + mst

i (l + 1, c) if (l = −1) and (c > 0)
18. result(i , l , c) := pt

i (l , c) + ex t
i (l , c + 1) if (l � 0) and (c = 0)

19. end for
20. end for
21. return result
22. end algorithm next t

In Lines from 3 to 6, the algorithm computes the pt
i (l , c) for each task τi at

time unit t . In effect, this is achieved using either the function next t−1 (computed
in the previous time step) if t is greater than zero and is not a renewal time of
τi , or the specified initial value of pinit

i (l , c) if t is a renewal time of τi . The
latter applies also to the case when t = 0. In the case of a renewal, a distinction
is to made depending on whether the point (l , c) concerned is in the scheduling
domain or in the exit domain. For this reason, pt(i , l , c) in Line 5 is to be defined
as

pinit(i , l , c) =
{

pinit
i (l , c) if (l , c) ∈ S ,

0 if (l , c) ∈ E .
(13)

According to Line 7, for t = 0 the algorithm terminates by returning the matrix
pt as its result . The rest of the algorithm applies therefore only for t > 0. The
loop within Lines 9 and 11 is executed for the range values, say, from some

112 A. Leulseged and N. Nissanke

Kmin to some Kmax , of the priority assignment function f . Within this loop,
Ωj ,K s are computed for j = 1, 2, 3 (Line 10). Then for all tasks sharing the
priority level K , the functions ex and ms are computed (loop within Lines 8–
13). Then in Lines from 14 to 20 the result to be returned as the value of the
function next t is computed. As noted above, it is a three-dimensional matrix
of probabilities covering the points in the whole of the task domain for each of
the n tasks. At each of the points in the scheduling domain, these probabilities
are computed as the sum of ex and ms functions applied, as appropriate, to
the point above it and to the point on its right (Line 16). If a task misses its
execution while on the l axis, then the associated probability is added to the
probability of it having already failed, i.e. the probability of it already lying on
the line l = -1 (Line 17). Likewise, if a task is executed while on the line c = 1,
then the associated probability is added to the probability of it having already
successfully computed, i.e. the probability of it already lying on the line c = 0
(Line 18).

3 Performance and Quality of Service Issues

Once the relevant quantities are computed using the concepts introduced in
Section 2, they may be used to compute other practically more meaningful in-
dicators. Among them are the probability of successful execution, or failure, of
a given task instance within its period and other Quality of Service measures
such as jitter (irregularity in successful termination time between successive task
instances), the number of processors required to guarantee a pre-specified QoS
performance measure and so on.

First, let us introduce several common assumptions and notations. Let L de-
note the lcm of the periods of the n tasks under consideration. All tasks are
assumed to arrive for the first time simultaneously at time zero and thereafter
each task τi repeats itself within L every Ti time units. S k

i,j denotes the proba-
bility of successful execution of τi,j , i.e. j th instance of τi , at the kth time unit
in its period, where j = 1, 2, · · · ,L/Ti and k = 1, 2, · · · ,Ti . Analogously, F k

i,j
denotes the probability of failure of τi,j at the kth time unit. It is assumed that
the request time for the τi,j coincides with the end of the period of (j − 1)th
instance. Note that τi,j can terminate only from next time unit onward since it
must last at least one unit of time.

Expressions (10) and (11) are of immediate use in the computation of the
probabilities S k

i,j and F k
i,j . Letting Si,j and Fi,j denote the sum of these two

respective probabilities over τi,j ’s period, they can be defined as

Si,j =
jTi∑

k=(j−1)Ti+1

(
lmax∑
l=0

ex k
i (l , 1)

)
. (14)

Fi,j =
jTi∑

k=(j−1)Ti+1

(
cmax∑
c=1

msk
i (0, c)

)
. (15)

Probabilistic Analysis of Multi-processor Scheduling 113

Letting Ri,j be a variable representing the response time of τi,j the proba-
bility of it successfully terminating within the first di time units of its period,
0 < di � Ti , can be defined as

Pr(Ri,j � di) =
di∑

k=1

S (j−1)Ti+k
i,j . (16)

and the mean of Ri,j within τi,j ’s period is

Ti∑
k=1

k S (j−1)Ti+k
i,j . (17)

If desired, the above may be further averaged over the whole lcm. The measures
(14) and (15) could also be used in assessing the value of partial computations in
monotone processes, mentioned in Section 1, and acceptable limits of loss rates
in applications such as multimedia transmissions.

Turning to jitter control, suppose that the j th instance of task τi successfully
terminates at the kth time unit in its period and the (j +1)th instance at the lth
time unit in its own period. The irregularity in the response times of consecutive
instances of τi can then be defined as g =| k − l |; see [4]. Let Ji be a variable
denoting the mean regularity success jitter of τi , i.e., the mean regularity jitter
between consecutive instances of a given task terminating with some probability
of success in their respective periods. The probability of τi experiencing a mean
regularity success jitter g , 0 � g � Ti , can be defined as

Pr(Ji = g) =
Li∑
j=1

⎛
⎝ jTi∑

k=(j−1)Ti+1

S k
i,j (S

k+Ti+g
i,j+1 + S k+Ti−g

i,j+1)

⎞
⎠ . (18)

where Li = LCM /Ti . The probability of mean regularity success jitter Ji not
exceeding a value g is

Pr(Ji � g) =
g∑

x=0

Li∑
j=1

⎛
⎝ jTi∑

k=(j−1)Ti+1

S k
i,j (S

k+Ti+x
i,j+1 + S k+Ti−x

i,j+1)

⎞
⎠ . (19)

Probability of successful execution of a task, or a set of tasks, is an important
measure in guaranteeing a required level of any QoS attribute. If Si(m,n) denotes
the probability of successful execution of task τi in an environment with m
processors and a total of n tasks, then an increase in m is generally expected
to raise Si(m,n) while an increase in n to lower it. However, these effects are
not necessarily linear or simple. This is because the task parameters also play a
role in affecting one another’s execution. Though the interplay of these factors
has not been a subject addressed in this work, an example later (see Section 4
and Figure 9) illustrates the effect of the number of processors on successful task
executions.

114 A. Leulseged and N. Nissanke

4 An Illustrative Example

In order to illustrate the capabilities of the proposed framework, this section
considers three examples. These share certain tasks in common and comprise
five tasks altogether. In order to distinguish them, let us refer to these examples
through the set of tasks used in each, namely, as Task Set 1, 2 and 3 respectively.
Task Set 1 consists of the tasks in { τ1, τ2, τ3 }, Set 2 the tasks in { τ1, τ2, τ3, τ4 }
and, finally, Set 3 the tasks in { τ1, τ2, τ3, τ4, τ5 }. Task Sets 2 and 3 are intended
to illustrate the effect of the increased workload due to competition offered by τ4,
and τ4 and τ5, respectively on the execution of tasks in Set 1, i.e., τ1, τ2 and τ3.
Characteristics of tasks are partly shown in Figure 2. For example, according to

τ
1

τ
2

τ
3

τ
4

τ
5

Laxity (l)
0 1 2 3

1

2

3

0.2 0.3

0 1 2 3

1

2

3 0.4

0.3 0.2

0.1

0 1 2 3

1

2

3

0.20.1

0.2 0.3

0.2

0 1 2 3

1

2

3

0.3

0.6

0.1

0 1 2 3

1

2

3

0.1

0.30.2

0.2

0.2

C
om

pu
ta

ti
on

 ti
m

e
(c

) 0.5

a) b) c)

d) e)

c c

cc

l l

ll

Fig. 2. Characteristics Li and Ci of tasks τi , i = 1, · · · , 5, at request times

Figure 2(a), the probability of task τ1 arriving with a laxity 1 and a computation
time 2 is 0.3, whereas it can arrive with the same laxity but a computation time
3 with a probability of 0.5. The periods of the five tasks, τi , i = 1, 2, · · · , 5 are
4, 6, 5, 5 and 6 respectively. Unless otherwise stated, the number of processors
used are 2.

Turning to the results, Figure 3 shows the ‘patterns’ of successful execution
of tasks τi , i = 1, 2 and 3, in Task Set 1. This covers an interval of time spanning
over 30 units of time, that is, half the lcm of the task periods. Each point on a

Probabilistic Analysis of Multi-processor Scheduling 115

curve gives the probability of successful execution of the task concerned at the
corresponding unit of time t , i.e. S t

i,j for τi,j , introduced in Section 3. Obviously,
there should have been a companion figure accompanying this, not shown for
reasons of space, giving the probabilities of task failures at each time unit and
for each task. Figure 3, which is essentially the pmfs of successful execution of
successive task instances adjoined together, is intended primarily at giving an
initial insight into the computations involved. What counts in subsequent com-
putations of QoS indicators is the cumulative probability of successful execution
of each task instance, that is, Si,j for τi,j introduced in (14).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time

P
ro

b
a

b
il

it
y

 o
f

S
u

c
c

e
s

s
fu

l
E

x
e

c
u

ti
o

n
s

Task 1

Task 2

Task 3

Fig. 3. Patterns of successful execution of τ1, τ2 and τ3 in llf in Task Set 1

Figure 4 shows the cumulative probabilities of successful execution of tasks
τ1, τ2 and τ3 only in the edf regime over their respective periods in all three
Task Sets over the the lcm of task periods. It illustrates the adverse effect of
the increased workload due to τ4 in Task Set 2, and τ4 and τ5 in Task Set 3 on
the execution of τ1, τ2 and τ3. Figure 5 gives the same for execution in the llf
regime, showing a noticeable improvement in the performance of tasks τ1 and
τ3 compared to that in the edf regime, though τ2 is worse off under llf. Direct
comparisons are made in Figures 6 and 7 to expose the nature of this effect; in
Figure 6 with respect to τ1, τ2 and τ3 in Task Set 3 and in Figure 7 with respect
to τ1 in all three Task sets. Despite their inadequacy for drawing any general
conclusions, these examples tend to suggest a link between the algorithms and
the more dominant task characteristic on the probability of successful execution.

Based on (18), the probability of tasks τi , i = 1, 2, 3, 4, experiencing mean
regularity success jitter ranging from 0 to their respective periods, Ti , has been

116 A. Leulseged and N. Nissanke

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
1

w
ith

in
 it

s
P

er
io

d

In task set 1

In task set 2

In task set 3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
2

 w
ith

in
 it

s
P

er
io

d

In task set 1

In task set 2

In task set 3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
3

w
ith

in
 it

s
P

er
io

d

In task set 1

In task set 2

In task set 3

Fig. 4. τ1, τ2 and τ3 in edf in Task Sets 1, 2 and 3

Probabilistic Analysis of Multi-processor Scheduling 117

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Request Number (over the LCM of Task Periods)

P
ro

b
a

b
ili

ty
 o

f
S

u
c
c
e

s
s
fu

l
E

x
e

c
u

ti
o

n
 o

f
T

a
s
k
 1

w
it
h

in
 i
ts

 p
e

ri
o

d

In Task Set 1

In Task Set 2

In Task Set 3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
2

 w
ith

in
 it

s
P

er
io

d

In Task Set 1

In Task Set 2

In Task Set 3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
3

 w
ith

in
 it

s
P

er
io

d

In Task Set 1

In Task Set 2

In Task Set 3

Fig. 5. τ1, τ2 and τ3 in llf in Task Sets 1, 2 and 3

118 A. Leulseged and N. Nissanke

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
1

in
 T

as
k

S
et

 3

w
ith

in
 it

s
P

er
io

d

LLF

EDF

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
2

in
 T

as
k

S
et

 3

w
ith

in
 it

s
P

er
io

d

LLF

EDF

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
3

in
 T

as
k

S
et

 3

w
ith

in
 it

s
P

er
io

d

LLF

EDF

Fig. 6. τ1, τ2 and τ3 with llf and edf in Task Set 3

Probabilistic Analysis of Multi-processor Scheduling 119

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
1

in
 T

as
k

S
et

 1

w
ith

in
 it

s
pe

rio
d

LLF

EDF

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
1

in
 T

as
k

S
et

 2

w
ith

in
 it

s
pe

rio
d

LLF

EDF

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Request Number (over the LCM of Task Periods)

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
of

 T
as

k
1

in
 T

as
k

S
et

 3

w
ith

in
 it

s
P

er
io

d

LLF

EDF

Fig. 7. τ1 with llf and edf in Task Sets 1, 2 and 3

120 A. Leulseged and N. Nissanke

calculated and is shown in Figure 8.Though these tasks have different charac-
teristics, these probabilities are found to reach their peak values for a mean
regularity success jitter of one unit of time. Figure 9 illustrates the dependence

a) Task 1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4
 Jitter

P
ro

b
a
b

il
it

y
 o

f
M

e
a
n

J
it

te
r In Task Set 1

In Task Set 2

In Task Set 3

b) Task 2

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6

Jitter

P
ro

b
a

b
il

it
y

 o
f

M
e

a
n

J
it

te
r

In Task Set 1

In Task Set 2

In Task Set 3

c) Task 3

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

Jitter

P
ro

b
a

b
il

it
y

 o
f

M
e

a
n

J
it

te
r

In Task Set 1

In Task Set 2

In Task Set 3

d) Task 4

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

Jitter

P
ro

b
a

b
il

it
y

 o
f

M
e

a
n

J
it

te
r

In Task Set 2

In Task Set 3

Fig. 8. Effects of workload on probability of mean regularity success jitter

of the average of the probabilities of successful execution over the lcm on the
available number of processors as it is varied from 1 to 5. This kind of infor-
mation could be a particularly useful as a design tool as it enables a direct
quantified comparison of the trade-off between resources and the level of QoS to
be achieved.

5 Conclusions

This work has developed an entirely new probabilistic framework for investigat-
ing schedulability issues in the presence of uncertainties. It is aimed at dynamic
multi–processor scheduling environments involving periodic tasks with uncer-
tainties in computation times and deadlines. Such a framework becomes espe-
cially relevant in the context of modern non-critical real–time applications such
as multimedia, computer vision, on–line recognition systems, etc. A common
denominator of such applications is that, within limits, certain failures are not
fatal for the successful delivery of their functions. This kind of flexibility is often
expressed in terms of Quality of Service attributes such as latency, loss and drop
rates, jitter, etc., often expressed in statistical terms. The task of guaranteeing
QoS measures is often compounded by uncertainties in the parameters of various

Probabilistic Analysis of Multi-processor Scheduling 121

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

Number of processors

A
v
e
ra

g
e
 S

u
c
c
e
s
s
fu

l
E

x
e
c
u

ti
o

n
 P

ro
b

a
b

il
it

y

Task 1

Task 2

Task 3

Task 4

Task 5

Fig. 9. Dependence of the average successful execution probability over the lcm on
the available number of processors

computational tasks. Both these factors are suggestive of the appropriateness of
probabilistic paradigm in the study of such issues.

Each task is represented by a fixed period and a set of non–zero probabili-
ties characterising the task having certain random pairs (points) of computation
times and laxities at its arrival time. In between arrival times, computation times
and the laxities are continued to be described probabilistically, though not in a
random manner. Then considering each such point separately, the probability of
the task concerned being executed is examined in different scenarios involving
other tasks. Knowing the probability of realisation of each scenario, any compe-
tition due to tasks operating at the same priority level for the available number
of processors as well as the probability of the task concerned being there, the
probability of it being executed is computed. This enables the computation of
execution patterns of all tasks over a desired interval of time. This forms the
basis for calculating several important QoS measures, such as those mentioned
above. A range of examples demonstrate the capabilities of the framework as
well as unique benefits of probabilistic analysis.

Novelty of the proposed approach has raised several important issues re-
quiring further research in relation to its practical applicability. This includes,
amongst others, an assessment of complexity of the approach as proposed, an
exploration into heuristic techniques for managing this complexity in relation to
problem sizes encountered in practice, and a verification of the approach using
stochastic simulations.

122 A. Leulseged and N. Nissanke

References

1. A. Atlas and A. Bestavros. Statistical rate monotonic scheduling. In 19th IEEE
Real-Time Systems Symposium. 1998. pages 123–132,

2. A. Atlas and A. Bestavros. Design and Implementation of Statistical Rate Mono-
tonic Scheduling in KURT Linux. In Proceeding of IEEE Real-Time Systems Sym-
posium. 1999. pages 272–276.

3. J.-Y. Chung, J.W.S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow im-
precise results IEEE Transactions on Computers, 39(9), 1990. pages 1156–1174.

4. L. David, F. Cottet and N. Nissanke. Jitter Control in On-line Scheduling of De-
pendent Real-time Tasks. In 22nd IEEE Real-Time Systems Symposium, London,
UK, 2001.

5. M. L. Dertouzos and A.K. Mok. Multi-processor on-line scheduling of hard real-
time systems. IEEE Trans. on Software Engineering, 15(12), December 1989.

6. S. Edgar and A. Burns Statistical Analysis of wcet for Scheduling. 22nd IEEE
Real-Time Systems Symposium. London, UK. 2001. pages 215–224.

7. C. -J. Hamann, J. Löser, L. Reuther, S. Schönberg, J. Wolter, and H. Härtig.
Quality-Assuring Scheduling Using Stochastic Behaviour to Improve Resource Util-
isation. In 22nd IEEE Real-Time Systems Symposium, London, UK, 2001. pages
119–128.

8. M. A. Inverson, F. Ozguner, and L. Potter. Statistical prediction of Task Exe-
cution Times through Analytic Benchmarking for Scheduling in a Heterogeneous
Environment. IEEE Transactions on Computers. 48(12), 1999.

9. S. Manolache, P. Eles and Z. Peng Menory and Time-efficient Schedulability Anal-
ysis of Task Sets with Stochastic Execution Time. 13th Euromicro Conference on
Real–Time Systems, 2001, Pages 19–26

10. N. Nissanke, A. Leulseged and S. Chillara. Probabilistic Performance Analysis
in Multiprocessor Scheduling. Conputing and Control Engineering Jounal. 13(4),
August 2002, Pages 171–179.

11. A. C. Shaw. Reasoning about Time in Higher-Level Language Software IEEE
Trans. on Software Engineering. 15(7), 1989.

12. L. Zhou, K. G. Shin and E. A. Rundensteiner. Rate-monotonic scheduling in the
presence of timing unpredictability. IEEE Real-Time Technology and Applications
Symposium. 1998. pages 22–27.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 123–135, 2004.
© Springer-Verlag Berlin Heidelberg 2004

1

2

3

45

6

7

8

Fig. 1. A Major Cycle

Real-Time Virtual Machines for
Avionics Software Porting and Development

 Lui Sha

CS, UIUC
lrs@cs.uiuc.edu

Abstract. Generalized rate monotonic scheduling (GRMS) theory has now been
widely adopted in practice and supported by open standards. This creates strong
incentives for the avionics industry to migrate from traditional cyclical executive
based system to a GRMS based systems. This paper presents some of the impor-
tant considerations in the migration of a cyclical executive based system to a
GRMS based system.

1 Introduction

In the past, avionics software systems used a federated architecture, where each
subsystem had its own processor, with cyclical executives. As processors become
faster, and the analytic hard real-time scheduling method ⎯ Rate Monotonic Analysis
(RMA) ⎯ is supported by open standards, industry would like to:

• Port and integrate old software subsystems to a modern processor with minimal re-
certification needs,
• Incrementally develop new soft-
ware using RMA.

From the perspective of software
porting, integration and recertification,
the most important property to preserve
is the Isolation property: under the
federated architecture, each subsystem
has its own physical processor; the
execution of tasks on one processor
cannot interfere with the execution of
tasks on other processors. We must
ensure this logically in the system
architecture of fast modern processors.
A software architecture on a proces-
sor, where its partitions satisfy the
isolation property, is called a Logical

124 L. Sha

Federated Architecture (LFA). Each partition in LFA is called a Real-Time Virtual
Machine (RTVM), which is a virtual machine with protected timing properties.

From a scheduling perspective, LFA can be realized easily by using a simple TDM
scheduler. From a scheduling perspective, this is a special form of two level sched-
ulers [5] and is not the most efficient one in terms of realizable schedulability for
RTVMs. However, it has the best backward compatibility to legacy avionic software
written with cyclical executives. Those legacy software was typically written in a way
that assumes a deterministic usage of time slots in its task dispatching table. TDM
provides fixed slots and thus preserves the structure of the dispatching table, resulting
in easy porting and recertification. In avionics, the cost of recertification dwarfs
hardware costs.

As illustrated in Figure 1, a RTVM is simply a sequence of time slots in the major
cycle. For example, RTVM1 uses {1, 3, 4}, RTVM2 uses {2, 5, 7} and slots {6, 8} are
reserved for future use. The major cycle should be no longer than the shortest period
of all the tasks, unless we use equally spaced RTVMs with a temporal distance be-
tween adjacent RTVMs less the period of the shortest period. Experience shows that
letting major cycle to be shorter than the shortest period of all tasks tends to make
RTVM reconfiguration easier during system evolution. In the rest of this paper, we
assume that the major cycle is shorter than all the periods. The results can be easily
generalized if we wish to remove this assumption.

From an application perspective, each RTVM can have its own scheduling policy, thus
facilitating porting and integration of legacy applications. When the software in a leg-
acy RTVM needs to be modified significantly, it is time to convert it to an RMA based
RTVM and take advantage of RMA’s optimality, flexibility and schedulability analysis.
Independent of scheduling policies, subsystems with different criticality can be assigned
to different RTVMs to facilitate certification. New subsystems should use RMA based
RTVM. The objective of this study is to extend the results of RMA in the context of
RTVM. RMA based RTVM can add/subtract integer numbers of time slots and then ap-
ply schedulability analysis.

Although theoretically RMA can have slots with fractional sizes, this creates com-
plexity in implementation without significant practical value. Thus, we assume that all
the slots are of equal size and only an integer number of slots are allocated to any
RTVM.

• RMA presumes that the processor can be taken away from a task at arbitrary
instances of time.

o When a slot of a RTVM becomes active, the highest priority ready
task, if any, in the RTVM is executed.

o When this slot ends, the executing task, if any, will be suspended.

• Cyclical executive assumes that it owns the processor for each of the as-
signed time slot.

Real-Time Virtual Machines for Avionics Software Porting and Development 125

Legacy subsystems using cyclical executives should first pick the slots of their
RTVMs. RMA based RTVMs are more flexible, and they can use any leftover slots.

Finally, it is important to remember that RTVM is a simulation of the federated archi-
tecture on a shared physical processor. And the key property we want to ensure is the
isolation property. To ensure the validity of the isolation property, the software engi-
neering process shall enforce the following rules:

1. Each RTVM should have its own address space, simulating the memory pro-
tection offered by separated physical processors.

2. Data sharing between applications in different RTVMs should use message
passing, simulating how applications communicate under the federated ar-
chitecture. The strong coupling caused by the use of global shared variables
among subsystems in different RTVMs violates the isolation property.

3. All the computing resources, e.g., memory, CPU cycles (time slots) and
communication ports, should be pre-allocated, simulating different proces-
sors with their private resources. Dynamic physical and logical resource al-
location would lead to interactions between RTVMs, violating the isolation
property.

4. Device I/O should be initiated and completed within a single slot, simulating
private I/O in separated physical processors.

5. The worst-case kernel service time across a slot boundary, denoted as Kslot,
should be kept small and deterministic. An application task may initiate a
kernel service, e.g., lock or unlock a semaphore, at or near the end of a slot.
Nevertheless, a kernel service, once started, should continue until it is com-
pleted, even if the execution runs across the nominal boundary of a slot. Un-
der this policy, Kslot is simply part of the overhead time when we switch from
one slot to another.

Remark: Kernel services are shared by all the RTVMs. A sufficient condition to pre-
vent the creation of dependency between RTVMs via the use of kernel services is the
following rule: when crossing any slot boundary, the kernel must finish its existing
services before passing the control to the applications in the next slot. Theoretically,
we only need to cut off kernel service dependency across the boundaries of RTVMs.
But cutting off the dependency at each slot boundary keeps the kernel code simple,
independent of how slots are assigned at the application level. This allows for the
flexible reassignment of slots to RTVMs.

Remark: An application task can, of course, hold a lock on semaphore across the
boundary of slots. This would only block other application tasks in the same RTVM,
since we do not permit shared variables across RTVMs. What is important is that sys-
tem calls, e.g., lock a semaphore, must be finished before next slot starts. This has to
be verified at the application level.

126 L. Sha

2 Schedulability Bounds

The schedulability bounds of RMA depend on the availability of information about the
size of the RTVM and the application task parameters. Up to a limit, the more we
know about the parameters, the larger will be the bound. Different parameters will
become available at different stages of system development and have different degrees
of volatility. For example, we usually know the number of tasks and their frequencies
before knowing their execution times. Task frequencies are also much less likely to
change than execution times. We will know the task set parameters more accurately as
design and implementation processes. From an application perspective, there are dif-
ferent types of schedulability bounds based on application needs.

 1) RTVM Bound: the scheduling
bound when only the size of the
RTVM is known. A set of tasks is
schedulable as long as its total utiliza-
tion is less than the RTVM Bound.
This bound is conservative because it
assumes the worst possible combina-
tion of parameters. However, it is use-
ful for initial sizing of RTVM and
hardware sizes where conservatism is
a virtual.
 2) RMA Exact Schedulability Check:
In the late stage of system develop-
ment, we know RTVM size, task fre-
quencies and their worst-case execu-
tion times and would like to have a
higher degree of schedulability.

In order not to clutter the exposition, we shall first derive the fundamental results un-
der the following assumptions:

• All tasks are independent, that is, they do not synchronize with one another.
• Context switching time of application tasks is zero.
• The slot switching overhead time is zero.
• Task frequencies are constants. They do not drift.

 All these assumptions will be removed once the key result is obtained.

2.1 Modeling the Effect of Slot Assignments

From the perspective of a task in a given real-time virtual machine, RTVMi, the proc-
essor will be taken away for two reasons: 1) a high priority task becomes ready, and
2) the current slot of RTVMi is ended, and a slot in another RTVM has started.
In the schedulability analysis of a given Task τi, the effect of a higher priority periodic
Task τh = (Ch, Th) is that Task τh will take away the processor Ch units of time every

1

2

3

45

6

7

8

Fig. 2. VM Slot Assignment Analysis

Real-Time Virtual Machines for Avionics Software Porting and Development 127

Th units of time when Task τi is active1. The effect of an unassigned slot in the major
cycle T1 is that the processor will be taken away from Task τi one slot time every T1

units of time when Task τi is active. Thus, we can model the effect of an unassigned
slot as a high priority periodic task, called a Slot Task, with execution time that is
equal to the slot time, and period that is equal to the major cycle.

Example 1: As illustrated in Figure 2, from the perspective of a task in RTVM1 = {1,
4, 5}, we can account for the effect of the five slots not assigned to RTVM1, Slots 2, 3,
6, 7, 8, by five Slot Tasks: {(Slot_2_time, T1), (Slot_3_time, T1), (Slot_6_time, T1),
(Slot_7_time, T1) and (Slot_8_time, T1)}.

When we model a RTVM, we must keep in mind that the slots used by a virtual ma-
chine should be kept flexible to allow for reassignments. That is, we should be able to
replace RTVM1’s slots {1, 5, 4} with another three slots, e.g., {6, 7, 8}, without redo-
ing the schedulability analysis.

Theorem 1: For tasks in a given RTVMi, the effect of slots not assigned to RTVMi can
be represented by a single periodic task, called the VM Periodic Task, whose period is
that of the major cycle, T1, and whose computation time is equal to the sum of the
length of all the slots not assigned to RTVMi.

Proof: First, each slot not assigned to RTVMi is modeled by a Slot Task whose pe-
riod equals to T1, and whose computation time equals to the slot time. Next, we assign
each Slot Task a priority P that is higher than the priorities of all the application tasks
in RTVMi, since a Slot Task will always take away the processor from an application
task. By Liu and Layland’s critical instance theorem[1], we know that the maximal
preemption from these Slot Tasks occurs when all of the tasks start at time t = 0, the
starting of the first slot assigned to RTVMi. Under the critical instance arrangement,
all the Slot Tasks will have the same period, T1, the same starting time t = 0, and the
same priority P. Hence their combined preemption can be modeled by a single peri-
odic task, the VM Periodic Task, with period, T1, and execution time C1 equal to the
sum of the length of all the slots not assigned to RTVMi. QED.

Remark: Slot Tasks, by the physical nature of the major cycle, cannot all start at the
same time. Having all the tasks starting at the same time, however, is an accurate
logical model of the situation: we would like our application tasks to start at the origin
of the major cycle, but the slots assigned to the RTVM for our application tasks are
those at the end of the major cycle.

Example 2: In Example 1, the VM Periodic Task is the combination of the five Slot
Tasks represented by (Sum_of_5_slot_Times, T1). In the rest of the paper, we shall
denote the VM Periodic Task as τ1 = (C1, T1).

In summary, we model the effects of the slots not assigned to a RTVM by a single
high priority periodic task, the VM Periodic Task, whose computation time is the sum

1 That is, Task τi is executing or ready to execute.

128 L. Sha

of all the unavailable slots and whose period is that of the major cycle. This worst-
case modeling method allows for flexible reassignment of time slots without redoing
the schedulability analysis. We shall use this method throughout this report.

Notation: When we have n application periodic tasks in a RTVM, the schedulability
model for these n tasks will have n+1 tasks, {τ1…τn+1}. In this paper, Task τ1 models
the VM Periodic Task. Tasks {τ2…τn+1 } are the n application tasks in the RTVM.

Definition: The size of a RTVM, Uvm, is defined as the percentage of CPU cycles as-
signed to a RTVM.

Remark: Uvm is just the sum of the duration of all the assigned slots divided by the
period of the major cycle.

Notation: The total utilization of tasks {τ1…τn+1} is denoted as U(1..n+1), and the
total utilization of application tasks {τ2…τn+1 } is denoted as U(2..n+1).

Definition: A utilization bound for n application tasks in a RTVM, UB(2..n+1), is said
to be sufficient, if the n application tasks will always meet their deadlines as long as
U(2..n+1) ≤ UB(2..n+1).

Remark: There are infinitely many sufficient bounds, since any bound that is less than
a known sufficient bound is also a sufficient bound.

Notation: The scheduling bound for n application tasks in a RTVM plus the corre-
sponding VM Periodic Task is denoted as UB(1..n+1).

Notation: The maximal sufficient bound for n tasks in a RTVM, UBmax(2..n+1), is
defined as the largest one in the set of all the sufficient bounds. The bound UB-

max(1..n+1) denotes the largest sufficient bound of the n application tasks plus the VM
Periodic Task.

Remark: If the bound is independent of the number of application tasks, we will drop
the parameter (1 (or 2)..n+1) in the notation of utilization, e.g., U(1 (or 2)..n+1), and
in the notation of a scheduling bound, e.g., UBmax(1 (or 2)..n+1),. That is, we will use
U and UBmax, when the bound is independent of the number of application tasks.

2.2 Real-Time Virtual Machine Bound with only Utilization Information

This bound gives the maximal flexibility, for it assumes that we only know the per-
centage of the CPU available for the RTVM and nothing else. The price to pay for
this flexibility and robustness is a low schedulability bound, since we must assume
the worst possible combination of all the parameters.

Let U1 denote the utilization of the VM Periodic Task and let Uvm represent the utili-
zation of the RTVM. We have Uvm = (1 − U1).

Real-Time Virtual Machines for Avionics Software Porting and Development 129

Theorem 2: Given an arbitrary number of independent periodic application tasks with
deadlines at the ends of their periods, total utilization U, and a RTVM with capacity
Uvm,, these tasks are schedulable on the RTVM using the rate monotonic scheduling
algorithm, if:

U ≤ UBmax = ln(2/(2 – Uvm))

Proof: Given n tasks executing within a RTVM with capacity Uvm,, by Theorem 1, the
effect of all the unassigned slots is modeled by the VM Periodic Task. Thus, we have
the task set {τ1…τn+1 } = {(C1, T1), (C2, T2), … (Cn+1, Tn+1)}. We assume T1 ≤ T2 … ≤
Tn+1.

For independent periodic tasks, Liu and Layland[1] proved that the worst case for
Task τi occurs when: 1) all the higher priority tasks and Task τi start at the same in-
stant, and 2) the ratio between any two tasks is less than 2, i.e., Tn+1/T1 < 2, and 3)
the computation time, Ci, of each task is the difference between Ti+1 and Ti. That is,
C1 = T2 – T1, …, Ci = Ti+1 − Ti and Cn+1 = Tn+1 − 2(C1+…+ Cn) = 2T1 - Tn+1.

The maximal sufficient bound is found by identifying the schedulable task set with
the minimal utilization under the worst-case condition [1]. To minimize the task set
utilization under the worst-case condition defined above:

Let ri = Ti+1/Ti, 1 ≤ i ≤ n. Note that Tn+1/T1 = r1r2…rn , and that U1 = C1/T1 = r1 − 1.

The total processor utilization including that of the VM Periodic Task for unassigned
slots is:

U(1..n+1)= (T2 − T1) / T1 + … + (2T1 – Tn+1)/Tn+1

 = r1 + r2 + … + rn + 2/(r1r2…rn) – (n+1)

Since U1 is a given constant, it follows that r1 is a constant. Let k = r1 for notational
clarity, since we use r to denote a variable. We have:

U(1..n+1) = k + r2 + … + rn + 2/(k r2…rn) – (n+1)

Let ∂ U(1..n+1)/∂ ri = 0, 2 ≤ i ≤ n, we have:
2

2 3

2
2 3

2
2 3

...

n

n

n

k r r r 2

k r r r 2

k r r r 2

⋅ ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅ =
Taking a ratio between two successive equations, we have r2 = r3, r3 = r4 ,…, rn-1 = rn.

Let r = ri, 2 ≤ i ≤ n and solve for r, we have 1/(2 /) nr k= . It follows that

U(1..n+1) = k + r2 + … + rn + 2/(k r2…rn) – (n+1)

130 L. Sha

 = k + (n-1)r + 2/(k r(n-1)) – (n+1)

Substituting the solution of r into the equation above, we obtained the minimal task
utilization and thus the maximal sufficient bound. Recalling that k = r1 = U1+1, we
have:

1

max (1)1

1 1

1

1

1
1

1

1
1

1

1
1

1

2 2 1
(1.. 1) (1)() () (1)

2

2 2 2
(1)() ()() (1)

2
() (1)

2
1 () 1

1

2
()

1

2
(() 1)

1

Recalling that 1 , the maxim

n
B n

n

n

n n

n

n

n

n

vm

U n k n n
k k

k

k n n
k k k

k n n
k

U n n
U

U n n
U

U n
U

U U

−

−

+ = + − + − +

= + − + − +

= + − +

= + + − −
+

= + −
+

= + −
+

= −
1 1

max
1

max

al utilization bound for the application tasks alone is:

2 2
(2.. 1) (() 1) (() 1)

1 2

2
ln as . QED.

2

n n
B

vm

B
vm

n

U n n n
U U

U n
U

+ = − = −
+ −

= →∞
−

Remark: If the RTVM gets 100% of the processor, RTVM bound becomes the well-
known result of ln(2).

2.3 Exact Bounds

The objective of our RTVM formulation is to keep things simple: simple to imple-
ment, simple to integrate, simple to analyze and simple to re-certify. Indeed, by
Theorem 1, the schedulability analysis of a set of n application tasks in a RTVM is
equivalent to the schedulability analysis of a set of n+1 tasks that includes the VM
Periodic Task. Hence the exact test can be used without modification. The exact
schedulability test developed in [3] is described here for completeness. For each
Task τI:

Real-Time Virtual Machines for Avionics Software Porting and Development 131

1

1 0
1 1

1

1

 where

Test terminates when (not schedulable)

 or when (schedulable)

i i
k

k i j j
j jj

k i

k k i

t
t C C t C

T

t T

t t T

−

+
= =

+

+

= + =

>
= ≤

Furthermore, we note that the exact schedulability analysis is in fact an efficient
simulation of fixed priority scheduling. Thus, it is equally applicable to RMA or any
other fixed priority assignment method.

2.4 Relaxation of Assumptions

Again by Theorem 1, the schedulability analysis of a set of n application tasks in a
RTVM is equivalent to the schedulability analysis of a set of n+1 tasks that includes
the VM Periodic Task. As a result, methods for context switching and blocking that
were described in [2] are directly applicable. We first examine the context switching,
the blocking, and the frequency drift in isolation. We will then integrate them with the
use of the scheduling bounds developed in this report.

2.4.1 Application Task Context Switching Time and Slot Switching Time

Each job (or instance) of a periodic task could generate at most two context switches
⎯ the starting context switching and the completion context switching.

Example 3: As illustrated in Figure 3, low priority Task τ3 starts and preempts the
system idle task at t = 0 with its starting context switching. Context switching times
are colored in white. At time t1, Task τ2 starts and preempts this low priority Task τ3

with its starting context switching. At t2, high priority Task τ1 starts and preempts
Task τ2 with its starting context switching. Task τ1 executes to completion at t3 with its
completion context switching, and the processor is given to Task τ2. At t4, Task τ2

t0 t1 t2 t3 t4 t5 t6 t7

τ 1

τ 2

τ 3

Fig. 3. Context Switching

132 L. Sha

finishes with its completion context switching and the processor is given to Task τ3.
Finally, at t5, Task τ3 completes and ends with its completion context switching, and
the processor is passed to the system idle task, which does not terminate.

Nevertheless, to account for the worst- case context switching, we need to add two
worst-case context switching times to the execution time of each application task.

Finally, as illustrated in Figure 1, whenever we switch from one slot to the next, there
is one context switching for task executions. In addition, there is the worst-case kernel
service time across a slot boundary, Kslot. Hence, the computation time of the VM
Periodic Task with n slots should be: C1 = n*(Slot_time + S + Kslot), where S is the
worst case slot switching time.

2.4.2 Blocking

Although there are better real time synchronization protocols available, only the pri-
ority inheritance protocol is currently available in most commercially available real
time operating systems. Thus, we review the blocking under this protocol. Under the
Priority Inheritance Protocol [4], a task can be blocked multiple times or even dead-
locked. However, we shall assume that deadlock is avoided by not using nested locks
or by totally ordering the sequence of locking. We assume that a real-time task will
not suspend itself inside a critical section so that the duration of each critical section
can be measured and that a job (an instance) of a periodic task will not unlock and
then lock the same semaphore again. These assumptions imply that proper real-time
software architecture is followed to handle the interface with external activities such
as screen and disk I/O so that large and varying delays from such activities will not
negatively impact the real-time loops.

Example 4: Figure 4 illustrates the direct blocking and indirect blocking that can be
experienced by a task. At time t0, Task τ4 starts and it locks semaphore SEM1 at t1. At
t2, both Task τ3 and Task τ2 become ready. Since Task τ2 has higher priority, it exe-

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

τ 1

τ 2

τ 3

τ 4

Fig. 4. Blocking under Priority Inheritance Protocol

Real-Time Virtual Machines for Avionics Software Porting and Development 133

cutes. At t3, Task τ2 locks semaphore SEM2. At time t4, Task τ1 preempts τ2 and starts
to execute. At t5, Task τ1 tries to lock Semaphore SEM2. Since SEM2 is locked by Task
τ2, Task τ1 is blocked by Task τ2 via SEM2. So Task τ2 resumes its execution and
inherits τ1’s priority. At t6, Task τ2 unlocks SEM2 and returns to its assigned priority.
Task τ1 locks SEM2, preempts Task τ2, and executes. At t7, Task τ1 unlocks SEM2 and
tries to lock SEM1. However, SEM1’s lock is held by Task τ4. So Task τ4 inherits Task
τ1’s priority and resumes its execution of its critical section. Note that at this point,
Task τ3 is blocked by Task τ4. At t8, Task τ4 unlocks SEM1 and returns to its assigned
priority. Task τ1 locks SEM1 and resumes its execution. At t9, Task τ1 finishes its exe-
cution. Task τ2 resumes and finally finishes at t10. Task τ3 begins its execution and
finishes at t11. Task τ4 resumes then finishes at t12.

In this example, there are two forms of blocking going on. First, direct blocking due
to conflicts on semaphores. Task τ1 shares two semaphores with lower priority tasks
and thus experiences direct blocking. The worst case of direct blocking for a task is
one blocking per semaphore shared with lower priority tasks under the assumptions
listed in the beginning of this section. Task τ1 shares two semaphores with lower pri-
ority tasks, and it encounters two blockings in this example. Second, there is also the
indirect blocking experienced by Task τ3, which does not use locks. However, it has
still to wait for the execution of Task τ4’s critical section in interval [t7, t8]. This is an
example of indirect blocking. A task will experience an indirect blocking whenever a
higher priority task and a lower priority task share a lock. The worst-case blocking of
a task is, therefore, the sum of its direct blocking time plus the sum of its indirect
blocking time.

In summary, the worst-case number of direct blockings is once per semaphore. The
worst-case number of indirect blocking is once per semaphore shared by a higher and
a lower priority task. The worst-case blocking time associated with a semaphore is the
longest critical section used by a lower priority task plus two context switching times
associated with the execution of a critical section.

In new software development, the blocking time is best tracked by a tool, although a
simple spreadsheet program is often adequate. However, it is very time consuming to
find out all the blocking time details in legacy software. Fortunately, there is an easy
way out at the expense of CPU cycles. One can write a program to scan the source
code and to count the number of semaphores. Suppose there are n semaphores. The
worst-case is that every task experiences n blockings, directly or indirectly. This is
because the same semaphore cannot cause both direct and indirect blockings to the
same task. So the worst-case blocking time for any task, except the lowest priority
task which always has zero blocking time, is the total number of locks times the sum
of the longest critical section and two context switching time. This method looks very
inefficient and it is. But in the big picture of system development, it is often justifi-
able. Real-time software, except real-time database applications, tends to use a
smaller number of locks and the critical sections tend to be short. Second, when old
software is ported, the new hardware is usually many times faster, and there often are

134 L. Sha

some CPU cycles to burn. And it is often cheaper to waste a little hardware than to
reverse-engineer all the details.

2.5 Integration

We now put everything together. First, we shall use the highest frequencies to guard
against frequency drifts. Second, we need to measure the worst-case context switch-
ing time and let it be S. Finally, we need to compute the worst-case blocking time for
each task. Let the blocking time of Task τi be Bi.

1 1(_ 2) / , where is the period of the major cycle.vmU n slot time S T T= −

Using the most general RTVM bound, the task set is schedulable if

12 2

2 1

2 22 2
... ()

2
n n n

n n vm

C S B C SC S B
ln

T T T U
+

+

+ + ++ + + + + ≤
−

Finally, to use the exact schedulability analysis, the steps are:

1. Construct the VM Periodic Task whose period is that of the major cycle and
whose computation time C1 = k*(slot_time+2S), where k is the number of slots
unavailable to the RTVM.

2. Replace the computation time of each task Ci with Ci+2S, 2 ≤ i ≤ n+1.

3. Replace the deadline Ti with (Ti – Bi)

4. Perform the exact schedulability analysis for the task set {τ1 … τn+1}.

3 Summary and Conclusion

In this paper, we have carefully specified a model of RTVM that is easy to implement
and preserves the vital isolation property of federated architecture that use multiple
physical processors. We call this architecture the Logical Federated Architecture (LFA).
LFA makes software easier to port and integrate. It also allows us to isolate software
with different criticality levels. We have developed a comprehensive set of bounds
with different information requirements. From an application perspective, there are
five bounds:
 1) RTVM Bound: the scheduling bound when only the size (utilization) of the RTVM
is known. A set of task is schedulable as long as its total utilization is less than the
RTVM Bound.
 2) RMA Exact Schedulability Check: This gives the largest bound, but we need to
know RTVM size, task frequencies and their worst-case execution times.

Real-Time Virtual Machines for Avionics Software Porting and Development 135

Acknowledgement. I want to thank Richard Bradford, Joel Crosmer, Greg Shelton, and
Joseph (Perry) Smith for helpful discussions and comments. In particular, I want to
thank Greg Shelton for the discussion on RTVM implementation rules and Richard
Bradford for his careful review of the drafts and for his many insightful comments and
valuable suggestions.

References

[1] Liu, C. L., and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment," Journal of the Association for Computing Machinery, Vol.20,
No.1, January 1973.

[2] Sha, L., and Goodenough, J. B., “Real-Time Scheduling Theory and Ada”, IEEE Computer,
Vol. 23, No.4, April 1990, pp. 53-62.

[3] Lehoczky, J. P., Sha, L., Ding, D. Y., “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior”, Proceedings of the IEEE Real-Time System
Symposium, 1989, pp. 166-171.

[4] Sha, L., Rajkumar, R., Lehoczky, J. P., “Priority Inheritance Protocols: An Approach to
Real-Time Synchronization”, IEEE Transactions on Computers, Vol. 39, No. 9, September
1990, pp. 1175-1185.

[5] Liu, J., “Real Time Systems”, Prentice Hall, 2000

Algorithms for Managing QoS for Real-Time
Data Services Using Imprecise Computation�

Mehdi Amirijoo1, Jörgen Hansson1, and Sang H. Son2

1 Department of Computer Science, Linköping University, Sweden
{meham,jorha}@ida.liu.se

2 Department of Computer Science, University of Virginia, Virginia, USA
son@cs.virginia.edu

Abstract. Lately the demand for real-time data services has increased
in applications where it is desirable to process user requests within their
deadlines using fresh data. The real-time data services are usually pro-
vided by a real-time database (RTDB). Here, since the workload of the
RTDBs cannot be precisely predicted, RTDBs can become overloaded.
As a result, deadline misses and freshness violations may occur. To ad-
dress this problem we propose a QoS-sensitive approach to guarantee a
set of requirements on the behavior of RTDBs. Our approach is based
on imprecise computation, applied on both data and transactions. We
propose two algorithms to dynamically balance the workload and the
quality of the data and transactions. Performance evaluations show that
our algorithms give a robust and controlled behavior of RTDBs, in terms
of transaction and data quality, even for transient overloads and with in-
accurate run-time estimates of the transactions.

1 Introduction

Lately the demand for real-time data services has increased and applications
used in manufacturing, web-servers, e-commerce etc. are becoming increasingly
sophisticated in their data needs. The data used span from low-level control
data, typically acquired from sensors, to high-level management and business
data. In these applications it is desirable to process user requests within their
deadlines using fresh data. In dynamic systems, such as web servers and sensor
networks with non-uniform access patterns, the workload of the databases cannot
be precisely predicted and, hence, the databases can become overloaded. As
a result, deadline misses and freshness violations may occur during transient
overloads. To address this problem we propose a quality of service (QoS) sensitive
approach to guarantee a set of requirements on the behavior of the database,
even in the presence of unpredictable workloads. Our scheme is important to
applications where timely execution of transactions is emphasized, but where it
is not possible to have accurate analysis of arrival patterns and execution times.
� This work was funded, in part by CUGS (the National Graduate School in Computer

Science, Sweden), CENIIT (Center for Industrial Information Technology) under
contract 01.07, and NSF grant IIS-0208758. c©RTCSA 2003.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 136–157, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Algorithms for Managing QoS for Real-Time Data Services 137

Our approach is based on imprecise computation [9], where it is possible
to trade off resource needs for quality of requested service. This has success-
fully been applied to applications where timeliness is emphasized, e.g., avionics,
engine control, image processing [4,11], networking [12], and approximation algo-
rithms for NP-complete problems [18]. In our work, the notion of impreciseness
is applied on both data and transactions, and the goal is to satisfy a QoS specifi-
cation, in terms of data and transaction impreciseness, giving the desired quality
of the provided service. We propose two dynamic balancing algorithms, FCS-IC-
1 and FCS-IC-2, to balance the quality of the data and the transactions. Main
challenges include unpredictability of workload, in terms of unknown arrival
patters and inaccurate execution time estimates, but also effective balancing be-
tween transaction and data quality. To solve this issue, we apply feedback control
scheduling [10] to provide robustness under these conditions.

The suggested algorithms, FCS-IC-1 and FCS-IC-2, are designed such that
the behavior of a RTDB can be controlled, even in the presence of load variation
and inaccurate execution time estimates. We have carried out a set of experi-
ments to evaluate the performance of the algorithms. In the simulation studies
we have applied a wide range of workload and run-time estimates to model po-
tential unpredictabilities. The studies show that FCS-IC-1 and FCS-IC-2 give
a robust and controlled behavior of RTDBs, in terms of transaction and data
quality, even for transient overloads and when we have inaccurate run-time esti-
mates of the transactions. This has been shown by comparing the performance
against selected baseline algorithms.

The rest of this paper is organized as follows. A problem formulation is given
in Section 2. In Section 3, the assumed database model is given. In Section 4, we
present our approach and in Section 5, the results of performance evaluations
are presented. In Section 6, we give an overview on related work, followed by
Section 7, where conclusions and future work are discussed.

2 Problem Formulation

In our model, data objects in a RTDB are updated by update transactions,
e.g. sensor values, while user transactions represent user requests, e.g. complex
read-write operations. The notion of imprecision is applied at data object and
user transaction level. The data quality increases as the imprecision of the data
objects decreases. Similarly, the quality of user transactions increases as the
imprecision of the results produced by user transactions decreases. Note that
quality of user transactions is related to quality of data. Since user transactions
access and read data objects, decreasing the quality of data may lead to a de-
crease in the quality of user transactions. However, in this work we model user
transaction quality and data quality as orthogonal entities and, hence, quality
of data and quality of user transactions are considered to be independent. In the
future, we will extend our model to capture more advanced relations between
user transaction quality and data quality.

138 M. Amirijoo, J. Hansson, and S.H. Son

In practice, a database administrator (DBA) specifies a desired QoS level in
terms of steady-state and transient-state behavior of data and user transaction
quality. The goal is to adapt the behavior of the RTDB such that the given
QoS specification is satisfied. This is achieved by balancing the workload among
update and user transactions. In general, lowering the user transaction workload
leads to increased resources available for update transactions, resulting in an
increase in data quality. Similarly, lowering the update transaction workload
results in an increase in user transaction quality.

Starting with data impreciseness, for a data object stored in the RTDB and
representing a real-world variable, we can allow a certain degree of deviation
compared to the real-world value and if such deviation can be tolerated, arriv-
ing updates may be discarded. In order to measure data quality we introduce
the notion of data error. Let di denote an arbitrary data object and Tj a trans-
action updating di. The data error, denoted DEi, of a data object di is defined
as a function of the current value (denoted CurrentV aluei) of di and the up-
date value (denoted UpdateV aluej) of the latest arrived update transaction, Tj ,
i.e. DEi = Φ(CurrentV aluei, UpdateV aluej). The data error of a data object
gives an indication of how much the value stored in the RTDB deviates from
the corresponding value in the real-world, given by the latest arrived update
transaction.

The workload of updates is adjusted by manipulating the data error, which
is done by considering an upper bound for the deviation between the values of
the data objects stored in the RTDB and the corresponding values in the real-
world. The upper bound is given by the maximum data error (denoted MDE)
and is set based on a set of performance variables giving the current state of
the RTDB (e.g. quality of user transactions). The data error is adjusted by the
following criteria. An update transaction (Tj) is discarded if the data error of
the data object (di) that is to be updated by Tj is less or equal to MDE (i.e.
DEi ≤ MDE). In contrast, an update transaction is executed and committed
if the corresponding DEi is greater than MDE.

If MDE increases, more update transactions are discarded as we tolerate
greater data error, hence, lower data quality. Similarly, if MDE decreases, fewer
update transactions are rejected, resulting in a lower data error, and conse-
quently, greater data quality. The goal of our work is to derive algorithms for
adjusting data error, such that the data and the user transaction quality satisfy
a given QoS specification. A major issue is how to compute MDE, depending
on the user transaction quality.

3 Data and Transaction Model

3.1 Database Model

We consider a firm RTDB model, in which tardy transactions, i.e., transactions
that have missed their deadlines, add no value to the system and therefore are
aborted. We consider a main memory database model, where there is one CPU
as the main processing element.

Algorithms for Managing QoS for Real-Time Data Services 139

3.2 Data Model and Data Management

In our data model, data objects can be classified into two classes, temporal and
non-temporal [14]. For temporal data, we only consider base data, i.e., data that
hold the view of the real-world and are updated by sensors. A base data object
di is considered temporally inconsistent or stale if the current time is later than
the timestamp of di followed by the absolute validity interval of di (denoted
AV Ii), i.e. CurrentT ime > TimeStampi + AV Ii.

Define the the data error of a data object di as,

DEi = 100 × |CurrentV aluei − UpdateV aluej |
|CurrentV aluei|

(%)

where UpdateV aluej is the value of the latest arrived transaction updating di.

3.3 Transaction Model

Transactions are classified either as update transactions or user transactions.
Update transactions arrive periodically and may only write to temporal data
objects (i.e. base data objects). User transactions arrive aperiodically and may
read temporal and read/write non-temporal data. The inter-arrival time of user
transactions is exponentially distributed.

User and update transactions (Ti) are assumed to be composed of one manda-
tory subtransaction (Mi) and #Oi optional subtransactions (denoted Oi,j , where
1 ≤ j ≤ #Oi). For the remainder of the paper, let,

ti ∈ {Mi, Oi,1, . . . , Oi,#Oi
}

denote a subtransaction of Ti.
We use the milestone approach [9] to transaction impreciseness. Thus, we

have divided transactions into subtransactions according to milestones. A man-
datory subtransaction is completed when it is completed in a traditional sense.
The mandatory subtransaction gives an acceptable result and it is desired to
complete the mandatory subtransaction before the transaction deadline. The
optional subtransactions depend on the mandatory subtransaction and may be
processed if there is enough time or resources available. While it is assumed that
all subtransactions (ti) arrive at the same time as the parent transaction (Ti),
the first optional subtransaction (i.e. Oi,1) becomes ready for execution when
the mandatory subtransaction completes. In general, an optional subtransaction,
Oi,j , becomes ready for execution when Oi,j−1 (where 2 ≤ j ≤ #Oi) completes.
Hence, there is a precedence relation given by,

Mi ≺ Oi,1 ≺ Oi,2 ≺ . . . ≺ Oi,#Oi
.

A transaction is completed once its mandatory subtransaction is completed.
We set the deadline of all subtransactions to the deadline of the parent trans-
action. A subtransaction is terminated if it is completed or has missed its dead-
line. A transaction (Ti) is terminated when its last optional subtransaction (i.e.

140 M. Amirijoo, J. Hansson, and S.H. Son

Oi,#Oi
) is completed or one of its subtransactions has missed its deadline. In the

latter case, all subtransactions that are not completed are terminated as well.
For update transactions we assume that there are no optional subtransac-

tions (i.e. #Oi = 0). Hence, each update transaction consists only of a single
mandatory subtransaction. This assumption is based on the fact that updates
do not use complex logical or numerical operations and, hence, have a lower
execution time than user transactions.

In our transaction model, the estimated average utilization of the transactions
is known. However, the average or the actual utilization is not known. Hence,
a feature in our model is that it models systems in unpredictable environments
where the actual CPU utilization of transactions is time-varying and unknown
to the scheduler.

4 Approach

Below we describe our approach for managing the performance of a RTDB in
terms of transaction and data quality. First, we start by defining QoS and how
it can be specified. An overview of a feedback control scheduling architecture is
given, followed by issues related to modeling of the architecture and design of
controllers. Finally, we present the algorithms FCS-IC-1 and FCS-IC-2.

4.1 Performance Metrics and QoS Specification

In our approach, the DBA can explicitly specify the required database QoS,
defining the desired behavior of the database. In this work we adapt both steady-
state and transient-state performance metrics. The metrics are as follows:

– Deadline Miss Percentage of Mandatory User Subtransactions (MM). In
a QoS specification the DBA can specify the deadline miss percentage of
mandatory subtransactions given by,

MM = 100 × #DeadlineMissM

#TerminatedM
(%)

where #DeadlineMissM denotes the number of mandatory subtransactions
that have missed their deadline, and #TerminatedM is the number of termi-
nated mandatory subtransactions. We exclusively consider user transactions
admitted to the system.

– Deadline Miss Percentage of Optional User Subtransactions (MO). MO is
the percentage of optional subtransactions that have missed their deadline.
MO is defined by,

MO = 100 × #DeadlineMissO

#TerminatedO
(%)

where #DeadlineMissO denotes the number of optional subtransactions
that have missed their deadline, and #TerminatedO is the number of ter-
minated optional subtransactions. We exclusively consider user transactions
admitted to the system.

Algorithms for Managing QoS for Real-Time Data Services 141

– Maximum Data Error (MDE). This metric gives the maximum data error
tolerated for the data objects, as described in Section 2.

– Overshoot (Mp) is the worst-case system performance in the transient-state
(see Figure 1) and it is given as a percentage. The overshoot is applied to
MO, MM , and MDE.

– Settling time (Ts) is the time for the transient overshoot to decay and reach
the steady-state performance (see Figure 1).

– Utilization (U). In a QoS specification the DBA can specify a lower bound
for the utilization of the system.

M p

Ts -+2%

time

va
lu

e

reference

Fig. 1. Definition of settling time (Ts) and overshoot (Mp)

We define Quality of Data (QoD) in terms of MDE. An increase in QoD
refers to a decrease in MDE. In contrast a decrease in QoD refers to an increase
in MDE. We measure user transaction quality in terms of deadline miss per-
centage of optional subtransactions, i.e. MO. This is feasible in the case when
optional subtransactions contribute equally to the final result.

The DBA can specify a set of target levels or references for MM , MO, and
MDE. A QoS requirement can be specified as the following: MM

r = 1% (i.e.
reference MM), MO

r = 10% (i.e. reference MO), MDEr = 2% (i.e. reference
MDE), U ≥ 80%, Ts ≤ 60s, and Mp ≤ 30%. This gives the following transient
performance specifications: MM ≤ MM

r × (Mp + 100) = 1.3%, MO ≤ 13%, and
MDE ≤ 2.6%.

4.2 Feedback Control Scheduling Architecture

In this section we give an overview of the feedback control scheduling archi-
tecture. Further, we identify a set of control related variables, i.e., performance
references, manipulated variables, and controlled variables.

The general outline of the feedback control scheduling architecture is given in
Figure 2. Admitted transactions are placed in the ready queue. The transaction
handler manages the execution of the transactions. At each sampling instant, the

142 M. Amirijoo, J. Hansson, and S.H. Son

controlled variables, miss percentages and utilization, are monitored and fed into
the miss percentage and utilization controllers, which compare the performance
references, MM

r , MO
r , and Ur, with the corresponding controlled variables to

get the current performance errors. Based on these the controllers compute a
change, denoted ΔU , to the total estimated requested utilization. We refer to
ΔU as the manipulated variable. Based on ΔU , the QoD manager changes the
total estimated requested utilization by adapting the QoD (i.e. adjusting MDE).
The precision controller then schedules the update transactions based on MDE.
The portion of ΔU not accommodated by the QoD manager, denoted ΔUnew,
is returned to the admission control, which enforces the remaining utilization
adjustment.

Control
Precision

Control
Admission

ΔUnew

Manager
QoD

ΔU

Ready Queue

Abort / Restart / Preempt

Dispatched

Monitor

Block

Transaction Handler

FM CC BS

Miss Percentage

MDE

Block Queue

Source

Sourcem

1
....

User Transactions MDE

Miss Percentage

CPU Utilization

Controller

Miss Percentage

Miss Percentage

M

Utilization

O

Update Transactions
Stream

Stream

....
1

n

Fig. 2. Feedback control scheduling architecture

The streams (Streami) generate update transactions, whereas user transac-
tions are generated and submitted by sources (Sourcei).

The transaction handler provides a platform for managing transactions. It
consists of a freshness manager (FM), a unit managing the concurrency control
(CC), and a basic scheduler (BS). The FM checks the freshness before accessing
a data object, using the timestamp and the absolute validity interval of the
data. If a user transaction is accessing a stale data object and the transaction

Algorithms for Managing QoS for Real-Time Data Services 143

deadline is later than the next update arrival, the transaction is blocked. It
is then made ready when the corresponding update commits. However, if the
transaction deadline is earlier than next update arrival, the stale data object is
used. We use earliest deadline fist (EDF) as a basic scheduler to schedule user
transactions. Conceptually, transactions are scheduled in a multi-level queue
system. Update transactions and mandatory user subtransactions are placed in
the highest priority queue, whereas optional user subtransactions are placed in a
lower priority queue. We employ two-phase locking with highest priority (2PL-
HP) [1] for concurrency control, where a conflict is resolved by allowing the
transaction with the highest priority to lock the data object. 2PL-HP is chosen
since it is free from priority inversion and has well-known behavior.

Admission control is applied to control the flow of transactions into the
database. When a new transaction is submitted to the database, the admission
controller (AC) decides whether or not it can be admitted to the system.

Precision controller discards an update transaction writing to a data object
(di) having an error less or equal to the maximum data error allowed, i.e. DEi ≤
MDE. However, the update transaction is executed if the data error of di is
greater than MDE. In both cases the time-stamp of di is updated.

4.3 System Modeling and Controller Design

We have modeled the controlled system, i.e. RTDB, according to the analytical
approach proposed in [10]. The approach has been adapted such that it supports
mandatory and optional subtransactions. For derivation and tuning of the model
we refer to [2].

We employ two feedback control scheduling policies, called FC-M and FC-
UM [10], to control user transaction quality in the presence of unpredictable
workload and inaccurate execution time estimates. Depending on the algorithm
used, we apply different feedback control scheduling policies. FCS-IC-1 uses the
FC-UM policy, while FCS-IC-2 employs FC-M.

FC-M uses a miss percentage control loop to control the system miss per-
centage with regards to a reference. Here, separate control loops are used for
mandatory and optional subtransactions. Miss percentages of mandatory and
optional subtransactions, MM and MO, are monitored and controlled with re-
gards to the specified references, i.e. MM

r and MO
r .

FC-UM, on the other hand, employs utilization and miss percentage con-
trollers. This has the advantage that the DBA can simply set the utilization
reference to a value that causes the desired deadline miss percentage in the
nominal case (e.g. based on profiling), and set the miss percentage references
(MM

r and MO
r) according to the application requirements. For all controllers,

the control signal ΔU is computed to achieve the target miss percentage given
by the references.

We have extended FC-UM in a way that the reference utilization, denoted Ur,
is constantly updated online. The utilization reference is dynamically updated
according to a linear increase and exponential decrease scheme. Initially, Ur

is set to an initial value. As long as the utilization controller has the control

144 M. Amirijoo, J. Hansson, and S.H. Son

(i.e. the miss percentages are below their references), the utilization reference is
increased by a certain step. As soon as one of the miss percentage controllers
takes over (i.e. miss percentage above the reference), Ur is reduced exponentially.
This is to prevent a potential deadline miss percentage overshoot due to an too
optimistic utilization reference. Note that this approach is self-adapting and does
not require any knowledge about the underlying workload model.

We have adapted and tuned the feedback controllers, but we do not include
these details in this paper due to space limitations. The interested reader is
referred to [2].

4.4 Algorithm Specification

We present two algorithms for managing data and user transaction imprecise-
ness. Both are based on adjusting the utilization and the miss percentages using
feedback control. The utilization adjustment is enforced partially by adjusting
the QoD, which requires setting MDE according to the utilization adjustment
(ΔU), as described in Section 4.2. We adapt the following notation of describing
discrete variables in the time-domain; A(k) refers to the value of the variable A
during the time window [(k − 1)W, kW], where W is the sampling period and k
is the sampling instant.

Given a certain ΔU(k), we need to set MDE(k+1) such that the utilization
(or resources) gained when discarding update transactions correspond to ΔU(k).
Remember that setting MDE(k +1) greater than MDE(k) results in more dis-
carded update transactions and, hence, an increase in gained utilization. Simi-
larly, setting MDE(k + 1) less than MDE(k) results in fewer discarded update
transactions and, hence, a decrease in gained utilization. In order to compute
MDE(k + 1) given a certain ΔU(k), we use a function f(ΔU(k)) that returns,
based on ΔU(k), the corresponding MDE(k + 1). The function f holds the fol-
lowing property. If ΔU(k) is less than zero, then MDE(k + 1) is set such that
MDE(k+1) is greater than MDE(k) (i.e. QoD is degraded). Similarly, if ΔU(k)
is greater than zero, then MDE(k +1) is set such that MDE(k +1) is less than
MDE(k) (i.e. QoD is upgraded). We will return to the concepts around f in
section 4.5.

FCS-IC-1. FCS-IC-1 (Feedback Control Scheduling Imprecise Computation 1)
is based on the extended FC-UM policy (as described in Section 4.3). By using
an adaptive scheme where the utilization reference is constantly updated, the
utilization yielding the target miss percentage can be approximated. The expo-
nential utilization reduction used with FC-UM decreases the risk for a potential
miss percentage overshoot. In addition to this, FCS-IC-1 performs the following.

The system monitors the deadline miss percentages and the CPU utilization.
At each sampling period, the CPU utilization adjustment, ΔU(k), is derived.
Based on ΔU(k) we perform one of the following. If ΔU(k) is greater than zero,
upgrade QoD as much as ΔU(k) allows. However, when ΔU(k) is less than zero,
degrade the data according to ΔU , but not beyond the highest allowed MDE

Algorithms for Managing QoS for Real-Time Data Services 145

(i.e. MDEr × (Mp + 100)). Degrading the data further would violate the upper
limit of MDE, given by the QoS specification. In the case when ΔU(k) is less
than zero and MDE equal to MDEr × (Mp + 100), no QoD adjustment can be
issued and, hence, the system has to wait until some of the currently running
transactions terminate. An outline of FCS-IC-1 is given in Figure 3.

Monitor MM (k), MO(k), and U(k)
Compute ΔU(k)
if (ΔU(k) > 0 and MDE(k) > 0) then

Upgrade QoD according to MDE(k + 1) := f(ΔU(k))
Inform AC about the portion of ΔU(k) not accommodated by QoD upgrade

else if (ΔU(k) < 0 and MDE(k) < MDEr × (Mp + 100)) then
Downgrade QoD according to MDE(k + 1) := f(ΔU(k))
Inform AC about the portion of ΔU(k) not accommodated by QoD downgrade

else if (ΔU(k) < 0 and MDE(k) = MDEr × (Mp + 100)) then
Reject any incoming transaction

else
Inform the AC of ΔU(k)

end if

Fig. 3. FCS-IC-1

FCS-IC-2. In FCS-IC-2, the FC-M policy is used (as opposed to FCS-IC-1,
where FC-UM is applied). In the case of FCS-IC-1, the miss percentages may
stay lower than their references, since the utilization is exponentially decreased
every time one of the miss percentages overshoots its reference. Consequently,
the specified miss percentage references (i.e. MM

r and MO
r) may not be satisfied.

In FCS-IC-2, the utilization controller is removed to keep the miss percentages
at the specified references.

One of the characteristics of the miss percentage controllers is that as long
as the miss percentages are below their references (i.e. MM ≤ MM

r and MO ≤
MO

r), the controller output ΔU will be positive.1 Due to the characteristics of f
(i.e. ΔU(k) < 0 ⇒ MDE(k + 1) > MDE(k) and ΔU(k) > 0 ⇒ MDE(k + 1) <
MDE(k)), a positive ΔU is interpreted as a QoD upgrade. Consequently, even
if the miss percentages are just below their references, QoD remains high. We
would rather that the miss percentage of optional subtransactions (MO), which
corresponds to user transaction quality, increases and decreases together with
data quality (MDE). For this reason, in FCS-IC-2, the QoD manager is extended
such that MDE is set not only by considering ΔU , but also according to the
current transaction quality given by MO. When ΔU is less than zero (miss
1 If we have transient oscillations, ΔU , may temporally stay positive (negative) even

though the ATE has changed from being below (above) the reference to be above
(below) the reference value. This is due to the integral operation, i.e., due to earlier
summation of errors, which represents the history and therefore cause a delay before
a change to the utilization is requested and has effect.

146 M. Amirijoo, J. Hansson, and S.H. Son

percentage overshoot), MDE is set according to f . However, when ΔU is greater
or equal to zero, MDE is set according to the moving average of MO. The moving
average of MO is computed by,

MO
MA(k) = αMO(k) + (1 − α)MO

MA(k − 1)

where α (0 ≤ α ≤ 1) is the forgetting factor [16]. Setting α close to 1 results in a
fast adaptation, but will also capture the high-frequency changes of MO, whereas
setting α close to 0, results in a slow but smooth adaptation. The latter results
in the data quality varying with the transaction quality. When MO

MA is relatively
low compared to MO

r , MDE is set to a low value relative to MDEr. As MO
MA

increases, MDE increases but to a maximum value of MDEr × (Mp + 100). A
further increase violates the QoS specification. The algorithm outline is given in
Figure 4.

Monitor MM (k) and MO(k)
Compute ΔU(k)
if (ΔU(k) ≥ 0) then

Adjust MDE(k + 1) according to

MDE(k + 1) := min(MO
MA(k)

MO
r

MDEr, MDEr × (Mp + 100))
if (MDE(k) < MDE(k + 1)) then

Add the utilization gained after QoD degrade to ΔU(k)
else

Subtract the utilization lost after QoD upgrade from ΔU(k)
end if
Inform AC of the new ΔU(k)

else if (ΔU(k) < 0 and MDE(k) < MDEr × (Mp + 100)) then
Downgrade QoD according to MDE(k + 1) := f(ΔU(k))
Inform AC about the portion of ΔU(k) not accommodated by QoD downgrade

else
{i.e. ΔU(k) < 0 and MDE(k) = MDEr × (Mp + 100)}
Reject any incoming transaction

end if

Fig. 4. FCS-IC-2

4.5 QoD Management

The preciseness of the data is controlled by the QoD manager which sets
MDE(k) depending on the system behavior. When f is used to compute
MDE(k + 1) based on ΔU(k) (as in FCS-IC-1 and some cases in FCS-IC-2)
the following scheme is used.

Rejecting an update results in a decrease in CPU utilization. We define gained
utilization, GU(k), as the utilization gained due to the result of rejecting one or
more updates during period k. GU(k) is defined as,

GU(k) =
∑

i

#RUi(k)
#AUi(k)

× EUi

Algorithms for Managing QoS for Real-Time Data Services 147

where #RUi(k) is the number of rejected update transactions Ti generated by
Streami, #AUi(k) the number of arrived update transactions Ti, and EUi is
the estimated utilization of the update transactions Ti.

An important issue is how to set MDE(k + 1) given a certain ΔU(k). Basi-
cally, we want to set MDE(k + 1) such that,

GU(k + 1) =
{

GU(k) − ΔU(k), ΔU(k) < GU(k),
0, ΔU(k) ≥ GU(k).

This requires that we can predict GU(k + 1) induced by MDE(k + 1). Note
that given MDE(k+1) we can only estimate the corresponding GU(k+1) since
our problem is of probabilistic nature. For this mentioned reason, we introduce
the notion of predicted gained utilization,

PGU = g(MDE)

where given an MDE, the corresponding GU can be predicted. We derive g based
on system profiling, where we measure GU for different MDEs. The function g
is then derived by linearizing the relationship between GU and MDE. By taking
the inverse of g,

MDE = g−1(PGU) = μ × PGU (1)

we can compute a MDE(k + 1) based on a PGU(k + 1) where,

PGU(k + 1) =
{

GU(k) − ΔU(k), ΔU(k) < GU(k),
0, ΔU(k) ≥ GU(k). (2)

Since RTDBs are dynamic systems in that the behavior of the system and
environment is changing, the relation between GU and MDE is adjusted on-line.
This is done by measuring GU(k) for a given MDE(k) during each sampling
period and updating μ. Note that on-line profiling also has the advantage of
requiring less accurate parameters computed from off-line analysis.

By applying Equation (1) and (2), we compute MDE(k + 1) according to
the following,

MDE(k + 1) = f(ΔU(k)) =
= min(μ × PGU(k + 1), MDEr × (Mp + 100)).

Since MDE is not allowed to overshoot more than MDEr × (Mp +100), we use
a min operator to guarantee this.

5 Performance Evaluation

In this section a detailed description of the performed experiments is given. The
goal and the background of the experiments are discussed, and finally the results
are presented.

148 M. Amirijoo, J. Hansson, and S.H. Son

5.1 Experimental Goals

The main objective of the experiments is to show whether the presented algo-
rithms can provide guarantees based on a QoS specification. We have for this
reason studied and evaluated the behavior of the algorithms according to a set
of performance metrics. The performance evaluation is undertaken by a set of
simulation experiments, where a set of parameters have been varied. These are:

– Load (Load). Computational systems may show different behaviors for dif-
ferent loads, especially when the system is overloaded. For this reason, we
measure the performance when applying different loads to the system.

– Execution Time Estimation Error (EstErr). Often exact execution time
estimates of transactions are not known. To study how runtime error affects
the algorithms, we measure the performance considering different execution
time estimation errors.

5.2 Simulation Setup

The simulated workload consists of update and user transactions, which ac-
cess data and perform virtual arithmetic/logical operations on the data. Update
transactions occupy approximately 50% of the workload. Note that the load ap-
plied to the database is based on submitted user and update transactions and the
tested approaches may reduce the applied load by applying admission control.

In our experiments, one simulation run lasts for 10 minutes of simulated
time. For all the performance data, we have taken the average of 10 simulation
runs and derived 95% confidence interval, denoted as vertical lines in the figures.
The following QoS specification is used: MM

r = 1%, MO
r = 10%, MDEr = 2%,

U ≥ 80%, Ts ≤ 60s, and Mp ≤ 30%.
We use the following notation where the metric Xi refers to the trans-

action Ti, while Xi[ti] is associated with the subtransaction ti (where ti ∈
{Mi, Oi,1, . . . , Oi,#Oi

}).

Data and Update Transactions. The simulated DB holds 1000 temporal data
objects (di) where each data object is updated by a stream (Streami, 1 ≤ i ≤
1000). The period (Pi) is uniformly distributed in the range (100ms,50s) (i.e. U :
(100ms, 50s)) and estimated execution time (EETi) is given by U : (1ms, 8ms).
The average update value (AVi) of each Streami is given by U : (0, 100). Upon
a periodic generation of an update, Streami gives the update an actual ex-
ecution time (AETi) given by the normal distribution N : (EETi,

√
EETi)

and a value (UpdateV aluei) according to N : (AVi, AVi × V arFactor), where
V arFactor is uniformly distributed in (0,1). The deadline is set according to
Di = ArrivalT imei + Pi.

User Transactions. Each Sourcei generates a transaction Ti, consisting of one
mandatory subtransaction and #Oi (1 ≤ #Oi ≤ 3) optional subtransaction(s)
(1 ≤ j ≤ #Oi). #Oi is uniformly distributed between 1 and 3.

Algorithms for Managing QoS for Real-Time Data Services 149

The estimated (average) execution time of the subtransactions (EETi[ti])
is given by U : (10ms, 20ms). The estimation error EstErr is used to intro-
duce execution time estimation error in the average execution time given by
AETi[ti] = (1 + EstErr) × EETi[ti]. Further, upon generation of a trans-
action, Sourcei associates an actual execution time to each subtransaction,
which is given by N : (AETi[ti],

√
AETi[ti]). The deadline is set according

to Di = ArrivalT imei + EETi × SlackFactor. The slack factor is uniformly
distributed according to U : (20, 40).

It is assumed that the number of data accesses (#DAi[ti]) for each subtrans-
action is proportional to EETi[ti]. Hence, longer subtransactions access more
data. Upon a transaction generation, Sourcei associates an actual number of
data accesses given by N : (#DAi[ti],

√
#DAi[ti]) to each subtransaction of Ti.

The data set accessed by a transaction is partitioned among the subtransactions
such that the partitions are mutually disjoint. However, the data sets accessed
by transactions may overlap.

5.3 Baselines

To the best of our knowledge, there has been no earlier work on techniques for
managing data impreciseness and transaction impreciseness, satisfying QoS or
QoD requirements. Previous work within imprecise computing applied to tasks
focus on maximizing or minimizing a performance metric (e.g. total error). The
latter cannot be applied to our problem since in our case we want to control a
set of performance metrics such that they converge towards a set of references
given by a QoS specification. For this reason, we have developed two baseline
algorithms, Baseline-1 and Baseline-2. We use the baselines to study the impact
of the workload on the system. Here, we can establish the efficiency of FCS-IC-1
and FCS-IC-2 by comparing the operational envelope of the algorithms, i.e., we
can compare the resistance to failure of the algorithms with regard to applied
load and/or run-time estimation errors. The baselines are given below.

Baseline-1. The preciseness of the data is adjusted based on the relative miss
percentage of optional subtransactions. Conceptually, MDE increases as MO

increases. MDE is set according to MDE(k+1) = min(MO(k)
MO

r
MDEr, MDEr ×

(Mp +100)). A simple AC is applied, where a transaction (Ti) is admitted if the
estimated utilization of admitted transactions and Ti is less or equal to 80%.

Baseline-2. In Baseline-1, a significant change in MDE may introduce oscilla-
tions in miss percentages. Baseline-2 is similar to Baseline-1, but here MDE
is increased and decreased stepwise. The outline of the algorithm is as fol-
lows. If MO(k) is greater than zero, increase MDE(k) by a step (MDEstep)
until MDEr × (Mp + 100) is reached (i.e. MDE(k + 1) = min(MDE(k) +
MDEstep, MDEr × (Mp + 100))). If MO(k) is equal to zero, decrease MDE(k)
by a step (MDEstep) until zero is reached (i.e. MDE(k +1) = max(MDE(k)−
MDEstep, 0)). The same AC as in Baseline-1 is used here.

150 M. Amirijoo, J. Hansson, and S.H. Son

5.4 Results of Varying Load

The setup of the experiment is given below, followed by the presentation of the
results. Figure 5 shows the average MO and MDE.
Experimental setup. We measure MM , MO, MDE, and U . The experiment
setup is as follows. We apply loads from 50% to 200%. The execution time
estimation error is set to zero (i.e. EstErr = 0).

50 100 150 200
0

20

40

60

80

100

Load (%)

M
O

 (
%

)

FCS−IC−1
FCS−IC−2
Baseline−1
Baseline−2
Reference

50 100 150 200
0

0.5

1

1.5

2

2.5

3

Load (%)

M
D

E
 (

%
)

FCS−IC−1
FCS−IC−2
Baseline−1
Baseline−2
Reference

Fig. 5. Average performance for Load = 50, 75, 100, 150, and 200%, EstErr = 0

Average Miss Percentage of Mandatory Subtransactions. Miss percent-
age of mandatory subtransactions (MM) has been observed to be zero2 for all
four algorithms and, therefore, this has not been included in Figure 5. The
specified miss percentage reference (MM

r), have been set to 1% and this is not
satisfied. This is due to higher priority of mandatory subtransactions compared
to optional subtransactions. According to our investigations, the miss percentage
of mandatory subtransactions start increasing when the miss percentage of op-
tional subtransactions is over 90% [2]. Consequently, since the miss percentage of
optional subtransactions does not reach 90%, the miss percentage of mandatory
subtransactions remains at zero.
Average Miss Percentage of Optional Subtransactions. For Baseline-1
and Baseline-2, the miss percentage of optional subtransactions (MO) increases
as the load increases, violating the reference miss percentage, MO

r , at loads
exceeding 150%. In the case of FCS-IC-1, MO is near zero at loads 150% and
2 We have not observed any deadline misses.

Algorithms for Managing QoS for Real-Time Data Services 151

200%. Even though the miss percentage is low, it does not fully satisfy the QoS
specification. This is in line with our earlier discussions regarding the behavior
of FCS-IC-1. The low miss percentage is due to the utilization controller since
it attempts to reduce potential overshoots by reducing the utilization, which in
turn decreases the miss percentage. FCS-IC-2 on the other hand shows a better
performance. The average MO at 150% and 200% is 8.5 ± 0.1%, which is fairly
close to MO

r . In our model tuning of the controlled system, we have assumed
worst-case setups and set EstErr to one. In this experiment we have set EstErr
to zero, resulting in a certain model error3. If EstErr is set to one, we can see
that that the average MO is close to MO

r . This is shown in Section 5.5.
Average MDE. The average MDE for Baseline-1 and Baseline-2 violates the
reference MDE set to 2%. In contrast, in the case of FCS-IC-1, MDE is signif-
icantly lower than MDEr. Since the miss percentages are kept low at all times,
they are not likely to overshoot. Consequently, the control signal from the miss
percentage controllers is likely to be positive, which is interpreted by the QoD
manager as an QoD upgrade and, hence, MDE will not reach the level of MDEr.
This is further explained in Section 5.6, where the transient performance of the
algorithms is discussed. FCS-IC-2 provides an average MDE closer to MDEr,
given by 1.78±0.024% at loads 150% and 200%. However, MDE does not reach
MDEr since MDE is set according to the relative MO (which does not reach
MO

r).
Average Utilization. For all approaches, the utilization satisfies the QoS spec-
ification as it is above the specified 80% for loads between 100-200%, reaching
almost 100% at 200% applied load.

5.5 Results of Varying EstErr

The setup of the experiment is given below, followed by the presentation of the
results. Figure 6 shows the average MO and MDE.
Experimental setup. We measure MM , MO, MDE, and U . The experiment
setup is as follows. We apply 200% load. The execution time estimation error is
varied according to EstErr = 0.00, 0.25, 0.50, 0.75, and 1.00.
Average Miss Percentage of Mandatory Subtransactions. As in the pre-
vious experiment (see Section 5.4), MM is zero for all approaches and EstErr.
The discussion regarding average miss percentage of mandatory subtransactions
given in Section 5.4 also apply here and are not further discussed.
Average Miss Percentage of Optional Subtransactions. As expected,
Baseline-1 and Baseline-2 do not satisfy the QoS specification. In fact, MO in-
creases as EstErr increases, reaching a value close to 90% for both algorithms.
As we can see, FCS-IC-1 and FCS-IC-2 are insensitive against varying EstErr.
Note that when analyzing FCS-IC-2, we can see that MO grows towards MO

r

as EstErr increases in value. MO for EstErr set to zero and EstErr set to
one is 8.47 ± 0.036% and 9.23 ± 0.17%, respectively. This is the result of the
3 By model error we mean the deviation of the model used compared with the actual

system being controlled.

152 M. Amirijoo, J. Hansson, and S.H. Son

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

EstErr

M
O

 (
%

) FCS−IC−1
FCS−IC−2
Baseline−1
Baseline−2
Reference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

EstErr

M
D

E
 (

%
)

FCS−IC−1
FCS−IC−2
Baseline−1
Baseline−2
Reference

Fig. 6. Average performance for EstErr = 0, 0.25, 0.50, 0.75, and 1.0, Load = 200%

discussions given in Section 2. As EstErr increases, the model error decreases
and, hence, the controlled system becomes closer to the actual model. This gives
a more accurate picture of the system and the controllers are therefore able to
control the system in a more correct way.
Average MDE. Baseline-1 and Baseline-2 violate the specified MDE reference.
For FCS-IC-1 average MDE does not change considerably for different EstErr.
In the case of FCS-IC-2, average MDE grows towards MDEr, with increasing
EstErr. The adjustment of MDE depends on the relative MO and, hence, the
average MDE grows as the average MO grows, reaching a value of 1.97±0.03%.

5.6 Transient Performance

Studying the average performance is often not enough when dealing with dy-
namic systems. Therefore we study the transient performance of FCS-IC-1 and
FCS-IC-2 when Load is set to 200% and EstErr set to one. Figures 7 and 8
show the transient behavior of FCS-IC-1 and FCS-IC-2. The dash-dotted line
indicates maximum overshoot.

Starting with FCS-IC-1, we can note that MO is kept low at all times. This
is expected since the average MO was shown to be low. The reader may have
noticed that MDE is greater than zero in the interval 20-150 where MO is zero.
Since MDE is greater than zero, it is clear that ΔU may become negative during
that period. This is due to the behavior of the utilization controller. Initially, the
utilization is below the reference (Ur). As the utilization increases and no miss
percentage overshoots are observed, Ur increases linearly until a miss percentage

Algorithms for Managing QoS for Real-Time Data Services 153

0 100 200 300 400 500
0

20

40

60

80

100

Time

M
O

 a
nd

 U
 (

%
)

MO

Maximum MO overshoot
Utilization

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

Time

M
D

E
 (

%
)

MDE
Maximum MDE overshoot

Fig. 7. Transient performance for FCS-IC-1. EstErr = 1.0, Load = 200%

is observed (one of the miss percentage controllers takes over) in which case Ur

is reduced exponentially. In FCS-IC-1, Ur is only increased if the utilization
controller has taken over. Our investigations show that the utilization controller
takes over once the utilization overshoots Ur, resulting in a negative ΔU and,
hence, Ur being increased too late. Consequently, the negative ΔU leads to an
increase in MDE.

FCS-IC-2 shows a more satisfying result as both MO and MDE increase
and decrease together. Both MO and MDE are kept around MO

r and MDEr,
respectively. Although the average MO is close to MO

r , we can see that MO often
overshoots its reference. The highest MO has been noted to 25.7%. This is higher
than the specified maximum miss percentage of 13% (i.e. MO ≤ 13%). One
cause to such overshoot is the various disturbances like data conflicts, resulting
in restarts or aborts of transactions. Further, we have set EstErr to one, which
yields a higher overshoot than in the case when EstErr is set to zero (i.e. no
execution time estimation error). The results of setting EstErr to zero is shown
is Figure 9. Here we can see that the variance of miss percentage is much smaller
than in the case when EstErr is set to one.

5.7 Summary of Results and Discussions

It has been shown that FCS-IC-1 and FCS-IC-2 are insensitive against load
variations and inaccurate execution time estimations. FCS-IC-1 can manage to
provide near zero miss percentage for optional subtransactions. We have also seen
that FCS-IC-1 can efficiently suppress miss percentage overshoots. However, the
performance of FCS-IC-1 does not fully comply with the given QoS specification.

154 M. Amirijoo, J. Hansson, and S.H. Son

0 100 200 300 400 500
0

20

40

60

80

100

Time

M
O

 a
nd

 U
 (

%
)

MO

Maximum MO overshoot
Utilization

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

Time

M
D

E
 (

%
)

MDE
Maximum MDE overshoot

Fig. 8. Transient performance for FCS-IC-2. EstErr = 1.0, Load = 200%

0 100 200 300 400 500
0

20

40

60

80

100

Time

M
O

 a
nd

 U
 (

%
)

MO

Maximum MO overshoot
Utilization

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

Time

M
D

E
 (

%
)

MDE
Maximum MDE overshoot

Fig. 9. Transient performance for FCS-IC-2. EstErr = 0.0, Load = 200%

Miss percentages and MDE are kept significantly lower than the references,
violating the given QoS specifications. This is due to the exponential decrease
in utilization every time MO overshoots its reference.

Algorithms for Managing QoS for Real-Time Data Services 155

In FCS-IC-2, MO and MDE are consistent with their specified references.
In addition, we have seen that the data and user transaction quality increase
and decrease together. FCS-IC-2, however, produces overshoots higher than the
maximum allowed overshoot, as given by the QoS specification.

We conclude that FCS-IC-1 should be applied to RTDBs where overshoots
cannot be tolerated, but where consistency between the controlled variables and
their references is relaxed, i.e., we do not require the system to produce the
desired miss percentages and MDE. The experiments show that FCS-IC-2 is
particularly useful when consistency between the controlled variables and their
references are emphasized, but some overshoots higher than the maximum al-
lowed can be accepted.

6 Related Work

In the past few years, feedback control scheduling has been receiving special at-
tention [10,13,3]. Lu et al. have presented a feedback control scheduling frame-
work, where they propose three algorithms for managing the miss percentage
and/or utilization [10]. In the work by Parekh et al., the length of a queue of
remote procedure calls (RPCs) arriving at a server is controlled [13]. Changing
the periodicity of a set of tasks in response to load variations has been suggested
in [3]. If the estimated load is found to be greater than a threshold, task periods
are enlarged to find the desired load. In contrast to FCS-IC-1 and FCS-IC-2,
aperiodic tasks are not considered in their model.

Labrinidis et al. introduced the notion of QoD [8]. Here, web pages are cached
at the server and the back-end database continuously updates them. Their pro-
posed update scheduling policy can significantly improve data freshness com-
pared to FIFO scheduling. Kang et al., presented a feedback control scheduling
architecture used to control the transaction miss percentage and utilization of
a real-time database by dynamically balancing update policies (immediate or
on-demand) of a set of data [7].

Liu et al. proposed an imprecise computation model [9]. They presented a
set of imprecise scheduling problems associated with imprecise computing and
also gave an algorithm for minimizing the total error of a set of tasks. Shih et al.
presenting two algorithms for minimizing the maximum error for a schedule that
minimizes the total error [15]. Hansson et al. proposed an algorithm, OR-ULD,
for minimizing total error and total weighted error [5]. The approaches presented
by Liu, Shih, and Hansson require the knowledge of accurate processing times
of the tasks, which is often not available in RTDBs. Further, they focus on
maximizing or minimizing a performance metric (e.g. total error). The latter
cannot be applied to our problem, since in our case we want to control a set of
performance metrics such that they converge towards a set of references given
by a QoS specification.

The correctness of answers to databases queries can be traded off to enhance
timeliness. Query processors, APPROXIMATE [17] and CASE-DB [6] are exam-
ples of such databases where approximate answers to queries can be produced

156 M. Amirijoo, J. Hansson, and S.H. Son

within certain deadlines. However, in both approaches, impreciseness has been
applied to only transactions and, hence, data impreciseness has not been ad-
dressed. Further, they have not addressed the notion of QoS. In our work, we
have introduced impreciseness at data object level and considered QoS in terms
of transactions and data impreciseness.

7 Conclusions and Future Work

The need for real-time data services has increased during the last years. As the
run-time environment of such applications tends to be dynamic, it is imperative
to handle transient overloads efficiently. It has been shown that feedback con-
trol scheduling is quite robust to errors in run-time estimates (e.g. changes in
workload and estimated execution time). Further, imprecise computation tech-
niques have shown to be useful in many areas where timely processing of tasks or
services is emphasized. In this work, we combine the advantages from feedback
control scheduling and imprecise computation techniques, forming a framework
where a database administrator can specify a set of requirements on the database
performance and service quality. We present two algorithms, FCS-IC-1 and FCS-
IC-2, for managing steady state and transient state performance in terms of
data and transaction impreciseness. FCS-IC-1 and FCS-IC-2 give a robust and
controlled behavior of RTDBs, in terms of transaction and data quality, even
during transient overloads and when we have inaccurate run-time estimates of
the transactions.

For our future work, we are establishing techniques for managing data and
user transaction impreciseness in a distributed environment and we develop poli-
cies for handling derived data. Different approaches to modeling the controlled
system will be considered.

Acknowledgment. The authors wish to thank Kyoung-Don Kang at the Uni-
versity of Virginia, Charlottesville, for providing and helping us with the simu-
lator used to perform the experiments.

References

1. R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance
evaluation. ACM Transactions on Database System, 17:513–560, 1992.

2. M. Amirijoo. Algorithms for managing QoS for real-time data services us-
ing imprecise computation, 2002. Master’s Thesis Report LiTH-IDA-Ex-02/90,
www.ida.liu.se/∼rtslab/master/past.

3. G. C. Buttazzo and L. Abeni. Adaptive workload managment through elastic
scheduling. Journal of Real-time Systems, 23(1/2), July/September 2002. Special
Issue on Control-Theoretical Approaches to Real-Time Computing.

4. X. Chen and A. M. K. Cheng. An imprecise algorithm for real-time compressed
image and video transmission. In Proceedings of the Sixth International Conference
on Computer Communications and Networks, pages 390–397, 1997.

Algorithms for Managing QoS for Real-Time Data Services 157

5. J. Hansson, M. Thuresson, and S. H. Son. Imprecise task scheduling and overload
managment using OR-ULD. In Proceedings of the 7th Conference in Real-Time
Computing Systems and Applications, pages 307–314. IEEE Computer Press, 2000.

6. W. Hou, G. Ozsoyoglu, and B. K. Taneja. Processing aggregate relational queries
with hard time constraints. In Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 68–77. ACM Press, 1989.

7. K. Kang, S. H. Son, and J. A. Stankovic. Service differentiation in real-time
main memory databases. In Proceedings of 5th IEEE International Symposium on
Object-oriented Real-time Distributed Computing, April 2002.

8. A. Labrinidis and N. Roussopoulos. Update propagation strategies for improving
the quality of data on the web. The VLDB Journal, pages 391–400, 2001.

9. J. W. S. Liu, K. Lin, W. Shin, and A. C.-S. Yu. Algorithms for scheduling imprecise
computations. IEEE Computer, 24(5), May 1991.

10. C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback control real-time schedul-
ing: Framework, modeling and algorithms. Journal of Real-time Systems, 23(1/2),
July/September 2002. Special Issue on Control-Theoretical Approaches to Real-
Time Computing.

11. P. Malinski, S. Sandri, and C. Reitas. An imprecision-based image classifier. In
The 10th IEEE International Conference on Fuzzy Systems, pages 825–828, 2001.

12. V. Millan-Lopez, W. Feng, and J. W. S. Liu. Using the imprecise-computation
technique for congestion control on a real-time traffic switching element. In Inter-
national Conference on Parallel and Distributed Systems, pages 202–208, 1994.

13. S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Us-
ing control theory to achieve service level objectives in performance managment.
Journal of Real-time Systems, 23(1/2), July/September 2002. Special Issue on
Control-Theoretical Approaches to Real-Time Computing.

14. K. Ramamritham. Real-time databases. International Journal of Distributed and
Parallel Databases, (1), 1993.

15. W. K. Shih and J. W. S. Liu. Algorithms for scheduling imprecise computations
with timing constraints to minimize maximum error. IEEE Transactions on Com-
puters, 44(3):466–471, 1995.

16. K. J. Åström and B. Wittenmark. Adaptive Control. Addion-Wesley, second edi-
tion, 1995.

17. S. V. Vrbsky and J. W. S. Liu. APPROXIMATE - a query processor that produces
monotonically improving approximate answers. IEEE Transactions on Knowledge
and Data Engineering, 5(6):1056–1068, December 1993.

18. S. Zilberstein and S. J. Russell. Optimal composition of real-time systems. Artificial
Intelligence, 82(1–2):181–213, 1996.

On Soft Real-Time Guarantees on Ethernet�

Min-gyu Cho and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122, U.S.A.

{mgcho,kgshin}@eecs.umich.edu

Abstract. The medium access protocol of Ethernet, CSMA/CD, has an inherent
limitation in providing real-time guarantees. Since Ethernet is the most commonly-
used local area network (LAN) technology due to its low cost, high bandwidth
and robustness, it is very important to overcome this problem so that Ethernet can
be used as a network for soft real-time applications like multimedia. An adap-
tive traffic smoother (ATS) was proposed as a kernel-level software solution that
provides soft real-time guarantees on Ethernet.
This paper addresses the reconfigurability, scalability and portability of ATS.
First, a mechanism to read and adjust several user-specific parameters of ATS
is discussed, and metrics or parameters to indicate the achievement of the
user-required Quality-of-Service (QoS) are developed since these parameters are
indirectly related to the user-specific QoS. Our experimental evaluation validates
the feasibility of enhancing the reconfigurability and portability of ATS. Second,
ATS is extended to a switched Ethernet which is commonly used for scalability.
Our solution employs an ATS for each port of the switch for real-time packet
delivery guarantees. Finally, a prototype of the user-level ATS is implemented and
evaluated to enhance the portability of ATS. The performance of this user-level
ATS is shown to be comparable to that of the kernel-level implementation,
while enhancing both the reconfigurability and portability of real-time Ethernet
solutions.

Keywords: Ethernet, CSMA/CD, adaptive traffic smoother (ATS), real-time
communication, reconfigurability, scalability, portability

1 Introduction

Ethernet [3] is the most popular local area network (LAN) technology connecting end-
hosts due to its low cost, high bandwidth and robustness. Ethernet adopts the carrier
sense multiple access with collision detection (CSMA/CD) protocol for its medium ac-
cess control (MAC) protocol. In the CSMA/CD protocol, upon detection of a collision,
each host takes a random amount of time before making a retransmission attempt ac-
cording to the binary exponential backoff algorithm, to resolve the contention. Since the
backoff time is decided randomly by each host, the packet may collide again with other
� This work reported in this paper was supported in part by DARPA under the US AFRL contracts

F30602-01-02-0527.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 158–175, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Soft Real-Time Guarantees on Ethernet 159

packets during its retransmission. Thus, it is difficult to provide real-time guarantees on
Ethernet. However, predictable delay guarantees are important for many time-sensitive
applications, and the demand for such applications is growing.

The timely delivery of control messages between programmable logic controllers
(PLCs) is required in factory automation systems. Traditionally, the proprietary networks
such as Allen-Bradley’s Universal Remote I/O Link [4] or CAN Bus [5] are commonly
used in such a system to provide real-time guarantees for control messages. But these
proprietary networks are expensive while their bandwidth is generally low. Thus, the
manufacturing automation industry has been pursuing use of commercial off-the-shelf
network products to replace or back up the proprietary networks. The low price and
proven robustness of Ethernet make it an attractive candidate if it can provide real-time
guarantees.

Real-time guarantees are also crucial to multimedia applications. The increase of
network bandwidth along with the processor’s computing power has enabled the real-
time transmission of multimedia data such as voice over IP (VoIP), video conferencing,
streaming audio/video and home entertainment systems. These applications require the
real-time delivery guarantees of multimedia data. Most of the research on providing the
Quality of Service (QoS) for these applications focused on wide area networks (WANs)
instead of LANs, as there is more unpredictability in a WAN than in a LAN due to its
complex topology. However, it is not possible to provide end-to-end delay guarantees
without providing such guarantees on end-hosts’ LAN. Since Ethernet is the dominant
LAN technology, we will focus on how to provide real-time guarantees on Ethernet.

Numerous approaches have been taken to overcome the inherent limitations of Eth-
ernet. A typical approach is to modify the Ethernet MAC layer to provide timeliness
guarantees [6,7,8,9,10,11]. Even though real-time guarantees can be achieved with these
approaches, changing already-installed network interface cards (NICs) is very expensive
and difficult, if not impossible.

Switches such as IEEE802.1p or IEEE802.12 [14] can be used, instead of a hub, to
support real-time guarantees. With a full-duplex switch, a collision domain is separated,
and thus, the transmission delay of real-time packets can be bounded. However, the most
commonly-deployed topology for Ethernet is the segmented Ethernet since the cost of
a switch is much higher than that of a hub. Thus, the real-time guarantee on Ethernet is
still important to provide the end-to-end real-time guarantees.

Also proposed are software solutions without modifying the hardware. Rether [12] is
a virtual token ring implementation on top of the Ethernet without modifying the Ethernet
MAC layer. RTCC [13] is another example of this approach. It uses a centralized node
to gather state-related information such as real-time packet arrival time, and determine
when and how to send a packet for each participating node. The existing NICs can be
used for this approach, but both of these examples require a significant modification to
operating systems to handle token management or to elect the central node. Thus, the
implementation or the porting of such a solution is very expensive.

Kweon and Shin [2] proposed an adaptive traffic smoother (ATS) to provide soft
real-time guarantees on an Ethernet, which also takes a purely kernel-level software
approach. They installed an ATS on each host between the Ethernet MAC layer and the
IP layer. The ATS regulates the generation rate of non-RT traffic on each host, and the

160 M.-g. Cho and K.G. Shin

traffic generation rate is adapted to the underlying network load condition. Since there
is no explicit method to measure the network load on Ethernet, packet collisions on the
medium are used as an indirect indicator of the network load. Under the ATS, the traffic
generation rate is increased slowly in the absence of collision, while it is reduced to a
half when the outgoing packet experiences a collision. This simple scheme is shown to
be very effective in reducing the deadline miss ratio of RT messages while maintaining
an acceptable level of non-RT traffic throughput. However, there are three important
limitations in this approach. First, there are several parameters that control the behavior
of ATS. However, these parameters cannot be adjusted in the original implementation of
ATS, and are not directly related to the QoS that the end-user may require. Second, the
original ATS focused only on a single Ethernet while the use of switched-Ethernets is
very common for the scalability of the LAN. Finally, the portability of the original ATS
is poor since it is implemented inside the kernel.

In this paper, we improve theATS in [2] to solve the above problems as follows. First,
a reconfiguration mechanism is provided to adjust the user-specific parameters of ATS,
and a performance monitoring mechanism is developed and added. Second, the adaptive
traffic smoothing scheme in ATS is adopted for each port of a switch for its extension
to the switched-Ethernet. A prototype of such switch is implemented on a Linux box
and its performance is compared to other setups. Finally, a user-level ATS is proposed
to increase the portability.

The rest of the paper is organized as follows. Section 2 describes the adaptive traffic
smoother. The problem statement and approaches are described in Section 3. The im-
plementation details are given in Section 4, and the performance evaluation is presented
in Section 5. The paper concludes with Section 6.

2 Adaptive Traffic Smoother

The detail of an ATS is given in [2], but it is described briefly here for completeness. The
main idea of a traffic smoother is to reduce the probability that a real-time packet collides
with other packets by regulating a host’s traffic injection into the Ethernet. A traffic
smoother is inserted between the Ethernet MAC layer and the IP layer, and smoothes
non-RT traffic. A fixed-rate traffic smoother [1] is the original traffic smoother, in which
the network load is regulated under a certain limit, named a network-wide input limit.
Each host has a portion of the network-wide input limit, called a station input limit,
and a host’s outgoing traffic is kept under its station input limit. This traffic smoother is
effective in providing real-time guarantees on Ethernet, but it is inflexible and inefficient
in transmitting non-RT traffic since (i) each node is assigned a constant bandwidth
regardless of the network load condition, and (ii) the station input limit is decreased as
the number of hosts increases. When all hosts do not synchronously generate non-RT
traffic, which is usually the case, the bandwidth reserved for those hosts not generating
non-RT traffic is left unused, thus seriously degrading the throughput of non-RT traffic.

The adaptive traffic smoother, on the other hand, changes adaptively its station input
limit according to the current network load. Since the direct information on the current
network load is unavailable to the local node on Ethernet, the collision status report
provided by NIC is used to estimate the load. In the absence of collision, the station input

On Soft Real-Time Guarantees on Ethernet 161

limit is increased while it is decreased in the presence of collision. More specifically,
the ATS uses the Harmonic-Increase and Multiplicative-Decrease Adaptation (HIMD)
mechanism. HIMD provides traffic control similar to that of TCP, which increases the
traffic generation rate additively in the absence of congestion detection, but decreases it
multiplicatively upon detection of congestion or packet loss.

The ATS works similarly to a leaky-bucket filter, maintaining two parameters, credit
bucket depth (CBD) and refresh period (RP). A credit of CBD bytes is replenished every
RP seconds, so the station input limit can be given as CBD/RP . The CBD is fixed at
the maximum transmission unit (MTU) of Ethernet to reduce the burstiness and the RP
is changed according to HIMD. RP is decreased by Δ every τ seconds in the absence
of collision, thus increasing the station input limit harmonically. On the other hand, it
is checked if there has been a collision within α seconds after the previous change of
RP. Upon detection of a collision, RP is doubled, thus decreasing the station input limit
multiplicatively, and the current credit is vacated. Also the value of RP is bounded by
RPmin and RPmax, i.e., RP is no less than RPmin and no greater than RPmax. Here
α, Δ, τ , RPmin, and RPmax are user-specific parameters. The ATS will show different
characteristics when these parameters are altered.

3 Problem Statement and Solution Approach

3.1 Support of Reconfigurability

The original implementation of ATS did not provide any means of altering the user-
specific parameters; these parameters are hard-coded in the kernel, and cannot be adjusted
without recompiling the kernel. However, different applications may have different QoS
requirements. For example, RT control messages may be required to be delivered within
50 ms of their generation with 99% probability in an automated manufacturing system,
while voice packets may be required to be delivered within 100 ms with 95% probability.

We designed and developed a reconfiguration mechanism to dynamically adjust the
user-specific parameters without recompiling or rebooting. With this mechanism, ATS
parameters can be easily adjusted for different application requirement. By adjustingATS
parameters, one can make a tradeoff between the non-RT throughput and the deadline
miss ratio of RT messages, i.e., one can get higher bandwidth at the expense of increas-
ing RT message deadline misses. This can be analyzed qualitatively as follows. If Δ is
increased, RP decreases faster, i.e., more traffic is generated. Thus, the non-RT through-
put will increase while the deadline miss ratio increases. Similarly, the larger RPmin,
the lower the maximum bandwidth consumed by a node. Thus, as RPmin is increased,
the maximum non-RT traffic decreases, thus improving RT performance. However, it
should be noted that a large RPmin costs non-RT throughput even though only one host
is generating the traffic.

We also developed metrics to monitor and characterize the performance at run-time.
Since the quantitative change of performance is difficult to predict a priori, the user can
exploit these metrics when s/he adjusts the ATS parameters. The metrics we used are the
number of transmitted packets, ntotal, and the number of packets that miss the deadline,
nmiss. If the desired delay bound is set by the user, both the number of the transmitted

162 M.-g. Cho and K.G. Shin

RT packets and the number of the packets taken longer than the specified bound will be
identified and counted. The deadline miss ratio can be inferred from these numbers by
a simple calculation: deadline miss ratio = nmiss/ntotal.

The delay measured here is the transmission delay, i.e., the interval from the time
when a packet is passed to the device, and to the time when a packet is successfully
transmitted. This delay excludes the protocol processing time on both the sender and
the receiver sides plus the propagation delay on the medium. This interval may vary due
to collisions and backoffs, which are the source of Ethernet’s unpredictability and the
main focus of this paper.

3.2 Switched-Ethernet Extension

The original ATS was designed for a single Ethernet, while switches are commonly used
in today’s LANs as the number of hosts increases. Use of switches can dramatically
improve the overall throughput and delay of a LAN, as they separate the collision domain
and forward packets from one collision domain to another only when necessary. Thus,
one can improve scalability by using ATS in a switched-Ethernet.

However, the performance of ATS can be degraded significantly when applied to the
switched-Ethernet, because bursty traffic on an Ethernet can be generated by the switch.
Each port of a switch generates traffic following the CSMA/CD protocol like a host on a
single Ethernet. Since it does not observe the HIMD policy, it can generate bursty traffic,
which may collide with RT packets and delays their transmission. We, therefore, propose
to enforce the HIMD policy at each port of the switch. Each switch port as well as hosts
on the Ethernet will then follow the HIMD policy, thus guaranteeing the timely delivery
of packets. Since it is the current trend to add flexible configuration and programming
features to a switch, this approach will soon be feasible. In such a case, each port should
maintain the traffic smoother parameters, such as the current credit and the last collision
time, to reflect the fact that a different ATS shows a different traffic-generation behavior.

3.3 User-Level Implementation

The implementation of ATS depends heavily on the underlying operating system, since
the interface between the IP layer and the device driver differs from one operating system
to another. Thus, implementing the ATS on one operating system requires OS-dependent
code, which is typically difficult and time-consuming to develop and debug. The original
ATS in [2] requires kernel modification including the device driver for Linux and building
a new network driver interface specification (NDIS) [15] driver for Windows NT.

The portability of ATS will be enhanced if it is built in the application level and
requires a minimum change to the underlying operating system, while there are a few
potential problems in this approach. When the ATS is implemented in the user-level, the
most significant change is its position in the protocol stack as shown in Fig. 1. A user-
level ATS sits on top of the UDP or TCP/IP layer while a kernel-level ATS lies between
the Ethernet MAC layer and the IP layer. The potential problem of this approach is that
there may be some packets being processed in the TCP/IP (or UDP/IP) protocol stack
when a collision occurs. Since such packets are beyond the control of a user-level ATS,
they will be transmitted by the host and they may result in more collisions with RT

On Soft Real-Time Guarantees on Ethernet 163

TCP/IP

ATS

MAC

ATS ATS

MAC

TCP/IP

(a) Kernel-level ATS (b) User-level ATS

Fig. 1. Comparison between the kernel-level adaptive traffic smoother and the user-level adaptive
traffic smoother. The kernel-level adaptive traffic smoother resides between the IP layer and the
MAC layer, while the user-level adaptive traffic smoother resides on top of transport layer.

packets from other hosts, thus causing the RT packets to miss their deadlines. Another
potential problem is that one application is ignorant of the traffic generated by another
application since each application has its own ATS, i.e., each application smoothes its
own traffic independently of others’. However, each traffic smoother will reduce its
traffic-generation rate upon detection of a collision. Therefore, the overall behavior of
a user-level ATS will be more sensitive to collisions when more than one application
inject non-RT traffic at the same time.

4 Implementation

4.1 Enhanced Reconfigurability and Scalability

The ATS is re-implemented on Linux 2.2.19 to enhance its reconfigurability. The new
implementation improved the reconfigurability by enabling the end-user to alter the user-
specific parameters and observe the resultant QoS changes. The ATS is also modified to
work independently as a per-Ethernet device so that a Linux box may emulate a switch.

The ATS uses two queues to prioritize RT packets over non-RT packets. RT packets
can be differentiated from non-RT packets by the type-of-service (ToS) field in the IP
header, which can be set by setsockopt() system call in Linux. When the device is ready,
the high-priority queue is checked, and the packet at the head of the queue, if any, is sent
to the device. A packet in the low-priority queue can be dequeued and sent to the device
only when a positive credit is available.

TheATS needs to know when the most recent collision has occurred. Ethernet devices
have status reporting features that can be used for this purpose. The device driver for
the NIC should be modified such that the time of the most recent collision is recorded.
The Ethernet device generates, or can be set to generate, an interrupt when a packet
is successfully transmitted or a packet is discarded after experiencing a pre-specified
number of collisions. In the interrupt handling routine, a small size of code is inserted to
record the time when the last transmitted packet experienced a collision. The time unit

164 M.-g. Cho and K.G. Shin

cat /proc/net/tsmoother
Inter- current last QoS # trans- #
face RP RPmax RPmin credit CBD α Δ enabled collision bound mitted missed
eth0 3000 100000 3000 1514 1514 10000 100 1 4065717 2 8611 1192

echo “eth0 min 1000” > /proc/net/tsmoother
cat /proc/net/tsmoother
Inter- current last QoS # trans- #
face RP RPmax RPmin credit CBD α Δ enabled collision bound mitted missed
eth0 1000 100000 1000 1514 1514 10000 100 1 4076586 2 8611 1192

Fig. 2. Example of getting/setting parameters through the proc file system. The output is formatted
in the table for better readability. The real output is similar to the above table.

used here is jiffies.1 Every device driver needs to be modified, but this modification was
very minor: in most cases, less than 10 lines of code.

The proc file system of Linux is exploited to facilitate the reading and setting of
the ATS parameters. The proc file system is a pseudo file system which resides in main
memory. Various types of system information can be conveniently retrieved and/or set
through the proc file system. One entry (/proc/net/tsmoother) is added for ATS. When
this file is read, it prints out the parameters of the traffic smoothers in all the active
devices. Also, it can be written with appropriate data to change the ATS parameters,
including enabling/disabling it.

Fig. 2 shows the use of the proc file system to get and set the parameters of ATS.
As shown in this example, the current value of the ATS parameters can be read from
/proc/net/tsmoother. Also some parameters can be changed by writing the appropriate
data to the file. To write data to the proc file, we use “device param value”, where device
indicates the network device name used in Linux such as eth0; param is the appropriate
parameter name; and value is the new value for the specified parameter. In the above
example, the value of RPmin is changed to 1000, which means 1 ms. Table 1 summarizes
the information reported by reading the proc file and the corresponding parameter names
used to alter their values. Here τ cannot be altered since it depends on the system time
resolution and is fixed to 1 ms in the current implementation. The unit of the parameters
is μs except for goal whose unit is ms.

The required upper bound of a delay of real-time packet transmission, which can
be considered as a deadline, can be set. Once the deadline is set, the number of real-
time packets transmitted and the number of real-time packets that missed the deadline
are recorded. It is straightforward to calculate the deadline miss ratio with these two
numbers. The delay measured here is the transmission delay as mentioned earlier.

In order to emulate a switch that follows the HIMD policy, a Linux box with multiple
NICs is used. Each NIC on the Linux box emulates a port of the switch. For each NIC,
the ATS parameters can be set independently, thus yielding independent and different
behaviors of the ATS.

1 jiffies is the time unit maintained in the Linux kernel. It is incremented by 1 every time interrupt,
which is 10 ms by default. But the time resolution is changed at 1 ms for finer granularity
measurements in the implementation.

On Soft Real-Time Guarantees on Ethernet 165

Table 1. The field reported by the proc file system and its meaning, and the parameter names used
to change their values.

Field Name
When Read

Parameter
Name

Description

RP the current RP
RPmax max rp RPmax

RPmin min rp RPmin

netshare the current credit
cbd cbd CBD

alpha alpha α
delta delta Δ

en enabled enabled(1)/disabled(0)
last coll the jiffies when the most recent collision occur

goal qos the required delay
xmit the number of RT packets transmitted

missed the number of RT packets delayed longer than specified bound

Table 2. The functions provided by a prototype of the user-level adaptive traffic smoother library.

Function Name Description
ts init(struct ts params *tsp) initialize an adaptive traffic smoother
ts set(struct ts params *tsp) set the parameters to a new value
ts get(struct ts params *tsp) get the current parameters
ts send(int fd, const void *msg, a wrapper function to the existing socket function

size t len, int flags)
ts thread() a background thread for refresh

4.2 User-Level Adaptive Traffic Smoother

A user-level traffic smoother is designed as a user-level library so that it can be linked
with other application programs that require ATS. The functions provided by this library
are summarized in Table 2.

A user-level program can initialize the user-level adaptive traffic smoother by in-
voking ts init() function. It initializes the ATS with the given parameters and generates
a background thread using the POSIX thread library. The background thread executes
the ts thread() function, which decreases the refresh period periodically and replenishes
the credits once every refresh period. Since this procedure is implemented at user-level,
the interval between two successive invocations of this procedure may not be uniform.
Thus, the refresh period is decreased proportionally to the time elapsed since the last
invocation.

The ts send() function can be used as a wrapper of the socket function to transmit a
data such as send(). All the parameters of this function are identical to those of send()
provided in the UNIX environment. When this procedure is invoked, the send() function
is invoked only when the current credit is positive.

166 M.-g. Cho and K.G. Shin

monitor station

host1 host2 host3 host4

RT traffic

NRT traffic

Ethernet

Fig. 3. Testbed setup used to measure the performance. Hosts exchange RT messages with each
other, and non-RT messages with the monitor station.

The parameters of user-level traffic smoother can be easily queried and adjusted with
ts get() and ts set(), respectively. The argument taken by these functions is a pointer to
struct ts param, which is defined as follows.

struct ts_param {
unsigned long rp; /* RP */
unsigned long rp_max; /* RPmax */
unsigned long rp_min; /* RPmin */
unsigned long alpha; /* alpha */
unsigned long delta; /* delta */
unsigned long tau; /* tau */
int cbd; /* cbd */
volatile int ns; /* the current credit */
int enabled; /* whether enabled */
int congested; /* to indicate the recent collision */

};

The names of the most fields are self-explanatory and correspond to the ATS param-
eters. The enabled field indicates if the smoothing is enabled, and the congested field is
set by the background thread to indicate whether there is a collision recently.

A user-level ATS still requires a very small (less than 10 lines of code) kernel mod-
ification to get the information of the most recent collision: a device driver should be
modified to record the time when the collision occurred.

5 Performance Evaluation

5.1 Experimental Setup

To validate our solutions, we performed experiments on a testbed that mimics a factory
automation system. In a typical automated factory system, PLCs exchange RT messages

On Soft Real-Time Guarantees on Ethernet 167

Switch

(Linux box)

 host 1 host 2 Monitor Station host 3 host 4

Fig. 4. Testbed setup used to measure the performance of ATS in the switched-Ethernet. Linux box
with multiple NICs emulates a switch, and separates the collision domains. As in single Ethernet
environment, hosts exchange RT messages with each other, and non-RT messages with the monitor
station.

with each other, and non-RT messages with a monitoring system. Our testbed is shown
in Fig. 3. Four Pentium 75 MHz laptops with 24M RAM are used as hosts to emulate
PLCs, and one Pentium 133 MHz laptop with 32M RAM is used as the monitor station.

Each host generates a 1-Kbyte-long RT message every 100 ms. At the same time,
each host sends non-RT traffic to the monitor station continuously to saturate the network.
The roundtrip delay is measured for RT messages since it is very difficult to measure
the one-way delay without precise time synchronization. The delay is measured at the
application layer, i.e., the delay will include the protocol processing time as well as
the packet transmission time. In addition to the RT roundtrip delay, the overall non-RT
throughput is measured.

Fig. 4 shows the testbed setup used to measure the performance of the ATS extended
to the switched-Ethernet. Four hosts and a monitor station exchange the same traffic. But
the collision domain is separated into 3 domains by the switch. Two collision domains
contain two hosts each, and the third collision domain is used for the monitor station.
Since the monitor station consumes more bandwidth than the hosts, it is natural to allocate
one separate collision domain (i.e., a port in the switch), to the monitor station.

The parameters throughout the performance evaluation are, unless specified other-
wise, set as: RPmin = 3 ms, RPmax = 50 ms, α = 10 ms, Δ = 100 μs. For most
of the experiments, we adjusted the Δ value since the performance is sensitive to this
parameter, and the non-RT throughput is not sacrificed significantly.

5.2 Validation of Reconfigurability Enhancement

The usability is enhanced in the new implementation of the ATS as shown in the previous
sections. To verify its usability enhancement, the sensitivity of the ATS parameters is
plotted in Fig. 5. Also the metrics to show the QoS achievement are evaluated.

168 M.-g. Cho and K.G. Shin

0 100 200 300 400 500
0

10

20

30

40

50
original linux

of packets

d
e

la
y
 (

m
s
e

c
)

0 100 200 300 400 500
0

10

20

30

40

50
delta=100

of packets

d
e

la
y
 (

m
s
e

c
)

(a) (b)

0 100 200 300 400 500
0

10

20

30

40

50
delta=50

of packets

d
e

la
y
 (

m
s
e

c
)

0 100 200 300 400 500
0

10

20

30

40

50
delta=10

of packets

d
e

la
y
 (

m
s
e

c
)

(c) (d)

Fig. 5. The roundtrip delay of RT messages with (a) original Linux, (b) Δ = 100, (c) Δ = 50, and
(d) Δ = 10.

Fig. 5 shows the roundtrip delay of the RT packets with different parameters. Fig. 5(a)
shows the roundtrip delay measured without the ATS, while Fig. 5(b)-(d) show the
roundtrip delay with different Δ values. With theATS, the roundtrip delay is significantly
reduced and well-bounded. Also it can be observed that the delay characteristics vary
with different Δ values.

Fig. 6 and 7 present more quantitative analyses of the performance. Fig. 6 shows
the deadline miss ratio for different Δ values. The x-axis of the graphs is the deadline in
terms of ms and the y-axis is the deadline miss ratio. Obviously, the deadline miss ratio
decreases as the deadline increases. Fig. 7 shows the throughput of non-RT traffic for
different Δ values. As Δ gets larger, the RP decreases faster, i.e., the traffic generation
is increased faster. Thus, as Δ increases, the non-RT throughput will increase while the
deadline miss ratio will increase.

The above graphs have shown that the behavior of the ATS is affected by the Δ
value. The parameters other than Δ also affect the performance of ATS. Generally, the
deadline miss ratio is higher when the overall throughput is high, but it may be possible
that one set of parameters gives a lower deadline miss ratio and a higher throughput than
another set of parameters. The parameters can be changed easily to observe their effects
on the performance of ATS.

Fig. 8 shows the deadline miss ratio inferred from the new metrics measured. Here
the delay is measured as an interval from the time when a packet is copied to the device
to the time when the packet is successfully transmitted by the device. This delay will

On Soft Real-Time Guarantees on Ethernet 169

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Deadline Miss Ratio

deadline (msec)

d
e
a
d
lin

e
 m

is
s
 r

a
ti
o

delta=10
delta=25
delta=50
delta=100

Fig. 6. The deadline miss ratio (of roundtrip delay) with different Δ values. Δ is adjusted to 10,
25, 50, and 100 μsec. The performance varies significantly depending on Δ value.

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500
Throughput

delta (usec)

th
ro

u
g

h
p

u
t

(k
b

y
te

/s
e

c
)

Fig. 7. The throughput of non-RT traffic with different Δ values. The throughput as well as the
deadline miss ratio varies depending on the Δ value. There is a tradeoff between the throughput
and the deadline miss ratio.

170 M.-g. Cho and K.G. Shin

0 10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Deadline Miss Ratio

deadline (msec)

d
e
a
d
lin

e
 m

is
s
 r

a
ti
o

delta=10
delta=25
delta=50
delta=100
delta=200

Fig. 8. The deadline miss ratio inferred from the metrics of the enhanced adaptive traffic smoother.

be affected most by the current network utilization, i.e., the number of collisions that a
packet has experienced with other packets. Note that the delay is the roundtrip delay of
a RT packet measured at the application layer for most of the other graphs representing
the deadline miss ratio. However, the delays presented here exhibit a similar trend to the
delays measured at the application layer as shown in Fig. 6. This validates the fact that
the transmission delay reported by the enhanced traffic smoother is a major factor of the
variance in the delay. Thus, the deadline miss ratio inferred from the new metrics can
be used as a proper indicator of the user-specified QoS achievement. With the help of
these metrics, the parameters of ATS may be adjusted to achieve the desired QoS.

5.3 Performance of the ATS in a Switched Ethernet

The performance of ATS when it is applied not only to end-hosts but also to the switch
is compared to other cases, to validate the extension of ATS to the switched-Ethernet.
Four sets of experiments are performed when (a) ATS is used on a single Ethernet, (b)
ATS is not used at all in the switched-Ethernet, (c) ATS is applied only to hosts on
the switched-Ethernet, and (d) ATS is applied to both hosts and the switch ports in the
switched-Ethernet.

Fig. 9 and 10 show the roundtrip delays and the deadline miss ratio, respectively.
The performance of the switched-Ethernet without the ATS is poorer than that of a
single Ethernet with the ATS. When the traffic smoother is applied only to hosts on
the switched network, the performance is no better than that of the traffic smoother on
the single Ethernet. Only when the ATS is applied to both hosts and the switch, the

On Soft Real-Time Guarantees on Ethernet 171

0 1000 2000 3000 4000 5000
0

10

20

30

40

50
ATS on single Ethernet

of packets

d
e

la
y
 (

m
s
e

c
)

0 1000 2000 3000 4000 5000
0

10

20

30

40

50
Switched, NO ATS

of packets

d
e

la
y
 (

m
s
e

c
)

(a) (b)

0 1000 2000 3000 4000 5000
0

10

20

30

40

50
ATS only on hosts

of packets

d
e

la
y
 (

m
s
e

c
)

0 1000 2000 3000 4000 5000
0

10

20

30

40

50
ATS on hosts and switch

of packets

d
e

la
y
 (

m
s
e

c
)

(c) (d)

Fig. 9. Real-time message delay in different situations: (a) ATS is used on a single Ethernet, (b)
ATS is not used at all in the switched-Ethernet, (c) ATS is applied only to hosts on the switched-
Ethernet, and (d) ATS is applied to both hosts and the switch in the switched-Ethernet.

performance is improved significantly as compared to that of the single Ethernet with
the ATS.

5.4 Performance of User-Level ATS

To validate the feasibility of the user-levelATS, the same set of experiments is performed
with both the user-level and the kernel-level traffic smoothers in the testbed described
in Section 5.1. Fig. 11 plots the deadline miss ratio of the user-level traffic smoother
vs. that of the kernel-level traffic smoother when Δ is adjusted to 25 μs and 100 μs,
respectively. Two observations can be made from these graphs. First, it is observed that
the performance curve of the user-level ATS shows a similar trend to that of kernel-
level ATS. This implies that we can change the characteristics of the user-level ATS by
adjusting the parameters. Second, the performance of the user-level ATS can be adjusted
similarly to that of the kernel-level ATS by adjusting the parameters. As shown in the
graph, the performance of the user-level ATS is poorer than that of the kernel-level ATS
when the same parameters are used. This is because the packets in the TCP/IP stack
which are beyond the control of the user-level ATS may be transmitted even right after
a collision, and may collide with other packets. However, the performance of user-level
ATS can be improved by adjusting the parameters such that the performance obtained

172 M.-g. Cho and K.G. Shin

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Deadline Miss Ratio

deadline (msec)

d
e
a
d
lin

e
 m

is
s
 r

a
ti
o

ATS on single Ethernet
Switched, No ATS
ATS only on hosts
ATS on hosts and switch

Fig. 10. The comparison of the deadline miss ratio when (i) ATS is used on a single Ethernet,
(ii) ATS is not used at all in the switched-Ethernet, (iii) ATS is applied only to hosts on the
switched-Ethernet, and (iv) ATS is applied to both hosts and the switch in the switched-Ethernet.

from the user-level ATS is comparable to or better than the performance of the kernel-
level ATS with the different parameter.

The potential problem of the user-level ATS is that the performance may become
worse if more than one application generate non-RT traffic on a given host since each
application adapts its traffic generation. To address this issue, experiments are performed
by changing the number of applications generating non-RT traffic on one host. A con-
tinuous stream of non-RT traffic is generated by each application, and the number of
applications (i.e., the number of non-RT streams) is changed from 1 to 3 while keeping
the RT traffic intact.

Fig. 12 shows the deadline miss ratio when the number of non-RT streams is changed.
While the number of non-RT streams ranges from 1 to 3, the performance of the kernel-
level ATS remains almost unchanged since it smoothes traffic at the Ethernet MAC layer
which all the packets go through. One interesting result is that the deadline miss ratio of
the user-level ATS is affected little when the number of non-RT streams on one host is
changed. Also, the overall throughput of the user-level ATS is only 2 ∼ 7% lower than
that of the kernel-level ATS, and the overall throughput remains stable regardless of the
number of non-RT streams. Throughout these experiments, we were able to verify the
feasibility of the user-level ATS. Even though its performance is somewhat poorer than
the kernel-level ATS, the user-level ATS can be used for soft real-time guarantees with
the minimum modification on the underlying operating system.

On Soft Real-Time Guarantees on Ethernet 173

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Deadline Miss Ratio

deadline (msec)

d
e

a
d

lin
e

 m
is

s
 r

a
ti
o

UATS,d=100
KATS,d=100
UATS,d=25
KATS,d=25

Fig. 11. The deadline miss ratio: kernel-level implementation vs. user-level implementation when
Δ = 25μsec and when Δ = 100μsec.

0 50 100 150
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Deadline Miss Ratio

deadline (msec)

d
e

a
d

lin
e

 m
is

s
 r

a
ti
o

KATS 1 NRT
KATS 2 NRT
KATS 3 NRT
UATS 1 NRT
UATS 2 NRT
UATS 3 NRT

Fig. 12. The comparison between the kernel-level adaptive traffic smoother and the user-level
traffic smoother when there are multiple stream of non-RT traffic.

174 M.-g. Cho and K.G. Shin

6 Concluding Remarks

ATS is a software solution to provide soft real-time guarantees on Ethernet by regulating
each host’s traffic generation rate according to the network utilization. Even though it
is shown to be effective in providing real-time guarantees in a heavily-loaded network
without degrading the throughput unacceptably, it has some limitations. First, it provides
no means of adjusting its several user-specific parameters for different QoS requirements
and to monitor its performance at run-time. Second, it is designed only for a single
Ethernet while switches are commonly used for scalability. Third, it has relatively poor
portability since it is designed and implemented in the kernel. This paper addressed all
of these problems.

To enhance the reconfigurability, a mechanism to retrieve and modify the ATS pa-
rameters at run-time is developed using the proc file system on a Linux machine. Also,
the metrics to represent the QoS achievement with the given parameters are made avail-
able, when the delay bound of transfer delay is specified. We applied these enhanced
reconfigurability mechanisms and evaluated the ATS performance for different parame-
ter values. With the help of these mechanisms, user-specific parameters can be adjusted
to meet the QoS requirement. It will be convenient to the user if these parameters are
adjusted automatically when the desired QoS is specified. This is left as future work,
but its difficulty lies in the fact that those parameters are dependent on each other, thus
making it difficult to modify them.

The ATS is extended to the switched-Ethernet, which is the common topology of
LANs. More specifically, we applied the HIMD policy to every port of a switch.A switch
is emulated using a Linux box, and the performance is evaluated and compared to the
performance on a single Ethernet. Our experimental results have shown that performance
can be improved only when the HIMD policy is applied to every port of the switch under
heavy network loads.

A prototype of the user-level ATS was designed, implemented, and evaluated to
address the portability issue. The user-level ATS requires only the minimum change
on the operating system, and hence, is easier to port to different platforms. Its perfor-
mance is slightly worse than, but comparable to, that of the kernel-level ATS. Also the
user-level ATS shows the stable performance even when the number of non-RT stream
changes whose traffic-generation rate is adjusted independently. These results validate
the feasibility of the user-level traffic smoother.

References

1. Seok-Kyu Kweon, Kang G. Shin and Qin Zheng, Statistical Real-Time Communication over
Ethernet for ManufacturingAutomation Systems, Proceedings of IEEE Real-Time Technology
and Applications Symposium, June 1999.

2. Seok-Kyu Kweon, Kang G. Shin and Gary Workman, Achieving Real-Time Communication
over Ethernet withAdaptive Traffic Smoothing, in Proceedings of IEEE Real-Time Technology
and Applications Symposium, pages 90-100, June 2000.

3. IEEE Standard 802.3-1985. Carrier-Sensed Multiple Access with Collision Detection
CSMA/CD, 1985.

4. Universal Remote I/O Link, http://www.ab.com/catalogs/b113/comm/urio.html

On Soft Real-Time Guarantees on Ethernet 175

5. Robert Bosch GmbH, "CAN Specification Version 2.0," September 1991.
6. N. F. Maxemchuk, A Variation on CSMA/CD That Yields Movable TDM Slots in Integrated

Voice/Data Local Networks, The Bell System Technical Journal, 61, (7), pages 1527-1550,
September 1982.

7. Y. Shimokawa and Y. Shiobara, Real-time Ethernet for industrial applications, Proceedings
of IECON, pages 829-834, 1985.

8. W. Zhao and K. Ramamritham, Virtual Time CSMA Protocols for Hard Real-time Commu-
nication, IEEE Transactions on Software Engineering, pages 938-952, August 1987.

9. R. Court, Real-time Ethernet, Computer Communications, vol. 15, pages 193-201,April 1992.
10. D. W. Pritty, J. R. Malone, S. K. Banerjee, and N.L. Lawrie, A real-time upgrade for Ethernet

based factory networking, Proceedings of IECON, pages 1631-1637, 1995.
11. J. Sobrinho, A. S. Krishnakumar, EQuB - Ethernet Quality of Service Using Black Bursts,

Proceeding of the 23rd Conference on Local Computer Networks, pages 286-296, Boston,
Massachusetts, October 1998.

12. C. Venkatramani, and T. Chiueh. Design, Design, Implementation, and Evaluation of a
Software-based Real-Time Ethernet Protocol, ACM SIGCOMM 95, pages 27-37. 1995.

13. Z. Wang, G. Xiong, L. Luo, M. Lai, and W. Zhou.A Hard, Real-Time Communication Control
Protocol Based on the Ethernet, Proceedings of the 7th Australian Conference on Parallel
and Real-Time Systems (PART00), pages 161-170, November, 2000.

14. M. Molle, 100Base-T/IEEE802.12/Packet Switching, IEEE Communication Magazine, pages
64-73, August 1996.

15. The Network Driver Interface Specification (NIDS) Interface, http://www.microsoft.com/

BondingPlus: Real-Time Message Channel in
Linux Ethernet Environment Using Regular

Switching Hub �

Hsin-hung Lin, Chih-wen Hsueh, and Guo-Chiuan Huang

Real-Time Systems Laboratory
Department of Computer Science and Information Engineering

National Chung Cheng University
Chiayi, Taiwan 621, R.O.C.

{lsh,chsueh,hgc89}@cs.ccu.edu.tw

Abstract. Bandwidth management is very important to quality of
service of network applications. Communications and data transmissions
between hosts in a LAN environment may be large in many systems,
such as clustering systems and parallel systems. If the network band-
width is not enough, real-time packets may be delayed and miss their
timing constraints. There are many technologies developed to increase
host bandwidth in a LAN environment, but most of them need switching
hubs with special support such as IEEE Link Aggregation Standard
and are very expensive. In this paper, we propose a real-time message
channel, BondingPlus, in Linux Ethernet environment which can
make use of multiple Ethernet adapters simultaneously between hosts
connected with regular switching hubs. When receiving packets from
upper network layer, BondingPlus schedules packets in data link layer.
Real-time packets can be dispatched into a higher-priority queue so that
the packets can be transmitted through the physical Ethernet interface
right away. Furthermore, real-time applications can transmit real-time
packets via one or several dedicated network adapters which create
real-time message channels between hosts and thus reduce transmission
delay and jitter dramatically, especially suitable for applications that
have high bandwidth and real-time requirements. This approach is
implemented in two Linux kernel modules and is backward compatible,
flexible and transparent to users. BondingPlus pseudo Ethernet device
driver module receives packets from upper network layer and dispatches
the packets to multiple physical network adapters with a single IP
address. ARP+ protocol module is responsible for maintaining a table
of the mapping between an IP address and its corresponding MAC
addresses of multiple physical network adapters.

Keyword: IEEE Link Aggregation Standard, channel bonding,
packet scheduling, network scheduling

� Supported in part by a research grant from the ROC National Science Council under
Grants NSC-89-2213-E-194-056

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 176–193, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 177

1 Introduction

Bandwidth plays an important role in quality of service of network applications.
For example, clustering systems and parallel systems in a LAN environment,
communications and data transmissions between hosts are large. If the network
bandwidth is not enough, real-time packets may be delayed and miss their tim-
ing constraints [3,11]. Therefore, bandwidth management is very important. Fur-
thermore, in many server applications, transactions with real-time constraints
or priorities need to be processed and send results back as soon as possible.
Although we can use several network adapters at a host to obtain higher band-
width, but one IP address is needed for each network adapter and thus is not
practical in large-scale systems.

In IEEE 802.3 network specification [17], Link Aggregation Standard is pro-
posed to merge bandwidth and specify many other features. As shown in Fig-
ure 1, it comprises an optional sublayer between MAC Client and MAC Control
sublayers. This standard is mainly targeted at routers and there are products of
many manufacturers which support Link Aggregation Standard using hardware
or software approaches, such as CISCO EtherChannel [19], Intel Link Aggrega-
tion [5], Sun Trunking [14], and Linux Bonding [9]. Although bandwidth can be
increased, these approaches need special switching hubs with Link Aggregation
Standard support, which means extra costs are needed.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

OSI

Reference Model

Layers

MAC Client Layer

MAC MUX Layer

MAC Aggregation Control Layer

MAC Control

Layer

MAC Layer

Physical Layer

MAC Control

Layer

MAC Layer

Physical Layer

MAC Control

Layer

MAC Layer

Physical Layer

…

LAN CSMA/CD Layers

Higher Layers

Fig. 1. IEEE802.3 Link Aggregation Layer

In [20], Srinidhi Varadarajan and Tzi-cker Chiueh proposed the design and
implementation of a real-time Fast Ethernet switch , EtheReal, which provides
bandwidth guarantees to real-time applications running on Ethernet using a
personal computer. When a real-time application attempts to set up a real-time

178 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

connection, it sends a reservation request to a user-level process (RTCD) on
the same host, which sends the reservation request to the EtheReal switch to
which the sending host is directly connected. The connected switch forwards this
request to the next switch, and so on, until it reaches the destination node. If the
real-time connection request is admitted, resources, including bandwidth, CPU
cycle and data buffer, on EtheReal switches are reserved and dedicated to the
service of the real-time connection.

Nowadays, switching hubs which support 100BASE-TX and Full-Duplex are
very inexpensive and still have very high packet filtering/forwarding rate. We
would like to make use of these inexpensive devices and make use of several
network adapters simultaneously with only one IP address to increase band-
width between hosts connected with regular inexpensive switching hubs. By
scheduling packets in data link layer, real-time packets can be dispatched into a
higher-priority queue so that the packets can be transmitted through the phys-
ical Ethernet interface right away [13,16]. Furthermore, real-time applications
can transmit real-time packets via one or several dedicated network adapters
which create real-time message channels between hosts and thus reduces the
transmission delay and the jitter of real-time packets massively [8,12] without
modification to the hardware on both host machines and connected switching
hubs.

The proposed approach comprises two Linux kernel drivers [1,4,7,15]. Bond-
ingPlus driver module is a pseudo Ethernet device driver responsible for receiving
packets from upper network layer and dispatching packets to multiple physical
Ethernet interfaces. ARP+ protocol module maintains an ARP+ table, which is
a mapping table between each IP address and its corresponding MAC addresses
of multiple physical network adapters in a LAN environment. When Bonding-
Plus driver transmits a packet, it queries ARP+ table and changes the source
and destination addresses of the packet.

The rest of this paper is organized as follows. The next section describes
background knowledge used in the proposed approach, including switching hub
operations, Linux packet flow, and Ethernet Bonding Driver. Section 3 details the
design issues and the solutions we propose. Section 4 shows the implementation
details of our work in a Linux LAN environment. In Section 5, we measure and
analyze the performance of BondingPlus. This paper is concluded in Section 6.

2 Background

In this section, we introduce how packets are handled in a switching hub and
Linux network traffic control which can give us a good view of how to manipulate
a packet before it is sent to the buffer of a network adapter. We also introduce
Linux Ethernet Bonding Driver, which is a software implementation of Link
Aggregation standard in Linux.

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 179

Switching

Logic

Packet

Buffer

Space

Address-Lookup

Engine

8K-entry

Address

Table

DMA

Engine

RMII

10/100

MAC

FIFOs,

Queue,

Flow

Control

…

RMII

10/100

MAC

FIFOs,

Queue,

Flow

Control

8 ports

Fig. 2. Brief Architecture of Switching Hub(RealTek RTL8308B)

2.1 Packet Handling in Switching Hub

In a switching hub, there is a controller that controls the flow of input packets.
For example, Figure 2 shows the brief architecture of RealTek RTL8308B, an
8-port 10/100Mbps Ethernet switch controller [6]. It can operate in full-duplex
mode and supports non-blocking 148800 packets/second wire speed forwarding
rate and flow control. RealTek RTL8308B has a 2M-bit packet buffer. When
packets come into the FIFO queue, they will be copied into the packet buffer and
manipulated by the switching logic. There is an 8K-entry address hashing table
which contains the mappings between ports and destination MAC addresses.
When a packet is received from a port, the switching logic records the source
MAC address of this packet and creates a mapping in the address hashing table.
Then it hashes the destination MAC address of the packet to get a location
index of the address hashing table. If a valid location index is found, the packet
is forwarded to the corresponding destination port. Otherwise, the incoming
packet is broadcasted to all ports.

2.2 Packet Flow in Linux Protocol Stack

As shown in Figure 3, Linux protocol stack is based on TCP/IP and is normally
considered as a 4-layer system [18]. Linux uses a common packet data structure
(called socket buffer structure) to represent a packet throughout all protocol
layers. Parameters and payloads would not need to be copied between different
protocol layers. Figure 4 is the abstraction of the Linux traffic path. When an
application generates a packet, the packet is sent to transport layer (TCP or
UDP layer) through a socket. After the packet is handled in transport layer,

180 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

FTP, Telnet,

SMTP, …

DNS, SNMP,

NFS, …

TCP UDP

IPICMP IGMP

Network

Interface
ARP RARP

Transmission Media

Application

Layer

Transport

Layer

Network

Layer

Data Link

Layer

Physical

Layer

Fig. 3. Linux Network Protocol Stack

Application Layer

sends packet to

socket

Application Layer

receives the packet

Socket Layer

sends packet

to transport layer

Socket Layer

sends packet

to application

Transport Layer

sends packet

to network layer

sends packet

to transport layer

looks up route

to destination

sends packet

to device

IP Layer

Forward Packet

Transport Layer

sends packet

to socket

device transmits packet device receives packet

Fig. 4. Linux Traffic Path

it is then sent to network layer (IP layer). The network layer is responsible for
determining the route of packets. If the packet is for another computer, the
network layer sends it to data link layer. The data link layer sends packets via

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 181

an available output device, such as Ethernet adapter, serial port, printer port,
etc.

When a packet is arrived, the input interface checks whether the packet is for
this computer, for example, an Ethernet adapter checks the destination MAC
address field when receiving a packet. If so, the network interface driver sends
the packet to the network layer. The network layer checks the destination of the
packet. If the packet is for this computer, the network layer sends it to transport
layer and finally to the application. Otherwise, the packet is sent back to an
output device.

2.3 Linux Generic Packet Scheduler

Linux provides a rich set of traffic control functions [2]. For an Ethernet device,
the default queuing discipline is Linux Generic Packet Scheduler. When Linux
Generic Packet Scheduler is being initialized, the initial function creates three
queues (called 3-band FIFO queue, the first, the second, and the third queue
respectively) for socket buffers. Linux Generic Packet Scheduler provides a set
of functions to access the 3-band FIFO queue, such as to enqueue a packet, to
return the next packet in queue eligible for sending, to put a packet back into the
queue after dequeuing, etc. When a packet is needed for sending, Linux Generic
Packet Scheduler searches the first queue to find one. If there are packets in the
first queue, it returns the first packet. Otherwise, Linux Generic Packet Scheduler
searches the second queue and then the third queue. Packets in the second and
the third queue will not be processed while there are still packets waiting for
transmitting in the first queue. Therefore, packets in the first queue have the
highest priority when sending and should be processed as soon as possible.

Linux Generic Packet Scheduler also creates a mapping table between the
priority of a socket buffer and the 3-band FIFO queue. The mapping table is
illustrated in Figure 5. The priority value is extracted from a packet and used
as an index to look up the corresponding queue number in the mapping table
when enqueuing. For example, if the priority of a packet is 1 and the number in
the mapping table is 2, this packet should be queued in the third queue.

2.4 Linux Ethernet Bonding Driver

Linux Ethernet Bonding Driver is a kernel driver that can aggregate traffic over
several ports [9]. It has two main features: high availability and load balancing.
In this section, we will focus on the implementation of load balancing. Figure 6
is the architecture of Linux Ethernet Bonding Driver.

When Linux Ethernet Bonding Driver is initialized, it creates a pseudo Eth-
ernet device and registers itself in Linux Kernel. The Linux kernel then initializes
the pseudo Ethernet device and creates a link list which is responsible to contain
physical Ethernet devices (called slaves) which can be used by the pseudo Eth-
ernet device. To make the pseudo Ethernet device work, we have to assign an
IP address and add routing setting to it. The pseudo Ethernet device is set as a
master device of the slaves and adds them into its link list. The MAC address of

182 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

the pseudo Ethernet device is set as the same as the first physical Ethernet de-
vice of its slave list. All the MAC addresses of the subsequent physical Ethernet
devices are set as the same as the pseudo Ethernet device.

When a packet from upper network layer (usually is IP layer) is needed to
be transmitted by the Bonding driver, the kernel passes the socket buffer to
it. The Bonding driver selects an active physical Ethernet device from its slave
list, changes the output device of the socket buffer to the selected device and
then enqueues the packet into the queue of the selected physical Ethernet device
driver. The physical Ethernet device is responsible for sending the packet when
the NET TX SOFTIRQ softirq of Linux kernel is activated.

When a packet is received by one of the slaves, the driver of this slave device
creates a new socket buffer and copies the data of the received packet into the
socket buffer. Then the driver stores the socket buffer into an appropriate queue
for latter handling. When NET RX SOFIRQ softirq is activated, the Linux ker-
nel processes the packet queue. The Bonding driver changes the input device of
the socket buffer to the pseudo Ethernet device. Thus when a packet received
from any of the slave devices, the kernel will regard that the packet as received
from the pseudo Ethernet device. Furthermore, the Bonding mechanism operates
under TCP/IP layer, so it is fully compatible with upper layers.

3 Design Issues

We intend to use regular switching hubs to dispatch network packets between
connected computers with multiple Ethernet adapters in a LAN environment
without modification to the hardware on both host machines and connected

1, 2, 2, 2, 1, 2, 0, 0 1, 1, 1, 1, 1, 1, 1, 1

The First Queue

The Second Queue

The Third Queue

Fig. 5. Mapping Between Socket Buffer Priority and 3-band FIFO Queue

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 183

switching hubs. Packets are scheduled in data link layer so that real-time pack-
ets are sent via one or several dedicated network adapters which create real-time
message channels. Real-time packets need not to compete for the network band-
width against non-real-time packets. Moreover, non-real-time packets can be sent
simultaneously via other network adapters.

We design the BondingPlus pseudo network driver to dispatch packets from
upper network layer to physical Ethernet adapters. The BondingPlus driver is
responding for receiving socket buffer from upper network layer and changing
the output device of the socket buffer and then sends it to the corresponding
queue of the physical Ethernet adapter. When the socket buffer is to be sent on
the BondingPlus driver, the Linux kernel fills the MAC address of one of the
physical Ethernet interface in the source address field and uses ARP protocol
to query the destination MAC address while building the Ethernet header of
this packet. But ARP protocol is a one to one mapping between IP address
and MAC address, which means although we can send packets through multiple
network adapters, but always receives packets from one of the network adapters.
Real-time input packets would have to compete with lower priority packets. In
order to solve this problem, we design a new protocol, ARP+ protocol, to keep
the mapping between an IP address and all of the MAC addresses of the host.

3.1 BondingPlus Architecture

As shown in Figure 7, in the proposed approach, there is a pseudo Ethernet
driver, BondingPlus, which resides between IP layer and physical Ethernet in-
terface driver. BondingPlus is responsible for changing the attributes of socket
buffer, including source MAC address, destination MAC address and output

IP Layer

Linux Ethernet Bonding Driver

Physical

Ethernet

Driver

NIC

Queue

…

Physical

Ethernet

Driver

NIC

Queue

Physical

Ethernet

Driver

NIC

Queue

Higher Layers

Fig. 6. Linux Ethernet Bonding Driver Architecture

184 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

device. After the attributes are changed, BondingPlus finds an active physical
Ethernet interface to send the socket buffer. The ARP+ protocol also resides
between IP layer and physical Ethernet interface driver. When an ARP+ packet
is received, the kernel calls the ARP+ protocol handling routine and passes the
ARP+ packets to it. The ARP+ protocol handing routine then parses the ARP+
packet and updates the corresponding ARP+ table.

3.2 BondingPlus Driver

When the BondingPlus pseudo Ethernet driver is installed into Linux kernel,
it creates a pseudo Ethernet master device and registers it to kernel. Bonding-
Plus also creates a physical Ethernet interface pool (slave list) and an ARP+
table. After IP address initialization has been done, IP address, MAC address
and the suffix of the IP address of the BondingPlus driver are copied into the
corresponding entry of the ARP+ table. The MAC address of the BondingPlus
driver is obtained by the first slave device of its slave list.

BondingPlus diver sets a SLAVE flag and a NOARP flag to all its slave de-
vices. Packets received from a slave device with SLAVE flag set are considered as
received from its master device. NOARP flag forbids slave devices from replying
an ARP query. Only the master device should reply a ARP query so that it
would not cause other hosts to update their ARP table frequently. After set-
ting all slave devices, BondingPlus broadcast the MAC addresses of all its slave
devices using ARP+ protocol.

3.3 ARP+ Protocol

Traditional ARP protocol is a one to one mapping between IP address and
MAC address which can not meet our requirement in using regular switching

IP Layer

Physical

Ethernet

driver

Physical

Ethernet

driver

Physical

Ethernet

driver

Physical

Ethernet

driver

NIC NIC NIC NIC

Linux BondingPlus Driver ARP+ Module
ARP+

Table

Input

Queue

Queue Queue Queue Queue

Fig. 7. BondingPlus Architecture

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 185

hubs because only the MAC address of one of the physical network adapters
of the destination host can be obtained and thus real-time input packets may
have to compete with other lower priority packets. In order to achieve a one to
many mapping between an IP address and multiple MAC addresses, we design a
proprietary packet which can only be understood and interpreted by the ARP+
protocol without interfering existing protocols. Figure 8 shows our proprietary
ARP+ protocol packet. There are four types of ARP+ packet:

– ARPP BROADCAST: When a host is loaded with BondingPlus driver and
ARP+ protocol module, it broadcasts an ARPP BROADCAST packet con-
taining all the MAC addresses of its physical network adapters, so that hosts
can obtain the MAC address list of every newly joined host.

– ARPP REPLY: When a host receives an ARPP BROADCAST packet, it
unicasts an ARPP REPLY packet to notify the newly joined host with its
MAC addresses. It ensures newly joined hosts can obtained the latest MAC
address list of other hosts.

– ARPP CHANGE: When a host changes its MAC address list, such as adding
or removing one or more physical network adapters, it broadcasts an ARPP
CHANGE packet. Hosts receiving an ARPP CHANGE packet update the
corresponding entry in their ARP+ tables.

– ARPP CLEAR: When a host is going to unload or ready to shut down,
it broadcasts an ARPP CLEAR packet to notify other hosts. Hosts receiv-
ing an ARPP CLEAR packet clear the corresponding entry in their ARP+
tables.

After the ARP+ header are the IP address and MAC addresses of the sender.
Currently, we limit an ARP+ packet to contain at most 8 MAC address entries.
It is practical because most personal computers have no more than 8 PCI and
ISA slots to accommodate 8 Ethernet adapters.

The ARP+ protocol module is to maintain the ARP+ table passed from
BondingPlus driver. Every ARP+ table contains a pointer array of 256 entries
which point to a dynamic allocated array containing MAC addresses. The suffix
of an IP address is used as an index of the ARP+ table for finding the corre-
sponding MAC addresses.

3.4 Backward Compatible

The BondingPlus driver parses every received socket buffer and gets information
from it. If an outgoing socket buffer is not an IP protocol packet, the BondingPlus
driver only changes the output device of the socket buffer and then puts it into
the queue of the output device. If the socket buffer is a valid IP protocol packet,
the BondingPlus driver extracts the suffix of the IP address and uses it as an
index to query the ARP+ table to get the destination MAC addresses. If the
destination MAC address is not found, which means the destination host is not
loaded with BondingPlus driver, the BondingPlus driver of the sending host
chooses an active physical Ethernet device, assigns it to the output device of the

186 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

Ethernet

destination addr

Ethernet

source addr

frame

type

Sender

IP addr

Sender

MAC addr

Sender

MAC addr

Sender

MAC addr
…

Ethernet Header ARP+ Header

arpp_hln, hardware address lenght

arpp_pln, protocol address length

arpp_nha, number of hwadware address

type, ARP+ packet type

0x700A

6 bytes 6 2 2 2 2 2 4 6 6 6

Fig. 8. ARP+ Protocol Packet Type

socket buffer, and then puts the socket buffer into the queue of the output device.
If the destination MAC addresses is found in ARP+ table, the BondingPlus
driver selects one of the available MAC addresses of the destination host, copies
it to the destination MAC address field of the socket buffer, and then selects an
active physical Ethernet device to send the packet.

There are several scenarios between two hosts. If host A is loaded with Bond-
ingPlus driver but other host B is not. When host A wishes to connect to host B,
it issues an ARP request and host B replies host A with an ARP reply. Host A
and host B can obtain the MAC address from the other host by ARP protocol.
When host A is going to send a packet to host B and can not find the MAC
addresses of host B in the ARP+ table. Host A selects an active physical Ether-
net device and simply sends the packet without modifying the destination MAC
address which is obtained by ARP protocol. It is similar as above when host B
wishes to connect to host A. Although there is packet scheduling of outgoing
traffic of Host A, but there is no real-time traffic control between two hosts.

If both hosts are loaded with BondingPlus driver, but only host A has multi-
ple physical Ethernet interfaces. When host A wishes to connect to host B, host
A and host B can obtain all MAC addresses from each other by ARP+ protocol.
When host A is going to send a packet to host B, it selects an active physical
Ethernet device to send the packet. When host B is going to send a packet to
host A, it can select a MAC address of host A from its ARP+ table and modifies
the destination MAC address of the packet. In this scenario, although there is
packet scheduling of both output and input network traffic of Host A, but there
is still no real-time traffic control between two hosts.

If two hosts are both loaded with BondingPlus driver and both the hosts
have multiple physical Ethernet adapters. Both hosts can obtain all the MAC
addresses from each other by ARP+ protocol. By similar steps described above,
there is packet scheduling of both output and input network traffic in both hosts.
Moreover, real-time channels can be established between two hosts.

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 187

Table 1. Test Bed

System Parameters Settings
CPU Intel Celeron 1.2GHz

Memory 256MB
Operating System Mandrake 8.1

Kernel Version 2.4.18
Network Adapter Intel 21143
Switching Hub DLink DES-1024R+

Table 2. Bandwidth Overhead Test

Without BondingPlus With BondingPlus
Bandwidth 94.05Mb/s 94.01Mb/s

Table 3. System Utilization Overhead Test

Without BondingPlus With BondingPlus
Minimum User Time 0s 0s
Maximum User Time 0s 0s

Minimum System Time 2.11s 2.33s
Maximum System Time 2.32s 2.49s
Average System Time 2.25s 2.40s

4 Performance Evaluation

In order to evaluate the performance of our work, we design the following exper-
iments. Section 4.1 measures the overhead of the proposed approach. Section 4.2
and Section 4.3 show the results of reducing the delay when transmitting higher
priority packets using TCP and UDP respectively. We use two Intel machines to
perform the experiments and the system parameters are listed in Table 1. There
are four network adapters on each machine which are directly connected to the
switching hub.

We use Netperf [10], a networking performance benchmark, to measure the
performance. Netperf is design in client/server architecture. One machine exe-
cutes its client, netperf, and the other executes its server, netserver. The client
generates packets and sends them to the server. In order to reduce the impact
of I/O operations, we use 32KB as sending and receiving buffer size.

4.1 Overhead Evaluation

In order to measure the effect on system by the proposed approach, we perform
the following experiments. The first experiment is to measure the overhead on
network bandwidth. We use one adapter on each machine with the default kernel

188 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

driver as a comparison and then execute Netperf to measure the performance.
We perform the same experiment but use BondingPlus driver for instead. The
results are shown in Table 2. Our approach only decreases network bandwidth
for less than 0.05%.

The second experiment is to measure the overhead on CPU utilization. We
execute Netperf to send and receive packets for 60 second and measure the user
time and system time consumed by Netperf. As the results show in Table 3, our
approach only increase 6.6% of CPU time.

4.2 Real-Time Packet Transmission over TCP

When Linux kernel allocates a new socket buffer, the priority of the buffer will
be set to the default value, 0. Every packet is put in the same queue of the
Linux generic packet scheduler. If the load of a network adapter is high, real-
time packets may be delayed by other packets. In order to reduce the delay when
transmitting real-time packets, we put real-time packets in the first queue of the

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(a) Maximum TCP Transmission
Time

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(b) Minimum TCP Transmission
Time

38.0

39.0

40.0

41.0

42.0

43.0

44.0

45.0

46.0

47.0

48.0

49.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(c) Average TCP Transmission
Time

0.0

2.0

4.0

6.0

8.0

10.0

12.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(d) StdDev TCP Transmission
Time

Fig. 9. TCP Transmission Time from Application to BondingPlus

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 189

Linux generic packet scheduler. Furthermore, we can send real-time packets and
other packets using different physical network adapters.

One of the testing programs generates 1400 bytes real-time packets (can be
regarded as higher priority packets) periodically and the other is taken to be an
interference source which continuously generates a large buffer of lower priority
packets. Three different scenarios are tested:

1.0

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(a) Maximum TCP Transmission
Time

0.1

1.0

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(b) Minimum TCP Transmission
Time

1.0

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(c) Average TCP Transmission
Time

1.0

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(d) StdDev TCP Transmission
Time

Fig. 10. TCP Transmission Time from BondingPlus to Physical Ethernet Driver

– One Channel Priority 0: In this scenario, real-time packets and the interfer-
ence packets have the same priority, 0. They are put in the second queue
of the Linux Generic Packet Scheduler and are processed by the physical
Ethernet driver.

– One Channel Priority 6: The priority of real-time packets are set to higher
priority, 6, using setsockopt() system call and the priority of the interference
packets are set to 0. Real-time packets are put in the first queue of the Linux
Generic Packet Scheduler and are processed first.

190 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

– Two Channel: This scenario sends and receives the real-time packets via a
dedicated physical network adapter in each machine and so do the lower
priority packets.

Figure 9 shows the maximum, minimum, average and the standard deviation
of TCP transmission time from application to BondingPlus driver. The time is
mainly spent in TCP and IP layer which are not controlled by the proposed
approach. The average transmission time is between 42us to 49us and there are
almost no different between 3 scenarios.

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(a) Maximum TCP Transmission
Time

1.0

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(b) Minimum TCP Transmission
Time

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(c) Average TCP Transmission
Time

0.0

20.0

40.0

60.0

80.0

100.0

120.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(d) StdDev TCP Transmission
Time

Fig. 11. TCP Transmission Time from Application to Physical Ethernet Driver

Figure 10 shows the maximum, minimum, average and the standard deviation
of TCP transmission time from BondingPlus driver to physical Ethernet driver.
The results show that when all packets are transmitted in the same queue of a
network adapter, the transmission time of real-time packets from BondingPlus
driver to physical Ethernet driver is very long because they must compete with
lower priority packets. The transmission time can be reduced dramatically if we

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 191

put real-time packets in the first queue, but it is still interfered by the lower pri-
ority packets because the standard deviation is still large. Only transmitting the
real-time packets and the lower priority packets using different physical network
adapters can obtain the lowest transmission overhead and jitter.

Figure 11 are the maximum, minimum, average and the standard deviation of
TCP transmission time from application to physical Ethernet driver. The time
from application to BondingPlus driver is almost constant time and thus the
time from BondingPlus driver to physical Ethernet adapter is the main factor
of packet transmission time. Although One Channel Priority 6 transmissions
highly reduce the packet transmission time of real-time packets, Two Channel
transmissions obtain the best improvement.

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(a) Maximum TCP Transmission
Time

1.0

10.0

100.0

1000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(b) Minimum TCP Transmission
Time

1.0

10.0

100.0

1000.0

10000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(c) Average TCP Transmission
Time

1.0

10.0

100.0

1000.0

10 20 40 80 100 200 400 800
period(ms)

u
s

One Channel Priority 0 One Channel Priority 6 Two Channel

(d) StdDev TCP Transmission
Time

Fig. 12. UDP Transmission Time from Application to Physical Ethernet Driver

192 H.-h. Lin, C.-w. Hsueh, and G.-C. Huan

4.3 Real-Time Packet Transmission over UDP

We perform the same experiments on real-time packet transmissions over UDP.
The results are similar to the transmission over TCP, but UDP packet trans-
mission time is shorter than TCP packet transmission time. Still, the time from
application to BondingPlus driver is almost constant time and thus the time
from BondingPlus driver to physical Ethernet adapter is the main factor of
packet transmission time. As shown in Figure 12, although One Channel Pri-
ority 6 transmissions highly reduce the packet transmission time of real-time
packets, Two Channel transmissions obtain the best improvement.

5 Conclusion

We propose ARP+ protocol to maintain the mapping of an IP address and its
corresponding MAC addresses of hosts in a Linux LAN environment. We also
design and implement the BondingPlus pseudo Ethernet device driver which can
schedule packets in data link layer and make use of multiple physical network
adapters connected to regular switching hubs simultaneously. The proposed ap-
proach is implemented as Linux kernel modules and is flexible, backward compat-
ible and transparent to users. Real-time packets can be dispatched into a higher
priority queue so that the physical Ethernet interfaces can transmit the pack-
ets first. Furthermore, real-time packets can be transmitted via one or several
dedicated network adapters which create real-time message channels between
hosts and thus reduces the transmission delay and the jitter of real-time packets
dramatically.

References

1. Tigran Aivazian. Linux Kernel 2.4 Internals.
http://www.tldp.org/LDP/lki/index.html.

2. Werner Almesberger. Linux Network Traffic Control - Implementation Overview.
3. Riccardo Bettati. End-to-End Scheduling to Meet Deadlines in Distributed Systems.

PhD dissertation, technical report UIUCDCS-R-94-1840, University of Illinois at
Urbana-Champaign, August 1994.

4. Daniel P. Bovet and Marco Cesati. Understanding the LINUX KERNEL.
O’REILLY, 2001.

5. Intel Corporation. Intel Link Aggregation. http://www.intel.com/support/express/
switches/53x/31460.htm.

6. REALTEK CORPORATION. The RTL8308B DATASHEETS.
http://www.realtek.com.tw.

7. Jon Crowcroft and Iain Phillips. TCP/IP and Linux Protocol Implementation.
WILEY, 2002.

8. Marco D and John A. Stankovic. Scheduling distributed real-time tasks with min-
imum jitter”. IEEE TRANSACTIONS ON COMPUTERS, 49(4):303 316, 2000.

9. Thomas Davis. http://sourceforge.net/projects/bonding/.
10. Rick Jones. http://www.netperf.org/.

BondingPlus: Real-Time Message Channel in Linux Ethernet Environment 193

11. D.W. Leinbaugh. Guaranteed response time in a hard real-time environment. IEEE
Trans. Software Eng., January 1980.

12. Kwei-Jay Lin and Ansgar Herkert. Jitter control in time-triggered systems. In
Proc. 29th Hawaii Conference on System Sciences, Maui, Hawaii, January 1996.

13. Masahiko Nakahara Masaaki Iwasaki, Tadashi Takeuchi and Takahiro Nakano.
Isochronous scheduling and its application to traffic control. IEEE 19th Real-Time
Systems Symposium, December 1998.

14. Sun Microsystems. Sun Trunking.
http://wwws.sun.com/products-n-solutions/hw/networking/
connectivity/suntrunking.

15. Alessandro Rubini and Jonathan Corbet. LINUX DEVICE DRIVERS: Second
Edition. O’REILLY, 2001.

16. L. Sha and S.S. Sathaye. A systematic approach to designing distributed real-time
systems. IEEE Computer, 26(9):68–78, September 1993.

17. IEEE 802.3 Std. IEEE 802.3 CSMA/CD Access Method. IEEE, 2000.
18. Richard Stevens. TCP/IP Illustrated Volume 1. Addison Wesley, 1994.
19. CISCI SYSTEMS. ETHERCHANNEL. http://www.cisco.com/en/US/tech.
20. Srinidhi Varadarajan and Tzi cker Chiueh. Ethereal: A host-transparent real-time

fast ethernet switch. In International Conference on Network Protocols (ICNP),
October 1998.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 194–207, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Efficient Switch Design for Scheduling Real-Time
Multicast Traffic*

Deming Liu and Yann-Hang Lee

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85287
{dmliu, yhlee}@asu.edu

Abstract. In this paper we put forth a switch design in terms of architecture and
service discipline for real-time multicast traffic in packet switching networks. A
parallel switching architecture called POQ (parallel output-queued) is em-
ployed, which take the advantages of both OQ (output-queued) and IQ (input-
queued) switch architectures, i.e., non-blocking and low speedup of switch
buffer. Basing on the POQ architecture we propose a hierarchical service disci-
pline called H-EDF-RR (hierarchical earliest-deadline-first round-robin), which
intends to simultaneously schedule both unicast and multicast traffic composed
of fixed-length cells with guaranteed performances. Analyses show that this de-
sign can provide tight delay bounds and buffer requirements, and has computa-
tional complexity of O(1). These properties make the proposed switch design
well suitable in real-time distributed systems.

Keywords: Packet Switching Network, Quality of Service, Real-Time Com-
munications, Multicasting, Earliest Deadline First Round Robin

1 Introduction

Along with the tremendous development in computer and communication network,
the wide use of optical fiber, packet switching and etc. enables many new distributed
applications such as digital audio, digital video and teleconference. These applications
are often characterized by quality of service (QoS) in terms of bandwidth, delay, jitter
and loss rate. Similarly in many industrial automation and transportation systems,
networking presents the opportunity for system optimization as subsystems can be
integrated and operated cooperatively.

One example is the aircraft databus, which is aimed to support various traffic types
coming from cabin entertainment systems, passage intranet, and avionics instruments.
Under many application scenarios in aircraft communication networks, real-time data
acquisition systems need to send acquired data to multiple destinations with stringent
delay requirements. Usually we can use some traffic models to represent this kind of
multicast traffic. The delay requirement of the multicast traffic can also be stated as
deadlines. It is more important that we build deterministic communication networks,

* This work was sponsored in part by the Federal Aviation Administration (FAA) via grant

DTFA03-01-C-00042. Findings contained herein are not necessarily those of the FAA.

An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 195

which can efficiently transport both unicast and multicast traffic subject to deadline
constraints. In packet switching networks, switches are developed intending to pro-
vide statistical multiplexing and QoS-guaranteed transmission services. Unicasting,
also known as point-to-point, is common in most QoS-guaranteed applications. How-
ever many applications such as video-on-demand, distance learning, and data acquisi-
tion in avionics systems produce multicast traffic, requiring that the same piece of
data (a packet or a cell) from a source is transmitted to multiple destinations. For
transferring multicast traffic efficiently in switching networks, there must be a thor-
ough consideration in terms of architecture and scheduling in switch design.

Multicasting in a packet switch means that a packet arriving at an input port is for-
warded to more than one output ports in the switch. Even though the effect of multi-
casting can be achieved by transferring the same packet from the source to multiple
destinations in multiple times as unicast does, special switches supporting multicast
traffic are preferred because doing multicasting with point-to-point communication
may result in significant load increase to the network. Presented in [1], a survey of
multicast switches indicates that multicast switches should include a packet-
replicating function in order to efficiently convey multicast traffic. Among different
multicast switch fabrics, crossbar network is attractive since it is based on simple
mesh network and thus has no internal blocking inherently. According to different
buffer positions, there are two types of crossbar networks, i.e., OQ (output-queued)
and IQ (input-queued).

In an OQ switch, all packets that arrive from different input ports and are destined
to the same output port are buffered into a queue located at the output port. The serv-
ice scheduler repeatedly selects a packet from the output queue for transmission. Be-
cause of absence of input contention points OQ switches are non-blocking inherently.
As far as QoS is concerned, there are numerous service disciplines that support guar-
anteed performances with OQ switches [7]. Since all packets are buffered in their own
destination queues as they arrive, the copies of a multicast packet can be delivered to
their destination queues as well. However OQ switches are subject to a fatal drawback
that the speedup factor, defined as the ratio of buffer memory rate to line rate, is as
high as N for an N×N OQ switch since the number of packets that want to enter a
given output buffer in a packet slot can be as large as the number of input ports. The
demand of high buffer rate constrains OQ switches in broadband networks. To avoid
this limitation, designers proposed to limit the number of packets that can be trans-
ferred into an output buffer in one packet slot. Nevertheless packet drop is inevitable
in this case, which is not allowed in most real-time applications.

In an IQ switch, packets arriving on each input port are placed into smoothing
buffers, prior to the placement in the destination output ports. During each scheduling
slot, the head packets in all the buffers are candidates for being transferred to their
output ports. If several head packets contend for the same output port, only one of
them is selected according to contention resolution scheme, while the rest remain in
the buffers and contend again in the next packet slot. In contrast with OQ switches
that require high switch fabric speed, the switch fabric speed of IQ switches is the
same as that of input or output lines. The ease of speedup factor leads to a wide use of
IQ switches.

Unfortunately IQ switches suffer from a phenomenon known as head of line (HOL)
blocking. The effect occurs when a packet in any given buffer is denied to access to
its output port, even though there are no other packets requiring the same output port,
simply because the packet in the head of that buffer was blocked in a contention for a

196 D. Liu and Y.-H. Lee

totally different output port. In fact, the delay for a given packet may grow unbounded
even for an offered load less than 100%. Therefore it is very difficult, if not impossi-
ble, to guarantee the required QoS for each individual traffic flow. Hence most sched-
uling disciplines in IQ switches are best-effort instead of hard real-time [11] [12] [13].

The non-deterministic delay caused by HOL blocking can be resolved by a VOQ
(virtual output-queued) structure [4], in which there are N buffers for each input port,
one for each output port in an N×N switch. However we cannot avoid the matching
problem involving high computational complexity in order to find the maximal flow
between input and output ports during each scheduling slot. Also IQ switches have to
face a difficult issue in supporting packets intended for more than one output ports,
i.e., multicasting. If a head packet is of this kind, it has to contend simultaneously for
all the outputs it is intended for. HOL blocking can be aggravated if the contention
resolution schemes are applied independently during each scheduling slot.

Whereas IQ switches require a lower fabric speedup, OQ switches provide higher
throughput. To take both advantages of the two architectures, a new switch structure,
combined input and output queuing (CIOQ) switch, was proposed such that a com-
promise is made between these two aspects. In the CIOQ structure, there exist buffers
in both input and output sides. Researchers have proved that CIOQ switches can
achieve 100% throughput for unicast traffic with a speedup factor of 2 [5]. Contrary
to the case of unicast traffic, for which IQ switches can yield the same throughput as
OQ switches, it has been shown in experiments and analytical modeling that a
throughput limitation exists in IQ switches (including CIOQ switches since CIOQ
switches have IQ architecture essentially) loaded with multicast traffic [4].

As for scheduling disciplines of multicast switches, there are two basic strategies,
non-fanout splitting and fanout splitting [4]. The fanout is defined as the number of
different destinations that a multicast packet has. During each scheduling slot, the de-
cision about which backlogged packets can be transferred is made according to a
scheduling discipline. The fact that multicast packets have multiple destinations im-
plies that some scheduling disciplines, called non-fanout splitting, may elect to trans-
fer in just one scheduling slot the multicast packet to all destinations, while others,
called fanout splitting, may elect to transfer the packet in several scheduling slots,
reaching non-overlapping and exhaustive subsets of destinations.

In discussion of scheduling disciplines, work-conserving policies are significant in
the sense that they transmit as many packets as possible in each scheduling slot [6].
Obviously when scheduling multicast traffic, non-fanout splitting is non-work con-
versing policy, while fanout splitting may be work conserving. With the assumption
that the scheduler has no knowledge of the multicast copies of HOL packets, it has
been shown that work-conserving policy provides more throughput than non-work
conserving policy [6]. Thus, in terms of throughput, a fanout splitting discipline could
be better off than a non-fanout splitting discipline. On the other hand, it might intro-
duce a side effect of variant jitters as multiple copies are scheduled for transmission at
different slots. We have known that in addition to imitate a unicast OQ switch with a
speedup factor of 2, a CIOQ can attain an equivalent performance as an OQ switch
for multicast traffic by making copies of each multicast packet in each input buffer
with a speedup factor of F+1 where F is the maximum fanout [5]. We should note
that there is a constraint that the copies of a multicast packet cannot be transferred to
output ports simultaneously. To get extra performance, an intrinsic multicast CIOQ
switch is of our interest, which can transfer copies of a multicast packet simultane-
ously. The intrinsic performance loss of IQ architecture with respect to OQ architec-

An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 197

ture loading with multicast traffic is shown in [4]. The speedup requirement of IQ
switch that offers 100% throughput for multicast traffic depends upon the cardinality
of input or output ports. There is no result about the exact relationship of the two pa-
rameters.

 QoS-based scheduling for multicast traffic has been investigated recently. Results
in [2] show that HOL FCFS (first come first served) discipline has a performance su-
perior to that of the non-FCFS disciplines and assigning priority according to packet
age in queue is a worthwhile feature for multicast packet switches. In fact, the core of
a multicast traffic scheduler is basically a contention resolution algorithm. Chen and
Hayes [3] suggested a priority-based scheme called cyclic priority scheme to schedule
multicast traffic from the point of view of electronic circuit implementation, using the
revision scheduling, a sequential combination of a non-fanout splitting discipline and
a fanout splitting discipline. The revision scheduling performs well in the terms of
delay-throughput performance. In general, most research results on switching of mul-
ticast traffic are based on the perspective of statistical analysis rather than determin-
ism investigation [9].

The complication of multicast scheduling may come from the traffic imbalance
between input and output sides of a switch. Since a multicast packet coming from an
input port is destined to multiple output ports, the traffic injected to the output ports
from multicast traffic could be much larger than that from unicast traffic. Moreover,
given that multiple copies are created at same time, the traffic pattern is quite bursty.
The most multicast disciplines we introduced above cannot be used in hard real-time
communications in that they either assume a statistical model or allow packets to be
dropped.

 Integrating unicasting and multicasting scheduling with QoS guarantees is a chal-
lenge for IQ switches. However, recognizing that a multicast packet can be consid-
ered as multiple unicast packets in parallel, we can employ switches with parallel
structure to achieve the advantages of both OQ and IQ switches, i.e., no-blocking and
low speedup factor. In the rest of this paper we will introduce a parallel switching ar-
chitecture equipped with a hierarchical service discipline that can transfer both unicast
and multicast traffic with guaranteed performances. Detailed analyses of delay bounds
and buffer requirements suggest that the proposed approach is appropriate for distrib-
uted real-time systems loading with multicast traffic.

The rest of this paper is organized as follows. In Section 2 we describe the pro-
posed switching architecture, called POQ (parallel output-queued), and how it sup-
ports multicast traffic. Section 3 introduces the H-EDF-RR (hierarchical earliest-
deadline round-robin) scheduling discipline designed for this parallel architecture.
Section 4 presents the delay bound and buffer requirement analyses for H-EDF-RR
discipline under POQ architecture. Finally the conclusions are given in Section 5.

2 A Parallel Switch Architecture – POQ (Parallel Output-Queued)

Subject to HOL blocking, a pure IQ switch has a limited throughput of 58.6% with
FIFO input buffers in the worst case [15]. To avoid HOL blocking, the VOQ switch
architecture can be constructed as shown in Fig. 1 where separate queues for all out-
put ports are added at each input port. Thus a buffered packet cannot be blocked by
the packets destined to different output ports. If the fabric speedup factor of VOQ

198 D. Liu and Y.-H. Lee

switches is greater than 1, buffers are required on the output side. Although the VOQ
architecture removes HOL blocking, they still suffer from the problem of input and
output matching because VOQ switches only permit one head packet of all queues in
each input port to be transmitted during each scheduling slot. To increase output
throughput we have to find an optimal match, e.g. maximum, maximal or stable
matching [16]. Almost any optimal matching can involve high computational com-
plexity that is not acceptable in implementing high-speed switching networks. In fact,
for multicast traffic, simulation results and analytical modeling in [4] suggest that IQ
switches cannot yield the same throughput as OQ switches. In other words, 100%
throughput may be attained for any multicast traffic pattern in IQ switches, however,
in the cost of too high speedup factor preventing from physical implementation for
high-speed networks. The computational complexity of matching algorithm and the
high-speedup requirement restrained VOQ switches from applications in transferring
hard real-time multicast traffic.

Due to the difficulties of VOQ switches in supporting real-time traffic, especially
QoS guarantees for multicast traffic, in this paper we bring in a parallel output-queued
(POQ) switch architecture shown in Fig. 2. The architecture of POQ can be regarded
as a derivative of VOQ. The most obvious difference between VOQ and POQ is that
multiple head packets in the queues of an input port in POQ can be transmitted to
their destinations in the same scheduling slot whereas only one can be done under
VOQ. This modification in structure results in a substantial performance improve-
ment. In addition, output buffers are not necessary in POQ architecture. A similar
POQ architecture is discussed in [8] where the authors numerated more drawbacks
than advantages. We will probe the merits of POQ switches under real-time multicast
traffic. Basing on the architecture of POQ switches, we can easily observe its attrac-
tive characteristics as follows.

• Buffer speed is only required to be the same as the line speed for both read-
ing and writing operations. In other words, a speedup factor of 1 is enough

… …

… …

… …

.

.

.

.

.

.

.

.

.

In 1

In 2

In N

O u t 1

O u t 2

O u t N

In pu t B u ffe rs

D em u ltip lxer

N × N
C rossb ar

O u tp ut B uffe rs

Fig. 1. VOQ switch architecture

An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 199

for POQ switches for any traffic patterns. When a unicast packet arrives it is
routed to a buffer according to its destination. Similarly when a multicast
packet arrives all its copies are demultiplexed to the corresponding buffers in
a parallel way. During each scheduling slot any output port can take one
packet as long as there are some buffered packets destined to it.

• The throughput of a POQ switch can reach 100%. An N×N POQ switch can
be thought as N N×1 OQ switches that work in parallel, one for each output
port. In contrast to VOQ switches, there is no need to find any optimal
matching.

• Since a POQ switch is essentially OQ switch, all service disciplines devel-
oped so far for OQ switches can be applied to POQ switches. There are a
number of service disciplines for OQ switches that support performance-
guaranteed services [7]. Instead of using a centralized scheduler, a distrib-
uted approach can be adopted such that a scheduler is located at each output
port.

• It is possible to integrate the scheduling of unicast and multicast traffic with
guaranteed performance in a POQ switch. This originates from the fact that
POQ switches, belonging to OQ switches in essence, have the ability of
transmitting multicast traffic inherently. Unicast traffic can just be thought as
a special case of multicast traffic that the fanout of any packet is one.

For expressly describing multicasting service discipline, we shall clarify several
terms used in the following text. A session is a connection in a packet switching net-
work from one source node to one destination node. For unicast traffic, a unicast ses-
sion can be establish with QoS parameters and will be used to transmit packets be-
tween applications at the source and destination nodes. On the contrary, a multicast
session, consisting of multiple overlapping sessions with a unique source and multiple
destinations, is used for multicast traffic. The path of a session is defined as the con-
secutive switch sessions along the session and each switch session is a pair of input
and output ports of a switch. Under the POQ architecture, a switch session is uniquely
identified by a packet buffer connecting the same pair of input and output ports. When

.

.

.

.

.

.

.

.

.

I n 1

I n 2

I n N

O u t 1

O u t 2

O u t N

D e m u l t ip l e x e r

B u f f e r s

Fig. 2. A parallel switch structure - POQ

200 D. Liu and Y.-H. Lee

a packet of a unicast session arrives at an input port, it will be queued in the buffer on
its session path. On the other hand, for an arriving packet of a multicast session, mul-
tiple copies will be inserted to the corresponding multiple buffers. As each buffer is
shared by multiple sessions, we must take into account the issues of fairness and
bandwidth reservation for each switch session. In the next section, we will apply a hi-
erarchical service discipline to POQ architecture such that the performances of both
unicast and multicast sessions are guaranteed.

3 Hierarchical Earliest Deadline First Round Robin Scheduling

In a network constructed with POQ switches, we can think a session as a connection
that traverses a sequence of switch buffers from a source node to a destination node.
The buffers are allocated in the switches along the session path and may be shared by
multiple sessions. If we are not concerned about how packets of multiple sessions are
multiplexed inside a buffer, N distributed schedulers, one at each output port, can be
deployed to select a buffer from which the head packet is transmitted to the output
port. We call a scheduler in this level output scheduler. On the other hand, arriving
packets of multiple sessions may join a buffer according to a FIFO order or an order
based on deadline and QoS requirements. We need a scheduler at this level called in-
put scheduler. Thus, an input scheduler institutes a service discipline among the ses-
sions sharing a switch session and an output scheduler determines the order in which
the switch sessions traversing the same output port are served. Apparently, both
schedulers must address the issues of fairness and QoS requirements. As we reveal
the necessity of two levels of schedulers in routing packets in POQ architecture for
both unicast and multicast traffic, we introduce an efficient performance-guaranteed
discipline, H-EDF-RR (hierarchical earliest-deadline-first round-robin), in which
EDF-RR (earliest deadline first round robin) schedulers are used in both the two lev-
els.

EDF-RR proposed in [10] is an O(1) algorithm based on fixed-length cells for OQ
switches. As shown in Fig. 3, it is a frame-oriented round-robin algorithm in nature. A
frame is composed of a number of cells. A session reserves a portion of bandwidth by
holding some cell slots in a frame. Instead of arranging the cells reserved by all active
sessions in any arbitrary or dynamic order, EDF-RR tries to transfer them in an order
such that cells attached to an active session are distributed in a frame as uniformly as
possible. In other words, EDR-RR does its best to mimic ideal GPS (generalized
processor sharing) scheduler with the constraint of non-preempted fixed-length traffic
unit, cells.

To describe EDF-RR, we define that a frame consists of n fixed-length cells. A cell
has, for convenience, the length of 1 in terms of the time that it takes to transmit a cell
from a switch’s buffer to the corresponding output port. Alternatively we just nor-
malize the length of a cell slot to 1. Let K be the total number of active sessions asso-
ciated with an output port and mi (1 ≤ i ≤ K) be the number of cell slots occupied by
the session i in a frame.

imn / is defined as session i period. The non-preemptive non-

idling EDF (earliest-deadline-first) algorithm is used to schedule the order of trans-
mitting cells in a frame. If a session is idle, it will be skipped during the transmission

An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 201

and the cell slots it occupies can be reclaimed for backlogged sessions. The EDF-RR
discipline is given as follows.

EDF-RR Discipline
(a) An n-cell frame is partitioned among K active sessions (all unused band-

width can be considered as one idle active session) such that session i (1 ≤ i
≤ K) transfers mi cells in the frame. Session i is assumed to have cells arrived
at time jpi (suppose a frame starts from time 0) with corresponding deadlines
at (j+1)pi, where

ii mnp /= and j = 0, 1, 2, … mi-1.

(b) If all K sessions are backlogged, the frame described in (a) is transferred re-
peatedly such that in every frame the cells are transmitted in a non-
preemptive non-idling EDF order. Determining transmission order is needed
only when there are sessions established, cancelled or updated, which happen
infrequently. The associated overhead can be ignored since a new transmis-
sion order can be computed in parallel to the current transmission, and is
swapped at the next frame boundary.

(c) If there is not backlog any more for a session during the current frame, their
cell slots in a frame are skipped. The remaining backlogged sessions are
transferred in the same order as in (b). In this case the size of a frame is re-
duced.

Table 1 shows the scheduling order of an example frame with the size of 10, in
which sessions 1, 2 and 3 shares 5, 3 and 2 cell slots respectively (the numbers in Ta-
ble 1. denote the relevant sessions).

Table 1. The example of scheduling order in a frame

1 2 1 3 1 2 1 2 1 3

According to [10] we have the following two theorems for EDF-RR discipline on
delay bound and buffer requirement.
Theorem 1. If session i traffic flow that consists of a sequence of cells is constrained

by traffic model t
n

mi
i +σ (in cells), the delay a cell experiences passing through an

EDF-RR scheduler is not more than
i

i m

n
)2(+σ cell slots.

… …

Session 1

Session 2

S ession K

E D F -R R
Scheduler O utpu t P ort

Fig. 3. An EDF-RR scheduler for multiple sessions

202 D. Liu and Y.-H. Lee

Theorem 2. If session i traffic flow that consists of sequence of cells and is con-

strained by traffic model t
n

mi
i +σ (in cells) passes through an EDF-RR scheduler

without buffer overflow, the buffer size the scheduler needs is no more than 2+iσ
cells.

Theorem 1 gives the delay bound of a cell with EDF-RR. For characterizing delay
bounds of H-EDF-RR scheduler, we need the following lemma.
Lemma 1. For any P backlogged cells of session i scheduled by an EDF-RR sched-
uler, the time interval from the moment of transferring the first cell to that of the Pth

cell is at most P
m

n

i

 cell slots.

This property is trivially true by considering that there is one cell transferred every

im

n cell slot in any busy interval after the first cell is scheduled [10].

H-EDF-RR service discipline is divided into two levels each of which is an EDF-
RR discipline. In the high level, an output scheduler is located at every output port
guaranteeing fairness among the switch sessions to the port. In the low level, an input
scheduler is located at each buffer to guarantee the fairness among sessions that share
the same switch session. In other words, an input scheduler decides which cell in the
current queue is available for the scheduling of the corresponding output scheduler.

H-EDF-RR Discipline
(A) Output Scheduling

An n-cell high-level frame for an output port is partitioned among K ac-
tive switch sessions destined to the output port such that mi cell slots in a
frame can be used to transmit the cells from switch session i (1 ≤ i ≤ K).
EDF-RR is applied to schedule these K switch sessions.

(B) Input Scheduling
A ni-cell low-level frame for switch session i is partitioned among Ki ac-

tive sessions associated with switch session i such that mih cell slots in the
frame can be used to transmit the cells from session h (1 ≤ h ≤ Ki). EDF-RR
is applied to schedule these Ki sessions.

Since the first step of EDF-RR for both output scheduling and input scheduling
needs to do only if bandwidth sharings of uincast or multicast sessions are updated,
which we suppose to be infrequent events, H-EDF-RR has the computational com-
plexity of O(1) resulting from the fact that it is frame-oriented round-robin. Because
the idle cell slots in any high-level or low-level frame are skipped, H-EDF-RR is a
work-conserving policy.

4 Analysis of Delay Bounds and Buffer Requirements

For analyzing delay bounds and buffer requirements of the H-EDF-RR discipline un-
der a POQ switch, we assume (σ, ρ) traffic model for all active sessions. Denote a
session Sih the hth session in switch session i. Then for Sih that is constrained by (σih,

An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 203

ρih), there are at most σih+ρiht units of traffic during any time interval t. At an output
port of a POQ switch armed with a H-EDF-RR scheduler, the output scheduler is in
charge of K active switch sessions. A n-cell high-level frame is partitioned among the
K switch sessions such that mi cell slots are allocated to switch session i. Similarly an
ni-cell low-level frame is partitioned among Ki sessions that share switch session i
such that mih cell slots are allocated to session Sih. Therefore we have Theorem 3 giv-
ing the delay bound for a POQ switch with a H-EDF-RR scheduler.

Theorem 3. If the traffic flow of Sih is constrained by traffic model t
n

m

n

m i

i

ih
ih +σ , the

delay that a cell of Sih experiences in a POQ switch with a H-EDF-RR scheduler is not

more than
iih

i
ih m

n

m

n
]2)2[(++σ .

Proof. A H-EDF-RR scheduler can be considered as two EDF-RR schedulers in se-
rial. Thus the delay that a cell in Sih experiences is composed of three parts. One is the
delay that comes from the source flow’s burstiness. The other two result from input
and output EDF-RR schedulers respectively.

The burstiness delay can be bounded by the expression as follows, which can be
regarded as the delay of a cell in Sih when passing through a GPS scheduler with rate

n
m

n
m i

i

ih reserved for Sih.

iih

i
ih m

n

m

nσ
(1)

The input scheduler delay can be understood as the delay experienced by a cell of a

uniform traffic flow of rate
n

m

n

m i

i

ih passing through the input scheduler, an EDF-RR

scheduler of output rate
n
mi . By Theorem 1 (note that in Theorem 1 we assume the

output rate of a EDF-RR scheduler is 1 cell per cell slot), this part of delay is bounded
by

ihi mn /2 time units, where one time unit is imn / cell slots. Thus the input sched-

uler delay is bounded by

iih

i

m

n

m

n
2

(2)

Similarly the output scheduler delay can be understood as the delay experienced by

a cell of a uniform traffic flow of rate
n

mi passing through the output scheduler with

output rate of 1 cell per cell slot. By Theorem 1, the output scheduler delay is
bounded by

im

n
2

(3)

Making a summation of the three parts of delay bounds gives the total delay bound.

204 D. Liu and Y.-H. Lee

iih

i
ih m

n

m

n
]2)2[(++σ

(4)

The portion of the delay of a session Sih cell as shown in (2) results from the block-
ing of cells of other sessions in switch session i. The portion of delay shown in (3)
comes from the blocking of cells of other switch sessions traversing the same output
port. Since (3) is relatively the small term of (4), it may be ignored in some applica-
tions. In the proof of Theorem 3, we just individually get the worst-case delays of uni-
form traffic for both input and output schedulers. In fact the two worst cases cannot
happen simultaneously and thus the delay bound in Theorem 3 can be as tight as

iih

i
ih m

n

m

n
)2(+σ

(5)

Instead of using formal proof, we give an explanation of (5) below. For simplifying

the explanation, we assume that Sih has uniform traffic model of rate
n
m

n
m i

i

ih originally,

accordingly ignoring its burstiness as we considered the delays of input and output
schedulers in the proof of Theorem 3. A cell c of Sih may experience the worst-case
total delay caused by the H-EDF-RR scheduler when it is the first transferred cell of a
busy interval of Sih. We consider the following three cases. (i) There are no other cells
except c backlogged in switch session i buffer from c’s arrival to departure. But in
this case, we can simplify the total delay of c caused by the H-EDF-RR scheduler

to
im

n2 (
iih

i

m

n

m

n
2≤) by Theorem 1. (ii) In addition to c, there are some cells backlogged

in switch session i buffer from c’s arrival to departure whereas none of these cells was
being transferred when c arrived. Then according to EDF-RR service discipline the
worst-case delay of c caused by the H-EDF-RR scheduler cannot exceed

iih

i

i m
n

m
n

m
n +2 , where

im

n2 and
iih

i

m

n

m

n result from output and input schedulers respec-

tively. If 2<
ih

i

m

n , c will get chance to transfer in the next cell slot available for

switch session i according to EDF-RR scheduling, and thus the delay of c caused by

the H-EDF-RR scheduler will be at most
im

n2 (
iih

i

m

n

m

n
2≤). If 2≥

ih

i

m

n instead, the

delay will be at most
iih

i

i m

n

m

n

m

n +2 (≤
iih

i

m

n

m

n
2). (iii) In addition to c, there are some

cells backlogged in switch session i buffer from c’s arrival to departure and one of
these cells was being transferred when c arrived. Then there are at most

ih

i

m

n2 cells that

need to be transferred before c since the input EDF-RR scheduler can have at most

ih

i

m

n2 cells from other sessions that block c’s transfer. According to Lemma 1, the

An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 205

ih

i

m

n2 cells can be scheduled by the output scheduler in
iih

i

m

n

m

n
2 cell slots because the

output rate of switch session i buffer is
n
mi cells per cell slot according to bandwidth

reservation scheme of the output EDF-RR scheduler. In other words, the delay caused

by the H-EDF-RR scheduler to c is not more than
iih

i

m

n

m

n
2 in this case. Following

the above analysis and also considering the delay from the original burstiness of Sih,
we have (5). In the particular scenario that ni is equal to mi, we may think an EDF-RR
scheduler at the output port that switch session i passes through schedules all sessions
passing this output port such that session Sih shares mih cell slots in a n-cell frame.

Thus (5) is simplified to
ih

ih m

n
)2(+σ , which is consistent with Theorem 1.

The delay bound can be easily extended to the multiple-node case. We suppose that
session Sih traffic flow traversing k nodes is constrained by tρσ + , where ρ is the

minimum bandwidth reservation for Sih on all the k nodes. The upper delay bound of a
cell in Sih as the cell passes through the k nodes is given by

ρ
σ k2+ .

In order to use memory efficiently for POQ switches, we assume that a buffer may
be shared by multiple sessions. Therefore cells from any session can be buffered to
the corresponding switch session buffer as long as the buffer is not full. The detailed
buffer sharing mechanism [14] is beyond the scope of this paper. Basing on this as-
sumption, we have Theorem 4 giving the buffer requirement for a POQ switch armed
with a H-EDF-RR scheduler.

Theorem 4. If the traffic flow of session Sih (h = 1, 2 … Ki, where Ki is the number of
active sessions in switch session i) in switch session i, which consists of a sequence of

cells and is constrained by traffic model t
n
m

n
m i

i

ih
ih +σ , passes through a H-EDF-RR

scheduler without buffer overflow, the buffer size that switch session i requires is not

more than 2
1

+
=

iK

h
ihσ cells.

Proof. Denote Rih(t1, t2) the traffic coming in [t1, t2] for Sih and Ri(t1, t2) the amount of
traffic arriving in [t1, t2] for switch session i. Then we have

)(),(1221 tt
n

m

n

m
ttR i

i

ih
ihih −+≤ σ , h = 1, 2, …, Ki

Therefore,

)()(),(),(12
111

2121 tt
n

m

n

m
ttRttR i

K

h i

ih
K

h
ih

K

h
ihi

iii

−+≤=
===

σ

According to bandwidth allocation for switch session i, 1
1

≤
=

iK

h i

ih

n

m . Hence

)(),(12
1

21 tt
n

m
ttR i

K

h
ihi

i

−+≤
=

σ

206 D. Liu and Y.-H. Lee

This means that switch session i traffic satisfies model (
=

iK

h
ih

1

σ ,
n

m i). Since the

switch session i flow passes through the output EDF-RR scheduler, by Theorem 2 we
have the buffer requirement as follows.

2
1

+
=

iK

h
ihσ

The H-EDF-RR discipline can guarantee performance of sessions. However it re-
quires N2 input schedulers and N output schedulers for an N×N POQ switch. This cost
may not be acceptable in terms of electronic implementation. For simplifying the
scheduling, we can remove input schedulers and leave output schedulers only. Theo-
rem 5 shows that even not as good as original H-EDF-RR, this simplification still can
guarantee multicasting delay bound as long as multicast traffic rate is constrained.
Theorem 5. If the traffic flow of session Sih (i =1, 2, … K, h = 1, 2 … Ki, where K is
the number of active switch sessions of an output port and Ki the number of active
sessions in switch session i) in switch session i, which consists of a sequence of cells

and is constrained by traffic model t
n
m

ih
i

ih ρσ + and the condition 1
1

≤
=

iK

h
ihρ ,

passes through only an output EDF-RR scheduler, the delay a cell in Sih experiences is

not more than
i

K

h
ih m

ni

)2(
1

+
=

σ .

Proof. Refer to the proof of Theorem 4, we know that switch session i traffic satisfies

model (
=

ik

h
ih

1

σ ,
n

mi). Since switch session i flow passes through only the output EDF-

RR scheduler, by Theorem 1 we have the upper delay bound as follows.

i

K

h
ih m

ni

)2(
1

+
=

σ

In the analysis above, we do not assume any difference between unicasting and mul-
ticasting in that unicasting is looked as the special case of multicasting. Normally
switching networks offer connection-oriented services for real-time traffic. In a net-
works composed of POQ switches and served by H-EDF-RR disciplines, the process of
setting up a multicast session involves two levels of bandwidth reservation along multi-
ple paths since a multicast session is established from one node to multiple nodes. This
increases the time of establishing multicast sessions. We need to design efficient con-
nection-establishing algorithms to fully employ the advantages of POQ and H-EDF-RR.
Also we have to face some application-dependent problems, for instances, how to de-
termine and optimize frame size for both input and output schedulers and how to deter-
mine cell length. These subjects are beyond the discussion of this paper.

5 Conclusions

In this paper, we propose a solution to integrate unicast and multicast traffic schedul-
ing in packet switching networks with guaranteed performances. A parallel switching
architecture, POQ, is introduced that takes the advantages of both OQ and IQ switch-

An Efficient Switch Design for Scheduling Real-Time Multicast Traffic 207

ing architectures, i.e., non-blocking and the low rate of switch buffer up to line speed.
Therefore POQ architecture is endowed the attractive capability of supporting multi-
cast traffic. For efficiently scheduling multicast traffic for POQ architecture, a hierar-
chical service discipline working on fixed-length cells, H-EDF-RR, is employed
based on EDF-RR discipline that serves OQ switches. Guaranteed performances for a
POQ switch armed with H-EDF-RR disciplines is analyzed in terms of delay bounds
and buffer requirements while loading with multicast traffic. Analytical results show
that guaranteeing performance of multicast traffic is possible in this solution in terms
of both architecture and service discipline.

References

[1] Ming-Huang Guo and Ruay-Shiung Chang, “Multicast ATM Switches: Survey and Per-
formance Evaluation,” SIGCOMM Computer Communication Review, Vol. 28, No. 2,
April 1998.

[2] Joseph Y. Hui and Thomas Renner, “Queueing strategies for multicast packet switching,”
in Proc. IEEE Globecom, San Diego, CA, 1990, pp. 1431-1437.

[3] Xing Chen and Jeremiah F. Hayes, “Access control in multicast packet switching,”
IEEE/ACM Trans. Networking, Vol. 1, Dec. 1993, pp. 638-649.

[4] M. Ajmone Marsan, A. Bianco, et al, “On the throughput of input-queued cell-based
switches with multicast traffic,” INFOCOM 2001, IEEE Proceedings, Vol. 3, 2001, pp.
1664-1672.

[5] Shang-Tse Chuang, Ashish Goel, et al, “Matching output queueing with a combined in-
put/output-queued switch,” IEEE Journal on Selected Areas in Communications, Vol. 17,
No. 6, June 1999, pp. 1030-1039.

[6] Zhen Liu and Rhonda Righter, “Scheduling multicast input-queued switches,” Journal of
Scheduling, Vol. 2, 1999, pp. 99-114.

[7] Hui Zhang, “Service disciplines for guaranteed performance service in packet-switching
networks,” Proceeding of the IEEE, Vol. 83, No. 10, Oct. 1995, pp. 1374-1396.

[8] Yuval Tamir and Gregory L. Frazier, “Dynamically-allocated multi-queue buffers for
VLSI communication switches,” IEEE Transactions on Computers, Vol. 41, No. 6, June
1992, pp. 725-737.

[9] Jeremiah F. Hayes, Richard Breault, et al, “Performance analysis of a multicast switch,”
IEEE Transactions on Communications, Vol. 39, No. 4, April 1991, pp. 581-587.

[10] Deming Liu, Yann-Hang Lee, “An efficient scheduling discipline for packet switching
networks using earliest deadline first round robin,” preparing for submission.

[11] Nick McKeown, “The iSLIP scheduling algorithm for input-queued switches,”
IEEE/ACM Transactions on Networking, Vol. 7, No. 2, April, 1999, pp. 188-201.

[12] C. Minkenberg, “Integrating uincast and multicast traffic scheduling in a combined in-
put- and output queued packet-switching system,” Computer Communications and Net-
works 2000, Proceedings, Ninth International Conference, pp. 127-134.

[13] Balaji Prabhakar, Nick McKeown, et al, “Multicast scheduling for input-queued
switches,” IEEE Journal on Selected Areas in Communications, Vol. 15, No. 5, June
1997, pp. 855-866.

[14] Rajeev Sivaram, Craig B. Stunkel, et al, “HIPIQS: a high-performance switch architec-
ture using input queuing,” IEEE Transactions on Parallel and Distributed systems, Vol.
13, No. 3, March 2002, pp. 275-289.

[15] M. J. Karol, M.Hluchyj, and S. Morgan, “Input versus output queuing on a space-
division packet switch,” IEEE Transactions on Communications, Vol. COM-35, 12, De-
cember 1987, pp. 1347-1356.

[16] Ge Nong and Mounir Hamdi, “On the provision of quality-of-service guarantees for in-
put queued switches,” IEEE Communications Magazine, December 2000, pp. 62-69.

XRTJ: An Extensible Distributed High-Integrity
Real-Time Java Environment

Erik Yu-Shing Hu�, Andy Wellings, and Guillem Bernat

Real-Time Systems Research Group
Department of Computer Science

University of York, York, YO105DD, UK
{erik,andy,bernat}@cs.york.ac.uk

Abstract. Despite Java’s initial promise of providing a reliable
and cost-effective platform-independent environment, the language
appears to be unfavourable in the area of high-integrity systems and
real-time systems. To encourage the use of Java in the development of
distributed high-integrity real-time systems, the language environment
must provide not only a well-defined specification or subset, but also a
complete environment with appropriate analysis tools. We propose an
extensible distributed high-integrity real-time Java environment, called
XRTJ, that supports three attributes, i.e., predictable programming
model, dependable static analysis environment, and reliable distributed
run-time environment. The goal of this paper is to present an overview
of our on-going project and report on its current status. We also raise
some important issues in the area of distributed high-integrity systems,
and present how we can deal with them by defining two distributed
run-time models where safe and timely operations will be supported.

Keywords: Real-Time Java (RTJ), High-Integrity Systems, Distributed
RTJ, Static Analysis Environment, Distributed Run-Time Environment

1 Introduction

There is a trend towards using object-oriented programming languages, such
as Java and C++, to develop high-integrity real-time systems because the use
of such languages has several advantages, for instance reusability, data accessi-
bility and maintainability. Typically, high-integrity systems, where failure can
cause loss of life, environmental harm, or significant financial penalties, have
high development and maintenance costs due to the customised nature of their
components. Therefore, the use of object-oriented programming in such systems
may offer a number of benefits including increased flexibility in design and imple-
mentation, reduced production cost, and enhanced management of complexity
in application areas.
� This work has been funded by the EPSRC under award number GR/M94113.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 208–228, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

XRTJ: An Extensible Distributed High-Integrity 209

The Java technology with its significant characteristics, including cost-
effective platform-independent environment, relatively familiar linguistic seman-
tics, and support for concurrency, has many features for developing real-time
and embedded systems. It also provides well-defined Remote Method Invocation
(RMI) features which support distributed applications on the Java architecture.

However, despite Java’s initial promise, the language appears to be un-
favourable in the area of high-integrity systems [22] and real-time systems [7].
Its combination of object-oriented programming features, its automatic garbage
collection, and its poor support for real-time multi-threading are all seen as
particular impediments.

The success of high-integrity real-time systems undoubtedly relies upon their
capability of producing functionally correct results within defined timing con-
straints. In order to support a predictable and expressive real-time Java envi-
ronment, two major international efforts have attempted to provide real-time
extensions to Java: the Real-Time Specification for Java (RTSJ) [5] and the
Real-Time Core extensions to Java [9]. These specifications have addressed the
issues related to using Java in a real-time context, including scheduling support,
memory management issues, interaction between non-real-time and real-time
Java programs, and device handling, among others.

However, the expressive power of all these features, along with the regular
Java semantics, means that very complex programming models can be created,
necessitating complexity in the supporting real-time virtual machine and tools.
Consequently, Java, with the real-time extensions as they stand, seems too com-
plex for confident use in high-integrity systems. Furthermore, in addition to
the difficulties with analysing applications developed in these frameworks with
all the complex features, there is no satisfactory static analysis approach that
can evaluate whether the system will produce both functionally and temporally
correct results in line with the design at run-time.

For the above reasons, to encourage the use of Java in the development
of high-integrity real-time systems, the language environment must provide not
only a well-defined specification or subset, but also a complete environment with
appropriate analysis tools. Hence, we propose an extensible distributed high-
integrity real-time Java environment, called XRTJ, that supports the following
attributes:

– Predictable programming model
– Dependable static analysis environment
– Reliable distributed run-time environment

The XRTJ environment has been developed with the whole software devel-
opment process in mind: from the design phase to run-time phase. The XRTJ
environment includes: the Ravenscar-Java profile [23], a high-integrity subset
of RTSJ; a novel Extensible Annotations Class (XAC) format that stores ad-
ditional information that cannot be expressed in Java class files [18]; a static
analysis environment that evaluates functional and temporal correctness of appli-
cations, called XRTJ-Analyser [18]; an annotation-aware compiler, called XRTJ-

210 E.Y.-S. Hu, A. Wellings, and G. Bernat

Compiler; a modified real-time Java virtual machine, called XRTJ-Virtual Ma-
chine that supports a highly reliable run-time environment.

The aim of the paper is to present an overview of our on-going project and
report on its current status. The rest of the paper is organised as follows. Sec-
tion 2 presents an overview of the XRTJ environment. Further details of the
static analysis environment and distributed run-time environment are provided
in Section 3 and 4 respectively. Section 5 shows a simple example that demon-
strates how our approach can be used in a practical application. Section 6 gives
a brief review of related work while Section 7 presents the current status of the
project. Finally, conclusions and future work are presented in Section 8.

2 XRTJ Environment Overview

The major goal of our project is to provide a predictable and portable pro-
gramming environment to develop distributed high-integrity real-time systems.
The XRTJ environment is targeted at cluster-based distributed high-integrity
real-time Java systems, such as consumer electronics and embedded devices,
industrial automation, space shuttles, nuclear power plants and medical instru-
ments.

To encourage the use of real-time Java in high-integrity systems, we have
introduced the Ravenscar-Java profile [23]. The profile or restricted programming
model excludes language features with high overheads and complex semantics,
on which it is hard to perform temporal and functional analyses. Further details
of the profile are given in Section 2.1.

XRTJ−Virtual Machine

Java APIs + Real−Time APIs

Ravanscar−Java Profile

Java Program (+ Annotations)

Extensible
Annotation Class

Java Class File

S
ta

tic
 A

na
ly

si
s

E
nv

iro
nm

en
t R

un−T
im

e A
rchitecture

X
R

T
J−

A
na

ly
se

r

Static models
System
Config.

X
R

T
J−

C
om

pi
le

r

Fig. 1. A basic block model of the XRTJ environment

Based on the Ravenscar-Java profile, we propose a highly dependable and
predictable programming environment to develop distributed high-integrity real-
time applications. As shown in Figure 1, the XRTJ environment can be divided

XRTJ: An Extensible Distributed High-Integrity 211

into two main parts: a Static Analysis Environment, which offers a number of
tools that conduct various static analyses including program safety and timing
analysis; a Distributed Run-Time Environment, in which highly predictable and
dependable distributed capabilities are provided.

Before a detailed discussion of each environment, two major components
of the XRTJ environment will be introduced. In our environment, to facilitate
the various static analysis approaches and provide information that cannot be
expressed in either Java source programs or Java bytecode, an extensible and
portable annotation1 class format called Extensible Annotations Class (XAC)
file is proposed [18]. To generate XAC files, an annotation-aware compiler, named
XRTJ-Compiler, which can derive additional information from either manual an-
notations or source programs, or both, is also introduced. Taking advantage of
the knowledge accumulated with the compiler, different analysis tools may be in-
tegrated into the XRTJ-Compiler to carry out various verifications or validations
either on source programs or Java bytecode.

Essentially, the static analysis environment supports various analysis tech-
niques by means of the XRTJ-Analyser where program safety analysis and timing
analysis can be statically carried out. In the XRTJ environment, Java programs
extended with specific annotations, such as timing annotations or model check-
ing annotations2, are compiled into Java class files and XAC files by either a
simple XAC translator and a traditional Java compiler or the XRTJ-Compiler.
A conformance test that verifies whether the applications obey the rules defined
in the Ravenscar-Java profile or whether the manual annotations are correct can
also be conducted during the compilation. The XAC files, together with the Java
class files, are used by the XRTJ-Analyser to perform various static analyses.
As shown in Figure 1, various static models, such as a Virtual Machine Timing
Model (VMTM)3, can be provided to perform different static analysis approaches
on the XRTJ-Analyser. Further aspects of the static analysis environment are
discussed in Section 3.

The distributed run-time environment provides mechanisms for underlying
systems to facilitate both functionally and temporally correct execution of ap-
plications. This infrastructure is targeted at cluster-based distributed infrastruc-
ture where remote objects are statically allocated during the design phase. In
order to accommodate a diverse set of the implementations on the underlying
platforms or virtual machines, two run-time environments with different levels
of distribution are supported in the XRTJ run-time environment. This will be
explored further in Section 4.

1 The term annotations, in this paper, means both manual annotations and annota-
tions generated by the XRTJ-Compiler automatically.

2 Model-checkers, such as JPF2[6], which requires special annotations, may be em-
ployed in our architecture to facilitate safety checks of concurrent programs.

3 VMTM is a timing model for the target virtual machine including a list of the
worst-case execution time of native methods and Java bytecode instructions.

212 E.Y.-S. Hu, A. Wellings, and G. Bernat

2.1 Ravenscar-Java Profile

We have presented a Java profile for the development of software-intensive high-
integrity real-time systems in [23]. The restricted programming model removes
language features with high overheads and complex semantics, on which it is
hard to perform timing and functional analyses. The profile fits within the J2ME
framework [31], fullfils the NIST Real-Time Java profile requirements [7] and is
consistent with well-known guidelines for high-integrity software development,
such as those defined by the U.S. Nuclear Regulatory Commission [16].

Allocatable Memory

Mission Phase

Initialisation Phase

main() invoked

Create Initialiser
thread

main() terminates

Initialise all necessary
objects and real−time

threads

Start all
threads

New Thread

New Thread

New Thread

Immortal MemoryHeap Memory Scoped Memory

Fig. 2. Two execution phases of Ravenscar Virtual Machine

Its computational model defines two execution phases, i.e. initialisation and
mission, as shown in Figure 2. In the initialisation phase of an application, all
necessary threads and memory objects are created by an Initializer thread,
whereas in the mission phase the application is executed and multithreading is
allowed based on the imposed scheduling policy. There are several new classes
that should ultimately enable safer construction of Java programs (for example,
Initializer, PeriodicThread, and SporadicEventHandler), and the use of
some existing classes is restricted or simplified due to their problematic features
in static analysis. For instance, the use of any class loader is not permitted in
the mission phase, and the size of a scoped memory area, once set, cannot be
changed.

Further restrictions include (see [23] for a full list)

– No nested scoped memory areas are allowed,

XRTJ: An Extensible Distributed High-Integrity 213

– Priority Ceiling Emulation must be used for all shared objects between real-
time threads,

– Processing groups, overrun and deadline-miss handlers are not supported,
– Asynchronous Transfer of Control is not allowed, and
– Object queues are not allowed (i.e. no wait, notify, and notifyAll oper-

ations).

Restrictions are also imposed on the use of the Java language itself, for ex-
ample

– continue and break statements in loops are not permitted, and
– Expressions with possible side effects must be eliminated.

Most subsets of Java or the RTSJ (e.g. [3,28]) overlook some important el-
ements of the language, for example, multithreading and the object-oriented
programming model. Thus many of the advantages of Java are lost. However,
the Ravenscar-Java profile attempts to cover the whole language issues, as well
as the run-time model. The profile is expressive enough to accommodate today’s
demanding requirements for a powerful programming model, yet concise enough
to facilitate the implementation of underlying platforms of virtual machines.

3 Static Analysis Environment

The static analysis environment consists of two components: program safety
analysis and timing analysis. The former highlights program safety in terms
of functional correctness and concurrency issues, such as safety and liveness,
whereas the latter emphasises the analysis of timing issues in terms of temporal
correctness. For the most part, these static analysis approaches may be carried
out individually or combinatorially. A block diagram of the XRTJ architecture
for the static analysis environment is given in Figure 3 and further details of
each major component are discussed in subsequent sections.

3.1 XAC (Extensible Annotation Class) File

One of the key components in the XRTJ architecture is the XAC format that
provides information for the various analysis tools that cannot be stored in
Java class files without making them incompatible with the traditional Java
architecture [18]. The XAC format has been designed with two main goals in
mind: portability, to support both platform independence and language inde-
pendence, and extensibility, to hold extra information needed for other analysis
tools. Therefore, the XAC files are easy to extend for various purposes or apply
in annotation-aware tools or JVMs.

Each XAC file is generated for a specific Java class file, and so the relationship
between a Java class file and an XAC file is one to one. Essentially, the offset
numbers of bytecode in a method are stored with the associated annotations in
the XAC file. Therefore, the corresponding bytecode and annotation may easily

214 E.Y.-S. Hu, A. Wellings, and G. Bernat

Java Class File (*.class)

Java Program
(+ Annotations)

Extensible Annotation
Class (*.xac)

XRTJ−Compiler

System
ConfigurationVMTMs

Safety Policies
Program Safety

Analysis

XRTJ−Analyser

Timing Analysis

Conformance Test

Traditional Java
Compiler

XAC−Translator

Scheduling
algorithms

Analytical Results

Fig. 3. A block diagram of the XRTJ architecture for static analysis environment

be reconstructed in analysis tools. A checksum is also provided in XAC files to
facilitate analysis tools or JVMs to verify the consistency between the Java class
file and the XAC file. Further details of the XAC file are discussed in [18].

In addition, using XAC files has benefits for distributed systems as XAC files
do not increase the size of traditional Java class files. Therefore, if the XAC files
are not required at run-time, they do not need to be either loaded into the target
JVM or transferred among distributed machines.

3.2 XRTJ-Compiler

Compiler techniques have been applied to analysis approaches, such as worst-case
execution time analysis and program safety analysis, in order to achieve more
accurate results. For example, Vrchoticky [35] has suggested compilation support
for fine-grained execution time analysis, and Engblom et al. [13] have proposed
a WCET tool called Co-transformation, integrated with compilation support,

XRTJ: An Extensible Distributed High-Integrity 215

to achieve safer and tighter estimation of timing analysis approaches. These
approaches show that compilation support can not only address the optimisation
issues introduced by compilers, but also provide additional information that may
accumulate from the source code level for particular analysis tools.

In the XRTJ environment, an annotation-aware compiler (XRTJ-Compiler)
is introduced in order to both manipulate annotations and validate that the
contexts of source program code obey those rules defined in the Ravenscar-
Java profile. On the whole, the XRTJ-Compiler extracts both manual annota-
tions introduced for timing analysis and specific annotations that can be de-
rived from source code level for particular purposes. For instance, the XRTJ-
compiler derives Abstract Syntax Trees(AST) and Worst-Case Execution Fre-
quency (WCEF)4 vectors of specific applications to facilitate the WCET anal-
ysis (Section 3.4). Furthermore, the requirements of other static analysis tools,
such as information needed for model checkers and other safety analysis tools,
may also be produced by the XRTJ-Compiler and can be stored in associated
XAC files.

It can be observed that the XRTJ-Compiler may provide valuable information
not only to achieve more precise and reliable results from analysis tools, but also
to facilitate the implementation of various static analysis tools on the XRTJ
infrastructure.

3.3 Program Safety Analysis

The inherent complexity in the verification of non-trivial software means that
unsafe programs could be produced and used under critical situations. This is
increasingly the case as today’s programming models become more complex. Our
Ravenscar-Java profile [23] has been developed with such concerns in mind, so
that programs become easier to analyse, and the run-time platform will also be
simpler to implement.

By program safety, we mean that a program will behave according to its
functional (and temporal) specification, and not exhibit any erroneous actions
throughout its lifetime. Erroneous actions include data races, deadlocks, and
memory overflows. Also, in the context of real-time Java and the Ravenscar pro-
file, we also need to ensure that the rules defined in the profile and RTSJ are
observed. These rules are checked when programs are compiled and tested for
conformance to the profile. This conformance test alone will remove many possi-
ble errors in the program. For example, deadlocks, and side effects in expressions
can be prevented. The following subsections address some issues that are not di-
rectly addressed by the profile, but which are still important in validating the
safety of a Java program.

4 WCEF vectors represent execution-frequency information about basic blocks and
more complex code structures that have been collapsed during the first part of the
portable WCET analysis.

216 E.Y.-S. Hu, A. Wellings, and G. Bernat

Verification of the Java Memory Model’s effect. As reported in [26,29],
the Java memory model (JMM) in [14] is a weaker model of execution than those
supporting sequential consistency. It allows more behaviours than simple inter-
leaving of the operations of the individual threads. Therefore, verification tools
that simply examine Java source code or even bytecode are prone to producing
false results [29]. Because the semantics of the JMM can lead to different im-
plementations, some virtual machines may support sequential consistency, while
others may not for performance reasons. This does not match the Java’s write
once, run anywhere5 philosophy.

However, we can develop restricted fragments of Java programs for which the
JMM guarantees sequential consistency (as opposed to the approach in [29]),
given that there is a means to efficiently analyse Java bytecode to locate only
necessary synchronizations. Libraries will still be considered because such an
analysis tool will operate at the bytecode level. The point-to and escape analysis
[8,30] can be used to trace escaping and possibly shared objects, as well as
improving overall performance by allocating non-escaping objects in the stack
of a method. This approach, in fact, is how our analysis algorithm has been
designed to uncover data races.

The underlying assumption of our algorithm is that any reads and writes on a
shared object in a method must be enclosed within the same synchronized block
(or method) in order not to have any data races. In other words, any syntactical
gap between a read and write that are not covered by a single synchronized
block will cause possible data races in a multithreaded environment because
either a read or write action can be lost. This is true even when a shared object
is indirectly read and updated using a local object. For example, an interleaving
of another thread that may update the shared object can occur in between the
indirect read and a (synchronized) write in the method, resulting in a lost write.
Thus, any indirect reads and writes should also be treated in a similar manner
to direct ones on a shared object.

Another similar case is the following: even when both a read and write are
synchronized, there can still be data races if the two blocks are guarded by
two different synchronized blocks and can be interleaved by other threads in
between. Our algorithm is capable of analysing all such conditions, thus detecting
problematic data races by tracing all shared objects and checking whether they
are properly guarded by synchronized blocks or methods [21].

Memory Usage Analysis. Shortage of memory space at run-time can be
devastating in high integrity systems, but at the same time, oversupply of it will
be costly. Considering the new memory areas introduced in the RTSJ, we may
need a different means of estimating the worst-case memory space that a program
requires at run-time, so that only the required amount of memory for each area
will be allocated. For this purpose the RTSJ defines the SizeEstimator class,
but the getEstimate() method does not return the actual amount of memory
that an object of a class and its methods dynamically use, but simply the total
5 Programs may still run anywhere, but possibly with different or unsafe behaviours.

XRTJ: An Extensible Distributed High-Integrity 217

size of the class’s static fields. In this sense, the class is not readily usable in
estimating the required memory size for an RTSJ application.

However, the Ravenscar-Java profile places some restrictions on the use of
RTSJ’s memory areas; for example, access to scoped memory areas must not be
nested and such memory areas cannot be shared between Schedulable objects
[23]. These restrictions greatly ease the development of an algorithm that will
inspect each thread’s logic to discover all classes it instantiates. After that, by
making use of control and data flow information extracted from the code and
the XAC file (such as loop bounds), the algorithm will be able to tell how many
instances of each class are created by a thread. This information can then be
used to produce a tight upper bound of the amount of memory that a thread
utilises at run-time by applying reserve() and getEstimate() methods of the
SizeEstimator class at the target platform before system despatching. This
thread-oriented memory usage analysis algorithm is currently being developed.

Other Pre-runtime Analyses. In addition to the ones introduced above, our
static analyser (XRTJ-Analyser) is also intended to do the following analyses:

– Exception propagation analysis, and
– Dynamic memory access check analysis.

The first analysis stems from the fear that the propagation of any unchecked
exceptions at run-time can be hazardous, while the latter is concerned with
eliminating unpredictable runtime overheads caused by dynamic checks of the
virtual machine. Memory access checks can be prevented by means of the point-
to and escape analysis [8,30], which will be integrated in our XRTJ analyser
together with an efficient exception propagation analysis technique.

3.4 Timing Analysis

Timing analysis is crucial in real-time systems to guarantee that all hard real-
time threads will meet their deadlines in line with the design. In order to ensure
this, appropriate scheduling algorithms and schedulability analysis are required.
Typically, most scheduling algorithms assume that the Worst-Case Execution
Time (WCET) estimation of each thread has to be known prior to conducting
the schedulability analysis. Therefore, estimating WCET bounds of real-time
threads is of vital importance. In addition, having accurate timing estimations
enables the developer to allocate resources more precisely to the system during
the design phase.

On the whole, most WCET approaches [13,35,27] are tied to either a partic-
ular language or target architecture. Moreover, RTSJ has kept silent on how the
WCET estimations can be carried out on the highly portable Java architecture.
Consequently, it is unlikely to achieve Java’s promise of ”write once, run any-
where” or perhaps more appropriately for real-time “write once carefully, run
anywhere conditionally” [5].

218 E.Y.-S. Hu, A. Wellings, and G. Bernat

Hence, in order to offer a predictable and reliable environment for high-
integrity real-time applications, a number of timing analysis issues need to be
addressed, for example:

– How the WCET analysis can be carried out on a highly portable real-time
Java architecture,

– How the run-time characteristics of Java, such as high frequency of method
invoking and dynamic dispatching, can be addressed,

– How schedulability analysis can be conducted statically, and
– What techniques need to be provided to take account of the supporting

distributed run-time environment.

The subsequent sections explore how these issues can be addressed in the
static analysis environment of the XRTJ infrastructure to be able to ensure that
real-time threads will meet their time constraints.

Portable WCET Analysis. A portable WCET analysis approach based on
the Java architecture has been proposed by Bernat et al. [4], and extended by
Bate et al. [2] to address low-level analysis issues. This section presents how
the portable WCET analysis can be adapted for our environment to be able to
perform the WCET analysis statically [18].

The portable WCET analysis uses a three-step approach: high-level analysis
(i.e. analysing the annotated Java class files and computing the portable WCET
information in the form of Worst-Case Execution Frequency (WCEF) vectors [2,
4]), low-level analysis (i.e. producing a Virtual Machine Time Mode (VMTM)
for the target platform by performing platform-dependent analysis on Java byte
code instructions implemented for the particular platform), and conducting the
combination of the high-level analysis with the low-level analysis to compute the
actual WCET bound of the analysed code sections.

In our environment, the XRTJ-Compiler analyses the annotated Java pro-
grams and extracts the WCEF vectors during the compilation. The WCET vec-
tors and WCET annotations are stored in the XAC file by the XRTJ-Compiler
automatically. Therefore, after compilation, the class files and XAC files are
ready for WCET analysis tools. To be able to build VMTMs of various plat-
forms for real-time and embedded Java-based systems in an efficient way, we
are developing a timing analysis benchmark that can build a VMTM of a target
platform automatically simply by providing a native method that can access
the machine cycle of the target platform. A WCET analysis tool in the XRTJ-
Analyser, then, performs the combination of the high-level analysis with the low
level VMTM to compute the actual WCET bound of the analysed code sections.

WCET Annotations. Dynamic dispatching issues have been considered in
compiler techniques for a number of years [1,11,12]. Unfortunately, these ap-
proaches cannot be directly applied to WCET analysis since they are solely op-
timising dynamic binding and do not guarantee that all dynamic binding will be

XRTJ: An Extensible Distributed High-Integrity 219

resolved before run-time. However, in WCET analysis for hard real-time systems,
the execution time of every single method has to be known prior to executing
it. Therefore, most approaches in the WCET analysis field have simply assumed
that dynamic dispatching features should be prohibited. It is possible that these
restrictions could make applications very limited and unrealistic because they
might eliminate the major advantages of object-oriented programming [17].

In [17], we have explored the ways in which dynamic dispatching can be
addressed in object-oriented hard real-time systems with the use of appropriate
annotations. Our approach shows that allowing the use of dynamic dispatching
can not only provide a more flexible way to develop object-oriented hard real-
time applications, but it also does not necessarily result in unpredictable timing
analysis. Moreover, it demonstrates how to achieve tighter and safer WCET
estimations.

It is an open question for most annotation-based approaches as to how to ver-
ify if the provided annotations are correct. Combining optimisation techniques,
such as Class Hierarchy Analysis (CHA) [11] or Rapid Type Analysis (RTA) [1],
with our approach allows the annotations to be verified, if there is no dynamic
linking at run-time. For example, applying the CHA approach, we can easily get
the maximum bound of the class hierarchies information from the Java bytecode.

Schedulability Analysis. This section demonstrates how schedulability can be
carried out for our real-time Java architecture in line with the portable WCET
analysis. In [18], we have illustrated how real-time parameters, including priority
and dispatching parameters, for the set of threads and WCET estimates can be
produced from the Java class files and XAC files. Given the WCET estimates
and real-time parameters, the schedulability analysis can be conducted easily.
In the XRTJ-Analyser, only the system configuration information is needed.
Following the system configuration, the XRTJ-Analyser loads the scheduling al-
gorithm and carries out the schedulability analysis. Scheduling algorithms must
provide scheduling characteristics, algorithms which can calculate other schedul-
ing parameters, such as release-jitter, blocking time, response-time, and resource
access protocols which are provided to manage the priority inversion problems.
The XRTJ-Analyser produces the result of the analysis of the system. The out-
put file provides not only the result of the analysis, but also includes timing and
scheduling information, such as response time, release-jitter, and blocking time.

Support for Distributed Features. It should be noted that analysing the
WCET bound of real-time threads in a distributed run-time environment differs
from a standalone run-time environment. In particular, there are a number of
issues that need to be clarified to achieve safe and tight WCET estimation and
schedulability analysis of real-time threads containing remote method invoca-
tions. In the XRTJ infrastructure, we assume that one compatible virtual ma-
chine resides on each node in the cluster network and no recursive remote method
invocations are allowed. In accordance with these assumptions, the WCET esti-
mation and schedulability can be carried out as follows.

220 E.Y.-S. Hu, A. Wellings, and G. Bernat

Remote

method()

Stub

Remote Object

method()

Skeleton

Cluster Network

Client JVM Server JVM

Fig. 4. The Java’s RMI architecture [19]

Based on Java’s RMI architecture shown in Figure 4, a stub6 needs to be
provided on the local virtual machine, whereas a skeleton7 resides on the remote
virtual machine [19]. In line with this architecture, holistic schedulability analysis
can be performed [33,25]; the response time estimations of all remote methods
and the skeleton on the server node have to be analysed as sporadic threads
during the schedulability analysis.

As to the client node, the WCET estimation of a real-time thread that holds
remote method invocations differs from those that only comprise local method
invocations. One should note that the WCET estimation of a remote method on
the client node should not take into account the execution time of the remote
method because a remote method is translated by the stub that resides on the
local virtual machine and is executed on remote virtual machines. The WCET
bound of a remote method invocation, therefore, should only take account of the
execution time of the stub.

4 Distributed Run-Time Environment

This section is mainly concerned with the distributed run-time environment of
the XRTJ infrastructure, which is targeted at cluster-based distributed high-
integrity real-time systems. Moving from a centralised environment to a dis-
tributed environment requires the following issues to be addressed:

– How objects are allocated to nodes in the cluster,
– What form of communication is supported between distributed objects,
– How the model of communication can be integrated into Ravenscar-Java,

and
– What impact the model has on the XRTJ environment.

For high-integrity environments, objects should be statically allocated to
each node in the cluster. Therefore, the term distributed in this paper means
6 A stub is a class that automatically translates remote method calls into network

communication setup and parameter passing.
7 A skeleton is a corresponding class that accepts these network connections and trans-

lates them into actual method calls on the actual object.

XRTJ: An Extensible Distributed High-Integrity 221

statically distributed whereby remote objects are allocated to nodes during the
design phase. Although there have been many different communication models
proposed for distributed Java programs (tuplespaces, distributed events, etc)
most are based on top of the Java’s RMI mechanism. XRTJ assumes the existence
of a real-time RMI facility [36], such as that proposed by Miguel [10].

To accommodate existing practice, which is a stated goal of the project, two
static distributed run-time environments are introduced, including Initialisation
Distributed Environment, in which RMI is only allowed for use in the initiali-
sation phase of an application, and Mission Distributed Environment, where a
restricted real-time RMI model [36] can be used during the mission phase. The
following subsections give further details on each of these and show how those
issues mentioned previously can be addressed.

4.1 Initialisation Distributed Environment

The Ravenscar-Java profile does not support any remote interfaces on its main
classes. Neither are they serialisable. Consequently, no remote operation can be
applied to periodic threads or sporadic event handlers. This implies that they
cannot be passed over the network during the mission phase of the RVM.

However, in order to provide not only high predictability and reliability, but
also some degrees of support for distributed applications, which may reduce
the development and maintenance costs of overall systems, the initialisation
distributed environment is introduced. The motivation of providing this environ-
ment can be observed by a simple example given in Section 5. In such systems,
communications between a server and each node, including loading data and
reporting status, is essential and this can be achieved easily if the run-time
environment provides distributed features in the initialisation phase.

In line with the framework proposed for integrating the RTSJ and Java’s
RMI [36], the standard RTSJ may offer a distributed environment with a minimal
distribution level, defined as Level 0 integration by Wellings et. al. [36]. Following
this approach, the initialisation distributed environment can be applied to either
a standard Real-Time Java Virtual Machine (RTJVM) or a Ravenscar Virtual
Machine (RVM). In such a run-time environment, both RTJVMs and RVMs can
support a distributed environment defined as Level 0 distribution in [36] before
all real-time threads are started (i.e. the initialisation phase of Ravenscar-Java).

In the mission phase of the RVM or after executing the real-time threads
in a standard RTJVM, no remote method invocation is allowed. However, if
the Ravenscar-Java profile supports aperiodic or non real-time threads, it is
possible to use RMI in such threads with lower priority than real-time threads.
Obviously, there is no modification required for standard RTJVMs or RVMs
to support distributed high-integrity real-time Java-based applications in this
environment.

222 E.Y.-S. Hu, A. Wellings, and G. Bernat

4.2 Mission Distributed Environment

Supporting distributed features in the mission phase makes it necessary to ad-
dress more issues, such as how to guarantee statically that all hard real-time
threads will meet their deadlines, when distributed virtual machines can enter
the mission phase and when real-time RMI can be used without rendering hard
real-time tasks unsafe.

To offer a more flexible way to develop distributed high-integrity applica-
tions in the XRTJ environment without loss of predicability and dependability,
the mission distributed environment is introduced. To support this distributed
environment, three execution phases are proposed in the XRTJ-Virtual Ma-
chine (XRTJ-VM), including initialisation phase, pre-mission phase and mission
phase.

In the mission distributed environment, all remote objects are allocated dur-
ing the design phase and the XRTJ-VM supports Level 1 (i.e. real-time RMI)
distribution defined by Wellings et. al. [36]. The program safety and timing
analysis can be carried out with static analysis tools as mentioned in Section 3.4
during the static analysis phase. Note that the response time of all remote objects
and threads, and the skeleton on the server node can be analysed as sporadic
threads during the schedulability analysis, since they are allocated during the
design phase.

The initialisation phase of the XRTJ-VM can be assumed to be the same as
the initialisation the RVM mentioned previously. However, it should be noted
that allocations, registrations, reference collections of all remote objects that are
allowed for use in the mission phase have to be done during the initialisation
phase.

Since the invocations of real-time RMI [36] are allowed in the mission phase
of the XRTJ-VM, one should note that a virtual machine executing in its mission
phase must not attempt to invoke a remote method on another virtual machine
that is not running under the mission phase. The use of such invocations may
result in unpredictable and unanalysable real-time threads running in the mission
phase. To address this issue, synchronisation needs to be provided to decide when
distributed virtual machines can enter into the mission phase at the same time.
In line with the synchronization, all XRTJ-VMs in the same cluster network can
be in the waiting stage after initialising. This phase is named the pre-mission
phase of the XRTJ-VM.

The only difference between the mission phase of the RVM and the mission
phase of the XRTJ-VM is that the invocations of pre-instantiated remote objects
are allowed during the mission phase of XRTJ-VM. Furthermore, the XRTJ-
VM supports the notion of real-time remote objects, real-time RMI, and simple
distributed real-time threads [36] to enable the development of high-integrity
real-time systems with greater flexibility.

XRTJ: An Extensible Distributed High-Integrity 223

5 Example

In this section, we present a simple example, which we hope is realistic enough
to illustrate the application of our approach. Assume that there is an automated
industrial production line where a number of multi-purpose robots and their
controllers are employed. Each robot station (i.e. a robot and its controller) is
linked over a network to the main server that will provide them with tailor-made
instructions or tasks, depending on the models of products8. Once robot stations
are set up with particular tasks, they will remain unchanged until new tasks are
required to manufacture different products.

Our first distribution model, the Initialisation Distributed Environment de-
scribed in Section 4.1, can be utilized in this situation, minimizing complexity in
program analysis and in the implementation of underlying systems. In this man-
ner, dependable software can be developed using our restricted programming
model (i.e. the Ravenscar-Java profile), and static program safety and timing
analysis techniques integrated in the XRTJ-Analyser. In the initialisation phase
of all the robot stations, they will be given specific tasks by the main server by
means of RMI. Having passed the initial phase, all the robots can begin their
assigned operations, but are not allowed to invoke remote methods any more. A
brief list of pseudo code for the robot controller is shown in Figure 5.

However, there are many other situations where robot controllers need to
communicate with the server while in operation. For instance, a robot may in-
spect products using an overhead camera, send images to the server and require
real-time feedback, assuming that the server has more powerful processors and
resources to process images and distinguish faulty goods. In such cases, our sec-
ond distribution model, the Mission Distributed Environment (see Section 4.2)
is a valid approach. As with the code given in Figure 5, robot stations may in-
voke remote methods in the initialisation phase, as well as in the mission phase
to cooperate with the server in a real-time manner as explained in Section 4.2.
The pre-mission phase may be required to synchronize operations of the robots.
However, in this more tolerant model of system distribution, static timing and
schedulability analysis become more challenging, thus as we discussed briefly
in Section 3.4 a holistic schedulability analysis should be performed to obtain
response times of real-time threads communicating across a network.

6 Related Work

A consortium of European companies and research institutes have been working
on a high-integrity distributed deterministic Java environment called HIDOORS
[34]. The targeted applications of HIDOORS are similar to ours, but the project
is mainly based on the Real-Time Core Extension specification [9], whereas our
project is in line with the Real-Time Specification for Java [5]. However, there
is a limited amount of information available on the HIDOORS project, and it is
8 Robots need to be able to handle different models or versions of products manufac-

tured in volume.

224 E.Y.-S. Hu, A. Wellings, and G. Bernat

C
lu

st
er

 N
et

w
or

k

Cluster Server

(a) Initialisation Distributed Environment

Image
processing node

(b) Mission Distributed Environment

C
lu

st
er

 N
et

w
or

k

Cluster Server

import ravenscar . ∗ ;
. . .
public c lass RobotContro l l er extends I n i t i a l i z e r {

public void run () { // I n i t i a l i s a t i o n rout ine
// Get Server ’ s i n s t r u c t i o n s / ta sks v ia RMI
. . .
// Set up r e a l−time threads and sporad i c event hand le r s
// with appropr ia te parameters . For example ,
Per iodicThread robotRoutine1 = new PeriodicThread (

new Pr ior i tyParameter s (1 0) , // P r i o r i t y :10
new Per iod icParameters (

new AbsoluteTime (0 , 0) , // Star t time
new RelativeTime (5 3 3 3 , 0) // Period

) ,
new Runnable () { // Appl i cat ion l o g i c

public void run () {
// Logic f o r the robot c o n t r o l l e r
// Here , r e a l−time RMI may be used

in the miss ion d i s t r i bu t ed environment
. . .
// Events may be f i r e d

} ;
}

) ;
robotRoutine1 . s t a r t () ; // Star t o f Miss ion Phase !

}

public stat ic void main (St r ing [] a rgs) {
RobotContro l l er i n i t = new RobotContro l l er () ;
i n i t . s t a r t () ;

}
}
. . .

Fig. 5. An industrial automation environment

XRTJ: An Extensible Distributed High-Integrity 225

not clear how program safety analysis and timing analysis can be carried out in
their preliminary report [34]. It should be noted that the HIDOORS project has
attempted to provide a predictable implementation of the full Java langauge,
whereas our project relies on the Ravenscar-Java profile.

Moreover, there has been considerable work in the area of formal verifica-
tion of Java programs and bytecode, and Hartel and Moreau [15] systematically
review most of this. Of particular interest to us are the verification techniques
for Java Card applications based on the J2ME architecture [31], and Leroy [24],
who recently developed an efficient on-card bytecode verifier. Leroy’s approach
is superior to other existing work in that it requires much less memory at run-
time, and it handles additional features of the Java language (e.g. subroutines).
Although our work does not directly deal with formal verification techniques
at the moment, we feel encouraged by such developments, and may be able to
incorporate them into our XRTJ-Analyser in the future.

7 Current Status

Currently we are modifying the Kopi Java compiler [20] to facilitate development
of the XRTJ-Compiler. Our prototype XRTJ-Compiler can extract annotations
from the source code and produces XAC files during compilation. The implemen-
tation of our prototype involved modifications to abstract syntax trees in order
to map the annotation to the associated Java bytecodes. The prototype shows
the feasibility of providing extra information that cannot be expressed in both
Java programs and Java bytecode for static analysis tools. We are also working
on the XRTJ-Compiler in order to provide a virtual machine timing model of a
particular virtual machine automatically for the portable WCET analysis.

In addition, program safety and timing analysis tools are under development
and will be integrated into the XRTJ-Analyser. The goal of the XRTJ-Analyser is
to provide a user friendly graphic interface for the static analysis environment in
future. We are also working on the reference implementation of RTSJ (RTSJ-RI),
which is released by TimeSys [32], on Linux platform. A number of modifications
will be conducted on the RTSJ-RI to be able to support mechanisms enforced
both functionally and temporally correct results of applications in the distributed
run-time system.

We have also created a website (http://www.xrtj.org) on which the most
up-to-date information on this project can be found.

8 Conclusion and Future Work

In this paper, we have presented an overview of the XRTJ environment that is
expected to facilitate the development of distributed high-integrity real-time sys-
tems based on Java technology. The three main aims of the XRTJ are to develop
a predictable programming model, a sophisticated static analysis environment,
and a reliable distributed run-time architecture.

226 E.Y.-S. Hu, A. Wellings, and G. Bernat

Bearing these aims in mind, we have addressed several of the problemati-
cal features of the Java language, its run-time architecture, and the Real-Time
Specification for Java. Our novel approaches include the Ravenscar-Java pro-
file, program-safety and timing analysis techniques, and a distributed run-time
environment. However, the profile may be supported by different architectures,
and the analysis techniques are versatile enough to apply to other programming
models. We have also raised some important issues in the area of distributed
high-integrity systems, and presented how we can deal with them by defining
two distributed run-time models, i.e. Initialisation Distributed Environment and
Mission Distributed Environment, where safe and timely operations will be sup-
ported.

There are also some open issues, including design methodologies and tools;
these should facilitate formal verification of systems at design stage. We intend to
work towards these issues in the course of our implementation. We consequently
feel confident that the XRTJ environment will provide a logical and practical
base for future high-integrity real-time systems.

Acknowledgements. The authors would like to thank Dr. Guillem Bernat
and Dr. Steve King for their contribution to many of the ideas expressed in this
paper.

References

1. D. Bacon and P. Sweeney. Fast Static Analysis of C++ Virtual Function Calls. Pro-
ceedings of the ACM Conference on Obejct-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’96), October 1996. San Jose, California.

2. I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-Level Analysis of a Portable
Java Byte Code WCET Analysis Framework. In 6th IEEE Real-Time Computing
Systems and Applications RTCSA-2000, pages 39–48, December 2000.

3. S. Bentley. The Utilisation of the Java Language in Safety Critical System Devel-
opment. MSc dissertation, Department of Computer Science, University of York,
1999.

4. G. Bernat, A. Burns, and A. Wellings. Portable Worst-Case Execution Time
Analysis Using Java Byte Code. In proc. 6th Euromicro conference on Real-Time
Systems, pages 81–88, June 2000.

5. G. Bollella, J. Gosling, B. M. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turn-
bull. Real-Time Specification for Java. Addison Wesley, 2000.

6. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder- Second gener-
ation of a Java model checker. In Proc. of Post-CAV Workshop on Advances in
Verification, 2000.

7. L. Carnahan and M. Ruark, (eds.). Requriements for Real-Time Extensions for the
Java Platform. NIST Special publications 500-243, National Institute of Standard
and Technology, http://www.nist.gov/rt-java, September 1999.

8. J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff. Escape
Analysis for Java. Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications - OOPSLA, pages 1–19, 1999.

XRTJ: An Extensible Distributed High-Integrity 227

9. J. Consortium. Real-Time Core Extensions for Java platform. International
J Consortium Specification, Revision 1.0.14, September 2000. http://www.j-
consortium.org/rtjwg/.

10. M. de Miguel. Solutions to Make Java-RMI Time Predictable. Proceedings of
the 4th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing ISORC-2001, pages 379–386, 2001.

11. J. Dean, D. Grove, and C. Chambers. Optimisation of Object-Oriented pro-
grams using Static Class Hierarchy Analysis. ECOOP’ 95 Conference Proceedings,
Springer Verlag LNCS 952:77–101, 1995.

12. D. Detlefs and O. Agesen. Inlining of Virtual Methods. ECOOP’ 99 Conference
Proceedings, Springer Verlag LNCS 1628:258–277, 1999.

13. J. Engblom, A. Ermedahl, and P. Altenbernd. Facilitating Worst-Case Execution
Times Analysis for Optimized Code. In Proc. of the 10th Euromicro Real-Time
Systems Workshop, June 1998.

14. J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification. Addison-
Wesley, 2nd. edition, 2000.

15. P. H. Hartel and L. Moreau. Formalizing the Safety of Java, the Java Virtual
Machine, and Java Card. ACM Computing Surveys, 33(4):517–588, 2001.

16. H. Hetcht, M. Hecht, and S. Graff. Review Guidelines for Software Languages for
Use in Nuclear Power Plant Systems. NUREG/CR- 6463, U.S. Nuclear Regulatory
Commission, http://fermi.sohar.com/J1030/index.htm, 1997.

17. E. Y.-S. Hu, G. Bernat, and A. J. Wellings. Addressing Dynamic Dispatching Issues
in WCET Analysis for Object-Oriented Hard Real-Time Systems. Proceedings of
the 5th IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing ISORC-2002, pages 109–116, April 2002.

18. E. Y.-S. Hu, G. Bernat, and A. J. Wellings. A Static Timing Analysis Environment
Using Java Architecture for Safety Critical Real-Time Systems. Proceedings of
the 7th IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems WORDS-2002, pages 77–84, January 2002.

19. M. Hughes, M. Shoffner, and D. Hamner. Java Network Programming. Manning,
2nd. edition, October 1999.

20. Kopi. The Kopi Project. DMS Decision Management Systems Gmb.
Hhttp://www.dms.at/kopi/.

21. J. Kwon, A. Wellings, and S. King. A Safe Mobile Code Representation and Run-
time Architecture for High-Integrity Real-Time Java Programs. Work-in-Progress
proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 37–40, 2001.

22. J. Kwon, A. Wellings, and S. King. Assessment of the Java Programming Language
for Use in High Integrity Systems. Technical Report YCS 341, Department of Com-
puter Science, University of York, http://www.cs.york.ac.uk/ftpdir/reports/YCS-
2002-341.pdf, 2002.

23. J. Kwon, A. Wellings, and S. King. Ravenscar-Java: A High Integrity Profile
for Real-Time Java. Proceedings of Java Grande-ISCOPE 2002, pages 131–140,
November 2002.

24. X. Leroy. On-Card Bytecode Verification for Java Card. Springer-Verlag LNCS,
2140:150–164, 2001.

25. J. C. Palencia and M. G. Harbour. Exploiting precedence relations in the schedu-
lability analysis of distributed real-time systems. In Proc. of the 20st IEEE Real-
Time Systems symposium (RTSS), pages 328–339, 1999.

26. W. Pugh. Fixing the Java Memory Model. Proceedings of Java Grande Conference
1999, pages 89–98, 1999.

228 E.Y.-S. Hu, A. Wellings, and G. Bernat

27. P. Puschner and A. Burns. A Review of Worst-Case Execution-Time Analysis.
Real-Time Systems, 18(2/3):115–128, 2000.

28. P. Puschner and A. Wellings. A Profile for High-Integrity Real-Time Java Pro-
grams. Proceedings of the 4th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing ISORC-2001, pages 15–22, 2001.

29. A. Roychoudhury and T. Mitra. Specifying Multithreaded Java Semantics for
Program Verification. Proceedings of the International Conference on Softwre En-
gineering - ICSE, pages 489–499, 2002.

30. A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded pro-
grams. ACM SIGPLAN Notices, 36(7):12–23, 2001.

31. Sun Microsystems. Java 2 Platform Micro Edition (J2ME) Technology
for Creating Mobile Devices. White paper, Sun Microsystems,
http://java.sun.com/j2me/docs/, 2002.

32. TimeSys. Real-Time Java. TimeSys. http://www.timesys.com/prodserv/java/.
33. K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed Hard

Real-Time Systems. Microprocessing and Microprogramming - Euromicro Journal
(Special Issue on Parallel Embedded Real-Time Systems), 40:117–134, 1994.

34. J. Ventura, F. Siebert, A. Walter, and J. Hunt. HIDOORS - A high integrity
distributed deterministic Java environment. Proceedings of the 7th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems WORDS-
2002, pages 113–118, January 2002.

35. A. Vrchoticky. Compilation Support for Fine-Grained Execution Time Analysis. In
Proc. of the ACM SIGPLAN Wrokshop on Language, Compiler and Tool Support
for Real-Time Systems, 1994.

36. A. Wellings, R. Clark, D. Jensen, and D. Wells. A Framework for Integrating
the Real-Time Specification for Java and Java’s Remote Method Invocation. Pro-
ceedings of the 5th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing ISORC-2002, pages 13–22, April 2002.

Quasi-Dynamic Scheduling for the Synthesis of
Real-Time Embedded Software with Local and Global

Deadlines

Pao-Ann Hsiung1, Cheng-Yi Lin1, and Trong-Yen Lee2

1 Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi, Taiwan

hpa@computer.org
2 Department of Electronic Engineering

National Taipei University of Technology, Taipei, Taiwan

Abstract. Often real-time embedded software is specified as a set of interacting
tasks that have local deadlines on subtasks and global deadlines on each task.
Currently available scheduling algorithms guarantee only a single level of
deadlines, either all local or all global, but not both. We propose a quasi-dynamic
scheduling algorithm for simultaneously guaranteeing both types of deadlines,
while satisfying all precedence constraints among subtasks and among tasks.
Through this scheduling procedure, we are able to formally synthesize real-time
embedded software from a network of Periodic Time Petri Nets specification.
Application examples, including a driver for the Master/Slave role switch in
Bluetooth wireless communication devices, are given to illustrate the feasibility
of the scheduling algorithm.

Keywords: Real-time embedded software, Periodic Time Petri Nets, quasi-
dynamic scheduling, software synthesis, local and global deadlines

1 Introduction

Often a real-time embedded system task is composed of some constituent subtasks, each
of which has its own local deadline, while the task itself has a global deadline. Current
scheduling algorithms do not explicitly consider such multilevel deadlines leading to
the necessity for work-around efforts. We propose a scheduling algorithm to resolve
this issue and show how it can be used for synthesizing real-time embedded software
specifications into actual program code.

As a motivating example depicted in Fig. 1, consider the Modular Mobile Dispatch-
ing System (MMDS) [19], which consists of a GPS receiver, a GIS database, a GSM
communication module, and other I/O peripherals for dispatching of vehicles through a
call center. Besides the local deadlines on each GPS, GIS, and GSM task, there is also
a global deadline on each scenario which is composed of several tasks with precedence

1 This work was supported in part by a project grant NSC91-2213-E-194-008 from the National
Science Council, Taiwan.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 229–243, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

230 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

GIS enabled

Vehicle

GPS

MMDT

Vehicle

Vehicle

(DC)
Dispatching Center

GPS

MMDT

GPS

MMDT

Fig. 1. Modular Mobile Dispatching System

and concurrency relationships. A typical scenario would be that of a vehicle driver en-
countering an emergency situation, in which the driver uses MMDS and expects to get
help within 4 minutes from the time a call is made from the vehicle to the call center.
Within this time span, MMDS must get GPS location information, transmit it to the call
center through GSM communication, the call center must plot the driver’s location on
a digital map using GIS, locate the nearest help on the map, dispatch help (such as an
ambulance) to the location by notifying the target help through GSM, while providing
navigation guidelines through an active GIS database.

There are several issues involved in such a typical real-time scenario, as detailed in
the following.

– How to determine which subtasks are concurrently enabled at any point of execution?
– How to check if each subtask completes execution within its local deadline, while

satisfying all precedence constraints among the subtasks?
– How to check if each task completes execution within its global deadline?
– How to obtain an optimal schedule of all system tasks such that shortest execution

time is guaranteed, if one exists?
– How to estimate the amount of memory space required for the execution of a real-

time embedded software system?

Corresponding to each of the above issues, we propose a set of solutions in the form
of a scheduling method called Quasi-Dynamic Scheduling (QDS), which incorporates
the respective solutions as briefly described in the following. Details will be given when
the algorithm is described in Section 4.

– Concurrently Enabled Group: We maintain a group of concurrently enabled sub-
tasks, while the system’s behavior is statically simulated to satisfy all precedence
relationships.

– Tentative Schedulability Check: Since the group of concurrently enabled subtasks
changes dynamically with system execution, its schedulability can be checked only
tentatively for the current group.

Quasi-Dynamic Scheduling for the Synthesis 231

– Global System Timer: A global system timer is maintained that keeps count of the
current total amount of processor time taken by the execution of all tasks.

– Pruned Reachability Tree: Because schedulability checks are only tentative for a
group of subtasks, a reachability tree is created so that an optimal schedule can be
found. Heuristics are applied to prune the tree on-the-fly while it is being created.

– Maximum Memory Estimation: Using various memory estimation techniques, both
static and dynamic memory space allocations are statically counted, including mem-
ory spaces for both local and global variables.

Basically, quasi-dynamic scheduling is a combination of quasi-static scheduling and
dynamic scheduling. Data dependent branch executions are statically decomposed into
different behavior configurations and quasi-statically scheduled [20]. For each quasi-
statically decomposed behavior configuration, dynamic scheduling is employed to satisfy
all local deadlines of each subtask, all precedence constraints among subtasks, and all
global deadlines of each task.

To illustrate the importance of this research result, consider how existing scheduling
approaches must be applied to a system with both local and global deadlines. In this case,
there is a need for work-around methods such as making global deadline the sum of all
local deadlines in a critical path of the task. The user is burdened with the responsibility
of analyzing a task and finding the critical path, a non-trivial task in some cases, apriori
to scheduling. Further, this work-around method only works if the global deadline is not
smaller than the sum of all local deadlines in a critical path of a task, because otherwise it
would amount to restraining each local deadline, thus making an otherwise schedulable
system unschedulable. In summary, the work presented here is not only a flexibility
enhancement to current scheduling methods, but also a necessary effort in checking
schedulability for real systems.

This article is organized as follows. In Section 2, we delve on some previous work
in quasi-static scheduling and real-time scheduling related to the synthesis of real-time
embedded software. In Section 3, we formulate our target problem to be solved, our
system model, and give an illustrative example. In Section 4, we present our quasi-
dynamic scheduling algorithm and how it is applied to the running example. Section 6
concludes the article giving some future work.

2 Previous Work

Since our target is formally synthesizing real-time embedded software, we will only
discuss scheduling algorithms that have been used for this purpose.

Due to the importance of ensuring the correctness of embedded software, formal syn-
thesis has emerged as a precise and efficient method for designing software in control-
dominated and real-time embedded systems [6,11,20,21]. Partial software synthesis was
mainly carried out for communication protocols [18], plant controllers [17], and real-
time schedulers [1] because they generally exhibited regular behaviors. Only recently has
there been some work on automatically generating software code for embedded systems
[2,16,20], including commercial tools such as MetaH from Honeywell. In the follow-
ing, we will briefly survey the existing works on the synthesis of real-time embedded
software, on which our work is based.

232 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

Previous methods for the automatic synthesis of embedded software mostly do
not consider temporal constraints [15,16,20,21], which results in temporally infeasible
schedules and thus incorrect systems. Some recently proposed methods [11,14] explic-
itly take time into consideration while scheduling, but have not solved the multilevel
deadlines issue. Details of each method are given in the rest of this section.

Lin [15,16] proposed an algorithm that generates a software program from a concur-
rent process specification through intermediate Petri-Net representation. This approach
is based on the assumption that the Petri-Nets are safe, i.e., buffers can store at most
one data unit, which implies that it is always schedulable. The proposed method applies
quasi-static scheduling to a set of safe Petri-Nets to produce a set of corresponding state
machines, which are then mapped syntactically to the final software code.

A software synthesis method was proposed for a more general Petri-Net framework
by Sgroi et al. [20]. A quasi-static scheduling (QSS) algorithm was proposed for Free-
Choice Petri Nets (FCPN) [20]. A necessary and sufficient condition was given for a
FCPN to be schedulable. Schedulability was first tested for a FCPN and then a valid
schedule generated by decomposing a FCPN into a set of Conflict-Free (CF) components
which were then individually and statically scheduled. Code was finally generated from
the valid schedule.

Later, Hsiung integrated quasi-static scheduling with real-time scheduling to synthe-
size real-time embedded software [11]. A synthesis method for soft real-time systems
was also proposed by Hsiung [12]. The free-choice restriction was first removed by Su
and Hsiung in their work [21] on extended quasi-static scheduling (EQSS). Recently,
Gau and Hsiung proposed a more integrated approach called time-memory scheduling
[6,13] based on reachability trees.

A recently proposed timed quasi-static scheduling (TQSS) method [14] extends two
previous works: (1) the QSS [20] method by handling non-free choices (or complex
choices) that appear in system models, and (2) the EQSS [21] by adding time constraints
in the system model. Further, TQSS also ensures that limited embedded memory con-
straints and time constraints are also satisfied. For feasible schedules, real-time embedded
software code is generated as a set of communicating POSIX threads, which may then
be deployed for execution by a real-time operating system.

Balarin et al. [2] proposed a software synthesis procedure for reactive embedded
systems in the Codesign Finite State Machine (CFSM) [3] framework with the POLIS
hardware-software codesign tool [3]. This work cannot be easily extended to other more
general frameworks.

Besides synthesis of software, there are also some recent work on the verification
of software in an embedded system such as the Schedule-Verify-Map method [8], the
linear hybrid automata techniques [7,9], and the mapping strategy [5]. Recently, system
parameters have also been taken into consideration for real-time software synthesis [10].

3 Real-Time Embedded Software Synthesis

Our target is the formal synthesis of real-time embedded software, with local and global
deadlines, using scheduling techniques.A system is specified as a set of concurrent tasks,
where each task is composed of a set of subtasks, with precedence relationships. Time

Quasi-Dynamic Scheduling for the Synthesis 233

constraints are classified into two categories: local deadlines and global deadlines. A
local deadline is imposed on the execution of a subtask, whereas a global deadline is
imposed on the execution of a task in a system model [6,13].

Previous work on software synthesis were mainly based on a subclass of the Petri net
model (introduced later in Section 3.1). We also adopt the Petri net model for software
requirements specification, but we associate explicit semantics to the firing time inter-
vals, which will explained when our system model Periodic Time Petri Net (PTPN) is
defined. Just like Time Complex-Choice Petri Nets (TCCPN) used in [14], PTPN places
no free-choice restriction on the model expressivity and adds timing constraints on each
transition, which represents a subtask. Thus, a wider domain of applications can be pre-
cisely modeled by PTPN. Details on the PTPN system model, our target problem, and
an illustrative example will be described in Sections 3.1, 3.2, and 3.3, respectively.

3.1 System Model

We define PTPN as follows, where N is the set of positive integers.

Definition 1. Periodic Time Petri Nets (PTPN)
A Periodic Time Petri Net is a 5-tuple (P, T, F, M0, τ), where:

– P is a finite set of places,
– T is a finite set of transitions, P ∪ T
= ∅, P ∩ T = ∅, and some of the transitions

are source transitions, which fire periodically,
– F : (P × T) ∪ (T × P) → N is a weighted flow relation between places and

transitions, represented by arcs. The flow relation has the following characteristics:
• Synchronization at a transition is allowed between a branch arc of a choice

place and another independent concurrent arc.
• Synchronization at a transition is not allowed between two or more branch arcs

of the same choice place.
• A self-loop from a place back to itself is allowed only if there is an initial token

in one of the places in the loop.
– M0 : P → N is the initial marking (assignment of tokens to places), and
– τ : T → N×(N∪∞), i.e., τ(t) = (α, β), where t ∈ T , α is the transition execution

time, and β is transition local deadline. We will use the abbreviations τα(t) and τβ(t)
to denote the transition execution time and deadline, respectively. ��

Graphically, a PTPN can be depicted as shown in Fig. 2, where circles represent
places, vertical bars represent transitions, arrows represent arcs, black dots represent
tokens, and integers labeled over arcs represent the weights as defined by F . A place
with more than one outgoing transition is called a choice place and the transitions are
said to be conflicting. For example, p0 is a choice place and t1 and t2 are conflicting
transitions in Fig. 2.

3.2 Problem Formulation

A user specifies the requirements for a real-time embedded software by a set of PTPNs.
The problem we are trying to solve here is to find a construction method by which a set

234 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

t0(1, 3)

t1(2, 6)

t2(2, 4)

t3(3, 9)

2

3 2

3
p0 p1

N1:

2

t4(1, 4) t5(3, 8) t6(3, 8)

2

48

3
p2

p3

p4

6

N2:

Fig. 2. Illustration Example

of PTPNs can be made feasible to execute on a single processor as a piece of software
code, running under given finite memory space and time constraints. The following is a
formal definition of the real-time embedded software synthesis problem.

Definition 2. Real-Time Embedded Software Synthesis
Given a set of PTPNs, an upper-bound on available memory space, and a set of real-time
constraints such as periods and deadlines for each PTPN, a piece of real-time embedded
software code is to be generated such that:

– it can be executed on a single processor,
– it satisfies all the PTPN requirements, including precedence constraints and local

deadlines,
– it satisfies all global real-time constraints, including PTPN (task) periods and dead-

lines, and
– it uses memory no more than the user-given upper-bound. ��

As described in Section 1, there are five issues involved in solving this problem
and the solutions to these issues are integrated into a quasi-dynamic scheduling method,
which will be presented in Section 4. Due to page-limit, we leave out the code generation
part of software synthesis [21].

3.3 Illustration Example

This is a simple toy example to illustrate how our proposed scheduling method works.
The PTPN model for this example is shown in Fig. 2, which consists of two nets
N1 = (P1, T1, F1, M01, τ1) and N2 = (P2, T2, F2, M02, τ2), where P1 = {p0, p1},
P2{p2, p3, p4}, T1 = {t0, t1, t2, t3}, T2 = {t4, t5, t6}, the flow relations F1, F2, and
the firing intervals τ1, τ2 are obvious from the numbers on the arcs and transitions,
respectively. The initial markings M01, M02 are all empty.

4 Quasi-Dynamic Scheduling

To solve the several issues raised in Section 1 for synthesizing real-time embedded
software, a Quasi-Dynamic Scheduling (QDS) method is proposed. QDS employs both

Quasi-Dynamic Scheduling for the Synthesis 235

quasi-static and dynamic scheduling techniques. Details of the QDS algorithm are pre-
sented in Tables 1, 2, 3. Rather than going into the details of each step of the algorithms,
we present the main ideas as follows.

– Data dependent branch executions are statically decomposed into different behavior
configurations and quasi-statically scheduled using EQSS [20,21]. (Step 1 of Table
1)

– For each quasi-statically decomposed behavior configuration, dynamic scheduling
is employed to satisfy the local deadline of each subtask, all precedence constraints
among subtasks, and the global deadline of each task as follows.

• A global system clock is maintained for each schedule to record the elapse of
time on the execution (firing) of each transition. Similarly, a global memory
usage record is kept for each schedule.

• To find a feasible schedule, a reachability tree is constructed in a depth-first
search manner (Step 15 of Table 2), where each node represents a marking that
is associated with a group of enabled transitions and each edge represents the
firing of a selected transition. Exhaustive construction of the tree is avoided
by pruning it under appropriate conditions (heuristics), which are described as
follows.

∗ Negative Laxity: There is not enough time left for at least one of the enabled
transitions to execute until completion. (Steps 4, 5 of Table 3)

∗ Local Deadline Violation Forecast: After a simulation-based analysis of the
group of enabled transitions, if it is found that none of the transitions can be
executed last in the group, then that group of transitions is not schedulable.
(Steps 6–10 of Table 3)

∗ Global Deadline Violation: The system clock has exceeded the global dead-
line of at least one of the PTPN. (Steps 4, 5 of Table 2)

∗ Memory Bound Violation: The memory usage has exceeded a user-given
upper bound. (Steps 6, 7 of Table 2)

• For each node in the tree, not all successor nodes are generated. Some nodes
are not generated under various conditions as described in the following. (Steps
11–25 of Table 3)

∗ If there is at most only one urgent transition, with execution time (τα(t))
same as its remaining time (ρ(t)) (i.e., τα(t) = ρ(t) → zero laxity), then
only one successor node is generated.

∗ All transitions whose execution can be deferred such that even if they are
the last ones to execute among the currently enabled transitions, they will
still satisfy their respective deadlines, then their corresponding nodes are
not generated. This heuristic is applied provided some successor node can
be generated.

Some advantageous features of QDS are as follows.

– No need ofWCET analysis:After quasi-dynamic scheduling, we have total execution
time for each system schedule, which is smaller than the total worst-case execution
time (WCET) of all the transitions in that schedule.

236 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

Table 1. Quasi Dynamic Scheduling

QDS(S, μ, ψ)
S = {Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, . . . , n};
μ: integer; // maximum memory
ψ: global real-time constraints; // periods, deadlines, etc.
{

m = EQSS(S, μ, H); // m = |H|, H: EQSS schedules [21] (1)
for(j = 0; j < m; j + +) { (2)

G = initial group(H, j); (3)
if(schedule tree(H, G, S, ψ, μ)) output(H, j); // refer to Table 2 (4)
else return Unschedulable Error; (5)

}
}

Table 2. Schedule Tree Traversal in Quasi Dynamic Scheduling

schedule tree(H, G, S, ψ, μ)
H: set of EQSS schedules;
G: group of concurrently enabled transitions;
S: set of PTPN;
ψ: global real-time constraints; // periods, deadlines, etc.
μ: integer; // maximum memory
{

if(choose schedulable(G, G′) == False) return False; (1)
for each transition t ∈ G′ { (3)

STime = t → exec + G → STime; (4)
if (STime > deadline(ψ)) continue; // Global Deadline Violation (5)
SMem = t → mem + G → SMem; (6)
if (SMem > μ) continue; // Memory Bound Violation (7)
G′′ = copy(G); (8)
G′′ → STime = STime; G′′ → SMem = SMem; (9)
fire trans(t); (10)
if (last firing(t)) G′′ = G′′\{t}; (11)
for each transition t′ ∈ successor(t, S) (12)

G′′ = G′′ ∪ {t′}; // add newly enabled transitions (13)
if(G′′ == NULL) return True; // end of schedule (14)
if(schedule tree(H, G′′, S, ψ, μ)) return True; // DFS traversal (15)

}
return False; (16)

}

– Optimal schedules: QDS always generates a set of optimal schedules because all
feasible schedules are explored using the reachability tree.

– Efficient scheduling: QDS uses several different heuristics to avoid searching ex-
haustively in the solution space and these heuristics are proven to be helpful, but
harmless, that is, they do not eliminate any optimal schedule.

Quasi-Dynamic Scheduling for the Synthesis 237

Table 3. Selection of Schedulable Transitions in Quasi Dynamic Scheduling

choose schedulable(G, G′)
G: group of concurrently enabled transitions, G′: group pointer
{

G3 = G; G4 = NULL; // G1, G2, G3, G4 : pointers to group of transitions (1)
while(True) { (2)

G1 = G2 = NULL; (3)
for each transition t ∈ G3 { // check remain time > execution time (4)

if(t → remain < t → exec) return False; (5)
Gtime += t → exec; (6)

} // end of for
for each transition t ∈ G3 { // divide G3 into two subgroups: G3 = G1 ∪ G2 (7)

if(t → remain >= Gtime) G1 = G1 ∪ {t}; (8)
else G2 = G2 ∪ {t}; } // end of for (9)

if (G1 == NULL) return False; // no last one to fire, so stop building node (10)
else if (comp group(G1, G3)) { // G1 == G3? (11)

G′ = G3; (12)
return True; } (13)

else { // choose the transitions which will fire next time (14)
G3 = NULL; (15)
Gtime = 0; (16)
for each transition t ∈ G2 Gtime += t → exec; (17)
for each transition t ∈ G1 { (18)

Gtime′ = Gtime + t → exec; (19)
for each transition t′ ∈ G2 { (20)

if (t′ → remain >= Gtime′) { G3 = G3 ∪ {t}; break; } } } (21)
G3 = G2 ∪ G3; (22)
if (comp group(G3, G4)) { (23)

G′ = G3; return True; } (24)
G4 = G3; } // end else (25)

} // end of while
}

– Multi-objective optimizations: Since both time and memory constraints are consid-
ered during scheduling, QDS allows a user to easily optimize the resulting schedules
in terms of either shortest schedule time or smallest memory usage. Trade-offs are
inevitable between these two objectives, and QDS leaves such trade-off analysis to
the user.

– All issues solved: All the issues presented in Section 1 are solved by QDS.

Limitations of QDS are as follows.

– Predefined transition parameters: Execution time and local deadlines must be user
given or derived from some analysis of the software code represented by a transition.

– Interrupt handling: QDS must be extended to handle interrupts. This part of the work
is still ongoing and the basic idea is to include the set of allowable interrupts to the
parameters of each transition and to consider the worst-case of interrupts arriving

238 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

t0(1, 3) t1(2, 6) t3(3, 9)

2 3

p0 p1

R11:

2

〈t40, t21, t33〉

t0(1, 3) t2(2, 4) t3(3, 9)

3 2

p0 p1

R12:

2

〈t30, t2, t3〉

t4(1, 4) t5(3, 8) t6(3, 8)

2

48

3
p2

p3

p4

6

R21:

〈t24, t5, t26〉

Fig. 3. EQSS schedules for Illustration Example

during the execution of each transition. Some heuristics can be applied here to avoid
obtaining too large an estimate.

– Different periods and deadlines: Currently, in QDS it is assumed that all PTPN have
the same periods and deadlines. This restriction can be easily removed by scheduling
a time slot that spans the least common multiple of all periods.

– Different phases (arrival times): QDS cannot handle different phases or arrival times
of PTPN. Currently, it is assumed that they all arrive at the same time.

To illustrate how QDS works, we use the running illustrative example given in Fig. 2.
First of all, EQSS is applied to the two PTPN. The resulting conflict-free components and
corresponding schedule for each of those components are given in Fig. 3. There are totally
three such components: R11 and R12 for N1 and R21 for N2. But, the EQSS schedule
for each component has some degree of choices in the repeated firings, for example in
the schedule for R11, 〈t40, t21, t33〉, it can also be scheduled as 〈t20, t1, t3, t20, t1, t3〉. QDS
explores this degree of choices for satisfying the local deadlines and global deadlines of
each system configuration, where a system configuration is a combination of one conflict-
free component from each PTPN. Thus, there are totally two system configurations for
this example, namely {R11, R21} and {R12, R21}.

On applying QDS to this example, we found that it is indeed schedulable and satisfies
all local and global deadlines. Though there are two reachability trees for the two system
configurations, we present only one of them for illustration. The reachability tree for
{R12, R21} is presented in a tabular form in Table 4. The first column is the index of
the nodes in the tree and the last column gives the child nodes of the corresponding
node from the first column. G is the group of concurrently enabled transitions in the
marking represented by that node. α is the execution time (earliest-firing time) of each
transition. ρ is the time left before a transition deadline is reached. STime and SMem
are the current global records of system time and memory, respectively. G′ ⊆ G is the
subset transitions that are chosen for possible scheduling in the generation of successor

Quasi-Dynamic Scheduling for the Synthesis 239

Table 4. QDS scheduling for R12 and R21

node G α ρ = β − now STime SMem fireable? fired! next node

0 t0 1 3 0 0 Yes t0 1
t4 1 4 Yes

1 t0 1 3 1 1 Yes t0 2
t4 1 3 Yes

2 t0 1 3 2 2 Yes t0 3
t4 1 2 Yes

3 t2 2 4 3 3 No
t4 1 1 Yes t4 4

4 t2 2 3 4 4 Yes t2 5
t4 1 4 Yes

5 t3 3 9 6 3 No
t4 1 2 Yes t4 6

6 t3 3 8 7 4 Yes t3 7
t5 3 8 Yes

7 t5 3 5 10 2 Yes t5 8
8 t6 3 8 13 14 Yes t6 9
9 t6 3 8 16 7 Yes t6 Schedule Found!

Schedule Time & Memory 19 14

Table 5. EQSS Schedules for Bluetooth M/S Role Switch

PTPN |T | |P | di πi |Q| EQSS Schedules Time

Host A 7 5 45 45 4 A11 = 〈t0, t1, t2, t4, t5, t6〉, [20, 41]
A12 = 〈t0, t1, t2, t4, t7〉 [8, 40]
A13 = 〈t0, t1, t3, t5, t6〉 [18, 34]
A14 = 〈t0, t1, t3, t7〉 [6, 33]

HC/LM A 21 15 45 45 6 A21 = 〈t0, t1, t2, t4, t6, t7, t10, t11, t12, t14〉 [17, 35]
A22 = 〈t0, t1, t3, t5, t6, t8, t10, t14〉 [15, 29]
A23 = 〈t0, t1, t2, t4, t6, t7, t10, t11, t13, t15, t16, t18〉 [20, 40]
A24 = 〈t0, t1, t2, t4, t7, t11, t13, t15, t16, t18〉 [18, 37]
A25 = 〈t0, t1, t2, t4, t6, t7, t10, t11, t13, t15, t17, t19, t20〉 [21, 42]
A26 = 〈t0, t1, t3, t5, t6, t9, t15, t17, t19, t20〉 [18, 35]

Host B 7 5 45 45 4 Same as for Host A

HC/LM B 21 15 45 45 6 Same as for HC/LM A

|T |: number of transitions, |P |: number of places, di: PTPN deadline,
πi: PTPN period, |Q|: number of EQSS schedules.

nodes. The 8th column consists of the actual transitions that are fired and thus also
gives the schedule that is generated by QDS. At the end of Table 4, it is found that the
system configuration is schedulable. The total time and memory used are 19 time units
and 14 memory units, respectively. Similarly, when QDS is applied to the other system
configuration {R11, R21}, it is schedulable and the total time and memory used are 28
time units and 18 memory units, respectively.

240 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

Fig. 4. PTPN model of Host A
in Bluetooth M/S switch Fig. 5. PTPN model of HC/LM A in Bluetooth M/S switch

5 Application Example

The QDS method for software synthesis was applied to several real-world applications
such as ATM virtual private network scheduling, Bluetooth wireless communication
protocol, motor speed control system, and medic-care system. For purpose of illustration,
we describe one of the examples, which is a real-time embedded software driver for
the master-slave role switch between two wireless Bluetooth devices. In the Bluetooth
wireless communication protocol [4], a piconet is formed of one master device and seven
active slave devices.

In our PTPN model of an M/S switch between two devices A and B, there are totally
four Petri nets as follows. Host of device A as shown in Figure 4, Host Control / Link
Manager (HC/LM) of device A as shown in Figure 5, host of device B similar to that
for A, and HC/LM of device B similar to that for A. Timings for the transitions are
allocated as follows. A Bluetooth device times out after 32 slots of 625μs each, which
is totally 0.02 second. Thus in our model, we take 0.01 second as one unit of time.

The proposed QDS algorithm (Table 1), was applied to the given system of four
PTPN. First, EQSS is applied. The results of EQSS scheduling are given in Table 5.

Quasi-Dynamic Scheduling for the Synthesis 241

Table 6. QDS scheduling for A11 and A25

node G α ρ = β − now STime SMem fireable? fired! next node

0 t1,0 2 4 0 0 No
t2,0 2 6 No
t2,6 1 2 Yes t2,6 1

1 t1,0 2 3 1 1 No
t2,0 2 5 No
t2,10 1 1 Yes t2,10 2

2 t1,0 2 2 2 0 Yes t1,0 3
t2,0 2 4 No

3 t1,1 2 4 4 1 No
t2,0 2 2 Yes t2,0 4

4 t1,1 2 2 6 2 Yes t1,1 5
t2,1 2 4 No

5 t1,2 1 3 8 2 No
t2,1 2 2 Yes t2,1 6

6 t1,2 1 1 10 2 Yes t1,2 7
t2,2 2 4 No

7 t2,2 2 3 11 2 Yes t2,2 8
t1,4 2 5 No

8 t2,4 1 2 13 2 Yes t2,4 9
t1,4 2 3 No

9 t1,4 2 2 14 2 Yes t1,4 10
t2,7 2 5 No

10 t2,7 2 3 16 2 Yes t2,7 11
t1,5 12 24 No

11 t2,11 2 5 18 2 Yes t2,11 12
t1,5 12 22 No

12 t2,13 3 5 20 2 Yes t2,13 13
t1,5 12 20 No

13 t2,15 1 2 23 2 Yes t2,15 14
t1,5 12 17 No

14 t2,17 2 3 24 2 Yes t2,17 15
t1,5 12 16 No

15 t2,19 1 2 26 2 Yes t2,19 16
t1,5 12 14 No

16 t1,5 12 13 27 2 No
t2,20 1 1 Yes t2,20 17

17 t1,5 12 12 28 1 Yes t1,5 18
18 t1,6 1 1 40 1 Yes t1,6 Schedule Found!

Schedule Time & Memory 41 2

The last column in Table 5 gives the best-case and worst-case execution times of each
net EQSS schedule. Further, reachability trees were constructed for all the 24 different
configurations. All deadlines and periods are given as 45 time units. For illustration
purpose, the application QDS to one of the configurations {A11, A25} is given in Table
6, which has a schedule time of 41 time units and memory usage of 2 memory units. It
is finally derived that the system is schedulable.

6 Conclusion

No more workarounds are needed when both local and global deadlines are to be satisfied
because quasi-dynamic scheduling (QDS) has solved this problem in the context of real-
time embedded software synthesis. QDS has integrated static and dynamic scheduling to
efficiently derive an optimal schedule time or memory based on some simple heuristics.

242 P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee

Application examples show that we can avoid the worst case analysis when QDS can
used for scheduling. Through a real-world example on the master/slave role switch
between two wireless Bluetooth devices, we have shown the feasibility of our approach.
In the future, we plan to extend QDS in several ways: to handle dissimilar periods and
deadlines, to handle interrupts during scheduling, and to estimate transition parameters
such as execution time.

References

1. K. Altisen, G. Gössler, A. Pneuli, J. Sifakis, S. Tripakis, and S. Yovine. A framework for
scheduler synthesis. In Real-Time System Symposium (RTSS’99). IEEE Computer Society
Press, 1999.

2. F. Balarin and M. Chiodo. Software synthesis for complex reactive embedded systems. In
Proc. of International Conference on Computer Design (ICCD’99), pages 634 – 639. IEEE
CS Press, October 1999.

3. F. Balarin and et al. Hardware-software Co-design of Embedded Systems: the POLIS ap-
proach. Kluwer Academic Publishers, 1997.

4. J. Bray and C. F. Sturman. Bluetooth: Connect Without Cables. Prentice Hall, 2001.
5. J.-M. Fu, T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen. Hardware-software timing coverification of

distributed embedded systems. IEICE Trans. on Information and Systems, E83-D(9):1731–
1740, September 2000.

6. C.-H. Gau and P.-A. Hsiung. Time-memory scheduling and code generation of real-time
embedded software. In Proc. of the 8th International Conference on Real-Time Computing
Systems and Applications (RTCSA’02, Tokyo, Japan), pages 19–27, March 2002.

7. P.-A. Hsiung. Timing coverification of concurrent embedded real-time systems. In Proc. of
the 7th IEEE/ACM International Workshop on Hardware Software Codesign (CODES’99),
pages 110 – 114. ACM Press, May 1999.

8. P.-A. Hsiung. Embedded software verification in hardware-software codesign. Journal of
Systems Architecture — the Euromicro Journal, 46(15):1435–1450, December 2000.

9. P.-A. Hsiung. Hardware-software timing coverification of concurrent embedded real-time
systems. IEE Proceedings — Computers and Digital Techniques, 147(2):81–90, March 2000.

10. P.-A. Hsiung. Synthesis of parametric embedded real-time systems. In Proc. of the Interna-
tional Computer Symposium (ICS’00), Workshop on Computer Architecture (ISBN 957-02-
7308-9), pages 144–151, December 2000.

11. P.-A. Hsiung. Formal synthesis and code generation of embedded real-time software. In Proc.
of the 9th ACM/IEEE International Symposium on Hardware Software Codesign (CODES’01,
Copenhagen, Denmark), pages 208 – 213. ACM Press, April 2001.

12. P.-A. Hsiung. Formal synthesis and control of soft embedded real-time systems. In Proc. of
IFIP International Conference on Formal Techniques for Networked and Distributed Systems
(FORTE’01), pages 35–50. Kluwer Academic Publishers, August 2001.

13. P.-A. Hsiung and C.-H. Gau. Formal synthesis of real-time embedded software by time-
memory scheduling of colored time Petri nets. In Proc. of the Workshop on Theory and
Practice of Timed Systems (TPTS’2002, Grenoble, France), Electronic Notes in Theoretical
Computer Science (ENTCS), April 2002.

14. P.-A. Hsiung, T.-Y. Lee, and F.-S. Su. Formal synthesis and code generation of real-time
embedded software using timed quasi-static scheduling. In Proc. of the 9th Asia-Pacific
Software Engineering Conference (APSEC), pages 395–404. IEEE CS Press, December 2002.

15. B. Lin. Efficient compilation of process-based concurrent programs without run-time schedul-
ing. In Proc. of Design Automation and Test Europe (DATE’98), pages 211 – 217. ACM Press,
February 1997.

Quasi-Dynamic Scheduling for the Synthesis 243

16. B. Lin. Software synthesis of process-based concurrent programs. In Proc. of Design Au-
tomation Conference (DAC’98), pages 502 – 505. ACM Press, June 1998.

17. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In 22th Annual Symposium on Theoretical Aspects of Computer Scoence (STACS’95), volume
980, pages 229 – 242. Lecture Notes in Computer Science, Springer Verlag, March 1995.

18. P. Merlin and G.V. Bochman. On the construction of submodule specifications and communi-
cation protocols. ACM Trans. on Programming Languages and Systems, 5(1):1 – 75, January
1983.

19. W.-B. See, P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen. Modular mobile dispatching system
(MMDS) and logistics. In Proc. of the 2002 Annual Conference on National Defense Inte-
grated Logistics Support (ILS), pages 365–371, August 2002.

20. M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Synthesis of embedded
software using free-choice Petri nets. In Proc. Design Automation Conference (DAC’99).
ACM Press, June 1999.

21. F.-S. Su and P.-A. Hsiung. Extended quasi-static scheduling for formal synthesis and code
generation of embedded software. In Proc. of the 10th IEEE/ACM International Symposium
on Hardware/Software Codesign (CODES’02, Colorado, USA), pages 211–216. ACM Press,
May 2002.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 244–253, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Framework-Based Development of
Embedded Real-Time Systems

Hui-Ming Su and Jing Chen

Department of Electrical Engineering
National Cheng Kung University, Tainan city, Taiwan, R.O.C.

ken@rtpc06.ee.ncku.edu.tw,jchen@mail.ncku.edu.tw

Abstract. This paper presents a framework-oriented approach to efficient de-
velopment of embedded real-time systems. A framework is an architectural
pattern in development approaches that, based on object-oriented techniques,
provides a reusable template to extend applications. The creation of framework
is quite difficult although a well-defined framework is powerful in significantly
improving the productivity of developers. The basic concept underlying this
approach is that applications can be developed effectively through integrating
domain-specific design patterns. The presented framework is developed with
three mature design patterns, namely task scheduling pattern, ceiling priority
pattern and static allocation pattern, as a basis to address the common issues
such as task scheduling and resource management in the development of em-
bedded real-time systems. The task scheduling pattern provides a priority-based
scheduling mechanism. The ceiling priority pattern implements the ceiling pri-
ority protocol to resolve the problems of unbounded blocking while the static
allocation pattern provides a mechanism on memory optimization for objects
and message queues used by tasks. Developers using this framework simply
need to add required application-specific classes and customize some compo-
nent classes according to the design specifications.

1 Introduction

While applications based on embedded real-time system products are being widely
used today, successful deployment of embedded real-time systems and applications
depends on reduced development cost and time-to-market in which the degree of
reuse and tailorability are important factors. The main issues in developing embedded
real-time systems arise from the complexity of managing data resources and sched-
uling of tasks with interaction. Scheduling tasks with timing constraints has been the
most important issue. Although cyclic executive is one popular approach to address
both the issues of scheduling and resource contention at the same time, priority-based
scheduling has been a widely accepted approach, especially when concerns such as
flexibility, reusability and reconfigurability are taken into account [1]. Priority-based
task scheduling relies on proper priority assignment. The priority of a task can be
fixed and remains unchanged during its execution such as Rate Monotonic Schedul

Framework-Based Development of Embedded Real-Time Systems 245

ing (RMS) [2]. In dynamic priority systems, a task is assigned its priority at run-time
based on some strategy such as Earliest Deadline First (EDF) [2].

When there are interactions among tasks, more complicated issues arise. For ex-
ample, priority inversion occurs when sharing resources in multitasking environment
[19]. If a low priority task locks a resource and then is preempted by a high priority
task that needs the locked resource, the high priority task it is blocked from executing
by the low priority task. Worse, tasks with intermediate priority may preempt the low
priority task thereby lengthens the blocking time experienced by the blocked high
priority task. This blocking, if not bounded can cause missing deadline. The famous
priority-inheritance protocol is developed to solve this problem [3]. As another ex-
ample, heap fragmentation is one problem in managing data resources. Fragmentation
can arise when different sized blocks are allocated and released asynchronously from
a heap. Overtime, the free space on the heap might fragment into small blocks. It
might lead to allocation failures when a request is made which exceeds the size of the
largest available block even though more than enough memory is available.

Task scheduling, unbounded blocking and memory fragmentation are just some of
the common issues in developing embedded real-time systems. There have been so-
lutions proposed to individually address these problems. In this paper, a framework-
based approach is presented as an integrated resolution. A framework [4] is an archi-
tectural pattern that provides an extensible template for applications within a domain.
The basic concept underlying this framework-based approach is that applications can
be developed effectively through integrating domain-specific design patterns. Within
the OO arena, an object-oriented application framework (OOAF) is a reusable, “semi-
complete” application that can be specialized to produce customized applications [5].
OOAFs are application-domain-specific reuse methods proposed for general-purpose
systems. However there are relatively few works on applying framework to the de-
sign of an embedded real-time system.

This paper is organized into the following sections. Section 2 discusses some re-
lated works. The concept of our framework construct is presented in Section 3 by
elaborating the framework-based design approach with pattern views and class views.
Section 4 describes briefly how to apply the framework construct. Finally, Section 5
gives a summary of this work.

2 Related Works

Framework is not a new idea. There have been quite a few literatures on various as-
pects of framework. However, there appears relatively few works on applying
framework to the development of embedded real-time systems. In the following, three
frameworks proposed for real-time systems are discussed.

 The Object-Oriented Real-Time System Framework (OORTSF) presented by
Kuan, See and Chen [6] is a relatively simple framework-based developing environ-
ment. Their framework construct was built upon the classes used in real-time applica-
tion development without notions of design patterns. Since no design patterns specific
to developing real-time system application were proposed, it might result in difficult

246 H.-M. Su and J. Chen

comprehension of the collaboration among the classes. In addition, applying
OORTSF in developing a system might introduce complication when the design pat-
terns are unclear. The flexibility of specifying real-time objects, the ease of using
OORTSF, the benefits of applying OORTSF, and other issues related to OOAFs ap-
peared unclear from the work.

RTFrame is an application framework solution developed especially for real-time
system design by Hsiung [7]. It consists of five components, namely Specifier, Ex-
tractor, Scheduler, Allocator, and Generator. Together with RTFrame, several design
patterns for developing real-time systems were presented. It therefore has a clear
process for designing an embedded real-time system. However, the dependency rela-
tionship between those components needs to be clearly identified. The circumstance
emerges easily when using RTFrame to design a new application and developers must
be careful in coping this issue.

Hsiung et al presented VERTAF through integration of three technologies, namely,
object-oriented technology, software component technology and formal verification
technology [8]. It uses formal verification technology for model check in design
phase to guarantee the system correctness. VERTAF is an improvement of RTFrame.
However, the same issue exists as in RTFrame.

3 Framework-Based Design

A framework is rendered as a stereotypically package in UML [4]. A framework is
composed of a set of elements, including, but certainly not limited to, classes, inter-
faces, use cases, components, nodes, collaborations, and even other frameworks.
Frameworks have been in many cases target technology for developing embedded
real-time systems. However, based on the fact that embedded systems are application-
specific, it is not easy, if not impossible, to develop a general framework that can be
applied to all kinds of embedded real-time systems. The framework proposed in this
paper is designed for the environment of single processor running a multitasking
preemptive kernel and employing priority-based scheduling. It is presented in the
following from two structural aspects: the pattern view and the class view.

3.1 Pattern View

A pattern is defined as a solution to a problem that is common to a variety of contexts
in software development [4]. The pattern view presents the framework that encom-
passes a collection of patterns that work together to solve the problems in designing
embedded real-time systems. Three patterns are developed in the framework pro-
posed here: task scheduling pattern, ceiling priority pattern and static allocation pat-
tern. The task scheduling pattern is designed for priority-based task scheduling. It is
able to process non-periodic tasks and tasks with dynamic priority assignment. The
ceiling priority pattern addresses unbounded blocking with the ceiling priority proto-
col [9]. The static allocation pattern provides a memory optimization mechanism.

Framework-Based Development of Embedded Real-Time Systems 247

Certainly, there are many kinds of patterns for designing a system. What we proposed
here is developed specifically for developing embedded real-time systems.

Fig.1. Task Scheduling Pattern

3.1.1 Task Scheduling Pattern

The task scheduling pattern (Fig.1) assumes a priority-based scheduling policy of
either static priority assignment or dynamic priority assignment is employed. The
priority decider class is designed for decide dynamic priority at run time. The ready
task with the highest priority will then be selected and dispatched. Developer can
implement his particular scheduling policy by overriding the method of this class.

As shown in Fig. 1, there is another auxiliary class, namely acceptor class in this
pattern. The acceptor class is designed for scheduling non-periodic tasks with a task
acceptance test which can be overridden by developer supplied method. The basic
task acceptance test checks whether or not a task can be scheduled to meet its dead-
line by simply comparing the available system slack time based on current system
workload to the worst-case execution time of that task [1]. The task will be admitted
if the system has enough remaining capacity, otherwise the task is denied and an error
handler will be invoked.

3.1.2 Ceiling Priority Pattern

The ceiling priority pattern (Fig. 2) in fact implements the ceiling priority protocol
which is one member of the well-known priority inheritance protocol family devel-
oped to address the issue of unbounded blocking due to resource sharing among

Task Scheduling Pattern
Scheduler

Acceptor

Task manager
Task

1
1 1

Task Scheduler

CurrentTaskType
SchedulePolicy

PriorityAssignment()
TaskTypeSense()

Acceptor

AcceptanceTest()

ErrorHandler

SignalID

Recovery()

1

1

1
1

PriorityDecider

PriorityDecide()

TaskManager Active Object
1

1

1

1

1

248 H.-M. Su and J. Chen

tasks. Its basic idea is that each resource is associated with an attribute called its pri-
ority ceiling and the task allocated this resource executes at the priority of its priority
ceiling [1]. A task thus has two related attributes: nominal priority and current prior-
ity. The nominal priority of a task is its normal executing priority which is assigned
according to a certain static priority assignment rule such as rate monotonic schedul-
ing (RMS) [2] or deadline monotonic scheduling (DMS) [10]. The current priority of
a task is the actual priority at which the task is executing. The value of the priority
ceiling attribute of a resource is the highest nominal priority of any task that would
use that particular resource. The current priority of a task is changed to the priority
ceiling of a resource the task has locked as long as the latter is higher.

Fig. 2. Ceiling Priority Pattern

When a task wants to enter a critical section, it needs to request locking a resource
semaphore to protect its critical section. The locking service of resource management
module sets the current priority of this task to the priority ceiling before task execu-
tion proceeds. Since the priority ceiling is the highest nominal priority of all tasks that
use the same resource, the scenario is that once a task is granted locking a semaphore
it will not be blocked by lower priority tasks. In addition, tasks with priority higher
than the running task’s but no higher than the priority ceiling will be blocked. When
the task exits from a critical section and unlocks the semaphore, its current priority
resumes to the previous value (if there is one). The ceiling priority pattern identifies
interacting objects and implements the ceiling priority protocol to realize the above
scenario. The pattern can be extended when the priority of task is dynamically as-
signed and the concept of dynamic priority ceiling is applied [11].

3.1.3 Static Allocation Pattern

The underlying concept of static allocation pattern (Fig.3) is to pre-allocate all objects
and create the maximum number of message objects when the system starts up. If a

Ceiling Priority Pattern
Task Scheduler

Active Object Semaphore Resource

Scheduler

Task

Semaphore Resource

1

*

1 * 1 1

NominalPriority
CurrentPriority

CeilingPriority

Lock()
Unlock()

Framework-Based Development of Embedded Real-Time Systems 249

sending object needs to communicate with another object, it must send a request to
the message manager to get a free message object. The receiving object returns the
message object to the message manager after it is consumed. No other memory object
is allocated after the system is initialized to run and no object is deleted before the
system is shutdown. Because memory is never released, heap fragmentation will not
occur. In addition, system overhead is minimized during run-time because there is no
need to invoke object constructors.

If a task wants to request a message, it must acquire a free message object from the
message queue object. The message queue class is designed for messages manage-
ment. This service accepting message request of a task will check whether any free
message object is available or not. The state of the first free message object will be set
to a flag marking it has being assigned and its pointer will be returned if the first free
message is available. Otherwise, NULL will be returned. If a message is consumed, a
service of the message queue object will be requested to release this message object.

Fig. 3. Static Allocation Pattern

3.2 Class View

The framework provides classes such as timers, threads, semaphores, state machines,
states, events, and a set of operating system abstractions. These classes have well-
defined structural and stable relationships. Designer can reuse these classes of the
framework by inheriting or associating. The classes implementing the above patterns
and others are described below. The names are prefixed by FW which stands for
FrameWork.

In embedded real-time systems, a task is a thread which reacts to events. It is im-
plemented via instantiating an active class [12], which is associated with a message
queue. The supper class of an active class is called FWTask. An active class inherits
this class will has a thread and a private message queue. Attributes associated with an
active class of a task are nominal priority, current priority, relative deadline, period,
worst-case execution time and task type. The nominal priority is the task’s assigned
priority when it is released. The current priority is the task’s priority at a particular
time instant of interest. The relative deadline, worst execution time and period specify
the basic timing properties of the task. The type of a task can be periodic or non-

Static Allocation PatternMain Object

Communicating Object Message Queue Message Object

Main

Communication Object

Resource Manager
Resource

1

*

1 * 1 *

250 H.-M. Su and J. Chen

periodic. The scheduler will carry out an acceptance test for a non-periodic task. Op-
erations of an active class include suspend, resume, destroy, start, stop, sendEvent,
receiveEvent and dispatchEvent. The first five operations are the operations for sus-
pending, resuming, destroying, starting and stopping a thread. The last three operate
on events for a thread.

An embedded real-time system is usually event-driven. Each task maintains a pri-
vate message queue. It receives messages by the message queue and dispatches mes-
sages to another object. The FWEventQueue class is responsible for the management
of a message queue. Its operations are add, delete, isEmpty, front and rear. The
FWEvent class is the base class for the message. In the context of statecharts, mes-
sages can trigger transitions between states.

Semaphores are used to control access to a shared resource, signal the occurrence
of an event and allow tasks to synchronize their activities. The class FWSemaphor
implements this mechanism. It has an attribute, ceiling priority, which has been de-
scribed earlier. The associated operations are lock and unlock.

The FWAcceptor class is a specific class, which is designed for the acceptance test.
The scheduler calls for the operation of acceptance test acceptTest first when a non-
periodic task arrives. If the deadline can not be met, the error event is asserted and an
error handler is dispatched. The FWPriorityDescider class is designed for dynamic
scheduling policy such as EDF. The operation, priorityDecide is a virtual function for
the designer to implement the application-specific dynamic scheduling policy. These
two classes are designed for implementation of the task scheduling pattern.

The FWTimerManager is responsible for managing the central timer in an embed-
ded real-time system. It is an additional thread that provides timer support for the
application. The application therefore contains at least two threads, one thread for the
application and the other for the timer management. The FWTimerManager class
manages timeout requests and issues timeout events to the application objects. It is a
singleton object in the execution framework. Singleton means only one instance can
be created [12]. The FWTimerManager has a timer that notifies it periodically when-
ever a fixed time interval has passed. At any given moment, the FWTimerManager
holds a collection of timeouts that should be posted to the thread when their time is
up.

Another singleton class is FWMain which stands for the entry point to launch the
application, similar to the main() function for C/C++ language. The FWMain class is
a special case of FWTask. The operations associated with FWMain are initHardware,
initOS, createThread and start. These operations must be invoked in that sequence.
The initHardware and initOS operations are virtual functions for the designer to im-
plement respectively the properties dependent of the selected hardware platform and
operating system. Application tasks are created by the createThread operation. The
start operation set the system into running after constructing the thread of time ticker.

Framework-Based Development of Embedded Real-Time Systems 251

4 Applying Framework

Developers using this framework simply need to add required application-specific
classes and customize some component classes according to the design specifica-
tions. Classes of new objects can be defined using the classes of this framework by
inheritance. In some special cases, developer may need to extend the framework. It
is not difficult to do so because new design patterns can be added without impact
on the three basic patterns.

In general, there are three steps in using this framework-oriented development
process. The first step is defining the tasks and the values of their attributes. The
task scheduling policy is chosen in this step. The second step is designing applica-
tion classes and mapping them into active classes. Classes of new objects are added
to the framework during this step. Third, setting the information related quality of
service and task interaction such as resource sharing. Information provided in this
step will be used to derive attribute values of the active classes.

The three patterns and the component classes mentioned previously have been
implemented using C++ programming language to construct the framework. An
application wizard is currently being implemented. It can guide the developer in
the process of constructing a prototype of the application and producing skeleton
source code including the framework service classes and the application classes.
The developer can then modify the generated code to finish the application devel-
opment.

5 Summary

A framework-oriented approach to efficient developing embedded real-time sys-
tems is presented in this paper. Using framework for system development has dem-
onstrated the benefit in significantly improving the productivity of developers. The
issue concerned by developers is how to build a good framework construct as it is
difficult to devise a single framework adaptable to all kinds of systems. This is the
same in developing embedded real-time systems. The presented framework is com-
posed of three well-defined patterns as a basis specifically for developing embed-
ded real-time systems. The patterns implement mechanisms of priority-based task
scheduling, ceiling priority protocol, and memory optimization. In this framework,
since attributes of classes representing abstraction of the system are fixed, the
operations of classes will bind the behavior of developed system to a predicable
state. Developers using this framework simply need to add required application-
specific classes and customize some component classes according to the design
specifications.

252 H.-M. Su and J. Chen

References

1. Jane W. S. Liu: Real-Time Systems, Prentice-Hall Inc., 2000, ISBN 0-13-099651-3.
2. C. L. Liu, J. W. Layland: Scheduling algorithms for multiprogramming in a hard-real time

environment. Journal of the Association for Computing Machinery, 20(1): 46–61, January
1973.

3. L. Sha, R. Rajkumar, and J. P. Lehoczky: priority Inheritance Protocols, An Approach to
Real-Time Synchronization, IEEE Transactions on Computers, Vol. 39, NO.9, September
1990, pp.1175-1185.

4. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language User Guide,
Addison-Wesley Longman, 1999, ISBN 0-201-57168-4.

5. R. Johnson and B. Foote: Designing reusable classes, Journal of Object-Oriented Pro-
gramming, 1(5): 22–35, June 1988.

6. T. Y. Kuan, W. B. See, S. J. Chen: An object-oriented real-time framework and develop-
ment environment, In Proc. OOPSLA’95 Workshop #18, 1995.

7. P.A. Hsiung: RTFrame: An Object-Oriented Application Framework for Real-time Appli-
cation, Proceedings of the 1998 IEEE, Technology of Object-Oriented Languages, pp.
138-147, 1998.

8. P. A. Hsiung, T. Y. Lee, W. B. See, J. M. Fu, and S. J. Chen, VERTAF: An Object-
Oriented Application Framework for Embedded Real-Time Systems, Proc. of the 5th
IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, pp.
322-329, IEEE Computer Society Press, April 29-May 1, 2002.

9. L. Sha and J. B. Goodenough: Real-Time Scheduling Theory and Ada, IEEE Computer,
Vol.23, No.4, April 1990, pp 53-63.

10. N. Audsley, A. Burns, A. Wellings: Hard Real-Time Scheduling: the Deadline Monotonic
Approach, Proc. of the 8th IEEE Workshop on Real-Time Operating Systems and Soft-
ware, may 1991.

11. M. I. Chen and K. J. Lin: Dynamic Priority Ceiling: A concurrency Control Protocol for
Real-Time Systems, Real-Time System Journal, Vol. 2, No. 4, Nov. 1990, pp.325-346.

12. I-Logix: Code Generation Guide. http://www.ilogix.com. July 2002.
13. B. P. Douglas: Designing real-time systems with UML, parts 1, 2 and 3, Embedded Sys-

tems programming, March-May 1998.
14. B. P. Douglass: Doing hard-time: developing real-time systems with UML, objects,

frameworks, and patterns, Addison-Wesley, 1999, ISBN 0-201-49837-5.
15. B. P. Douglass: REAL-TIME UML: Developing Efficient Objects For Embedded Systems

Secondary Edition, Addison-Wesley Longman, 1999, ISBN 0-201-65784-8.
16. M. Fayad and D.C. Schmidt: Object-oriented application frameworks, Communications of

the ACM, Special Issue on Object-Oriented Application Frameworks, 40(10), October
1997.

17. F. Kon and R.H. Campbell: Dependence Management in Component-Based Distributed
Systems, IEEE Concurrency, January/March 2000(Vol. 8, No. 1), pp 26-36.

18. M. Fowler: UML Distilled: Applying the Standard Object Modeling Language, Addison-
Wesley Longman, 1997, ISBN 0-201-32563-2.

19. M. Gergeleit, J. Kaiser and H. Streich: Checking timing constraints in distributed object-
oriented programs, ACM OOPS Messenger, 7(1):51–58, January 1996.

20. I. Jacobson, G. Booch, J. Rumbaugh: The unified software development process, Addison-
Wesley, 1999, ISBN 0-201-57169-2.

21. Jean J. Labrosse: MicroC/OS-II THE REAL-TIME KERNEL, Miller Freeman, Inc, 1999
ISBN: 0-87930-543-6.

Framework-Based Development of Embedded Real-Time Systems 253

22. Martin Fowler, Kendall Scott: UML Distilled, Second Edition, Addison-Wesley ISBN: 0-
201-65783-X 1999.

23. J. Michael and A. McLaughlin: Real-Time Extension to UML, Dr. Dobb’s Journal De-
cember 1998.

24. R. Martin, D. Richle and F. Buschmanu: Pattern Languages of Program Design 3,
Addison-Wesley Longman, 1999.

25. B. P. Douglass: Real-Time Design Patterns, White Paper, I-Logix. http://www.ilogix.com.
July 2002.

OVL Assertion-Checking of Embedded Software
with Dense-Time Semantics�

Farn Wang1 and Fang Yu2

1 Dept. of Electrical Engineering, National Taiwan University
farn@cc.ee.ntu.edu.tw

2 Institute of Information Science, Academia Sinica, Taiwan
{view,yuf}@iis.sinica.edu.tw

Abstract. OVL (Open Verification Library) is designed to become a
standard assertion language of the EDA (Electronic Design Automa-
tion) industry and has been adopted by many companies. With OVL,
verification process can blended seamlessly into the development cycles
of complex systems. We investigate how to use OVL assertions for the
verification of dense-time concurrent systems. We have designed a C-like
language, called TC (timed C), for the description of real-time system
with OVL assertions between code lines. We explain how to translate
TC programs into optimized timed automata, how to translate OVL
assertions into TCTL (Timed Computation-Tree Logic) formulae, and
how to analyze assertions when not satisfied. The idea is realized in our
translator RG (RED Generator).
In addition, we have developed several new verification techniques
to take advantage of the information coming with OVL assertions
for better verification performance. The new techniques have been
incorporated in our high-performance TCTL model-checker RED 4.0.
To demonstrate how our techniques can be used in industry projects,
we report our experiments with the L2CAP (Logical Link Control and
Adaptation Layer Protocol) of Bluetooth specification.

Keywords: Assertions, specification, state-based, event-driven,
model-checking, verification

1 Introduction

In the last decade, many formal verification tools with proprietary (i.e., com-
mercial or tool-specific) assertion languages have emerged in the industry
[4, 12, 16, 20, 21, 27]. However, as Forster discussed, the lack of standards in as-
sertion languages not only can frustrate engineers but also can create significant
chaos and damage to the healthy progress of verification technology [7]. But what
� The work is partially supported by NSC, Taiwan, ROC under grants NSC 90-2213-

E-001-006, NSC 90-2213-E-001-035, and the by the Broadband network protocol
verification project of Institute of Applied Science & Engineering Research, Acade-
mia Sinica, 2001.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 254–278, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 255

should a standard assertion language look like ? A good assertion language must
blend seamlessly into the development cycles of system designs. In real-world
projects, engineers naturally describe their systems in programming languages
and insert comment lines to assert some intuitive properties between codes, such
as preconditions or post conditions. If a verification tool asks engineers to rewrite
their C-codes in automata descriptions or Petri net descriptions and to make up
some assertions offline of the programming cycle, then the engineers will more
likely be reluctant to accept the tool in fear of extra workload and deadline
misses. Thus, providing a natural method to bridge this gap in the verification
of real-time concurrent systems is one main goal in this paper.

OVL (Open Verification Library) [7, 23] is a new initiative in VLSI industry
for unifying the many commercial EDA (Electronic Design Automation) tools,
by providing a set of predefined specification modules instantiated as assertion
monitors. It is supported by EDA industry companies and donated to Accellera
(an electronic industry standards organization) in anticipation to make OVL an
industry standard. With OVL, engineers can write assertions as comment lines
in their HDL (Hardware Description Language [6, 26]) programs.

OVL was originally designed for the assertions of VLSI circuits, which are
highly synchronous discrete-time systems. In the cycle-based environment, they
have no notion of time within a clock cycle and evaluate the logic between state
elements and/or ports in the single slot. Since each logic element is evaluated
only once per cycle ,with the coming of multi-multimillion-gate SOC (System-
on-a-Chip) [25] in the new century, we believe that clock skews may eventually
invalidate the synchrony assumptions. In the event-based environment, opposite
to the cycle-based environment, a design element may be evaluated several times
in a cycle because the different arrival time of inputs and the feedback of signals
from downstream design elements and this provides a highly accurate enviroment
[25]. However, today’s industry projects usually only use static timing analysis
[22, 24] to guarantee real-time properties Thus it will be of great interest if we
can extend OVL assertions to dense-time model in formal verification.

Such an extension will also allow embedded system engineers to take advan-
tage of verification technology with minimum effort in their development cycles.
And that is also the motivation of this research. To blend seamlessly into the
development cycles, it is important that system designs can be described in a
format close to programming languages. In section 5, we define a new language,
called Timed C (TC), with C-like syntax and OVL assertions as comment lines.
TC is designed for efficient mechanical translation from C-programs into input
languages of our TCTL model-checker RED 4.0 for formal verification. The input
to RED 4.0 consists of a timed automata [3] (with synchronization channels [18])
and a TCTL (Timed Computation-Tree Logic) [1] specification. In section 5, we
discuss how to mechanically translate TC programs to optimized (for verification
performance) timed automata with synchronizers.

In section 7, we present four types of OVL assertions and demonstrate how
to translate these OVL assertions, with dense-time semantics, to TCTL formu-
lae. In some cases, we have to create auxiliary processes and state-variables to

256 F. Wang and F. Yu

monitor the satisfaction of OVL assertions. We have realized all these ideas in
a translator, RG (RED Generator), which translates TC programs into input
format to RED [28, 29, 30, 31, 32, 33], a high-performance TCTL model-checker
for timed automata.

The positions of OVL assertions in a program may also shed light on the
possibility of verification performance enhancement. If an assertion is declared
specifically in a process’ program, usually it means that the assurance of the
assertion is strongly linked to the behavior of this process. Then by carefully
abstracting out state information of other processes, state-space representation
can be significantly simplified and performance improvement in verification can
be obtained. This intuition has led us to the design of several localized abstrac-
tion functions, which are explained in section 8. Unlike the previous work on
approximate model-checking [35], our new abstraction technique is specially tai-
lored to take advantage of the information hidden in OVL assertions. And our
experiment with this new technique of localized abstract reduction indeed shows
that performance improvement can be gained in verification with the information
hidden in OVL assertions.

To demonstrate the usefulness of our techniques for real-world projects, in
section 9, we have experimented to model and verify the L2CAP (Logical Link
Control and Adaptation Layer Protocol) of Bluetooth specification [10]. Blue-
tooth, a wireless communication standard, has been widely adopted in industry.
We model two devices, communicating with the L2CAP of Bluetooth, in TC
and carry out experiments to verify various properties between the two devices.
The experiments are by themselves important because of the wide acceptance
and application of the protocol.

Moreover, since OVL assertions are written in between code lines, their dis-
satisfaction may provide valuable feedback for code debugging and direction to
system refinement. When there are more than one assertions in a TC program
and some of them are not satisfied, RED is capable of identifying which asser-
tions are not satisfied. It is also possible to use the counter-example generation
capability of RED to better understand the system behavior and diagnose the
design bugs.

The remainder of this paper is organized as follows. Section 2 discusses the
verification tool framework. Section 3 and 4 introduce the input language to
RED 4.0, i.e., synchronized concurrent timed automata (SCTA) and TCTL. Sec-
tion 5 discusses the language of TC(Timed C) and algorithms for translating
TC constructs into optimized SCTA subgraphs. Section 6 describes OVL asser-
tions. Section 7 discusses how to translate OVL assertions into TCTL formulae.
Section 8 introduces our localized abstraction technique specially tailored for
performance verification of OVL assertions. Section 9 reports our verification
experiments with L2CAP. Section 10 concludes the paper with remarks on fu-
ture plan of the work.

Formal semantics of SCTA and TCTL can be found in appendices A and
B respectively. An example of TC program with OVL assertion and its corre-
sponding optimized SCTA can be found in appendices ?? and ?? respectively.

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 257

RED

Generator

TCTL
SCTA Generator

SCTA Optimizer

RG:Red Generator

Debug and

Refine Systems

Verified Real−Time Systems

TC program/OVL assertion

Modified Systems

"Not satisfied" with feedback

SCTA & TCTL formulae

"Satisfy"

Fig. 1. Software architecture

2 Verification Tool Framework

The software architecture of our verification framework is shown in figure 1. On
the top, users describe the system designs in our C-like language, TC, with OVL
assertions as comments between code lines. After parsing and analyzing a TC
program, our translator RG generates a file, in the format of input language
to our TCTL model-checker RED, with an SCTA and a TCTL formulus. An
SCTA includes a set of process automata communicating with each other with
binary synchronizers [18] and global variables. The global automaton for the
whole system is the Cartesian product of the process automata. Some process
automata describe the system behaviors while others monitor the satisfaction of
the OVL assertions.

The TCTL formulus is derived from the OVL assertions. If there are more
than one assertions, then their corresponding TCTL formulae conjunct together
to construct the final TCTL formulus.

We use two phases in the generation of SCTAs. The first phase generates
an SCTA, which is further optimized in the second phase. The optimization
program used in the second phase can also be used independently to help users
of RED in optimizing their system descriptions.

After the SCTA and TCTL-formulus are generated, users may feed them
to RED [28, 29, 30, 31, 32], our TCTL model-checker. Our RED is implemented
with the new BDD-like data-structure of CRD (Clock-Restriction Diagram) [30,
31, 32, 33]. If RED says that the SCTA does not satisfy the TCTL formulus,
RED can identify among the many OVL assertions which ones are not satisfied

258 F. Wang and F. Yu

T0

T1

T5

C1

C0

C3

?TRAIN LEAVE

?TRAIN NEAR

(a) monitor (b)gate controller

lα := 1;

!TRAIN NEAR

lα := 1;
γ1 ≥ 100

T4 : γ1 ≤ 0

T2 : γ1 ≤ 300

T3 : γ1 ≤ 10

γ1 ≥ 100

γ1 ≥ 5

!TRAIN LEAVE γ1 ≥ 0

gate status:=DOWN;

γ2 := 0;

C2 : γ2 ≤ 50

γ2 ≥ 20

C4 : γ2 ≤ 50

γ2 ≥ 0

gate status:=NOT DOWNN;

γ2 := 0;γ1 := 0; train status:=NOT ATCROSSING;

γ1 := 0; train status:=ATCROSSING;

γ1 := 0;

γ1 := 0;

Fig. 2. Process automata of the railroad crossing system

and may generate counter-example traces in some situations. Users can use this
information as feedback to fix bugs and re-execute this verification cycle. On the
other hand, if RED says the SCTA satisfies the TCTL formulus, the correctness
of the system design is formally confirmed.

3 Synchronized Concurrent Timed Automata (SCTA)

We use the widely accepted model of timed automata [3] with synchronizers
[18]. A timed automaton is a finite-state automaton equipped with a finite set
of clocks which can hold nonnegative real-values. At any moment, the timed
automaton can stay in only one mode (or control location). In its operation,
one of the transitions can fire when the corresponding triggering condition is
satisfied. Upon firing, the automaton instantaneously transits from one mode to
another and resets some clocks to zero. In between transitions, all clocks increase
their readings at a uniform rate.

In our input language, users can describe the timed automata as a syn-
chronized concurrent timed automata (SCTA). Such an automaton is in turn
described as a set of process automata (PA). Users can declare local (to each
process) and global variables of type clock, integer, and pointer (to identifier
of processes). Boolean conditions on variables can be tested and variable values
can be assigned. Process automata can communicate with one another through
binary synchronizations. Each transition (arc) in the process automata is called
a process transition.

In figure 2, we have drawn two process automata, in a railroad crossing
system. One process is for train-monitor and one for the gate-controller.

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 259

The monitor uses a local clock γ1 while the controller uses γ2. In each mode, we
may label an invariance condition (e.g., γ1 ≤ 300). Along each process transition,
we may label synchronization symbols (e.g. !TRAIN NEAR), a triggering condition
(e.g., γ1 ≥ 100), and assignment statements (e.g., γ1 := 0;). When the monitor
detects that a train is approaching the crossing, it sends out a !TRAIN NEAR
signal to the controller. On receiving the signal, the train will reach the crossing
in 100 to 300 time units while the gate will be lowered down in 20 to 50 time
units.

A process transition may not represent a legitimate global transition (LG-
transition). Only LG-transitions can be executed. Symbols TRAIN NEAR and
TRAIN LEAVE, on the arcs, represent channels for synchronizations. Synchroniza-
tion channels serve as glue to combine process transitions into LG-transitions.
An exclamation (question) mark followed by a channel name means an output
(input) event through the channel. For example, !TRAIN NEAR means a sending
event through channel TRAIN NEAR while ?TRAIN NEAR means a receiving event
through the same channel. Any input event through a channel must match, at
the same instant, with a unique output event through the same channel. Thus, a
process transition with an output event must combine with another process tran-
sition (by another process) with a corresponding input event to become an LG-
transition. For example, in figure 2, process transitions T1 −→ T2 and C1 −→ C2
can combine to be an LG-transition while T1 −→ T2 and C2 −→ C3 cannot. Also
process transition T2 −→ T3 by itself can constitute an LG-transition since no
synchronization is involved. The formal semantics of SCTA is left in appendix A.

4 TCTL (Timed CTL)

TCTL (Timed Computation-Tree Logic) [1] is a branching-time temporal logic
for the specification of dense-time systems. An interval I specifies a continuous
time segment and is denoted as the pair of (open) starting time and (open)
stopping time like (c, d), [c, d), [c, d], (c, d] such that c ∈ N , d ∈ N ∪ {∞}, and
c ≤ d. Open and closed intervals are denoted respectively with parentheses and
square brackets.

Suppose we are given a set P of atomic propositions and a set X of clocks,
a TCTL formulus φ has the following syntax rules.

φ ::= p |x1 − x2 ∼ c |φ1 ∨ φ2 | ¬φ1 | ∃φ1UIφ2 | ∀φ1UIφ2

Here p ∈ P , x1, x2 ∈ X, c ∈ N , φ1 and φ2 are TCTL formulae, and I is an
interval.

∃ means “there exists a computation.” ∀ means “for all computations.”
φ1UIφ2 means that along a computation, φ1 is true until φ2 becomes true and
φ2 happens at time in I. For example, with a specification like

∀train status = ATCROSSING
U [0,10)train status = NOT ATCROSSING

260 F. Wang and F. Yu

we require that for all computations, train status becomes NOT ATCROSSING
in 10 time units.

Also we adopt the following standard shorthand : true for ¬false, φ1 ∧ φ2 for
¬((¬φ1) ∨ (¬φ2)), φ1 → φ2 for (¬φ1) ∨ φ2, ∃�Iφ1 for ∃true UIφ1, ∀�Iφ1 for
¬∃�I¬φ1, ∀�Iφ1 for ∀true UIφ1, ∃�Iφ1 for ¬∀�I¬φ1.

The formal semantics of TCTL formulae is left in appendix B.

5 Timed C

Engineers are trained to write programs in traditional programming languages,
like C, C++, Verilog, . . . , etc. Timed C (TC) is designed to bridge the gap be-
tween the engineering world and the verification research community. It supports
most of the programming constructs in traditional C, like sequences, while-loops,
and switch-statements. It also provides syntax constructs to abstract unimpor-
tant details for mechanical translation to SCTA. Moreover, we have added new
constructs to make it easy to describe event-driven behaviors, like timeouts.

5.1 The Railroad Crossing Example

The TC program in table 1 models a simple railroad crossing system. The system
consists of two processes: monitor and gate controller, both executing infinite
while-loops. In the beginning, we declare two variables of enumerate type, as in
Pascal. The first value in the enumerated value set is the initial value of the
declared variables.

After sending out a synchronization signal !TRAIN NEAR, train status
will be assigned value ATCROSSING in 100 to 300 time units. If in between two
statements there is no interval statements, it is equivalent to the writing of in-
terval [0,∞). Lines beginning with // are comments, in which we can write OVL
assertions.

In this program, there are two OVL assertions which are explained in sec-
tion 6.

5.2 Mechanical Translation to SCTA

The real-time system model-checkers nowadays are based on mathematical mod-
els, like SCTA, Petri net, hybrid automata, . . . [8, 9, 14, 19, 34, 30, 31, 35, 36]. To
make the model-checking technology more attractive, it will be nice if we can
mechanically translate C-programs to SCTAs. The language of TC (Timed C)
serves as a middle language from C-programs to SCTAs.

The SCTA (generated from RG) for the TC-program in table 1 is exactly
the one in figure 2.

For convenience, given a TC program construct B, let RG(B) be the subgraph
in an SCTA representing the behavior of B. The SCTA subgraphs of RG(y = 3;)
(an atomic assignment), RG(B1B2) (a sequence), RG(while (x < 3) B), and
RG(switch (y) { . . . }), are shown in figures 3(a), (b), (c), and (f) respectively.

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 261

Table 1. TC program for the modeling of railroad crossing system

enum {NOT_ATCROSSING, ATCROSSING} train_status;
enum {NOT_DOWN, DOWN} gate_status;

process monitor() {
while (1) {

//assert_change #([0,20], 1) A1(train_status == ATCROSSING,\
train_status == NOT_ATCROSSING)
<!TRAIN_NEAR>;
(100,300);
train_status = ATCROSSING;

//assert_always(gate_status == DOWN)
[5,10];
train_status = NOT_ATCROSSING;
[0,0];
<!TRAIN_LEAVE>;
[100,oo];

}
}

process gate_controller() {
while (1) {
<?TRAIN_NEAR>;
[20,50);
gate_status = DOWN;
<?TRAIN_LEAVE>;
[0,50];
gate_status = NOT_DOWN;

}
}

In construct switch(y){. . . }, y must be of type int. Constructs of if-else can be
treated similarly as construct switch. Since we require the specification of the
range of integer variable in their declaration in TC programs, constructs like
if-else can be treated as special cases of constructs switch(. . .){. . . }.

Note that in the subgraphs figure 3(c) and (f) for constructs while and
switch, the test conditions for the cases are directly labeled on the incoming
transitions as additional constraints. This means that the conditional statements
in TC do not take time in our model. This assumption is important for efficient
translation to SCTA, in which a transition with triggering condition testing
and assignments is executed instantaneously. This assumption is suitable for
embedded systems in which dedicated hardware is used for each process.

But the traditional program constructs in C-like languages do not capture
all the elements in the modeling of real-time concurrent systems. One deficiency
is that there is no way to tell at what time the next statement should be exe-

262 F. Wang and F. Yu

y := 3;

(a) RG(y := 3;)

RG(B1)

RG(B2)

(b) RG(B1B2) (c) RG(while(x < 3)B)

RG(B)

¬(x < 3)

x < 3

x < 3¬(x < 3)

The first mode in RG(B2)

γ ≥ 3 γ ≥ 3

RG(B2)

.

RG(B1)

(d) RG(B1[3, 5];B2)

γ ≥ 3

γ ≤ 5

(e) RG(〈?ack!finish〉;)

?ack!finish

RG(B2)RG(B1) . . .

. . .

. . .

y = v2
y = v1

RG(Bd)

(f) RG

⎛
⎜⎜⎜⎜⎜⎜⎝

switch(y){
case v1 : B1break;
case v2 : B2break;
. . .
default : Bdbreak;
}

⎞
⎟⎟⎟⎟⎟⎟⎠

¬(y = v1 ∨ y = v2 ∨ . . .)

RG(B2)RG(B1) . . .

. . .

. . .

RG(Bt)

!a1?b1 ?a2!b2
γ ≥ c

γ ≤ d

γ := 0;

(g) RG

⎛
⎜⎜⎜⎜⎜⎜⎝

switch event{
case <!a1?b1 . . . >: B1break;
case <?a2!b2 >: B2break;
. . .
timeout[c, d] : Btbreak;
}

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 3. SCTA subgraphs for TC-program constructs

cuted. In other words, users cannot describe the deadlines, earliest starting time
of the next statement after the execution of the current statement. Here we pro-
pose a new type of statement, the interval statement, in the forms of ”[c, d];”,
”[c, d);”, ”(c, d);”, ”(c, d];”, where c ∈ N and d ∈ N ∪ {∞} such that c ≤ d
and (c,∞], [c,∞] are not allowed. An interval statement, say [c, d], is not exe-
cuted but serves as a glue to bind the execution times of its predecessor and
successor statements. For example, a statement sequence like B1[3, 5];B2 means
that the time lap from the execution of the last atomic statement in B1 to the
execution of the first statement in B2 is within [3, 5]. The SCTA subgraph of
RG(B1[3, 5];B2) is shown in figure 3(d). Note how we use an auxiliary system

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 263

clock γ here to control the earliest starting time and deadline of the successor
transition.

From real-world C-programs, interval statements can be obtained by ab-
stracting out the execution time of blocks or sequences of program statements.
Accurate execution time can be obtained with techniques of WCET [15] analy-
sis. In many embedded systems, a processor exclusively executes one process and
the execution time of a straight-line program segment can be obtained by accu-
mulating the execution time (from CPU data-book) of the machine instructions
in the segment.

Event-handling is an essential element in modeling languages for real-time
systems. With different events observed, the systems may have to take different
actions. We design the new construct of

switch event{
case〈ss1〉 : B1break;
case〈ss2〉 : B2break;
. . .
timeout[c, d] : Btbreak;
}

to capture this kind of system behaviors. ss1, ss2, . . . are sequences of synchro-
nization labels, like ?receive, !send, The construct means that the system
will wait for any of the event combinations of 〈ss1〉, 〈ss2〉, . . . to happen and
take the corresponding actions B1, B2, . . . respectively. But the system will only
wait for a period no longer than d time units because of the timeout event which
will happen between c and d time units. The corresponding SCTA subgraph is
drawn in figure 3(g). Note that the SCTA subgraph does have an auxiliary entry
mode to enforce the timeout.

Finally e also allows programmers to use synchronizers in SCTA for the con-
venience of modeling of concurrent behaviors and construction of LG-transitions.
For example, users can also write an atomic statement like ”< ?ack !finish
>;” and RG(< ?ack !finish >;) is shown in figure 3(e).

5.3 Optimization of SCTA

The first phase of RG generates an SCTA, which is clumsy to verify. The SCTA
will have a lot of null states connecting together the SCTA subgraphs generated
for various TC program constructs. Also, many operations on local variables may
create unnecessary partial-ordering and irrelevant intermediate states, which can
only waste resources in the verification tasks for the given OVL assertions. We
borrowed the code optimization techniques from compiler research [5] for the
optimization of SCTAs. After the optimization, the reachable state-space rep-
resentation of the SCTA can be reduced and verification performance can be
enhanced.

A simple but effective technique for locally improving the target code is peep-
hole optimization, a method to improve the performance of the target program

264 F. Wang and F. Yu

by examining a short sequence of target instructions and replacing these instruc-
tions (called the peephole) by a shorter or faster sequence [5]. We followed this
idea and developed our SCTA Optimizer. The optimization techniques, which
we employed, include

• bypass of null transitions: For easy mechanical translation, sometimes we
generate null modes and transitions. These modes and transitions can be
eliminated without changing the system behaviors.

• compaction of intermediate local transitions: In SCTA, we can declare local
variables of type integer and pointers. The exact execution time (within an
interval) of assignments to such local variables may not affect the behavior of
peer processes. This kind of situation can be analyzed and we can compact
these local actions into one process transition.

• elimination of unreachable modes: After the bypassing of many transitions,
some modes in the original SCTA may no longer be connected to the initial
mode in the SCTA graph. We can simply ignore such modes.

• elimination of intermediate temporary variables: In the evaluation of complex
expressions, sometimes we have to declare intermediate temporary state-
variables to store the intermediate results, like the sum of an addition inside
a multiplication. By properly analyzing the structure of the arithmetic ex-
pressions, we can avoid the usage of some intermediate temporary variables.

Because of the page-limit, we omit the details of our implementation here. But
we have carried out experiment on the L2CAP used in section 9. The experiment
reported in section 9 shows dramatic improvement in verification performance
after the optimization.

6 OVL Assertions

We here demonstrate how to translate the following four types of OVL assertions
to TCTL formulae for model-checking with RED.

//assert always(φ)
//assert never(φ)
//assert change#(I, f)ID(φ1, φ2)
//assert time#(I, f)ID(φ1, φ2)

Here φ, φ1, φ2 are Boolean predicates on variable values. I is an interval (as in
section 4). f is a special flag. ID is the name of the assertion.

We choose these four assertion types from OVL as examples because many
other assertion types can be treated with similar technique, which we use
for these four types. In the four assertion types, //assert always(φ) and
//assert never(φ) specify some properties at the current state. The first type

//assert always(φ)

means that ”now φ must be true.” For example, in table 1, the second assertion
in the while-loop of process monitor says that ”now the gate must be down.”

The second type

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 265

//assert never(φ)

means that ”now φ must not be true.”
The other two assertion types specify some properties along all computations

from the current state. f is a flag specific to assert change and assert time.
When f = 0,

//assert change#(I, f)ID(φ1, φ2) (1)

means that from now on, along all traces, THE FIRST TIME WHEN φ1 is true,
from that φ1-state on, φ2 must change value once within time in I. That is,
every time this assertion is encountered, it will only be used once, when φ1 is
true, and then discarded.

When f = 1, assertion (1) means that from now on, along all traces, WHEN-
EVER φ1 is true, φ2 must change value once within time in I. That is, this asser-
tion will be assured once and for all. For example, in table 1, the first comment
line in the while-loop of process monitor, is an assert change, which says that
when a train is at the crossing (train status == ATCROSSING), then Boolean
value of predicate train status == NOT ATCROSSING must change within 0 to
20 time units.

We have to make a choice about how to interpret ”THE FIRST TIME” in a
dense-time multiclock system. OVL assertions were originally defined to monitor
events in VLSI circuits with the assumption of a discrete-time global clock [7]. In
synchronous circuits, an atomic event can happen at a clock tick or sometimes
can be conveniently interpreted as true in the whole period between two clock
ticks. We believe the latter convenient interpretation is more suitable for this
work because in concurrent systems, it is not true that all processes will change
states at the tick of a ”global clock.” And this period between two ticks can
be interpreted as a state in a state-transition system. According to this line of
interpretation, we shall interpret assertion (1) as

”from now on, along all traces, in THE FIRST
INTERVAL WITHIN WHICH φ1 is true,

from every state in that interval,
φ2 must change value once within time in I.

to better fit the need of dense-time concurrent systems. This choice of interpre-
tation may later be changed to fit all domains of applications.

The last assertion

//assert time#(I, f)ID(φ1, φ2) (2)

is kind of the opposite to assert change. When f = 0, it means that from now
on, along all traces, in THE FIRST INTERVAL WITHIN WHICH φ1 is true,
from every state in that interval, φ2 must not change value at any time in I.
Similarly, when f = 1, assertion (2) means that from now on, along all traces,
WHENEVER φ1 is true, φ2 must not change value at any time in I.

In OVL, option f = 0 means that whenever this assertion is encountered, it
will only be used once (when φ1 is true) and then discarded. This is also the

266 F. Wang and F. Yu

default value. Option f = 1 ,oposite to option f = 0, means that this assertion
will be claimed once and for all. Option f = 2 is not addressed here since it’s
used for handling the error message in OVL.

7 From Assertions to TCTL

Suppose we have n assertions α1, . . . , αn. For each assertion α, we need a binary
flag bα. Then we label the modes of the automata with bα1 , . . . , bαn

to denote
the scope within which the respective assertions are honored. For example, in
the TC-program in table 1, there are two assertions. Suppose the assert change
assertion on the top is α1 and the assert always assertion in the middle is α2.
The SCTA of this TC-program is shown in figure 2. Then bα1 is only labeled at
mode T1 while bα2 is only labeled at mode T3.

An assertion like α : //assert always(φ) is translated to the TCTL formu-
lus, denoted as TCTL(α),

∀�((
∨

(q labeled with bα) q) → φ).

Here ”
∨

(q labeled with bα) q” is a predicate, which we generate to signal when
assertion α must be satisfied.

For α : //assert never(φ), TCTL(α) is

∀�((
∨

(q labeled with bα) q) → ¬φ).

For each assert time or assert change α with unique name ID, we need
to use auxiliary variables, auxiliary actions, and sometimes auxiliary processes
to monitor their satisfaction. We need an auxiliary Boolean state variable lα to
monitor either

• when φ1 has become true for the first time with option f = 0; or
• when φ1 has become true with option f = 1 .

For example, in figure 2, lα1 is initially false and set to true at every process
transition to mode T1. lα1 is never reset to false with option f = 1. (Details are
discussed in the following.)

For α : //assert change#(I, f)ID(φ1, φ2), no matter whether f = 0 or
f = 1, TCTL(α) is

∀�

⎛
⎝(
∨

(q labeled with bα) q)

→ ∀�

(
(lα ∧ φ1)
→ ((∀¬φ2UIφ2) ∨ (∀φ2UI¬φ2))

)⎞⎠
Formulus ∀¬φ2UIφ2 captures the trace along which φ2 changes from false to
true at time in I while ∀φ2UI¬φ2 captures the trace along which φ2 changes
from true to false at time in I.

For α : //assert time#(I, f)ID(φ1, φ2), no matter whether f = 0 or f = 1,
TCTL(α) is the same

∀�

(
(
∨

(q labeled with bα) q)
→ ∀�((lα ∧ φ1) → ((∀�I¬φ2) ∨ (∀�Iφ2)))

)

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 267

?setα!moniα

?setα!moniα

lα ∧ φ1

¬lα ∧ ¬φ1

!moniα
!moniα

lα ∧ ¬φ1

¬lα ∧ φ1

!moniα

!moniα

lα = 1;

!moniα

?setα!moniα

lα = 1;

?setα!moniα
lα = 1;

?setα!moniα

?setα!moniα

lα = 1;

?setα!moniα
lα = 1;

lα = 1;

!moniα

lα = 1;

lα = 1; !moniα
?setα!moniα

lα = 0;

!moniα

Fig. 4. Auxiliary monitor process with option f = 0

Formulus ∀�I¬φ2 captures the trace along which φ2 is maintained false within
I while ∀�Iφ2 is maintained true within I.

When the assertions of type either assert change or assert time is writ-
ten with option f = 0 ,we need one auxiliary monitor process (AMP) to report,
with the auxiliary state-variable lα, when φ1 is true for the first interval. The
AMP’s behavior for α is shown in figure 4. There are four modes in AMP to
reflect all combinations of truth values of lα and φ1. Every LG-transition in the
original system will now have to synchronize with a transition in the AMP. This
is done with synchronizer moniα. We label the first process transition in each
LG-transition with synchronization ?moniα. In this way, the AMP is tightly syn-
chronized with the original system and the beginning and ending of the assertion
scope are precisely monitored.

When the system transits into the scope of assertion α, the AMP will also
receive a synchronizer ?setα, in addition to the sending out of synchronizer
!moniα. On receiving ?setα, the AMP will set the value lα to report that the
scope is entered. Then on every change value of φ1 from true to false in a state
with lα = true, lα will be reset to false. When lα changes from true to false, it
means that the the system has left the first interval in which φ1 is true in the
scope of α.

When the assertions of type either assert change or assert time is written
with option f = 1, we need the following minor modification to the process
automata input to RED: for every incoming transition to modes labeled with bα,
we need to label it with the auxiliary assignment lα := 1; to indicate that the

268 F. Wang and F. Yu

scope of assertion α is entered. This can be seen from label lα1 := 1; on the
incoming transitions to mode T1 in figure 2.

8 Localized Abstract Assertion-Checking

Verification problem is highly complex to solve with the state-space explosion
problem. Thus it is very important to take advantage of whatever ideas, used
in the designs, communicable from the design engineers to the verification en-
gineers. The framework of OVL assertion-checking has advantage in this aspect
because the assertions are given in between lines of process programs. Thus it
is reasonable to assume that an assertion is either assured by the correspond-
ing process or essential for the correctness of the process. Along this line of
reasoning, we have developed three state-space abstraction technique, which we
call localized abstraction. Unlike traditional abstraction techniques [35], our new
technique adjust to the information coming with assertions.

Suppose we have an assertion α given in the program of process p. For α, a
process p′ is called significant if either p = p′ or some local variables of p′ appear
in α. All other processes are called insignificant. For an assertion, the three local-
ized abstractions reduce the state-space representations by making abstractions
on the state-variables of the insignificant processes. The three localized abstrac-
tions are described in the following. Suppose we have a state-space description
η.

• Lα(): strictly local abstraction
Lα(η) is identical to η except all information about state-variables, except
the operation modes, of insignificant processes are eliminated. The option
can be activated with option -Ad of RED 4.0.

• Lα
d (): local and discrete abstraction

Lα
d (η) is identical to η except all information about local clocks of insignifi-

cant processes are eliminated. The option can be activated with option -At
of RED 4.0.

• Lα
m(): local and magnitude abstraction

A clock inequality x−x′ ∼ c is called a magnitude constraint iff either x = 0
or x′ = 0. Lα

m(η) is identical to η except all non-magnitude clock difference
constraints of the insignificant processes are eliminated. The option can be
activated with option -Am of RED 4.0.

We report the performance of our three abstractions in section 9.

9 Verification Experiments

The wireless communication standard of Bluetooth has been widely discussed
and adopted in many appliances since the specification [10] was published. To
show the usefulness of our techniques for industry projects, in the following, we
report our verification experiments with the L2CAP (Logical Link Control and
Adaptation Layer Protocol) of Bluetooth specification [10].

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 269

9.1 Modelling L2CAP

L2CAP is layered over the Baseband Protocol and resides in the data link layer
of Bluetooth. This protocol supports higher level message multiplexing, packet
segmentation and reassembly, and the conveying of quality of service informa-
tion. We model the behavior of L2CAP in TC and write specification in OVL
assertions. The protocol regulates the behaviors between a master device and a
slave device. We use eight processes: the master upper (user on the master side),
the master (L2CAP layer), master L2CAP time-out process, master L2CAP
extended time-out process, the slave upper (user on the slave side), the slave
(L2CAP layer), slave L2CAP time-out process, and slave L2CAP extended time-
out process to model the whole system.

The SCTA in figure 5 describes the behavior of a L2CAP device described in
the Bluetooth specification [10]. A device may play the role of either master or
slave depending on whether the device starts the connection. Both the master
and the slave use the SCTA in figure 5. A master is a device issuing a request
while a slave is the one responding to the master’s request.

The original TC program has 303 lines of code. The optimized SCTA has
25 modes, 151 process transitions, 6 state variables, and 8 dense-time clocks in
total.

The message sequence chart (MSC) in figure 6 may better illustrate a typical
scenario of event sequence in L2CAP. The two outside vertical lines represent
the L2CA interface from (slave’s and master’s) upper layers to the L2CAP lay-
ers (slave and master respectively). The scenario starts when the master’s upper
layer issues an L2CA ConnectReq (Connection Request) through the L2CA in-
terface. Upon receiving the request, the master communicates the request to
the slave (with an L2CAP ConnectReq), who will then convey the request to
the slave’s upper layer (with an L2CA ConnectInd). The protocol goes on with
messages bouncing back and forth until the master sends an L2CAP ConfigRsp
message to the slave. Then both sides exchange data. Finally the master upper
layer issues message L2CA DisconnectReq to close the connection and the slave
confirms the disconnection.

We have made the following assumption in the model. When an upper layer
process needs to send out an event in response to the receiving of an event, the
time between the receiving and sending is in [0, 5]. Also, we assume that the
timeout value of RTX timers and ERTX timers are all 60 time units. With one
timeout, the L2CAP process aborts the session and changes to state CLOSED.

9.2 Performance Data

We have experimented with four OVL assertions. The first is

//assert always(M Con == 0) (a)

inserted at the beginning of the switch-case W4 L2CAP CONNECT RSP
of the master TC process program. M Con is a binary flag used to check
if connection requests have been received from both master upper and

270 F. Wang and F. Yu

CLOSED

W4_L2CA_DISCONNECT_RSP

W4_L2CAP_CONNECT_RSP

W4_L2CA_CONNECT_RSP

CONFIGOPEN

W4_L2CAP_DISCONNECT_RSP

8
9

11

10

12

15

19
18 17

16

14

3
21

13

21
20

22232425

26
27

29

30 31

32

333435

36

37

3839

28

41

40

42 43 44 45
46

7
6 4

5

27.?L2CA DisconnectReq!L2CAP DisconnectReq!start RTX

31.?L2CA DisconnectReq!L2CAP DisconnectReq!start RTX

25.?L2CAP Data!L2CA DataRead; buffer=1;
26.?L2CAP DisconnectReq!L2CA DisconnectInd

28.?ERTX timeout!L2CA TimeOutInd
29.?RTX timeout!L2CA TimeOutInd
30.?L2CAP DisconnectReq!L2CA DisconnectInd

32.?L2CA ConnectRsp!L2CAP ConnectRsp
33.?ERTX timeout!L2CA TimeOutInd
34.?RTX timeout!L2CA TimeOutInd
35.?L2CA ConnectRspNeg!L2CAP ConnectRspNeg
36.?L2CAP DisconnectReq!L2CA DisconnectInd
37.?L2CAP DisconnectReq!L2CA DisconnectInd
38.?L2CAP DisconnectReq!L2CA DisconnectInd
39.?ERTX timeout!L2CA TimeOutInd
40.?RTX timeout!L2CA TimeOutInd
41.?L2CA DisconnectRsp!L2CAP DisconnectRsp
42.?RTX timeout!L2CA TimeOutInd
43.?ERTX timeout!L2CA TimeOutInd
44.?L2CA DisconnectRsp!L2CAP DisconnectRsp
45.?ERTX timeout!L2CA TimeOutInd
46.?RTX timeout!L2CA TimeOutInd

12.?L2CAP ConnectRspPnd!L2CA ConnectPnd!disable RTX!start ERTX

1.?L2CAP DisconnectReq!L2CAP DisconnectRsp
2.?L2CAP ConfigReq!L2CAP Reject
3.?L2CA ConfigReq!L2CA ConfigCfmNeg
4.?RTX timeout!L2CA TimeOutInd
5.?ERTX timeout!L2CA TimeOutInd
6.?L2CAP ConnectReq!L2CA ConnectInd
7.?RTX timeout!L2CA TimeOutInd
8.?ERTX timeout!L2CA TimeOutInd
9.?L2CA ConnectReq!L2CAP ConnectReq
10.?L2CAP ConnectRsp!L2CA ConnectCfm!disable RTX

16.?L2CAP ConfigReq!L2CA ConfigInd
17.?L2CAP ConfigRspNeg!L2CA ConfigCfmNeg!disable RTX

13.?L2CA ConfigRspNeg!L2CAP ConfigRspNeg

23.?L2CA DataWrite!L2CAP Data

15.?L2CAP ConfigRsp!L2CA ConfigCfm, con == 1

18.?L2CA ConfigRsp!L2CAP ConfigRsp, con == 0

20.?L2CA ConfigRsp!L2CAP ConfigRsp, con == 1

14.?L2CAP ConfigRsp!L2CA ConfigCfm, con == 0

21.?L2CAP ConfigReq!L2CA ConfigInd; buffer=2;

19.?L2CA ConfigReq!L2CAP ConfigReq; con=1;

22.?L2CA ConfigReq!L2CAP ConfigReq; buffer=2;

24.?L2CA DataRead; buffer=1;

11.?L2CAP ConnectRspNeg!L2CA ConnectCfmNeg!disable RTX!disable ERTX

Fig. 5. SCTA of a Bluetooth device

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 271

Master Upper Master Slave Slave Upper

L2CAP_ConnectReq
L2CA_ConnectReq

L2CA_ConnectInd

L2CA_ConnectRsp

L2CAP_ConnectRsp

L2CA_ConnectCfm

L2CA_ConfigReq L2CAP_ConfigReq

L2CA_ConfigInd

L2CAP_ConfigRsp

L2CA_ConfigRsp

L2CA_ConfigCfm L2CA_ConfigReq

L2CAP_ConfigReq

L2CA_ConfigInd

L2CA_ConfigRsp
L2CAP_ConfigRsp

L2CA_ConfigCfm
DATA

L2CAP_DATA_END

DATA

L2CA_DATA_END

L2CA_DisconnectInd

L2CA_DisconnectReq L2CAP_DisconnectReq

L2CA_DisconnectRsp

L2CA_DisconnectCfm
L2CAP_DisconnectRsp

L2CA_ConnectReq

[0, ∞)

[0, 5]

[0, 5]

[0, 5]

[0, 5]

[0, 5]

[0, 5]

[0, ∞)

[0, ∞)

[0, ∞)

Fig. 6. A message sequence chart of L2CAP

slave. The TC program with assertion (a) are presented in appendices ??.
The assertion is satisfied because at the time process master enters state
W4 L2CAP CONNECT RSP, the master reset M Con to zero as initial value.

The second OVL assertion is

//assert never(S Con==0) (b)

inserted at the beginning of the switch-case W4 L2CAP CONNECT RSP of k the
slave TC process program. S Con is the counterpart of M Con. The assertion is
thus not satisfied.

The third OVL assertion is

//assert change #([0,60],1)
c(master status==W4 L2CAP CONNECT RSP,
master status==W4 L2CAP CONNECT RSP)

(c)

272 F. Wang and F. Yu

which says that if the master enters state W4 L2CAP CONNECT RSP,
then it will eventually leave the state. The assertion is inserted at the
beginning of the master TC process. This is satisfied because of the timeout
issued from timer M RTX.

The fourth OVL assertion is

//assert time #([0,oo),0)
d(slave status==W4 L2CAP DISCONNECT RSP,
slave status==W4 L2CAP DISCONNECT RSP)

(d)

which says that if the slave enters state W4 L2CAP DISCONNECT RSP, then
it will never leave the state. ”oo” is our notation for infinity ∞. The asser-
tion is inserted at the beginning of the slave TC process. This is NOT satisfied
because of the timeout issued from timer S RTX.

The verification performance of RED 4.0 with and without localized abstrac-
tion technique against the four assertions is shown in table 2. The sizes of SCTAs

Table 2. Verification performance of assertions with various options

optimization? abstraction? size or performance? assertion (a) assertion (b)
optimized no #modes/#transitions 25/151 25/151

time/memory 21.61s/845k 23.71s/845k
Lα() time/memory 18.83s/845k 22.36s/845k
Lα

d () time/memory 19.22s/845k 19.82s/845k
Lα

m() time/memory 19.22s/845k 22.25s/845k
not no #modes/#transitions 258/360 258/360
optimzed time >20min >20min
optimization? abstraction? size or performance? assertion (c) assertion (d)
optimized no #modes/#transitions 24/150 28/166

time/memory 34.95s/858k 49.27s/1869k
Lα() time/memory 32.63s/858k 48.81s/1869k
Lα

d () time/memory 28.74s/858k 40.63s/1869k
Lα

m() time/memory 31.46s/858k 47.57s/1869k
not no #modes/#transitions 258/360 262/376
optimzed time >20min >20min

Data collected in cygwin environment on a Pentium 4 with 1.7GHz, 256MB, running MS
Windows XP.

for the four assertions, before and after optimizaton, are also reported. In the
following, we analyze the meaning of the performance data.

9.3 Performance Effect of Optimization

With our optimization techniques discussed in subsection 5.3, significant reduc-
tion in SCTA size is achieved for each of the assertions. In all four assertions,

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 273

the numbers of modes in optimized SCTAs are reduced to around one tenth of
those in unoptimized SCTAs. Also the numbers of transitions are reduced to less
than half. In our experience, the time needed to model-check timed automata is
exponential to the size of input. Thus we do expect that the unoptimized SCTA
will be much harder to verify. This expectation is justified by comparing the
verification performance for the optimized and unoptimized SCTAs. In all cases,
the optimzed SCTAs allow efficient verification within less than 1 min while the
corresponding SCTAs do not allow verification tasks to finish in 20 mins. The
performance data in table 2 shows that our SCTA optimization techniques are
indeed indispensible.

9.4 Performance Effect of Localized Abstractions

In table 2, for each assertion against their optimized SCTAs, we see that the
verification performances with localized abstraction technique are all better than
the one without. This is because that in the L2CAP process, there are local
variables M Con and S Con and in the upper layer and timeout processes, there are
local clocks metric. For the four assertions, only the process in whose program
the assertion is written is significant. With the localized abstraction technique,
state information on local variables of insiginificant processes can be eliminated
to some extent and the state-space representations can be manipulated more
efficiently. We believe that from the performance comparison, we find that our
localized abstraction technique can indeed be of use in practice.

Among the three localized abstraction functions, we also observe difference
in performance. Initially, since Lα() eliminate more state-information than Lα

m()
and Lα

d () do, we expect Lα() will result in the most reduced state-space repre-
sentations and the best verification performance. To our surprise, function Lα()
performs the worst against three of the four assertions. We spent sometime to
look into the intermediate data generated with Lα(). We found that because in-
formation like M Con==1 can be eliminated, state-space representations with both
M Con==0 and M Con==1 will be generated. But the corresponding state-space
with M Con==0 may otherwise be unreachable without the abstraction of Lα().
Such false reachable state-spaces can in turn trigger more transitions, which are
otherwise not triggerable. Thus, with Lα(), we actually may waste time/space in
computing representations for unreachable state-spaces. This explains why there
is the performance difference among the three localized abstraction functions.

10 Conclusion

This paper describes a new tool supporting formal OVL assertion-checking of
dense-time concurrent systems. A formal state-transition graph model of the
system and TCTL formulae of the properties are constructed from a descrip-
tion written in the TC language. We show how to mechanically translate TC-
programs into optimized SCTAs. To take advantage of the information coming
with OVL assertions for better verification performance, We demonstrate the

274 F. Wang and F. Yu

power of new techniques by verifying the wireless communication L2CAP in
Bluetooth.

Since our framework are based on RED, which supports high-performance full
TCTL symbolic model checking, we feel hopeful that the techniques presented
here can be applied to real world industry projects. The major motivation of this
work is to provide a natural and friendly verification process to reduce the entry
barrier to CAV technology, especially for engineers of real-time and embedded
systems. And our experiment data on the real-world L2CAP indeed shows great
promise of verification in the style of OVL assertion-checking for dense-time
concurrent systems.

References

1. R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE
LICS, 1990.

2. R. Alur, C.Courcoubetis, T.A. Henzinger, P.-H. Ho. Hybrid Automata: an Algo-
rithmic Approach to the Specification and Verification of Hybrid Systems. in Pro-
ceedings of Workshop on Theory of Hybrid Systems, LNCS 736, Springer-Verlag,
1993.

3. R. Alur, D.L. Dill. Automata for modelling real-time systems. ICALP’ 1990, LNCS
443, Springer-Verlag, pp.322-335.

4. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Land-
ver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, Y. Zbar The For-
Spec Temporal Logic: A New Temporal Property-Specification Language (2001),
TACAS’2002.

5. A.V. Aho, R. Sethi, J.D. Ullman. Compliers - Principles, Techniques, and Tools,
pp.393-396, Addison-Wesley Publishing Company, 1986.

6. J. Bhasker. A VHDL Primer, third edition, ISBN 0-13-096575-8, Prentice Hall,
1999.

7. Bening, L. and Foster, H., i. Principles of Verifiable RTL Design, a Functional Cod-
ing Style Supporting Verification Processes in Verilog,li 2nd ed., Kluwer Academic
Publishers, 2001. Symbolic Model Checking: 1020 States and Beyond, IEEE LICS,
1990.

8. M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems.
10th CAV, June/July 1998, LNCS 1427, Springer-Verlag.

9. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool
Suite for Automatic Verification of Real-Time Systems. Hybrid Control System
Symposium, 1996, LNCS, Springer-Verlag.

10. Specification of the Bluetooth System Version 1.1, Feb, 2001.
http://www.bluetooth.org

11. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput., C-35(8), 1986. Verus: a tool for quantitative analysis of finite-state
real-time systems. In: Workshop on Languages, Compilers and Tools for Real-Time
Systems, 1995.

12. E.M. Clarke, S.M. German, Y. Lu, H. Veith, D. Wang. Executable protocol speci-
ficatoin in esl, FMCAD’2000, LNCS 1954, pp.197-216, Springer-Verlag.

13. D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. CAV’89, LNCS 407, Springer-Verlag.

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 275

14. C. Daws, A. Olivero, S. Tripakis, S. Yovine. The tool KRONOS. The 3rd Hybrid
Systems, 1996, LNCS 1066, Springer-Verlag.

15. J. Engblom, A. Ermedahl, M. Sjoedin, J. Gubstafsson, H. Hansson. Worst-case
execution-time analysis for embedded real-time systems. Journal of Software Tools
for Technology Transfer, 2001. 14

16. F. Haque, K. Khan, J. Michelson. The Art of Verification with VERAR, 2001,
Verification Central Com.

17. T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for
Real-Time Systems, IEEE LICS 1992.

18. C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall, 1985.
19. P.-A. Hsiung, F. Wang. User-Friendly Verification. Proceedings of 1999

FORTE/PSTV, October, 1999, Beijing. Formal Methods for Protocol Engineering
and Distributed Systems, editors: J. Wu, S.T. Chanson, Q. Gao; Kluwer Academic
Publishers.

20. R.P. Kurshan. FormalCheck User’s Manual, Cadence Design, Inc., 1998.
21. M.J. Morley. Semantics of temporal e. Banff’99 Higher Order Workshop (For-

mal Methods in Computation). University of Glasgow, Dept. of Computer Science
Technical Report, 1999.

22. F. Nekoogar. Timing Verification of Application-Specific Integrated Circuits
(ASICs), 2000, ISBN: 0-13-794348-2, Prentice-Hall.

23. http://www.verificationlib.com/
24. S. Palnitkar Verilog HDL: A Guide to Digital Design and Synthesis ISBN 0-13-

451675-3, Sun Microsystems Press.
25. P.Rashinkar, P. Paterson, L. Singh. System-on-a-Chip Verification: Methodology

and Techniques. Kluwer Academic Publishers, 2000; ISBN: 0792372794.
26. V. Sagdeo. The Complete VERILOG Book Kluwer Academic Publishers, 1998;

ISBN: 0792381882.
27. Superlog, Co-Design Automation, Inc. 1998-2002; http://www.superlog.org/
28. F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time

Software Systems. TACAS’2000, March, Berlin, Germany. in LNCS 1785, Springer-
Verlag.

29. F. Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-Time
Systems. the 24th COMPSAC, Oct. 2000, Taipei, Taiwan, ROC, IEEE press.

30. F. Wang. RED: Model-checker for Timed Automata with Clock-Restriction Dia-
gram. Workshop on Real-Time Tools, Aug. 2001, Technical Report 2001-014, ISSN
1404-3203, Dept. of Information Technology, Uppsala University.

31. F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-
Restriction Diagram, to appear in Proceedings of FORTE, August 2001, Cheju
Island, Korea.

32. F. Wang. Symmetric Model-Checking of Concurrent Timed Automata with Clock-
Restriction Diagram. RTCSA’2002.

33. F. Wang. Efficient Verification of Timed Automata with BDD-like Data-Structures.
Technical Report, IIS, Academia Sinica, 2002. Automatic Verification on the Large.
Proceedings of the 3rd IEEE HASE, November 1998.

34. F. Wang, P.-A. Hsiung. Efficient and User-Friendly Verification. IEEE Transactions
on Computers, Jan. 2002.

35. H. Wong-Toi. Symbolic Approximations for Verifying Real-Time Systems. Ph.D.
thesis, Stanford University, 1995.

36. S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Jour-
nal of Software Tools for Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

276 F. Wang and F. Yu

APPENDICES

A Definition of SCTA

A SCTA (Synchronized Concurrent Timed Automaton is a set of finite-state
automata, called process automata, equipped with a finite set of clocks, which
can hold nonnegative real-values, and synchronization channels. At any mo-
ment, each process automata can stay in only one mode (or control location).
In its operation, one of the transitions can be triggered when the corresponding
triggering condition is satisfied. Upon being triggered, the automaton instanta-
neously transits from one mode to another and resets some clocks to zero. In
between transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set Q of modes and a set X of clocks, we use B(Q, X)
as the set of all Boolean combinations of inequalities of the forms mode = q and
x − x′ ∼ c, where mode is a special auxiliary variable, q ∈ Q, x, x′ ∈ X ∪ {0},
“∼” is one of ≤, <,=, >,≥, and c is an integer constant.
Definition 1. process automata A process automaton A is given as a tuple
〈X, E, Q, I, μ, T, λ, τ, π〉 with the following restrictions. X is the set of clocks. E
is the set of synchronization channels. Q is the set of modes. I ∈ B(Q, X) is the
initial condition on clocks. μ : Q �→ B(∅, X) defines the invariance condition of
each mode. T ⊆ Q × Q is the set of transitions. λ : (E × T) �→ Z defines the
message sent and received at each process transition. When λ(e, t) < 0, it means
that process transition t will receive |λ(e, t)| events through channel e. When
λ(e, t) > 0, it means that process transition t will send λ(e, t) events through
channel e. τ : T �→ B(∅, X) and π : T �→ 2X respectively defines the triggering
condition and the clock set to reset of each transition. �

Definition 2. SCTA (Synchronized Concurrent Timed Automata) An SCTA
of m processes is a tuple, 〈E, A1, A2, . . . , Am〉 where E is the set of synchro-
nization channels and for each 1 ≤ p ≤ m, Ap = 〈Xp, E, Qp, Ip, μp, Tp, λp, τp, πp〉
is a process automaton for process p. �

A valuation of a set is a mapping from the set to another set. Given an
η ∈ B(Q, X) and a valuation ν of X, we say ν satisfies η, in symbols ν |= η, iff
it is the case that when the variables in η are interpreted according to ν, η will
be evaluated true.

Definition 3. states Suppose we are given an SCTA S = 〈E, A1, A2, . . . , Am〉
such that for each 1 ≤ p ≤ m, Ap = 〈Xp, E, Qp, Ip, μp, Tp, λp, τp, πp〉. A state ν
of S is a valuation of

⋃
1≤p≤m(Xp ∪ {modep}) such that

• ν(modep) ∈ Qp is the mode of process i in ν; and
• for each x ∈

⋃
1≤1p≤m Xp, ν(x) ∈ R+ such that R+ is the set of nonnegative

real numbers and ν |=
∧

1≤p≤m μp(ν(modep)). �

For any t ∈ R+, ν + t is a state identical to ν except that for every clock x ∈ X,
ν(x) + t = (ν + t)(x). Given X̄ ⊆ X, νX̄ is a new state identical to ν except
that for every x ∈ X̄, νX̄(x) = 0.

OVL Assertion-Checking of Embedded Software with Dense-Time Semantics 277

Now we have to define what a legitimate synchronization combination is in
order not to violate the widely accepted interleaving semantics. A transition plan
is a mapping from process indices p, 1 ≤ p ≤ m, to elements in Tp ∪ {⊥}, where
⊥ means no transition (i.e., a process does not participate in a synchronized
transition). The concept of transition plan represents which process transitions
are to be synchronized in the construction of an LG-transition.

A transition plan is synchronized iff each output event from a process is
received by exactly one unique corresponding process with a matching input
event. Formally speaking, in a synchronized transition plan Φ, for each channel
e, the number of output events must match with that of input events. Or in
arithmetic,

∑
1≤p≤m;Φ(p) �=⊥ λ(e, Φ(p)) = 0.

Two synchronized transitions will not be allowed to occur at the same instant
if we cannot build the synchronization between them. The restriction is formally
given in the following. Given a transition plan Φ, a synchronization plan ΨΦ for
Φ represents how the output events of each process are to be received by the
corresponding input events of peer processes. Formally speaking, ΨΦ is a mapping
from {1, . . . , m}2 ×E to N such that ΨΦ(p, p′, e) represents the number of event
e sent form process p to be received by process p′. A synchronization plan ΨΦ

is consistent iff for all p and e ∈ E such that 1 ≤ p ≤ m and Φ(p)
=⊥, the
following two conditions must be true.

•
∑

1≤p′≤m;Φ(p′) �=⊥ ΨΦ(p, p′, e) = λ(Φ(p));
•
∑

1≤p≤m;Φ(p) �=⊥ ΨΦ(p′, p, e) = −λ(Φ(p));
A synchronized and consistent transition plan Φ is atomic iff there exists a syn-
chronization plan ΨΦ such that for each two processes p, p′ such that Φ(p)
=⊥
and Φ(p′)
=⊥, the following transitivity condition must be true: there exists a se-
quence of p = p1, p2, . . . , pk = p′ such that for each 1 ≤ i < k, there is an ei ∈ E
such that either ΨΦ(pi, pi+1, ei) > 0 or ΨΦ(pi+1, pi, ei) > 0. The atomicity condi-
tion requires that each pair of meaningful process transitions in the synchroniza-
tion plan must be synchronized through a sequence of input-output event pairs.
A transition plan is called an IST-plan (Interleaving semantics Transition-plan)
iff it has an atomic synchronization plan.

Finally, a transition plan has a race condition iff two of its process transitions
have assignment to the same variables.

Definition 4. runs Suppose we are given an SCTA S = 〈E, A1, A2, . . . , Am〉
such that for each 1 ≤ p ≤ m, Ap = 〈Xp, E, Qp, Ip, μp, Tp, λp, τp, πp〉. A run is
an infinite sequence of state-time pair (ν0, t0)(ν1, t1) . . . (νk, tk) such that
ν0 |= I and t0t1 . . . tk is a monotonically increasing real-number (time)
divergent sequence, and for all k ≥ 0,

• for all t ∈ [0, tk+1 − tk], νk + t |=
∧

1≤p≤m μ(νk(modep)); and
• either

− νk(modep) = νk+1(modep) and νk + (tk+1 − tk) = νk+1; or
− there exists a race-free IST-plan Φ such that for all 1 ≤ p ≤ m,

∗ either νk(modep) = νk+1(modep) or (νk(modep), νk+1(modep)) ∈ Tp

and
∗ νk + (tk+1 − tk) |=

∧
1≤p≤m;Φ(p) �=⊥ τp(νk(modep), νk+1(modep)) and

278 F. Wang and F. Yu

∗ (νk + (tk+1 − tk))concat1≤p≤m;Φ(p) �=⊥πp(νk(modep), νk+1(modep)) =
νk+1. Here concat(γ1, . . . , γh) is the new sequence obtained by con-
catenating sequences γ1, . . . , γh in order. �

We can define the TCTL model-checking problem of timed automata as
our verification framework. Due to page-limit, we here adopt the safety-analysis
problem as our verification framework for simplicity. A safety analysis problem
instance, SA(A, η) in notations, consists of a timed automata A and a safety
state-predicate η ∈ B(Q, X). A is safe w.r.t. to η, in symbols A |= η, iff for all
runs (ν0, t0)(ν1, t1) . . . (νk, tk) , for all k ≥ 0, and for all t ∈ [0, tk+1 − tk],
νk + t |= η, i.e., the safety requirement is guaranteed.

B TCTL Semantics

Definition 5. (Satisfaction of TCTL formulae): We write in notations ν |=
φ to mean that φ is satisfied at state ν in S. The satisfaction relation is defined
inductively as follows.

• The base case of φ ∈ B(P, X) was previously defined;
• ν |= φ1 ∨ φ2 iff either ν |= φ1 or ν |= φ2
• ν |= ¬φ1 iff ν
|= φ1
• ν |= ∃φ1UIφ2 iff there exist a ν-run = ((ν1, t1), (ν2, t2), . . .) in A, an i ≥ 1,

and a δ ∈ [0, ti+1 − ti], s.t.
− ti + δ − t1 ∈ I,
− νi + δ |= φ2,
− for all j, δ′ s.t. either (0 ≤ j < i) ∧ (δ′ ∈ [0, tj+1 − tj]) or (j = i) ∧ (δ′ ∈

[0, δ)), νj + δ′ |= φ1.
• ν |= ∀φ1UIφ2 iff for every ν-run = ((q1, ν1, t1), (q2, ν2, t2), . . .) in A, for some

i ≥ 1 and δ ∈ [0, ti+1 − ti],
− ti + δ − t1 ∈ I,
− νi + δ |= φ2,
− for all j, δ′ s.t. either (0 ≤ j < i) ∧ (δ′ ∈ [0, tj+1 − tj]) or (j = i) ∧ (δ′ ∈

[0, δ)), νj + δ′ |= φ1.
Given a shared-variable concurrent timed automaton S and a TCTL formulus
φ, we say S is a model of φ, written as S |= φ, iff 0 |= φ where 0 is the mapping
that maps modep to qp,0, all global variables and all clocks to zeros. �

System Support for Distributed Augmented
Reality in Ubiquitous Computing Environments

Makoto Kurahashi, Andrej van der Zee, Eiji Tokunaga, Masahiro Nemoto, and
Tatsuo Nakajima

Waseda University, 3-4-1 Okubo Shinjuku Tokyo 169-8555, JAPAN
{mik,andrej,eitoku,nemoto,tatsuo}@dcl.info.waseda.ac.jp

Abstract. Ubiquitous computing will dramatically change our lives due
to the enhancement of our real world. Augmented reality (AR) is a
promising technique for realizing the enhancement by superimposing
computer generated images on video images. However, it is not easy
to build applications using augmented reality techniques since the devel-
oper needs to deal with issues like distribution and context-awareness. It
is desirable to provide a software infrastructure to hide the complexities
from programmers.
In this paper, we propose a middleware called TEAR (Toolkit for Easy
Augmented Reality) supporting augmented reality for ubiquitous com-
puting environments. Our middleware provides several multimedia com-
ponents that process video streams using AR techniques. New compo-
nents to provide more complex functionality can be developed by com-
posing these components.

1 Introduction

Ubiquitous computing [20] will change our lives dramatically by enhancing our
real-world with smart objects. Smart objects are everyday objects that contain
very small embedded processors in order to add functionality. Such objects are
connected to a wireless network and can be accessed by the application pro-
grammer. The behavior of smart objects should be changed in a context-aware
fashion.

In ubiquitous computing environments, a user needs technologies to access
the enhanced real-world. Many HCI researchers have proposed various inter-
action devices to control everyday objects, or to retrieve information in our
real-world.

Augmented reality [2] is a promising technology for realizing the enhance-
ment of our real-world by superimposing computer generated digital images onto
video frames. However, it is not easy to build augmented-reality applications in
ubiquitous environments. Complex issues like distribution and context-awareness
need to be addressed by the application programmer [15,19].

In this paper, we propose a middleware called TEAR (Toolkit for Easy Aug-
mented Reality) for augmented reality support in ubiquitous computing environ-
ments. Our middleware provides several components that process video streams.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 279–295, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

280 M. Kurahashi et al.

We can create an augmented-reality application in a ubiquitous environment by
composing several multimedia components. Complex issues like distribution and
context-awareness are hidden by our middleware. In this way, the application
programmer is not concerned with such complexities and can focus rather on
the application logic. This paper describes the design and implementation of our
middleware, and shows some of our experiences using our resulting system.

The remainder of this paper is structured as follows. In Section 2, we describe
the design issues of our middleware. Section 3 explains the design and imple-
mentation of our middleware. In Section 4, we present two scenarios showing the
effectiveness of our system. In Section 5, we describe related work, and Section
6 concludes the paper.

2 Design Issues

In this section, we describe the design issues involved for building our middle-
ware. First, we present a brief overview of ubiquitous computing and augmented
reality. Then, we show the requirements for building augmented-reality applica-
tions in ubiquitous computing.

2.1 Ubiquitous Computing and Augmented Reality

Augmented reality is a technology offering an augmented real-world to the user.
More concretely, an augmented-reality application presents a view composed
of the real-world and digital information managed by computers. Besides an
augmented view of the real-world, it may provide a seamless human-computer
interface as well.

Developing augmented-reality applications is not easy. Among other con-
cerns, programmers must implement complex algorithms to detect visual mark-
ers. Some toolkits, like the ARToolkit [1], have been developed to equip the
programmers with implementations of typical augmented reality problems.

In ubiquitous environments, computers and networks are accessed implicitly
rather then directly. Most of the time, users are not even aware that they are
connected to a network and accessing multiple computers at the same time. In
the end, users want to deal with the real-world rather then with cyber-space.
This requires a high level of transparency and makes ubiquitous environments
even more complex.

2.2 Requirements

When developing ubiquitous augmented-reality applications, the developer is
faced with the complexities inherent to ubiquitous environments. Existing AR
toolkits are not designed for such environments and consequently do not address
these complexities. We found it is necessary to meet the following three require-
ments when building augmented reality applications in ubiquitous computing
environments.

System Support for Distributed Augmented Reality 281

High-Level Abstraction: Ubiquitous computing environments consist of various
types of computers and networks. Networks may contain a mix of resource-
constrained and specialized computers. Also, the existing augmented reality
toolkits are platform-dependent. Consequently, application programmers must
develop different software for each platform. A middleware to provide high-
level abstraction to hide such differences from application programmers is
necessary[14,16] in order to reduce the development costs.

Distribution: In ubiquitous computing environments, applications must be dis-
tributed over many processors. Since the environment usually consists of various
types of computers, some may not be appropriate for heavy processing like video-
data analysis. For example, cellular phones and PDAs are usually to weak for
heavy processing, but they might want to utilize augmented-reality features.
However, an application running on low CPU-resource could be distributed such
that heavy processing is performed on strong computers. In ubiquitous comput-
ing, we think that such distribution needs to be hidden from the developer in
order to keep development time and cost as low as possible.

Context-Awareness: In ubiquitous computing environments, applications must
support context-awareness since users need to access computers and networks
without knowing. It is required for an application to adapt itself to the users
situation dynamically. However, implementing context-awareness in an applica-
tion directly is very difficult. An application programmer does not want to be
concerned with such complexities and we think that it is desirable to embed
context-awareness in our framework and hide it from the developer.

3 Middleware Supporting Augmented Reality

In this section, we describe the design and implementation of TEAR, the mid-
dleware we developed to support augmented reality in ubiquitous computing.

3.1 Overview of Architecture

TEAR consists of two layers, as shown in Figure 1. The upper layer is the multi-
media framework (see section 3.3) and the lower layer is a communication infras-
tructure based on CORBA (Common Object Request Broker Architecture). The
support of context-awareness is handled by the communication infrastructure.

An augmented reality application using TEAR consists of an application
composer and several multimedia components. An application composer is a
user-side program that coordinates an entire application. It maintains references
to objects contained by multimedia components, and configures them to build
distributed context-aware applications. For example, as shown in Figure 1, a
multimedia source component (a camera) and a multimedia sink component
(a display) are connected. The setup is achieved by the application composer
through the interface provided by the continuous media framework.

282 M. Kurahashi et al.

In TEAR, a proxy object in an application may hold several references to
objects that provide identical functionality. In the example, there are two cam-
era components and three display components. A proxy camera object in the
application composer holds two object references to camera components, and a
proxy display object holds three object references to display components. Which
reference is used in an application is decided upon the context policies, specified
in the application.

Fig. 1. Overview of TEAR Architecture

TEAR meets the requirements outlined in the previous section in the follow-
ing way.

High-Level Abstraction: TEAR provides a multimedia framework for construct-
ing augmented reality components in an easy way. Complex programs like detect-
ing visual markers and drawing 3D objects are encapsulated in respective multi-
media components. All the components offer an identical CORBA interface for
standardized inter-component access. In our framework, a complex distributed
and context-aware AR application can be developed with the application com-
poser that configures existing multimedia components. We describe details about
the multimedia framework in Section 3.3.

Distribution: For composing multimedia components in a distributed environ-
ment, we have adopted a CORBA-based communication infrastructure. Each
multimedia component is designed as a CORBA object. Since CORBA hides
differences among OS platforms and languages, the continuous media compo-
nents run on any OS platforms, and can be implemented in various programming
languages.

Context-Awareness: In the TEAR framework, the communication infrastructure
is designed as a CORBA compatible system that supports context-awareness.
The infrastructure supports user mobility by automatically reconfiguring media

System Support for Distributed Augmented Reality 283

streams. Also, the infrastructure allows us to select a suitable component to
process media streams according to the condition of each computer and the
situation of a user by specifying policies.

We describe details about the communication infrastructure in Section 3.2.

3.2 CORBA-Based Communication Infrastructure

As described in Section 2, context-awareness is one of the most important fea-
tures for implementing augmented reality applications in ubiquitous computing.
Therefore, a middleware supporting augmented reality must support context ab-
straction which allows us to specify application preferences about context infor-
mation such as user location. We have designed a context-aware communication
infrastructure based on CORBA which provides dynamic adaptation according
to the current context.

Dynamic Proxy Object. In our system, application programmers use a dy-
namic proxy object to access target objects, contained by multimedia components
described in Section 3.3. The dynamic proxy object contains several object ref-
erences to actual target objects, context information, and an adaptation policy
for specifying how to adapt the invocation to a target object. A dynamic proxy
object is a CORBA object like a multimedia component, and provides the same
interface as actual objects. When a method in a dynamic proxy object is in-
voked, the request is forwarded to the most appropriate object according to the
specified adaptation policy as shown in Figure 2.

Fig. 2. Dynamic Proxy Object

In the current design, an adaptation policy is specified as a set of location
and performance policies. Examples of location policies are ”Choose an object
in the same host with *”, ”Choose the nearest object from *” or ”Any host”.
Performance policies might be ”Light loaded host” or ”Any host”.

284 M. Kurahashi et al.

Context Trader Service. To create a dynamic proxy object described in
the previous section, we we have developed a CORBA service called the con-
text trader service. An application program can acquire a reference to the con-
text trader by invoking the resolve_initial_reference-method provided
by CORBA.

Figure 3 explains how a client program creates and uses a proxy object. (1)
By invoking the resolve method on the context trader service a developer can
acquire a reference to a proxy object. The method requires three parameters; a
type specifying the proxy object, an adaption policy and the scope for select-
ing the target objects. (2) The context trader service creates a proxy object of
the specified type and registers a target object within the specified scope. (3) A
reference to the proxy object is returned to the client program. (4) Callback han-
dlers may be registered through the reference. (5) Context changes are reported
to the context manager. (6) The context manager notifies the proxy object upon
context change and (7) the client program is notified by invoking the registered
callback handlers.

Fig. 3. Resolving Dynamic Proxy Object

3.3 Multimedia Framework

The main building blocks in our multimedia framework are software entities
that externally and internally stream multimedia data in order to accomplish a
certain task. We call them components. In the following subsections we describe
components in more detail and provide source code to illustrate how a developer
can configure a component.

System Support for Distributed Augmented Reality 285

CORBA
Interface

Multi−media
Objects

Fig. 4. General Component

Components. A continuous media component consists of a CORBA interface
and a theoretically unlimited number of subcomponents or objects as shown in
Figure 4. Video or audio data is streamed between objects, possibly contained
by different components, running on remote machines. Through the CORBA
interface virtual connections can be created in order to control the streaming
direction of data items between objects. Components register themselves at the
CORBA Naming Service under a user-specified name. Next, we will discuss the
CORBA interface subcomponents, thread scheduling and virtual connections.

CORBA Interface. A component can be remotely accessed through one of
three CORBA interfaces: Component, Connector and Services.

The Component interface is added to the component to provide a single object
reference through which references can be obtained to other CORBA interfaces.
The benefits of adding such an interface is to give clients access to all inter-
component functionality through a single reference. Such a reference can be
published in the Naming or Trading Service [8], provided by almost any OMG-
compliant ORB vendor. In addition, the Component interface provides functions
to query individual objects and the component as a whole. The Component in-
terface is identical to all components.

The Connector interface provides methods to establish virtual connections
between objects, possibly contained by different components, running on remote
sites. More specific, the interface provides functions to access and update routing
information of individual source objects (see subsection Routing and Virtual
Connections). The Connector interface is identical to all components.

The Services interface provides methods for controlling specific objects
within a component. Clients may find it useful to query and/or change the state
of a multimedia object. For example, a client may want to query a display ob-
ject for the resolutions it supports and may want to change the resolution to its
needs. The Services interface varies from component to component, depending
on the internal objects it contains.

The interfaces are part of the module IFACE and are written in CORBA
IDL [8,11]. Here follows a snapshot of the Connector and Component interface1:

interface MConnIface
1 The Services interface is not included since it varies for different component config-

urations.

286 M. Kurahashi et al.

{
void
addRoutingSeq(in ObjectId id,

in RoutingSeq seq)
raises(InvalidObjectId);

boolean
removeRoutingSeq(in ObjectId id,

in RoutingSeq seq)
raises(InvalidObjectId);

};

interface MCompIface
{

MConnIface
getConnIface();

MServIface
getServIface();

boolean
isInput(in ObjectId id)
raises(InvalidObjectId);

boolean
isOutput(in ObjectId id)
raises(InvalidObjectId);

};

Subcomponents or Objects. Typically, within a component, several objects
run in separate threads and stream data in one direction. For example, a camera
object may capture images from a video device, and stream the video data to a
display object through a red-blue swapper that swaps the red and blue values
of a video frame as shown in Figure 5.

Camera DisplayRBSwapper

Interface
CORBA

Fig. 5. Example Component

System Support for Distributed Augmented Reality 287

In our approach, the central focus is the stream of data from data producers
to data consumers through zero or more data manipulators [10]. Data producers
typically are interfaces to video or audio capture hardware or media storage
hardware. In our framework we call them sources. Data manipulators perform
operations on the media-data that runs through them. Data manipulators get
their data from sources or other data manipulators and stream the modified data
to a consumer or another manipulator. In our framework we call them filters.
Data consumers are objects that eventually process the data. Data consumers
typically interface to media playback devices or to media storage devices. In our
framework we call them sinks. In our example from Figure 5, data is streamed
from our camera source object, through the red-blue swapper filter object, into
the display sink object.

Objects are categorized as input and/or output objects. For example, a filter
object is both an input and an output object, meaning it is capable of respectively
receiving and sending data. Clearly, a source object is of type output and a sink
object of type input.

More concrete, our framework provides the abstract classes MSource,
MFilter and MSink2 written in C++. Developers extend the classes and over-
ride the appropriate hook-methods [7] to implement functionality. Multimedia
objects need only to be developed once and can be reused in any component.

Components know two specialized objects for handling inter-component data
streaming, namely rtp-in and rtp-out. An rtp-in object is a source object, con-
sequently of type input, that receives data from remote components over a RTP
connections. Semantically this is not strange at all, since from the components
point of view, data is produced by means of receiving it from another compo-
nent. Similarly, rtp-out is a sink object that is responsible for sending data to
other components.

Thread Scheduling. Since all objects run in separate threads, priority values
can be assigned as a criteria for preemption as multiple threads are competing for
the CPU simultaneously. By assigning priority values, the underlying operating
system decides which thread utilizes most CPU cycles during execution. For
example, a developer of a component may assign higher priorities to objects
that perform long calculations.

In our approach, data items are streamed between objects, possibly contained
by different components. Individual objects, running in separate threads, are not
scheduled for the CPU until they receive data for processing. In this way, the
data items function as scheduling tokens for individual threads [10]. Also, idle
objects do not waist any CPU cycles.

Routing and Virtual Connections. A typical augmented reality component
might contain a filter object that adds digital images to a video frame at a
2 The M preceding the class names indicate that they are part of the framework and

stands for multimedia.

288 M. Kurahashi et al.

specified position within the frame. Different client components may want to
use the service at the same time by sending video frames to the component and
afterwards receiving it for playback.

This implies that the data streamed through filter objects within components
might have different destinations. Solely setting up direct connections between
objects does not satisfy the above described scenario. If each client would be
connected to the filter object as a destination, how does the filter object know
which data is to be send to which destination?

To solve the above issue we do not use direct connections between objects.
Rather, source objects add a routing list to the produced data items, consisting
of all its consecutive destination objects. In this approach, after a data item is
processed by the filter object, the next destination is popped from the routing list
and the data is forwarded to the indicated object. We say that the destination
objects in a routing list are virtually connected.

In order to identify an object within a component a unique identifier is as-
signed to each object upon creation. Universally, we use a tuple containing a
Component object reference (see subsection CORBA Interface) and an object
identifier to denote one specific object. Such tuples are used as destinations in a
routing list.

Component Configuration. In our framework, we use a component abstrac-
tion that hides much of the details that deal with CORBA and virtual con-
nections. By extending the abstraction, a developer can configure a component.
More specific, a developer specializes the C++ MComponent class provided by
the framework. In its constructor it typically creates subcomponents, possibly
creates virtual connections and finally adds the objects to the container compo-
nent. Source code for the example component in Figure 5 might look something
like this3:

// The variables starting with m_p
// are member variables declared in
// the derivation of MComponent.

m_pCamera = new Camera;
m_pSwapper = new RBSwapper;
m_pDisplay = new Display;

MRoutingList list = new MRoutingList;
list.add(0, m_pSwapper->getId());
list.add(0, m_pDisplay->getId());
m_pCamera->addRoutingList(list);

addObject(m_pCamera);

3 Using a 0 for a component reference in the construction of a routing list denotes a
local connection.

System Support for Distributed Augmented Reality 289

addObject(m_pSwapper);
addObject(m_pDisplay);

Under the hood, the component registers itself in the Naming Service under
a specified name given on the command line. If successful, the component runs
all its subcomponents and finally blocks control waiting for incoming CORBA
requests.

The above example is an illustration of how to configure a simple component
that streams data locally. Now assume a second component that contains a
similar camera and display object and needs to be configured to swap red and
blue values for the produced video frames. One possibility would be to connect
the camera object to the first components red-blue swapper, and the red-blue
swapper to the display object. Simplified source code for the component might
look like this.

m_pCamera = new Camera;
m_pDisplay = new Display;

// Retrieve the object reference of
// the first component from the Naming
// Service and store it in pCompIface.

// Retrieve the object id of RBSwapper
// from the first component through its
// object reference and store it in
// nObjectId.

MRoutingList list = new MRoutingList;
list.add(pCompIface, nObjectId);
list.add(0, m_pDisplay->getId());
m_pCamera->addRoutingList(list);

addObject(m_pCamera);
addObject(m_pDisplay);

Alternatively, the virtual connections might be created by an external client.
In this scheme, the external client retrieves the object references of both compo-
nents from the Naming Service. Next, it constructs a routing list and invokes the
appropriate function of the Connector interface to add the list to the routing
information of the camera object.

Stream Reconfiguration. Supporting context-awareness by multimedia ap-
plications requires not only dynamic adaptation of object references, but also
dynamic re-direction of continuous media streams. When the current object ref-
erence of a dynamic proxy object is changed, continuous media streams must be

290 M. Kurahashi et al.

reconnected dynamically to change the current configuration of continuous me-
dia components according to the current context information. To achieve this, a
callback handler described in Section 3.2.2 is used. It is registered to a dynamic
proxy object by an application, and the handler is invoked when the current
context is changed. Next, we discuss how our system reconfigures the connec-
tions among continuous media components by using the example described in
the previous section.

Suppose a context change is reported to the context manager and a notifica-
tion is triggered to the proxy object holding a reference to the red-blue swapper.
In response, the proxy object might want to change its internal reference to the
red-blue swapper in order to adapt to the new context. If so, its registered call-
back handlers are invoked. Typically, one of the callback handlers is concerned
with updating routing information of affected source objects. Such handlers ex-
pect a parameter holding a reference to the new target object. In the example,
the reference to the red-blue swapper is used to construct a new routing list,
and the routing information of the camera source object is updated to reflect
the new configuration.

By updating the routing information of source objects virtual connections are
added and deleted. Subcomponents that do not appear in routing information of
any source object are not presented any data and consequently reside in an idle
state. By using virtual connections, no notification messages have to be sent to
any filter or sink object to hold them from processing any data. Solely updating
the routing information of source objects is sufficient.

Components for Augmented Reality. Among others, TEAR provides aug-
mented reality components for the detection of visual markers in video frames
and superimposing 3D objects at a specified location within a frame. Such com-
ponents are implemented as objects contained by multimedia components as
described in subsection 3.3. They use the ARToolkit to implement functionality.

A detection filter object expects a video frame as input and looks for visual
markers. Information about visual markers, if any, is added to the original video
frame and send as output. Since different types of visual markers will be avail-
able, the format of the marker information must be defined in a uniform way.
Consequently, filter components detecting different types of visual markers can
be used interchangeably .

A super-imposer object expects video frames with marker information as
input, superimposes additional graphics at the specified location, and outputs
the augmented video frame.

Figure 6 shows how the two components can be used in sequence to enhance
a video stream with augmented reality. In this configuration, video frames are
captured by an input device and sent to the output device through the detection
filter and super-imposer. As a result, visual markers are replaced by digital
images.

System Support for Distributed Augmented Reality 291

Fig. 6. Components for Augmented Reality

4 Sample Scenarios

This section describes two scenarios showing the effectiveness of TEAR. In the
first scenario, we describe how mobile augmented reality can be used on low CPU-
resource devices such as PDAs and cellular phones. In the second scenario, we
describe a follow-me application that dynamically changes camera and display
devices according to user location.

4.1 Mobile Augmented Reality

In a typical mobile augmented reality application, our real-world is augmented
with virtual information. For example, a door of a classroom might have a visual
tag attached to it. If a PDA or cellular phone, equipped with a camera and the
application program, captures the tag, it replaces it by displaying the todays
schedule for the classroom.

We assume that in the future our environment will deploy many augmented
reality servers. In the example, a near server stores the information about todays
schedule and provides a service for detecting the visual tag and replacing it by
the information about the class room, as depicted in figure 7. Other augmented
reality servers, located in a street, might contain information like what shops or
restaurants can be found in the neighborhood and until how late they are open.

To build the application, an application composer uses components for cap-
turing video data, detecting visual markers, superimposing video frames and
displaying video data. In addition, the composer utilizes a sensor component.
The application composer contacts a context trader service to retrieve a ref-
erence to a dynamic proxy object managing references to augmented reality
server components. In this way, the most suitable server component is selected
dynamically. The sensor component notifies sensing information to the context
manager in a user side ORB, and the context manager might change the context
of the proxy object. If the context is changed, the reference to the actual AR
server component used by the current user is updated and the callback handler

292 M. Kurahashi et al.

is called. In the callback handler, the routing information managed by the data
source component is updated to reflect the new configuration. As a result, the
new AR server components are utilized.

Users can utilize services and information provided by the most suitable
server according to users context (location). If the user moves from one area to
another, the actual server managed by its proxy object is updated dynamically
without user intervention. Since the application composer uses the same proxy
object, it is not concerned with the existence of multiple server objects. In this
way, a developer can build context-aware application without to much additional
effort.

Fig. 7. Mobile Augmented Reality

4.2 A Follow-Me Application

In this section, we consider an application that receives a video stream from
a camera and displays it on the nearest display to the user. As shown in Fig-
ure 8, there are two continuous media components. The first one is a camera
component, and the second one is a display component. The two components
are connected by an application composer. However, the actual display com-
ponent is changed according to user location. An application composer holds a
proxy object managing several display objects and constantly changes the target
reference to a display nearest to the user. Also, the application composer has
a context manager knowing which proxy object should be changed when it is
notified of a context change (e.g. when a user moves).

When the user moves, a location sensor detects the movement of the user. As
a result, the context manager is notified by the location sensor (1). In response,

System Support for Distributed Augmented Reality 293

the context manager changes the context of the proxy object (2). Therefore, a
method invocation is forwarded to the nearest display component (3). In this
case, when a callback handler in the application composer is invoked, it updates
the routing information held by the camera component (4).

Fig. 8. Follow-me Application

5 Related Work

ARToolkit[1] is a software library that allows us to develop augmented reality
applications easily. It provides several functions to detect square formed visual
markers in a video frame. We have implemented continuous media components
for augmented reality by reusing programs provided by the ARToolkit.

DWARF[3] is a component based framework for distributed augmented re-
ality applications using CORBA. It aims to develop prototypes easily with ex-
tended XML or UIML. Our system is different from DWARF since our system
offers context-awareness to develop augmented reality applications suitable for
ubiquitous computing.

The VuSystem[10] is a framework for compute-intensive multimedia applica-
tions. It is divided into an in-band partition and an out-of-band partition. The
out-of-band partition is written in Tcl and controls the in-band media process-
ing modules written in C++. Compute-intensive means that computers perform
analysis on multimedia data, and can take actions based on the findings. In our
framework, we intend to use visual marker information contained within video
frames more extensively. A visual marker might contain any kind of information.
For example, a sensor device might use visual markers to estimate location or
analyze what it is monitoring.

Infopipes[9] proposes an abstraction for building distributed multimedia
streaming applications. Components such as sources, sinks, buffers, and fil-
ters are defined, and multimedia applications are built by connecting them.

294 M. Kurahashi et al.

In our framework, we explicitly specify the connection among components like
Infopipes, but the connections are dynamically changed according to context
information.

Fault Tolerant CORBA specification[17] allows us to create a replicated ob-
ject to make a service highly reliable. In the specification, when we adopt the
primary/backup scheme, one of the replicated objects actually receive a request.
The primary replica is specified in an object reference that is passed to a client.
When the object reference becomes invalid, the reference to the primary replica
is returned by using the location forward mechanism in the IIOP protocol. The
scheme is very similar to our context-aware support in CORBA.

A programmable network[5] allows us to change the functionalities of the
network according to the characteristics of each applications. Each entity in a
programmable network, like a router, has a programmable interface designed to
change the functionalities. In our approach, an application can configure each
continuous media component according to the characteristics of the application.
The capability is similar to a programmable network.

The LocALE[13] framework provides a simple management interface for con-
trolling the life cycle of CORBA distributed objects. It extends mobility support
to the CORBA life cycle management mechanism. Objects can be moved to any-
where in a location domain by the explicit request from a client. In our frame-
work, on the other hand, objects can be autonomously selected by the dynamic
proxy object described in Section 3.2.1.

6 Conclusion

In this paper, we have described our middleware framework to support aug-
mented reality for ubiquitous computing. We have described the design and the
implementation of our system, and shown some experiences with our current pro-
totype system. Our experiences show that our system is very useful to develop
several augmented reality applications for ubiquitous computing.

In the future, we like to continue to improve our middleware framework, and
to develop attractive augmented reality applications such as game, navigation,
and enhanced communication applications. Currently, our system is running on
Linux, and we like to exploit real-time capabilities provided by Linux to process
video streams in a timely fashion. Also, we are interested to take into account to
use a device proposed in [18] since the device can augment the real world without
a display by projecting computer generated graphics on real objects directly.

References

1. ARToolkit, http://www.hitl.washington.edu/people/
grof/SharedSpace/Download/ARToolKitPC.htm.

2. R.T. Azuma, “A Survey of Augmented Reality”, Presence: Teleoperators and Vir-
tual Environments Vol.6, No.4, 1997.

System Support for Distributed Augmented Reality 295

3. Martin Bauer, Bernd Bruegge, et al.: Design of a Component-Based Augmented
Reality Framework, The Second IEEE and ACM International Symposium on Aug-
mented Reality, 2001.

4. G.S.Blair, et. al., “The Design and Implementation of Open ORB 2”, IEEE Dis-
tributed Systems Online, Vol.2, No.6, 2001.

5. Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki,
John B. Vicente, Daniel Villela, “A Survey of Programmable Networks”, ACM
SIGCOMM Computer Communications Review, Vol.29, No.2, 1999.

6. A.K.Dey, G.D.Abowd, D.Salber, “A Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-Aware Applications”, Human-Computer
Interaction, Vol.16, No.2-4, 2001.

7. Erich Gamma, Richard Helm, Ralph Johnson, John Flissides: Design Patterns, El-
ements of Reusable Object-Orientated Software, Addison-Wesley Publishing Com-
pany (1995), ISBN 0-201-63361-2.

8. Michi Henning, Steve Vinoski: Advanced CORBA Programming with C++,
Addison-Wesley Publishing Company (1999), ISBN 0-201-37927-9.

9. R.Koster, A.P. Black, J.Huang, J.Walpole, and C.Pu, “Thread Transparency in
Information Flow Middleware”, In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms, 2001.

10. Christopher J. Lindblad, David L. Tennenhouse: The VuSystem: A Programming
System for Compute-Intensive Multimedia, In Proceedings of ACM International
Conference on Multimedia 1994.

11. S Lo, S Pope, “The Implementation of a High Performance ORB over Multiple
Network Transports”, In Proceedings of Middleware 98, 1998.

12. D.Lopez de Ipina, “Visual Sensing and Middleware Support for Sentient Comput-
ing”, PhD thesis, Cambridge University Engineering Department, January 2002

13. Diego Lopez de Ipina and Sai-Lai Lo, “LocALE: a Location-Aware Lifecycle En-
vironment for Ubiquitous Computing”, In Proceedings of the 15th IEEE Interna-
tional Conference on Information Networking (ICOIN-15), 2001.

14. T.Nakajima, “System Software for Audio and Visual Networked Home Appliances
on Commodity Operating Systems”, In Proceedings of the IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms, 2001.

15. T.Nakajima, H.Ishikawa, E.Tokunaga, F. Stajano, “Technology Challenges for
Building Internet-Scale Ubiquitous Computing”, In Proceedings of the Seventh
IEEE International Workshop on Object-oriented Real-time Dependable Systems,
2002.

16. T.Nakajima, “Experiences with Building Middleware for Audio and Visual Net-
woked Home Appliances on Commodity Software”, ACM Multimedia 2002.

17. OMG, “Final Adopted Specification for Fault Tolerant CORBA”, OMG Technical
Committee Document ptc/00-04-04, Object Management Group (March 2000).

18. C.Pinhanez, “The Everywhere Display Projector: A Device to Create Ubiquitous
Graphical Interfaces”, In Proceedings of Ubicomp’01, 2001.

19. K.Raatikainen, H.B.Christensen, T.Nakajima, “Applications Requirements for
Middleware for Mobile and Pervasive Systems”, Mobile Computing and Commu-
nications Review, Octorber, 2002.

20. M. Weiser, “The Computer for the 21st Century”, Scientific American, Vol. 265,
No.3, 1991.

Zero-Stop Authentication: Sensor-Based Real-Time
Authentication System

Kenta Matsumiya1, Soko Aoki1, Masana Murase1, and Hideyuki Tokuda12

1 Graduate School of Media and Governance, Keio University
2 Faculty of Environmental Information, Keio University {kenta,soko

masana,hxt}@ht.sfc.keio.ac.jp

Abstract. This paper proposes “Zero-stop Authentication” system, which re-
quires no intentional interactions between users and authentication applications.
Our Zero-stop Authentication model simplifies the current complicated authen-
tication process by automating detection of users and objects. Our challenge is
to eliminate the necessity for users to wait for a moment to be authenticated
without reducing security level of authentication. To accomplish such real time
user authentication in a physical environment, user mobility needs to be mod-
elled. This paper models and formulates the user mobility and time constraints as
“1/N × 1/M model”, considering user speed, sensor coverage areas, commu-
nication time between the sensors and the server, and processing time consumed
by an authentication process. We also prototyped a library application based on
1/N × 1/M model, and installed it into Smart Furniture [1] which is an experi-
mental platform to examine feasibility of our model.

1 Introduction

Environment surrounding us is becoming pervasive and ubiquitous [2], populated with
mobile devices and various appliances. With the use of these devices, we can access
computational resources with increased mobility. Moreover, sensor technologies make
such an environment smart, and enable proactive behavior of applications. The applica-
tions proactively take the first action for the users by achieving both users’ and objects’
context. An example of the proactive behavior can be found in an automatic door. An
IrDA sensor on top of the door detects a user coming, and opens the door without receiv-
ing any explicit commands from the user. Due to the proactive behavior, users can access
and execute computer services such as check-out applications in supermarkets and li-
braries without the need of intentional interaction with systems. Despite the progress in
above mentioned ubiquitous and mobile computing technologies, authentication system
and its architecture are becoming more complicated. Existing authentication systems
require users to input their names and passwords or show their identification cards to
access computers and software. Let us assume, for example, that a user borrows books,
and checks out of a library. In the library, the user needs to show an identification card
to a librarian, and the librarian checks whether the user is valid. After authenticating the
user, the librarian checks books to lend. In this process, both the user and the librarian
need certain time for the authentication.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 296–311, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 297

The key challenge is to eliminate users’ waiting time for authentication with security
levels of authentication kept. This paper proposes a sensor-based automatic authentica-
tion: zero-stop authentication, which diminishes user-computer or user-software inter-
action mentioned above, providing “zero-stop” property. We define “zero-stop” property
as a property of an authentication system not to make moving users pause during au-
thentication process. To achieve this property, a system needs to meet the following four
functionalities:

– Correctly detecting users and objects.
– Providing active authentication that requires no input from users.
– Providing real time response.
– Presenting feedback of authentication results.

To provide real time response, first user and object mobility need to be modeled.
Modelling free mobility in which users and objects are assumed to move around through
arbitrary physical point and in arbitrary direction can be difficult. Rather, we have mod-
elled one specific class of mobility in which users and objects pass through a certain
physical point in one direction. We can see such mobility pattern in real world, for ex-
ample at gates in public buildings and infront of service counters. We expect that many
applications can benefit if such a mobility class is formalized. Our model is called “Zero-
stop Authentication”. In this model, the aim is not so much as to provide guarantees for
authenticaiton process to complete within certain time constraint. Our aim is to provide
formulas to check if the entire authentication process can be completed within certain
time, given the velocity of the user and system overhead, so necessary compensation can
be provided. To keep the authentication safe, we adopt existing security technologies
such as secure socket layer (SSL) [3] and IPSec [4]. Encryption technologies like DES
[5] and RSA [6] also secure authentication process.

The rest of this paper is structured as follows. Section 2 details requirements to realize
Zero-stop Authentication and our contribution. In Section 3, we compare related work
with our system, and discuss whether current work can achieve the requirements of the
Zero-stop Authentication. Section 4 introduces “Zero-stop Authentication model”, and
formalizes users’ and objects’ mobility in terms of soft real-time operations. Section 5
discusses the user-object binding problem that the system needs to distinguish which
objects are whose, and then Section 6 designs system architecture of the sensor-based
Zero-stop Authentication. In Section 7, we prototyped a library check-out application
based on our Zero-stop Authentication model. Finally, we summarize this paper, and
discuss future work in Section 8.

2 Challenges

Sensing and networking technologies are rapidly developing. Computing devices in gen-
eral are also reducing their size, becoming more energy efficient and inexpensive. They
are becoming pervasively available. These technological developments let us envision a
computing environment where myriad devices actively sense and interact with us. For
example, at the entrance gate in a subway station, users need to take their tickets out
of their purses or their pockets, then put it into the ticket gate and receive it. In this

298 K. Matsumiya et al.

context, exploiting an proactive ticket gate which detects the user’s ticket automatically
will decrease users’ stress for handling the ticket.

Turning to our daily activities, situations in which we need to authenticate ourselves
are increasing. For example, we log on to computers, show ID cards when entering
authorized buildings and spaces, show credit cards to purchase merchandises (on-line as
well as off-line), and so on. Making environments proactively authenticate users reduces
stress on users greatly in aforementioned situations. In fact, such applications are starting
to be even commercially available [7] [8]. However, these applications organize sensors,
devices, and software functions on their own. A generic model is yet to be available.

The main challenge of this paper is achieving a sensor based real-time authentication
which authenticates multiple users passing by an authentication gate carrying multiple
objects. In realizing the authentication system, there are mainly two sub challenges:
modeling user and object mobility and object binding.

To support the user’s continuous mobility during the authentication process, the au-
thentication system needs to finish its tasks within a certain time. The necessary time for
authentication strongly depends on the hardware and software performance. Therefore
we need to formalize the mobility of users and objects and utilize this formulation when
designing and installing the zero-stop authentication system. In this formalization, we
have made four models of mobility according to the number of users and objects. In the
first model, there is one user carrying one object in the authentication area. In the second
model, there is one user carrying multiple objects in the area. In the third model, there
are multiple users and each of them brings one object. In the fourth model, there are
multiple users and each of them brings multiple objects.

When multiple users carrying multiple objects go through the authentication area at
the same time, the authentication system needs to distinguish which objects are whose.
If the system fails, some objects might be wrongly assigned to other users. The binding
of users and objects should be done either within the sensor or within the user’s client
device. In the former case, the sensor detects all the users and objects collectively and
distinguish each object. In the latter case, the client device detects all the objects user
choose and the client device informs the sensor collectively. As a result, the sensor can
distinguish the objects by the data sent from the user’s device.

In consideration of aforementioned model, we design and implement the sensor-
based real-time authentication system. The architecture of the system includes sensors
for detecting users and objects, authentication program, and result output devices. A
generic model of authentication system needs to take several kinds of sensors and devices
into consideration. An overall procedure of the new sensor-based authentication needs to
be designed not only to reduce the users’ burden on authentication but also to recognize,
guide, and give feedback to the users. After implementing the zero-stop authentication
system, the system needs to be applied to some contexts and be tested. In the experiment,
multiple users with multiple objects go through the authentication area at a certain speed.
In case the authentication system fails to detect or authenticate the users and objects, the
users needs to be stopped and the system needs to run error recovery program.

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 299

3 Related Work

The ActiveBadge system [9] and BAT system [10] are sensor management systems for
context-aware applications which tracks users and objects. In this tracking system, the
users and various objects are tagged with the wireless transmitters, and their location is
stored in a database. Therefore main goal of the BAT system is detection of users’ and
objects’ accurate location. Since the objective of Zero-stop Authentication system is to
build an authentication system on top of a sensor system, the ActiveBadge and the BAT
can complement our system.

Intelligent Transport System (ITS) [11], especially, the electronic toll collection
(ETC) system [12] allows cars to go through the toll gate without stopping. To realize
non-stop payment at the toll gate, automotive vehicles are equipped with devices capable
of wireless communication with the toll gate. When these vehicles enter the communi-
cation area that a toll gate covers, the toll gate begins to authenticate vehicles, and then
withdraws money from banks. In this authentication process, it is necessary to identify
automotive vehicles or IDs such as a credit card number or a unique number bound to a
credit card number. [13] proposes the method to identify automotive vehicles by using
a retroreflective optical scanner, whereas [14] identifies moving vehicles by smart cards
with radio frequency (RF) or infrared (IR) transponders or RF smart tags. However, the
ETC model does not address the binding problem since it assumes all the vehicles are
serialized. Our model, on the other hand, deals with cases where multiple users bringing
multiple objects need to be authenticated at a time.

Zero-Interaction Authentication (ZIA) [15] is an authentication system in which
a user wears a small authentication token that communicates with a laptop computer
over a short-range wireless link. Whenever the laptop needs decryption authority, the
laptop acquires the decryption authority from the token and authority is retained only
as long as it’s necessary. ZIA is similar to our model in its goal of authenticating the
user without stopping them. The main differences between these two models are that our
model authenticate both users and objects, and formalizes their mobility by considering
the real time aspect.

4 Models for Zero-Stop Authentication

We formulate Zero-stop Authentication in this section. To realize zero-stop operations
of authentication, an authentication server embedded in a gate (gate server) detects users
and objects by cooperating with sensors, and then authenticates users within real time. In
our procedural assumption, the gate server can not process the authentication operations
concurrently, because it runs according to the challenge-response manner. Moreover, we
assume that a task deadline is a soft deadline. The gate server checks this deadline, and
it processes authentication error operations, if a deadline miss occurs.

This paper discusses the following case: a user-detecting sensor observes N users,
and an object-detecting sensor recognizes MN objects, where Mi is the number of
objects carried by user i. The reason why we use two types of sensors is to make the
system practical. It is considered that inexpensive sensors can be used to detect objects,
while richer sensors that can perform authentication protocols are needed for users.

300 K. Matsumiya et al.

In this section, we introduce four models of zero-stop authentication. These models
can be applied to several applications such as library applications and supermarket
check-out applications.

(a) 1/1 × 1/1 model
In this model, both the user-detecting sensor and the object-detecting sensor sense
the only one entity at a time.

(b) 1/1 × 1/M model
In this model, the user-detecting sensor detects only one user, while the object-
detecting sensor recognizes multiple objects at a time.

(c) 1/N × 1/1 model
In this model, the user-detecting sensor detects N users, while the object-detecting
sensor detects an object per user.

(d) 1/N × 1/M model
In this model, a user-detecting sensor observes N users, and one object-detecting
sensor recognizes MN objects per user.

4.1 Models of Environment

Figure 1 illustrates the environment we assume. Although coverage-shapes of all sensors
are not circular, many RF sensors with omni-directional antennas such as IEEE-802.11b
standardized devices and RF-ID readers can detect objects appeared in a certain circular
area. Thus, we model that the coverage areas of the user-detecting sensor and the object-
detecting sensor are circles of radius Rusr and Robj , respectively. If Rusr ≤ Robj is
satisfied, two sensors and a gate server are placed as Figure 1-(a) shows (each sensors are
located at the gate). Figure 1-(b) depicts the contrary case i.e., in the case of Rusr > Robj .

Fig. 1. Environment of The Zero-Stop Authentication System

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 301

As for user movement, we assume that a user walks straight along the collinear
line of two sensors and the gate server at a constant velocity, V . By the time when a
user reaches a processing deadline point (PDP), the gate server should finish both the
authentication and the object processing. Then the server temporarily stores those results
in its memory or storage. The gate server updates information about the user and objects
by the time when the user passes through the gate (transaction deadline point: TDP).
Users can obtain the feedback of authentication and object-binding by the gate server
while they exist between PDP and TDP. The length between PDP and TDP depends on
applications, since each application consumes different time required for feedback to
users.

4.2 Time Constrained Operations

(a) 1/1×1/1 Model. In a single user case, we assume that the user enters the coverage
area of the user-detecting sensor or the object-detecting sensor at time t = 0. In this
condition, the gate server should authenticate the user within the following given time:

Rusr − l

V
− α − β − AT ≥ 0 (1)

where l stands for the distance between PDP and TDP, α is the processing time of the
user-detecting sensor to discover users, β stands for the time to transfer a user-ID datum
from the user-detecting sensor to the gate server, and AT is the authentication time.

The velocity of objects can be obtained by approximating user’s velocity. This is
because objects travel at the same velocity V , since the user carries objects. The gate
server should process operations for the object within the time:

Robj − l

V
− γ − δ − OT ≥ 0 (2)

where the parameter γ is the processing time of the object-detecting sensor, δ is the
communication time to transfer an object-ID datum from the object-detecting sensor
to the gate server, and OT stands for the time taken by the gate server to process the
operation for the single object.

(b) 1/1 × 1/M Model. The constraint of the authentication is the same inequality as
formula 1, since the gate server also authenticate a single user in case (b). However, the
gate server processes operations for M objects. Therefore, it should satisfy the following
relationship to realize that the user does not need to stop at the gate:

Robj − l

V
−

M∑
j=1

γj −
M∑

j=1

δj −
M∑

j=1

OTj ≥ 0 (3)

for 1 ≤ j ≤ M , where γj is the processing time consumed by the object-detecting sensor
to discover object j, γj represents the communication time to send the ID of object j
from the object-detecting sensor to the gate server, and OTj is the processing time to
modify the state of object j. Formula 3 assumes that the object-detecting sensor can not

302 K. Matsumiya et al.

concurrently scan multiple objects. If it is possible, the new formula becomes simpler:∑M
j=1 γj is substituted with γmax which is the greatest value of all γj . In addition, the

communication time,
∑M

j=1 δj , can be reduced, if object ID data can be transfered by
less than M packets.

(c) 1/N × 1/1 Model. We consider a more complex case than case (a) and (b): N
users pass through a gate carrying a single object for each. In the multiple users case,
user i enters into the coverage area of a user-detecting sensor or an object-detecting
sensor at time ti. In this case, the time-constrained computation for authenticating user
i is as follows:

ti +
Rusr − l

Vi
− αi − βi − ATi ≥ ti (4)

for 1 ≤ i ≤ N , where αi represents the time to detect user i, βi is the communication
time between the user-detecting sensor and the gate server, and ATi is the time taken by
the gate server to authenticate user i.

If ∀Vi = ∀Vj (i
= j) is met, or operations for each users are serialized like ATM
in a bank, the gate server just authenticates users, following the first-in-first-out (FIFO)
discipline; otherwise the gate server should reschedule the order of authentication op-
erations to minimize deadline misses. To address this issue, we have two approaches.
One is using the earliest-deadline-first algorithm [16] which schedules the user with the
closest deadline first. According to this scheduling policy, the gate server can determine
the priority of each user by calculating Di in the formula:

Di = ETi +
Rusr − l

Vi
− αi − βi − ATi (5)

where ETi is the time when user i enters the coverage area of the user-detecting sensor.
The other one is building least-slack-time scheduling [17] into the gate server. In

this case, the slack time for authenticating user i at time t is Di − pi − t, where pi is the
processing time to authenticate users.

(d) 1/N × 1/M Model. A model for multiple users carrying multiple objects for
each is discussed here. The order to authenticate all N users can be determined by user
selection algorithms. To realize Zero-stop operations, the gate server should meet the
following formula to modify the state of object j:

Robj − l

Vi
−

Mi∑
j=1

γj −
Mi∑
j=1

δj −
Mi∑
j=1

OTj ≥ 0 (6)

for 1 ≤ i ≤ N and 1 ≤ j ≤ Mi, where Mi is the number of objects that user i carries.

5 Object Binding

In both 1/N × 1/1 model and 1/N × 1/M model, the authentication system needs
to bind objects to users. Examples of objects are books in libraries, and merchandises

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 303

in supermarkets. If these objects are appropriately bound to users, applications will be
able to register, or charge them to the user. The main challenge is to correctly sense
and distinguish objects belonging to a user. While mechanisms to sense an object is
maturing, those to distinguish it, and to bind it to an appropriate user is not as thoroughly
investigated.

We introduce three ideas in the following that can be used to effectively distinguish
between objects belonging to a user from others’. In our assumption, objects are tagged
with wireless identification devices, such as RF tags. We will classify these tags into two
groups: Read-Only, and Read-Write.

guidance. The guidance approach is a technique to transform 1/N × 1/1 model or
1/N×1/M model to 1/1×1/1 model. In this approach, users are physically guided,
so only one user is sensed by the system at a time. This method has analogies to
traditional object binding methods, such as in supermarkets. However users often
queue in supermarkets, so enough gates to realize the zero-stop property is required.

insulation. We use an insulator to obstruct radio wave to or from the tags attached to
the objects. The insulator will likely take the form of specialized containers, such as
shopping carts. In this approach, the authentication system detects a user who exists
close to the gate, and authenticates him or her. After that, the authorized user opens
the container so that the objects are exposed to, or freed to give off radio waves.
The identification of the objects recognized at that point is bound to the target of
the authentication. Other users must not open their container during this process,
because object binding misses occur.

marking. Objects have writable tags attached, and users use devices to write their IDs
to those tags. When objects are sensed, these IDs are also sensed, and reported to
the system, allowing it to bind the objects to the user.

Table 1 classifies each binding method by types of tags and required devices.

Table 1. Binding methods

method tag type device

guidance RO gate
insulation RO insulation container
marking RW marking device

6 System Architecture

There are six modules as shown in Figure2 in our system. We assume that devices such
as sensors, displays, and speakers can be controlled directly over a network, or from a
computer that is connected to a network. The system itself runs on a designated computer.

304 K. Matsumiya et al.

Detection module manages sensors which detect users and objects, and throws events or
data obtained from sensors. Event process module processes the raw events or data into
a form that is recognizable to the rest of the system. It passes user identifiers to the au-
thentication module, and object identifiers to the binding module. Authentication module
manages authentication mechanisms and protocols, and conducts user authentication.
If the authentication succeeds, binding module binds objects with the user. Feedback
process module processes commands for output devices, from the feedback information
passed from applications. Output module manages output devices, and dispatches com-
mands to the correct output device based on users’context or requirements. Applications
may choose to use the feedback functions of the system, or choose not to do so.

Fig. 2. Architecture

In the rest of this section, we describe in detail about four features which our au-
thentication needs to acquire: Recognition and guidance of users and objects, binding
objects to users, maintaining user and object state, and presentation of feedback and
error correction.

6.1 Recognition and Guidance

The system needs to physically recognize and guide users and objects. Recognition may
be done by existing sensor mechanisms. In order to achieve zero-stop property, users
need to be successfully authenticated within a specific period of time. Thus, there are
constraints on sensing overhead.

Guidance is an issue related to recognition. Existing examples of physical guidance
include gates and doors at building entrances, cash counters in supermarkets, and various

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 305

toll gates on roadways. Some sensing technologies have problems in sensing multiple
objects within same physical area, or objects moving in exceedingly high speed. In order
to accomplish the authentication task using such sensing technologies, objects must be
physically guided to support the sensors. Objects are guided to pass a particular area,
managed into sequential queues, and their speed may be reduced.

In case users carry objects that need to be bound to themselves such as merchandises
in supermarkets, the sensors need to distinguish between multiple objects, or between
objects belonging to an user from those that belong to others. If the sensors were not
able to accomplish this task, objects may need to be bundled or separated accordingly.

6.2 User and Object State

The system need to keep track of user and object state. Their physical context should be
mapped accordingly to the internal objects maintained by the system. Figure 3 illustrates
the state graph of users and objects.

The system may loose or mix up users and objects due to sensing problems, and
incorrect binding may occur. The system need to recover from these errors, and allow
users to correct improper transactions.

Fig. 3. State graph of users and objects

6.3 Feedback and Error Correction

The objective of the feedback is to allow users to acknowledge the result of the au-
thentication, verify if objects were correctly bound to them, and browse other related
information such as a due date of a book or credits withdrawn from their bank accounts.

The presentation of the feedback can be done visually, or through other methods
such as audio synthesizing. Simple results that can be expressed in several patterns, may
be presented using simple and intuitive presentation methods, such as color pattern of

306 K. Matsumiya et al.

an LCD. We believe that this kind of presentation method will gain more popularity in
the forthcoming ubiquitous computing environment as a way to output computational
results.

Error correction is another important field for our system to address. Authentication
and transaction might generate errors such as authentication failure, miss-binding of
objects, and unreasonable withdrawal of credits. The system need to permit users to
interact with the system, and correct these errors.

Traditional interaction devices such as keyboards and mice are not an ideal candidate
for our interaction methods, since they are immobile and interaction intensive. One way
to go around this problem is to construct a user interface which is accessible from voice
operation or gesture operation. Their interaction method and physical form may vary
between the different applications that adopt them. Another solution may be to construct
a software agent that automatically corrects the errors on behalf of the users.

6.4 Development

Final point to consider when constructing a Zero-stop Authentication system, is devel-
opment procedure. Usability of the system is limited mainly due to the overhead and
ability of sensor devices and authentication methods. Current technologies may not be
able to permit, for example, tens of automobiles each traveling over 100km/h to be au-
thenticated at once. They are likely to be asked instead to slow down to under 50km/h,
and pass a gate one by one. Development in the sensing and authentication technologies
however, may enable the intended scenario. So, the development and deployment of the
system should be done incrementally, gradually freeing users from physical constraints.

7 Prototype Implementation

We prototyped sensor-based authentication system based on the Zero-stop Authentica-
tion model proposed in this paper. Besides the prototype system of Zero-stop Authenti-
cation, a library check-out application is also implemented using JDK 1.3.1.

7.1 Authentication System and Application

Figure 4 depicts Smart Furniture which is an experimental platform of a gate server.
Two types of sensors are equipped with the gate server, and they are RF-based sensor
devices; a wireless LAN device to detect users and an RFID tag sensor to detect objects.
Hardware composition is explained in Figure 5 with its specification in Table 2 and Table
3.

The prototype authentication system is composed of six modules mentioned in Sec-
tion 6. In our current implementation, the detection module obtains sensor data from
the wireless LAN device and the RFID tag sensor. Therefore, we developed their sensor
driver programs for sending sensor data to the detection module. The wireless LAN
sensor driver program detects users’ portable devices using signal strength, and then
provides the IP address of the user’s terminal with the highest level of signal strength
among others detected by the sensor. To measure signal strength, we utilize IBSS mode

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 307

Fig. 4. Smart Furniture: (a) a testbed for uqibuitous applications; (b) Zero-stop Authentication
system with a library application

Fig. 5. Hardware Composition

of an IEEE 802.11b standardized device. After obtaining the IP address, the authenti-
cation module tries to communicate with the host to which the IP address is assigned,
and then it starts an authentication process (simple challenge-response protocol). The
authentication module authenticates users by searching within a PostgreSQL based data
base server where student information (IDs, passwords, names etc.) is stored. In the
authentication process, the communication link between users’ terminals and the gate
server is protected by SSL.

After authenticating the user successfully, the RFID tag sensor driver program de-
tects books to which RFID tags are attached. At the same time, the binding module binds
the user and books, and provides the authentication module with the binding informa-
tion. Finally, the output module indicates authentication results on the LCD screen of
Smart Furniture for users so as to confirm details. Figure 6-(b) illustrates the screen

308 K. Matsumiya et al.

Table 2. Computing Devices Used in Prototype Implementation

item iPAQ ThinkPAD
Type User Terminal (PDA) Gate Server (notebook PC)
CPU StrongARM Intel PentiumIII

206MHz 850MHz
Memory 64MB 256MB
OS Familiar Linux v0.5.1 FreeBSD 5.0 CURRENT
Network Interface 802.11b 802.11b (IBSS-Mode)
Others TFT Display

Table 3. Sensor Devices Used in Prototype Implementation

item Wireless LAN RFID Sensor
Type User Terminal (Wireless LAN) Gate Server (RFID Reader)
Detection Range 160m(outside),50m(indoor) 15m(indoor)
Read Rate 75 tags / second
Operating Frequency 2412-2484 MHz 303.8 MHz
Others

dump of graphical user interface which appears during the authentication process for
the confirmation.

If the authentication fails, the object detection operation above is not processed. In
stead of this operation, the feedback module produces error messages, and shows them
on the LCD screen of Smart Furniture cooperating with the output module as Figure
6-(c) shows. Furthermore, it also blocks the path of a user by closing the library gate, or
setting off an alarm.

Fig. 6. Screen dump of authentication results: (a) waiting for authentication; (b) authentication is
successfully done; (c) authentication failure occurs

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 309

7.2 System Measurement

We have tested our system for 100 times under the condition of adjusting wireless
LAN -40db to detect and -50db to lose the connection. This signal strength makes
the authentication area as large as 2m in radius. The detection and authentication time
necessary for our system was 599.33msec on average which is fast enough for the system
to authenticate users before users passing through the authentication area. The standard
deviation in our measurement result was 30.93.

7.3 Serialization Scheme

Since we have utilized RFIDs which are not data writable and read only, we have adopted
the guidance method described in section 5 for the object binding.

Our library application and authentication system should deal with a concurrency
access problem. When several users concurrently access the gate server at the same
place, the gate server can not realize zero-stop property. Some tasks may fail and miss
their deadline, because the gate server can not provide enough resources. To address this
issue, the serialization scheme is introduced in our system as Figure 7 illustrates.

Fig. 7. Serialization Scheme

8 Conclusion

This paper presents Zero-stop Authentication, a sensor-based real-time authentication
system in which no intentional interaction between users and authentication system is
required. In our system, we have attached several sensors on the gate to detect users
and objects and authenticate them. To realize Zero-stop authentication, the system needs
to finish the authentication process within real time. Therefore we have formulated the
mobility of users and objects. The prototype of Zero-stop Authentication is implemented
in Java, and uses Wireless LAN and RFID reader to detect users and objects. We have

310 K. Matsumiya et al.

applied our system to the library’s authentication with Smart Furniture a test bed infras-
tructure. We are extending the current system to cope with several problems which are
not overcome. Two examples of future work are object binding problem and terminal
theft problem.

In our prototype implementation, we adopted the guidance method for object binding.
Since it can transform complicated models into 1/1 x 1/1 model, we were able to keep
the system simple. However, in order to provide higher usability by not making users
queue up, the system needs to support 1/N x 1/1 model or 1/N x 1/M model. To realize
these models, we need to implement a more complex system, and at the same time apply
other binding methods such as insulation and marking.

We have tried to simplify the current complicated authentication process without
diminishing security level by using several security and encryption technologies. How-
ever, there is still a threat that a client device or a tag which a user should have would be
stolen. For these problems, authentication technology for the device such as biometrics
is usable.

Acknowledgement. We thank Uchida Yoko Corporation for their collaborating work
on "Smart Furniture".

References

1. K. Takashio, S. Aoki, M. Murase, K. Matsumiya, N. Nishio, and H. Tokuda, “Smart hot-
spot: Taking out ubiquitous smart computing environment anywhere”, 2002, International
Conference on Pervasive Computing (Demo Presentations).

2. M. Weiser, “The computer for the twenty-century”, vol. 265, no. 3, pp. 94–104, 1991,
Scientific American.

3. A. Freier, P. Kartiton, and P. Kocher, “The ssl protocol: version 3.0”, 1996, Tech Rep.,
Internet-draft.

4. S. Kent and R. Atkinson, “Security architecture for the internet protocol”, 1998, IETF RFC
2401.

5. W. Deffie and M. E. Hellman, “New directions in cryptography”, 1976, pp. 644–654, IEEE
Transactions on Information Theory IT-22.

6. R. Rivest,A. Shamir, and L.Adleman, “A method for obtaing digital signatures and public-key
cryptosystems”, in Communications of the ACM, 1978, vol. 21, pp. 120–126.

7. Ensure Technologies Inc., “Xyloc”, 2001, http://www.ensuretech.com/.
8. Sony Corporation, “Felica: Contactless smart card system”, 2002,

http://www.sony.net/Products/felica/.
9. R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge location system”, Tech.

Rep. 92.1, ORL, 24a Trumpington Street, Cambridge CB2 1QA, 1992.
10. A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a context-aware

application”, in International Conference on Mobile Computing and Networking, 1999, pp.
59–68.

11. ITS America, “Intelligent transportation system”, 2002, http://www.itsa.org/standards.
12. ETTM On The Web, “Electoronic toll collection system”, 2002, http://www.ettm.com/.
13. H. Okabe, K.Takemura, S. Ogata, and T.Yamashita, “Compact vehicle sensor using a retrore-

flective optical scanner”, in IEEE Conference of Intelligent Transportation Systems, 1997,
pp. 201–205.

Zero-Stop Authentication: Sensor-Based Real-Time Authentication System 311

14. ETTM On The Web, “Automatic vehicle identification”, 2002, http://www.ettm.com/avi.htm.
15. M. Corner and B. Noble, “Zero-interaction authentication”, in International Conference on

Mobile Computing and Networking, 2002.
16. M. L. Dertouzos, “Control robotics: The procedural control of physical processes”, in

Proceedings of the IFIP Congress, 1974, pp. 807–813.
17. R. W. Conway, M. L. Maxwell, and L. W. Miller, “Theory of scheduling”, 1967, Addison-

Wesley.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 312–327, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Interface-Based Naming System for Ubiquitous
Internet Applications

Masateru Minami1, Hiroyuki Morikawa2, and Tomonori Aoyama1

1 Graduate School of Information Science and Technology, The University of Tokyo
2 Graduate School of Frontier Sciences, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
{minami,mori,aoyama}@mlab.t.u-tokyo.ac.jp

Abstract. In the future, huge amounts of embedded and invisible devices, as well
as software components, will be connected to the Internet, and these “functional
objects” are expected to play an important role in providing convenience services
to users. In such a “ubiquitous Internet,” users will be able to utilize various appli-
cations through functional objects anytime and anywhere. Since the ubiquitous
Internet will be a highly dynamic, heterogeneous, and context-dependent envi-
ronment, applications should be able to change their functionality depending on
dynamically changing user context. For example, when a user wishes to brows a
PDF file on his small PDA display, a document-browsing application running on
the PDA will need an additional transcoder function to reformat the PDF file. If
the user wishes to use a voice-only device, such as a PDC (Personal Digital Cel-
lular), to obtain information in the PDF document, the application will need to lo-
cate and use a PDF-to-text function as well as a text-to-voice function. Thus, to
enable ubiquitous Internet applications to change their functionality on the fly, a
mechanism capable of locating the appropriate functions transparently on the
Internet is necessary. Generally, such locating mechanisms can be supported by a
location-independent naming system. However, the name space of such a naming
system tends to be flat; therefore, designing a scalable naming system is quite
challenging. This paper describes the design of a new scalable location-
independent naming system, called Interface-based Naming System (IFNS),
which is capable of locating functional objects transparently in a ubiquitous Inter-
net. In the design of IFNS, we utilize interface information to name functional
objects. Interface information enables us to design scalable name management and
name resolution algorithms in a fully distributed manner. In addition, interface in-
formation not only enables the transparent location of functional objects, but also
enables the naming system to support automatic function synthesis. Simulation re-
sults show that the proposed IFNS has acceptable scalability and performance for
utilizing functional objects in a ubiquitous Internet environment.

1 Introduction

The rapid deployment of broadband and wireless Internet technologies has not only
brought a diffusion of network-enabled devices into our daily lives, but has also in

An Interface-Based Naming System for Ubiquitous Internet Applications 313

creased the opportunities for end-users to use various applications. This trend will
launch a future Internet environment where many users will employ many different
kinds of “functional objects” seamlessly through network connections anytime and
anywhere. This environment, which we call the “ubiquitous Internet,” requires a new
platform enabling users to utilize various applications seamlessly.

Consider the scenario where a user in an office environment uses various func-
tional objects through a video-conferencing application. To start the application to
contact a colleague, the user can either click an icon on his desktop computer or issue
a command via voice recognition. Then, for seamless use of the video-conferencing
application, the application needs to immediately locate the necessary functional
objects (e.g., the nearest CCD (charge-coupled device) camera, nearest display, and
so on). If the user moves around his office, the application must change devices to
seamlessly continue the video conferencing according to the user's context. And, if
there is a change of network or device (e.g., the user switches his device from a
desktop PC with 100 Mbps LAN to a PDA with 802.11 wireless LAN), the applica-
tion may need to find an additional transcoder function to adapt to the current net-
work or device condition. Internet-scale services will require the same features de-
scribed in this personal-area scenario,. For example, when a user wishes to obtain a
document in a particular format or a video file at a specific resolution, some kind of
conversion function is necessary. However, since the current Internet does not sup-
port such a mechanism, the user must manually download conversion software to
convert the document or video file. For seamless use of applications, this manual
configuration should not be necessary. In this case, it is desirable that an appropriate
data conversion function is automatically assigned to the document, and the user
obtains the document directly in the desired format with minimal effort.

Many readers may think that it is easy to construct the applications in the above
scenario using existing technologies (e.g., Jini or other kinds of middleware). Of
course, it is possible to implement the above scenario as a “scenario-specific applica-
tion” based on existing technologies. However, once we try to build universal appli-
cations for the current Internet architecture, we may find that it is quite difficult and
challenging. We believe that this is mainly due to the lack of a useful locating and
adaptation mechanism for global scale networks:

Locating mechanism complementary to DNS: When we try to access a networked
object, such as a functional object, we must first utilize a locating service (i.e., a
naming system) to provide applications with the information needed to access these
networked objects. Even if huge quantities of functional objects and multimedia con-
tents are available to the Internet, the objects are worthless if we do not have a useful
locating mechanism to access them. Of course, we can use the Domain Name System
(DNS) to locate objects on the current Internet. Since DNS is a well-designed and
extremely scalable locating system, we can handle all objects via DNS, even in a
future ubiquitous Internet. However, because DNS inherently locates objects that are
tightly coupled with an IP address (i.e., administrative domain), it would be inade-
quate for locating objects when building various ubiquitous computing applications.

314 M. Minami, H. Morikawa, and T. Aoyama

 For example, in the above video-conferencing scenario, applications need to im-
mediately locate and utilize a transcoding function for adaptation. In such cases, the
application is interested in the function of the transcoder, not the IP address or net-
work location. Although it is possible to locate such a transcoder by resolving FQDN
(Fully Qualified Domain Name), if the transcoder is unavailable—for example, due to
system trouble or security policy—the application needs to locate another transcoder
with another FQDN. This is because FQDN is location-dependent. It is better to avoid
the continuous use of various applications in a ubiquitous computing environment.

Moreover, in the above scenario, the user would like to utilize the “nearest” de-
vices for convenience. We believe that this kind of scenario will be popular in a ubiq-
uitous Internet, because networking and computing will continue to be integrated into
our daily lives. This means that networks and computers in the ubiquitous Internet
must handle not only virtual objects such as web pages or multimedia files, but also
physical objects existing in the real world. However, the current DNS cannot locate
objects tightly coupled with a physical situation.

Adaptation mechanism for heterogeneity: Another important aspect of the above
scenario is adaptation. Generally, when we wish to run an application seamlessly in a
ubiquitous computing environment, the application must dynamically combine vari-
ous devices and networks, depending on various contexts. However, we cannot as-
sume that these devices and networks always utilize the same data format and proto-
col; in other words, the application must handle various types of data formats and
protocols. Naturally, we also cannot assume that an application always supports all
data formats and protocols. Thus, applications should dynamically locate the neces-
sary data formats or protocol conversion functions to handle heterogeneity. This
means that there needs to be some mechanism to detect and absorb differences of data
format and/or protocol among objects.

The above discussions indicate that another naming system, which is complemen-
tary to the current DNS, could be one of the most essential components for realizing
ubiquitous computing applications on the future Internet. Optimally, this naming
system will need to handle multiple name spaces to support various kinds of situa-
tions, and to enable data formats and protocol adaptations in a heterogeneous envi-
ronment. From this point of view, we have developed an application platform called
Service Synthesizer on the Net (STONE), which is based on a naming system called
Interface-based Naming System (IFNS). IFNS is designed to support the two stated
requirements: locating and adaptation. In our platform, all objects are called func-
tional objects. These objects can be named by multiple names, such as physical loca-
tion, but should have at least one interface name. The interface name consists of both
input and output interface information of the functional object, and the relationship
between them. For example, a functional object for mpeg2-to-mpeg4 transcoding is
named mpeg2/mpeg4. This naming scheme enables applications to directly specify
necessary functions. In addition, since the interface name is independent of network
location (e.g., IP address or administrative domain), we can transparently locate the
functional objects.

An Interface-Based Naming System for Ubiquitous Internet Applications 315

One important and challenging problem in designing such a location-independent
naming system is scalability. To overcome this problem, IFNS manages functional
objects by aggregating multiple functional objects into one interface name.
In addition, the interface name must not only enable transparent and scalable access
to functional objects, but also support an automatic function synthesis mechanism
(AFS), which will be described later. This mechanism greatly improves the perform-
ance of IFNS, even if it cannot locate a desired functional object directly. For exam-
ple, if IFNS cannot locate a mpeg2-to-mpeg4 transcoder, the automatic function syn-
thesis mechanism decomposes mpeg2-to-mpeg4 into mpeg2-to-mpeg1 and mpeg1-to-
mpeg4, then tries to locate these two functions.
This paper is organized as follows. In the next section, we introduce existing work
related to naming and middleware for ubiquitous computing applications. In Section
3, we briefly summarize our STONE application platform for a ubiquitous Internet.
Section 4 focuses on name-space definition, name management and the resolution
algorithms used in IFNS. In Section 5, simulations are performed to show the scal-
ability of the proposed naming system as well as the performance of the automatic
function synthesis mechanism. Finally, we conclude this paper in Section 6.

2 Related Work

There has been a lot of research on naming systems and service adaptation mecha-
nisms. The most primitive approach to locating objects is the use of a network ad-
dress, such as an IP address and port number. However, since the IP address inher-
ently represents a location in the network, it is difficult to identify the actual function
of a functional object. And even more unfortunately, it is also difficult to enable ap-
plications to transparently access these functional objects. An alternate approach to
locating functional objects with transparent access in the Internet is the use of the
Domain Name System (DNS). DNS is a well-designed system for locating various
services provided on the Internet [1][2][3]. By using DNS and FQDN, we can locate a
host (or service) transparent to the IP address and port number. If we can describe the
function of a functional object with FQDN, it is possible to transparently locate func-
tional objects using DNS. However, since DNS has evolved as a mechanism to access
services managed through specific organization, it is not suitable for locating func-
tional objects. Moreover, using the DNS in a highly dynamic and distributed envi-
ronment, such as the ubiquitous Internet, contradicts the design philosophy of the
DNS [1]. This may cause other significant problems, such as cache consistency and
load-balancing problems.

This implies that a new location-independent naming system for functional objects,
which is complementary to conventional DNS, is required for future ubiquitous Inter-
net applications. Designing such a naming system, however, is quite challenging,
because the name space of a location-independent name usually tends to be flat and
not scalable. In order to design a scalable location-independent naming system, scal-
able name space and efficient name management/resolution algorithms are desired.

316 M. Minami, H. Morikawa, and T. Aoyama

The Grapevine [4] proposed by XEROX PARC is one of the earliest location-
independent naming systems; it utilizes hierarchical name space, and enables users to
locate persons or equipment in an office environment. The X.500 directory service
[5], which works on the current Internet, enables users to locate various objects by
utilizing a DNS-like hierarchical administrative domain. However, since these sys-
tems (or architectures) are designed as general-purpose naming systems, it is unclear
whether they would work well in a highly dynamic and globally distributed environ-
ment.

The Intentional Naming System (INS) [6], which was recently proposed, is one
attempt to use a naming system to achieve various transparencies. However, al-
though INS has a great capability of transparently locating various objects, the name
space of INS tends to be flat. Consequently, it would not be scalable in the ubiquitous
Internet. The authors believe that, to make systems practical and scalable, the naming
system should be designed as a special-purpose system, such as DNS. IETF
URI/URN (Uniform Resource Identifiers, Uniform Resource Name) [7] is another
approach for locating various objects in the Internet. It defines multiple name spaces,
and also designs name resolution mechanisms for various objects. However, since the
design of URI/URN is highly dependent on DNS architecture, it is unclear whether it
would work well in the ubiquitous Internet.

Middleware platforms, such as Jini [8], UPnP (Universal Plug and Play) [9], or
HAVi (Home Audio Video interoperability) [10], usually contain a directory service.
However, these directory services are not designed for a global area network. Moreo-
ver, none of them clearly defines naming schemes.

3 Service Synthesizer on the Net

As described in Section 1, the authors believe that an application platform capable of
dynamically combining functional objects will be very important in the future ubiq-
uitous Internet. To this end, we have researched application platform technologies
and developed a platform named Service Synthesizer on the Net (STONE). This sec-
tion provides a brief overview of this platform.

Figure 1 shows the architecture of the STONE platform. The STONE platform is a
distributed system overlaid on the Internet, and it creates a service by combining
various functions. The STONE platform consists of two major components: a func-
tional object (FO) and a service resolver (SR).

The FO is the most basic element of the platform. It may be a hardware device or
software component, and it is capable of network connectivity. In the STONE plat-
form, each functional object must have its own name (FO name) and an access
pointer (AP). The FO name consists of multiple attribute-value pairs that indicate
various properties of the FO. For example, a display FO capable of JPEG image
viewing in Room 407 in building No. 3 can be described as [Location = room407 /
building no.3], [Interface = JPEG / DISPLAY]. Although a functional object is al-
lowed to have multiple names, it must have at least one interface name. As described
later, the interface name plays a significant role in our platform.

An Interface-Based Naming System for Ubiquitous Internet Applications 317

The access pointer list is an identifier which globally and uniquely specifies the
functional object on the Internet. Currently, we are using the IP address and port
number as an access pointer.
The SR (service resolver) manages FOs, and composes various services. The SR
consists of a Service Synthesizer (SS) and a Multi-Name Service System (MNSS). The
service synthesizer is an API (Application Programming Interface) to client applica-
tions. It collects functional objects and combines them according to a Service Graph
(SG). The SG is a functional diagram of a service in which functions are described by
the FO name. Every client of the STONE platform will send the SG to the SS to re-
quest services. When the SS receives the SG, it extracts the FO names from the SG
and tries to locate functions by querying the names to the MNSS.

The MNSS manages multiple Name Service Components (NSC) and resolves the
FO name by querying the appropriate NSC. The NSC is in charge of specific name
space. For example, the name [Location = room407 / building no.3] is stored and
managed by a physical location NSC. The NSC is implemented as a plug-in module
so that we can easily add a new NSC to the MNSS. The reason we design the MNSS
as the manager of multiple name service components is that we believe the future
ubiquitous Internet will require many kinds of naming systems. For example, if a user
wishes to contact someone, a naming system capable of resolving the username will
be necessary. If a user wishes to use a printer in a specific location, a naming system
for resolving the name of a physical space will be required. And, more importantly,
since the name space managed in each naming system will have a different informa-
tion structure, it will require different name management/resolution algorithms. For
example, because the name space of the physical address [7-3-1/Hongo / Bunkyo-ku /
Tokyo / Japan] has a hierarchical information structure, it could be managed and
resolved by a DNS-like name resolution/management scheme. On the other hand, a
name space for multimedia contents will have a different information structure and
require another algorithm. It is not known how many naming systems will be required
in the ubiquitous Internet; however, it is important that any new naming system can
be easily added to the STONE platform. For this reason, we designed MNSS as a
composite system.
Although there will be many NSCs in the MNSS, the most important NSC in the
STONE architecture is the Interface-based Naming System (IFNS) component. IFNS
manages the name space of functions that are provided by functional objects. Using
IFNS, the service synthesizer or any other MNSS client can transparently locate vari-
ous functions. IFNS not only provides the capability of transparently locating a de-
sired function, but it also provides an automatic function synthesis mechanism that
automatically equalizes the function with multiple FOs. This mechanism greatly im-
proves the performance of service synthesis when IFNS cannot directly locate the
desired FO. IFNS is a key component in the synthesis of various services in the ubiq-
uitous Internet, and its design is the scope of this paper. The following section de-
scribes IFNS.

318 M. Minami, H. Morikawa, and T. Aoyama

4 Interface-Based Naming System

 4.1 Overview

Figure 2 shows an overview of IFNS. IFNS is a distributed naming system which
consists of many IFNS nodes, similar to the Gnutella system [11]. An IFNS node
contains a local database and a wide-area database to store the interface name. Each
IFNS node establishes logical connections to neighboring IFNS nodes, and manages
the interface name by advertising information through logical links. A functional
object registers its name to the IFNS node (usually, the node nearest the functional
object). The IFNS client, such as the service synthesizer, locates the functional object
by querying the interface name to the IFNS node. Since the interface name specifies
the function of the functional object, it will be a location-independent name. There-
fore, scalability is a significant issue in designing IFNS. To enable IFNS to scale well,
we designed a defined name space as well as name management and name resolution
algorithms, as described in the following section.

4.2 Name Space

Generally, in distributed systems like the Internet, the object- locating mechanism is
provided by the naming system [12][13]. The essential feature in designing the nam-
ing system is how to assign a name to an object. This is because the semantics and
syntax of the assigned name are directly related to the structure of the name space,
and affect the scalability of the name management and resolution algorithms. Once
the name space can be defined, we can design name management and name resolution
algorithms suitable for the structure of the name space.
Name space is usually characterized by both naming semantics and naming syntax;
generally, naming semantics is more important than naming syntax. For practical use
of the naming system, defining naming syntax with sufficient expressiveness is nec-
essary. However, due to the information structure in the name space, naming seman-
tics is the dominant factor. For this reason, this paper focuses on naming semantics

Fig. 1. Overview of STONE System Fig. 2. Interface-based Naming System

An Interface-Based Naming System for Ubiquitous Internet Applications 319

and attempts to design name management and resolution algorithms reflecting the
information structure of the name space.

In designing IFNS, we use the interface information of the functional object. Gen-
erally, the function of a functional object can be defined with its input/output inter-
faces and the relationship between these interfaces. For example, the function of a
simple functional object mpeg2-to-mpeg4 transcoder can be defined as a function
whose input interface, output interface and relationship between these interfaces are
mpeg2, mpeg4, and conversion, respectively. The interface name we create in this
paper utilizes these semantics. By naming a functional object with an interface and a
relationship, we can transparently and definitely specify the desired function

 Hereinafter, we denote the interface name as A/Z, where A and B indicate input
and output, respectively, and / denotes the relationship between A and Z. This func-
tion-centric naming is independent of a location-dependent identifier, such as network
address, so we can transparently locate the desired functional object. Of course, there
will be the problem of how to describe multiple I/O functional objects (e.g., audio
data mixer). However, even if a functional object has multiple I/O, we believe that it
is possible to describe the functional object by its I/O interface and relationship (e.g.,
(A+B)/Z). In other words, it is a problem of naming syntax, and is beyond the scope
of this paper.

4.3 Name Management Algorithm

Name management and name resolution in the naming system should be designed by
considering the data structure of the name space. For the case of interface name, the
data structure of the name space can be aggregated: we can think of functional objects
that have the same interface name as the same function. Since there will be many
functional objects in the ubiquitous Internet, the possibility of the existence of func-
tional objects that have the same function will be high. Therefore, we can effectively
aggregate many functional objects scattered in the network into the interface name
space. Even if multiple functional objects are aggregated into one interface name, this
should not affect applications. This is because applications are interested in whether
they can locate the desired function, not where the desired function is. By using the
aggregate characteristic of the interface name space, efficient name management and
resolution algorithms are described.

Figure 3 shows the name management algorithm of IFNS. When a functional ob-
ject with the interface name A/Z is registered with IFNS node N1, the registered name
and access pointer are stored in a local database (LDB) in node N1 (as shown in (1) of
Figure 3). An example of the LDB table in node N1 is shown at the bottom left of
Figure 3. The LDB table consists of an interface name section and an access pointer
section. The registered access pointer corresponding to interface name A/Z is added to
the appropriate cell in the access pointer section.

Meanwhile, a numerical value is assigned to the registered name and stored in a
wide-area database (WDB) in node N1. This value, which we call the evaluation
value, can be assigned based on the load of the functional object, or the network con-

320 M. Minami, H. Morikawa, and T. Aoyama

dition, or other similar parameters. This value is used to manage interface names on
the IFNS logical network, as described later. An example of a WDB table is shown at
the bottom right of Figure 3. Each row in the WDB table corresponds to an interface
name, and each column corresponds to the logical connection established to a neigh-
boring node. The column name This represents the IFNS node itself.

Here, we assume that the value E1 is assigned to the interface name A/Z at node N1
(we denote this as <A/Z, E1>). Initially, node N1 adds the value E1 to the table ele-
ment corresponding to the name A/Z in the column This (we denote this as WDB[A/Z,
this]). Next, node N1 advertises the name A/Z to all neighboring nodes that establish
logical connections to node N1. The advertisement is triggered by a timer with a ran-
dom initial value. When N1 advertises the name A/Z, node N1 divides the value E1

based on the number of neighboring nodes, and sends it to the neighboring node with
the name A/Z. In this paper, we assume all nodes in IFNS divide the value E by n+1
(i.e., the value E/(n+1) is advertised to each of the neighboring nodes), where n de-
notes the number of neighboring nodes. In this way, node N1 advertises <A/Z, E1/3>
to node N2 and N3, respectively. Note that, in our name management algorithm, the
total of advertised values must not exceed the original value. This constraint prevents
divergence of the WDB table.

Now we focus on node N2. When node N2 receives the advertisement from node
N1, N2 adds the advertised value E1/3 to the element WDB[A/Z, N1] in N2’s WDB
table. After that, node N2 computes the new value E1/3/4 for the name A/Z, based on
the number of neighboring nodes (excluding node N1). Now we assume that a new
functional object <A/Z, E2> is registered with N2 before advertising <A/Z E1/3/4> (as
shown in (3) of Figure 3). In this case, node N2 initially updates the LDB with <A/Z,
E2>, then computes the value E2/5 for advertisement. After that, node N2 aggregates
two advertisement messages, <A/Z, E1/3/4> and <A/Z, E2/5>, into <A/Z,
E1/3/4+E2/5> (as shown in (4) of Figure 3). In this way, message advertisement and
aggregation are repeated at each IFNS node, and the name A/Z propagates among the
IFNS nodes. Each IFNS node has an advertisement threshold to limit propagation of
the message. When the value E in the advertisement message <A/Z, E> is less than
the threshold Eth at a certain node, the node drops the message.

Fig. 3. Name Management Algorithm Fig. 4. Name Resolution Algorithm

An Interface-Based Naming System for Ubiquitous Internet Applications 321

4.4 Name Resolution Algorithm

Name resolution is performed based on the WDB table constructed by the name man-
agement algorithm. Figure 4 shows the name resolution algorithm. Suppose that a
client issues a query for interface name A/Z at IFNS node N1. Node N1 initially
checks its WDB. Since the element WDB[A/Z, this] in node N1 is zero, node N1
knows that it does not have a functional object named A/Z. Node N1 then forwards
the query to the neighboring node which has the largest value in the WDB table. In
this example, the query is forwarded to node N3. However, node N3 also does not
have the functional object, and it simply forwards the query to N6. Because the ele-
ment WDB[A/Z, this] in N6 is not zero, N6 has functional objects corresponding to
the query. N6 looks up the access pointer in the LDB and sends it back to the client.
Note that, if all values corresponding to the name A/Z are zero or are the same, the
IFNS node randomly forwards the query to neighboring nodes. Also, note that all
queries in IFNS have a TTL (Time to Live), which decreases whenever the query is
forwarded to neighbors. If TTL decrements to zero, IFNS terminates the query for-
warding and sends an error message to the client application.

4.5 Automatic Function Synthesis

Using the above name resolution algorithm, we can locate a functional object by its
interface name. However, even if there are many functional objects in the future
ubiquitous Internet, we cannot assume a required functional object is always regis-
tered in IFNS. Moreover, since query propagation in IFNS is limited by TTL, we
cannot guarantee that a query always arrives at the appropriate node. Consequently,
these properties make it difficult for applications to change functionality seamlessly
depending on the user's context. To avoid this problem, we designed the automatic
function synthesis mechanism (AFS). The AFS composes one functional object with
multiple functional objects by using composite characteristics of the interface name.
For example, if IFNS cannot resolve the name mpeg2/mpeg4, the AFS decomposes
the name into mpeg2/mpeg1 and mpeg1/mpeg4, and attempts to resolve the two
names. Once the names are resolved to APLs, we can compose a mpeg2/mpeg4 func-
tion by combining the mpeg2/mpeg1 and mpeg1/mpeg4 functions.

Figure 5 shows the algorithm used for AFS. Now we assume a query for the name
A/Z is forwarded to a specific node. The AFS works when there is no functional ob-
ject for name A/Z in either the WDB or the LDB in this node. The name A/Z is ini-
tially decomposed into A/x and y/Z, where x and y are wildcards. If we can resolve the
two names that satisfy x=y=B, we can compose the functional object A/Z of A/B and
B/Z. Otherwise, if we can locate three functional objects, A/x, y/Z and x/y (x=B, y=C,
for example), it is also possible to compose the functional object A/Z.

As the first step of AFS, the names A/x and y/Z are looked up in the LDB. If nei-
ther A/x nor y/Z are found in the LDB, the AFS cancels the function synthesis process,
and the query for A/Z is randomly forwarded to a neighboring node. If both A/x and

322 M. Minami, H. Morikawa, and T. Aoyama

y/Z (x=y) are found in the LDB, the AFS process succeeds, and APLs for the two
names are returned to the IFNS client.

Unfortunately, when neither A/x nor y/Z (x=y) are found in the LDB, the AFS at-
tempts to look up A/x, x/y, and y/Z. If these three functional objects exist in the LDB,
the AFS process succeeds and returns APLs. In the case where x/y does not exist in
the LDB but exists in the WDB, the AFS translates the original query A/Z to x/y,
which has the maximum total value in the WDB, where the maximum total value is
defined as the sum of the values in a row of the WDB table. The translated query is
then forwarded by a conventional name resolution algorithm.
When only A/x exists in the LDB, the AFS checks whether x/Z exists in the WDB. If
y/Z does not exist in the WDB, the AFS process is canceled, and the original query is
forwarded by a conventional name resolution algorithm. Otherwise, the original
query is translated to y/Z, and the translated query is forwarded by a conventional
name resolution algorithm.

In addition, we designed IFNS to iteratively use the AFS algorithm to maximize
the chances of locating the functional object. To iteratively apply the AFS algorithm
to name resolution, we defined an AFS field in a query. The AFS field indicates how
many times the AFS process can be applied for the query. The AFS field is decre-
mented each time the query is translated by the AFS algorithm.

Fig. 5. Automatic Function Synthesis Algorithm

5 Simulations

In order to evaluate the scalability of IFNS and the performance of AFS, simulations
were performed using the random spanning tree network, where various types of
interface names were randomly registered with each IFNS node. In the simulations,
name management and name resolution cost were computed and compared to a
broadcast-based algorithm. In addition, by using the success ratio of name resolution,

An Interface-Based Naming System for Ubiquitous Internet Applications 323

we evaluated how successfully the AFS could synthesize functional objects. Note
that, since it is difficult to predict how many functional objects and how many kinds
of functional objects are registered in IFNS, we did not evaluate our system quantita-
tively. Instead, we can only describe the behavior of the system in various situations.
For this reason we limited the purpose of our simulation to evaluate only the qualita-
tive performance of IFNS.

Fig. 7. Name Management Cost

5.1 Name Management Cost

In the simulation of the name management cost, 1000 interface names were registered
with IFNS, and the evaluation value of each interface name was set to 1. Naturally,
there would be more than 1000 objects in an actual ubiquitous Internet. However,
these names are enough to evaluate the qualitative performance of IFNS.

Under this initial condition of 1000 objects, we computed the name management
cost for one functional object. The name management cost is defined as the total
number of messages among IFNS nodes that is required for managing one registered
name. To investigate how the name management cost changes under various condi-
tions, we set various values for the network size (i.e., the number of IFNS nodes),
advertisement threshold and aggregation ratio. The aggregation ratio represents how
many functional objects one interface name can aggregate. For example, when 1000
functional objects are aggregated by 100 interface names, the aggregation ratio is 0.1

Figure 6 shows the evaluation of the name management cost. In the left graph in
Figure 6, name management cost increases as network size increases, because the
name management message is replicated at each IFNS node. However, when com-
pared to the broadcast-based algorithm, the IFNS name management algorithm con-
siderably reduces name management cost. This is because, while the broadcast-based
algorithm propagates a message to all nodes and does not aggregate any message, the
IFNS name management algorithm limits message propagation by the evaluation

324 M. Minami, H. Morikawa, and T. Aoyama

value and aggregates messages that have the same interface name at certain nodes.
Note that it is possible to use a very small evaluation value to reduce management
cost. However, this degrades the performance of name resolution, as described later.

We also studied the relationship between name management cost and aggregation
ratio. The right graph in Figure 6 shows the name management cost. In the simula-
tion, the number of nodes and the advertisement threshold are set to 100 and 0.01,
respectively. The name space of the interface name will be flat when the aggregation
ratio is large, so the name management cost increases as the aggregation ratio in-
creases. However, because message propagation is limited by the evaluation value,
the name management cost approaches a constant value.

Thus, we can say that the name management scheme of IFNS scales to the network
size and aggregation ratio when compared to the broadcast-based approach.

Fig. 7. Name Resolution Cost

Fig. 8. Success Ratio

5.2 Name Resolution Cost

Name resolution cost in IFNS is defined as the mean value of the total number of
messages generated in the name resolution process for one query. In the simulation,
we registered 1000 interface names to IFNS, and measured the name resolution

An Interface-Based Naming System for Ubiquitous Internet Applications 325

cost and success ratio by sending a query to a randomly selected IFNS node. Here,
the success ratio is defined as the probability of IFNS successfully resolving a
certain query.

Figures 7 and 8 represent the name resolution cost and success ratio. In the
simulation, the number of IFNS nodes, advertisement threshold, and TTL are set to
various values, as shown in the legends of Figures 7 and 8. Note that, since the
name resolution cost of the Gnutella-like broadcast-based approach is quite high
(around 100), it is not shown in Figure 7. As shown in Figures 7 and 8, although
the name resolution cost of IFNS is quite low, the success ratio degrades as the
aggregation ratio increases. The reason for this is that a query does not arrive when
an IFNS node, which has a functional object for the query, is quite far from the
node where the query was generated. To improve the success ratio, we set a large
value for TTL (e.g., TTL=20). However, while this increases the name manage-
ment cost, the success ratio was not significantly improved.

Next, we added some loops in the IFNS network by randomly adding links,
where the total number of links was twice the number of nodes (see the plots for
“Link=200” in Figures 6, 7 and 8). We found that adding loops greatly improves
the success ratio in the name resolution process. This is because the link added to
the original spanning tree functions as a shortcut, so that it can bring information
from far nodes. However, as shown in Figure 6, adding loops in the IFNS when the
node number is small results in an unnecessary increase of the name management
cost. Therefore, we can say that the additional link works effectively when the
network size is quite large. In other words, IFNS works well in the ubiquitous
Internet.

Of course, there are complicated tradeoffs between name management cost and
success ratio, depending on the aggregation ratio, advertisement threshold, number
of loops, TTL, and other parameters. By controlling these parameters, we can adapt
IFNS to various conditions with optimal performance. However, as described in the
early part of this section, such adaptation is possible and meaningful only if we can
predict the practical situation in which IFNS is used.

Fig. 9. Performance of AFS

326 M. Minami, H. Morikawa, and T. Aoyama

5.3 Performance of AFS

Last of all, we investigated how the automatic function synthesis can improve the
success ratio in name resolution. In this simulation, we set 100 as the number of
IFNS nodes, 0.01 as the advertisement threshold, 7 as TTL, and 0.5 as the aggrega-
tion ratio. The network topology of IFNS was constructed as a random spanning tree.
We computed the success ratio and resolution cost when the AFS field was set in the
range 1–3. In Figure 9, we observe that the success ratio is improved by 1.2 to 1.3
times that of the normal name resolution process. Since AFS increases the number of
successful name resolutions, this decreases the number of times a query is forwarded
in IFNS. Consequently, the name resolution cost is also improved in our simulation.
However, iterative use of the AFS process sometimes degrades the success ratio (e.g.,
AFS=3 in Figure 9). This is because a query permitting many ASF iterations with
small TTL may not be resolved within a certain number of hops. Therefore, we
should carefully determine the number of iterations for AFS by considering the TTL
of the query.

6 Conclusion

This paper presented the IFNS as a location-independent naming system capable of
locating functional objects in a ubiquitous Internet. The design philosophy of the
IFNS has been described, and scalable name management and resolution algorithms
have been designed. Simulations were performed, and it was shown that the name
management and resolution algorithms have acceptable scalability, even when a large
number of functional objects are registered in IFNS. In the future, it will be necessary
to do more detailed analyses to clarify the characteristics of IFNS, and to proceed
with our implementation of a STONE platform, as well as its applications.

References

1. P. Mockapetris, “Domain Names – Concepts and Facilities”, IETF, RFC 1034, Nov. 1987.
2. P. Mockapetris, “Domain names – Implementation and Specification”, IETF, RFC 1035,

Nov. 1987.
3. P. Mockapetris and K. Dunlap, “Development of the Domain Name System”, Proc. ACM

SIGCOMM'88, Stanford, CA, USA, 1988.
4. A. Birrell, R. Levin, R. Needham, and M. Schroeder, “Grapevine: An Exercise in Distrib-

uted Computing”, Communications of the ACM, Vol. 25, No. 4, Apr. 1982.
5. X.500: The Directory - Overview of Concepts, Models, and Services, CCITT Recommen-

dation, 1987.
6. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The Design and Imple-

mentation of an Intentional Naming System”, Proc. ACM SOSP, Charleston, SC, USA,
1999.

An Interface-Based Naming System for Ubiquitous Internet Applications 327

7. T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifiers (URI): Ge-
neric Syntax”, IETF, RFC 2396, Aug. 1998.

8. J. Waldo, “Jini Architecture Overview”, Sun Microsystems Inc., 1998.
9. Universal Plug and Play Architecture, Microsoft Inc.
10. HAVi White Paper, http:// www. havi. org/
11. Peer-to-Peer: Harnessing the Power of Disruptive Technologies, A. Oram, ed., O'Reilly

and Associates, 2001.
12. D. Oppen and Y. Dahl, “The Clearinghouse: A Decentralized Agent for Locating Named

Objects in a Distributed Environment”, Xerox Office Products Division Technical Report,
OPD-T8103, 1981.

13. G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and Design,
Second Edition, Addison-Wesley, 1994.

Schedulability Analysis in EDF Scheduler with
Cache Memories�

A. Mart́ı Campoy, S. Sáez, A. Perles, and J.V. Busquets

Departamento de Informática de Sistemas y Computadores,
Universidad Politécnica de Valencia,

46022, Valencia (SPAIN)
{amarti,ssaez,aperles,vbusque}@disca.upv.es

Abstract. Cache memories can improve computer performance, but its
unpredictable behaviour makes difficult to use them in hard real-time
systems. Classical analysis techniques are not sufficient to accomplish
schedulability analysis, and new hardware resources or complex analysis
algorithms are needed. This work presents a comprehensive method to
obtain predictability on the use of caches in real-time systems using an
EDF scheduler. Reaching a predictable cache, schedulability analysis can
be accomplished in a simple way through conventional algorithms.
At the moment, this is the first approach to consider cache in this kind of
scheduler. The method is based in the use of locking caches and genetic
algorithms. Locking caches allows to load and lock cache contents, ensur-
ing its remains unchanged. Genetic algorithms help to select the cache
content that offers the best performance. Experimental results indicate
that this scheme is fully predictable, and this predictability is reached
with no performance loss for around 60% of cases.

1 Introduction

Modern microprocessors include cache memories in its memory hierarchy to
increase system performance. General-purpose systems can benefit from this ar-
chitectural improvement, because it tries to make efficient the average case. But
hard real-time systems require the worst case to be bounded, and therefore, to
take advantage of cache memories, they need special hardware resources and/or
speficic system analysis that guarantee the timeliness execution of the code.

Basically, two problems arise when cache memories are used in multitask,
preemptive real-time systems: intra-task interference, in the domain of a single
task; and inter-task interference, in the domain of multitask systems. The former
one makes harder to calculate the Worst Case Execution Time (WCET), because
a task can replace its own instructions in cache due to conflict and capacity
problems. When previously replaced instructions are executed again, a cache
miss increases the execution time of the task. This kind of interference has to be
taken into account in the WCET of each task.
� This work was supported by the Spanish Government Research Office (CICYT)

under grants TAP99-0443-C05-02 and TIC99-1043-C03-02

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 328–341, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Schedulability Analysis in EDF Scheduler with Cache Memories 329

The second problem is to calculate the cache-related preemption delay. This
delay, also called inter-task or extrinsic interference, arises in preemptive multi-
tasking systems when a task displaces from cache the working set of any other
task of the system. When the preempted task resumes execution, a burst of cache
misses increase its execution time over the precalculated WCET. This additional
delay must be considered in the schedulability analysis.

The cache problems considered in this work deal with the resolution of cache
interference in multitask, preemptive real-time systems. The paper only ad-
dresses the instruction cache problem and how it influences in the calculation
of WCET of each task and in the schedulability analysis of the whole system,
without regard to other architecture improvements.

Several solutions have been proposed to use cache memories in real-time sys-
tems. Some works analyse the cache behaviour to estimate the task execution
time considering only the intra-task interference [1–4]. In [5, 6] the cache be-
haviour is analysed to estimate the task response time, but considering only the
inter-task interference and using a precalculated cached WCET. These works
deals only with fixed priority schedulers. Other works try to eliminate or reduce
the inter-task interference by using hardware and software techniques [7–10],
but they do not face the intrinsic interference problem. Additionally, in some
cases, the extrinsic interference is only reduced, and therefore, the predictability
problem of the cache-related preemption delay remains unresolved.

This work presents an integrated approach, based on a previous work [11],
that offers full predictability for WCET estimation, and a bounded value of
extrinsic interference under the Earliest Deadline First (EDF) scheduler.

First goal is achieved using instructions to manage cache, like selective
preload (cache fill) and cache locking. These instructions are present on currently
available processors. The way these characteristics are used offers the possibility
to use a simple schedulability analysis joined with accurate estimations of cache
performance.

The method here presented is based in the ability of several processors to
disable or lock the cache, precluding the replacement of its contents but allowing
references to the data or instruction already stored in cache. In this scenario,
execution time of instructions is constant for each instance, and preemptions
do not modify the cache contents. This way, intra-task and inter-task interfer-
ence are eliminated since cache content remains unchanged during all system
operation, and only a temporal cache buffer have to be taken into account in the
schedulability analysis. Such a temporal buffer is introduced to improve temporal
behaviour of the instructions not preloaded into the cache.

The rest of the paper is organised as follows: next section shows the hardware
necessary to reach both predictability and the best possible performance. Section
3 is devoted to schedulability analysis, and the algorithms used to calculate the
WCET and the schedulability analysis are presented when a locking cache is
used. In section 4, the genetic algorithm to select the best set of instructions to
load in cache is presented. Then, the experimental results are explained. And
finally, conclusions and future work are described.

330 A. Mart́ı Campoy et al.

2 System Overview

Several processor offers the ability to lock cache memory contents, like Intel-960,
some x86 family processors, Motorola MPC7400, Integrated Device Technology
79R4650 and 79RC64574, and others. Each of these processors implements cache
locking in a different ways, allowing to lock the entire cache, only a part, or in
a per-line basis. But in all cases, a portion of cache locked will be not selected
later for refill by other data or instruction, remaining its contents unchanged.

The IDT-79R4650 cache schema offers an 8KB, two-set associative instruc-
tion cache. Also, the processor offers the instruction ’cache fill’ instruction to
selective load cache contents. However, this processor allows locking only one
set of cache, leaving unlocked the other cache set. Since the main objective of
this work is to reach a deterministic cache, locking the entire cache is needed.
In the MPC7400 is possible to lock the entire cache, using a one-cache-line size
buffer to temporally store instructions not loaded in cache, improving sequential
access to these addresses. The problem with this processor is that not selec-
tive load of cache contents is available. This way, in this work, a merge of the
two above processor is proposed, resulting in a cache system with the following
characteristics:

– Cache can be totally locked or unlocked. When cache is locked, there are no
new tag allocations.

– If the processor addresses an instruction that is in the locked cache, this
instruction is served from cache.

– If the processor addresses an instruction that is in the temporal buffer, this
instruction is served from this buffer in like-cache time.

– If the processor addresses an instruction that is not in the locked cache or
temporal buffer, this instruction is served from main memory. Simultane-
ously, the temporal buffer is filled with that block regarding the address
demanded by the processor.

– Cache can be loaded using a cache-fill instruction, selecting the memory
block to load it.

– Cache can be locked using cache management instructions.
– Cache may be direct mapped or set associative. Increasing the associative-

level may increase the performance of locking caches, but direct-mapped is
enough to reach predictability.

Totally locking the cache allows obtaining the maximum possible perfor-
mance, simultaneously making deterministic the cache. The temporal buffer re-
duce access time to memory blocks not loaded in cache, since only references to
the first instruction in the block produce cache miss.

During system design step, a set of main memory blocks is selected to be
loaded and locked in cache. When system start-up, a small routine will load
selected blocks in cache, executing cache fill instructions. After last load, the
cache is locked. In this way, when tasks begin full operation, the state of cache
is known and remains unchanged during all system operation.

Schedulability Analysis in EDF Scheduler with Cache Memories 331

3 Schedulability Analysis

The main goal addressed in this paper is predictability. The designer of a real-
time system have to be able to predict the timeliness execution of the critical
workload before starting the system. This work can be accomplished using an
schedulability test at design time.

In dynamic systems, the schedulability test can be performed by checking
the system schedulability throughout a short interval named the Initial Critical
Interval (ICI) [12]. In this section, this ICI schedulability test is presented and
adapted to take into account the extrinsic interference in a dynamic scheduler,
like Earliest Deadline First. As the entire instruccion cache is locked, the extrinsic
interference is reduced to the refilling of the temporal buffer.

In a real-time system, the critical workload is typically composed by a set of
periodic tasks T . This task set is defined by T = {Ti(Ci, Di, Pi) : i = 1 . . . n}
with 1 ≤ Ci ≤ Di ≤ Pi, where Ci, Di and Pi are the worst-case execution time
(WCET), relative deadline and period of task Ti, respectively.

The ICI schedulability test is based on two analytical functions GT (t) and
HT (t):

– Function GT (t): Given a task set T , function GT (t) accumulates the
amount of computing time requested by all activations of tasks in T from
time zero until time t. Formally:

GT (t) =
n∑

i=1

Ci

⌈
t

Pi

⌉
. (1)

– Function HT (t): Given a task set T , function HT (t) is the amount of com-
puting time requested by all activations of tasks in T whose deadline is less
than or equal to t. Formally:

HT (t) =
n∑

i=1

Ci

⌊
t + Pi − Di

Pi

⌋
. (2)

In other words, HT (t) represents the amount of computing time that the
scheduler should have served until time t in order to meet all deadlines.

Using these functions, the initial critical interval, R, can be calculated by
using the recursive expression Ri+1 = GT (Ri) until Ri = Ri+1, where R0 = 0.
The last value of Ri indicates the ICI R, that represents the first instant when all
requests have already been served and no additional requests have been arrived
yet.

Once R has been established, the system schedulability can be ensured if and
only if the next expression is true:

HT (t) < t : ∀t, 1 ≤ t ≤ R .

332 A. Mart́ı Campoy et al.

3.1 Extrinsic Interference

The schedulability test presented above does not consider any cache-related pre-
emption delays. Though critical tasks have a portion of their code locked at
instruction cache, every time a preemption is performed by the scheduler, the
temporal buffer can be filled by the new task code. When the preempted task
resumes its execution, it could undergo a penalty due to the possible refilling
of the temporal buffer. Since the preemption point is not known a priori, the
worst case scenario must be considered. In this case, a task can be preempted
while executing a block of instructions from the temporal buffer. So, using the
proposed structure of locking cache, the penalty suffered by the preempted task
is Tmiss, where Tmiss is the time to transfer a block from main memory to the
temporal buffer.

To determine the maximum number of preemptions a task can suffer in a
dynamic system, and therefore, to calculate the WCET and the response time
of a task taking into account these preemptions, is a very difficult problem. How-
ever, it is quite easier to determine the number of preemptions a task originates
under a given scheduler. This information can be used in the schedulability test
to incorporate the cache-related preemption delay into the task responsible for
the preemption, instead of incorporating this delay in the task is preempted.

Earliest Deadline First scheduler is privileged scheduler among schedulers
based on dynamic priorities: it generates a very low number of preemptions, and
these preeemtions can only occur on task arrivals. Therefore, under EDF, a task
generates a preemption when it arrives or does not generate any preemption at
all. Taking this feature into account, the schedulability functions (1) and (2)
remains as follows:

GT (t) =
n∑

i=1

(Ci + Tmiss)
⌈

t

Pi

⌉
, (3)

HT (t) =
n∑

i=1

(Ci + Tmiss)
⌊

t + Pi − Di

Pi

⌋
. (4)

where Ci is the WCET of the task Ti considering the existence of cache and
taking into account the blocks this task has locked in cache. Next subsection
presents how this can be calculated.

Though the rest of the schedulability test remains unchanged, a very slight
optimitation can be performed. It can be taken into account that the task with
the largest relative deadline never can preempt any task when it activates, be-
cause it always has the slowest priority on arrival.

3.2 Worst Case Execution Time

The schedulability test needs the Worst Case Execution Time of each task Ti

to accomplish the analysis. This WCET must be calculated considering the ex-
istence of cache. In conventional caches this is a hard problem, because two

Schedulability Analysis in EDF Scheduler with Cache Memories 333

Cache line size: 4 instructions
V: Number of Vertex.
N: Number of Block.

Branch: Conditional Branch
Jump: Inconditional Branch
Seq: No Branch Instruction

Seq

Jump

Branch

V 1
N 1

V 5
N 3

V 4
N 2

V 3
N 2

M
em

o
ry

B
lo

ck
 1

M
em

o
ry

B
lo

ck
 2

M
em

o
ry

B
lo

ck
 3

V 6
N 4

M
em

o
ry

B
lo

ck
 4

Seq

Seq
Seq
Seq

Seq
Seq

Seq
Seq
Seq
Seq

Seq
Seq
Seq

V 2
N 1

Fig. 1. Example of c-cfg

execution of the same instruction must take different temporal cost. But in here
presented cache scheme, an instruction will be in cache always, or never will
be into, thus its execution time is always constant. To calculate the WCET of
a task, the timing analysis presented in [13] is modified to taking account the
presence of the locking cache. This analysis is based on the concept of Control
Flow Graph of a task.

This work presents an extended Control Flow Graph, called Cached-Control
Flow Graph (c-cfg), that takes into account cache line boundaries. In this c-cfg,
a vertex is a sequence of instructions without flow break, and all instructions on
a vertex map in the same cache line. This model differs from conventional CFG
in the meaning of vertex, since the c-cfg models not only the flow control of the
task but also how the task is affected from the point of view of cache structure.
Figure 1 illustrates an example.

This c-cfg can be represented with a simple expression that can be evaluated
to obtain the task WCET. Figure 2 shows the expression for three basic c-cfg,
and Figure 3 shows an example. In these expressions, Ei represents the execution
time of vertex Vi.

Task’s WCET can be calculated evaluating the expression, considering the
execution time of each vertex. The execution time of a vertex depends on the
number of instructions into the vertex and the cache state when the vertex is
executed. In a locked cache, the cache state remain unchanged, so the execution
time of a vertex is constant for all executions: the vertex is always loaded into

334 A. Mart́ı Campoy et al.

1

2

3

1

2

3

1

2 3

4

n

Wcet = E1+E2+E3 Wcet = E1+n*(E2)+E3 Wcet = E1+max(E2,E3)+E4

Loop-
head

Fork

Join

Simple

Fig. 2. Expressions for three basic structures

1

9

8

7

65

4

3

2

W cet = E1+10*(E2+15*(E3+E4+
+m ax(E5,E6)+E7)+E8)+E9

10

15

Fig. 3. Example of expression

the cache or it will never be. So, the execution time of a vertex can be calculate
as follows:

– For a vertex Vi loaded and locked in cache, its execution time Ei is: Ei =
Thit · Ii.

– For a vertex Vi not loaded nor locked in cache, its execution time Ei is:
Ei = Tmiss + (Thit · Ii)

Schedulability Analysis in EDF Scheduler with Cache Memories 335

where Ii is the number of instructions of vertex Vi, Thit is the execution time of
an instruction that is in cache, and Tmiss is the time to transfer a block from
main memory to the temporal buffer.

The execution time of vertexes can be directly used in the c-cfg expression to
obtain the WCET of the task, giving an upper bound value, since execution time
is now non cache-dependent. The existence of a temporal buffer may introduce,
in some cases, a light error in the WCET estimation.

4 Selecting Blocks to Load and Lock in Cache

Performance improvements due to use of cache memories are very significant,
and real-time systems should take advantage of it. Randomly loading and locking
instructions in cache offers predictability but not guarantee good response time
of the tasks. In order to reach both goals, a predictable cache and a cache
performance close to the usual one, instructions to be loaded must be carefully
selected, trying to find the best possible scenario. This scenario is a set of main
memory blocks locked in cache that provides the minimum possible execution
time, thus providing the minimum possible response time for a set of tasks.

Although there are several possibilities to select instructions to be locked, it
is not easy to isolate an instruction and evaluate the impact of locking it in cache
over the system behaviour, due to interacts between tasks. Response time of task
is mainly related to the task’s structure, but also how tasks are scheduled in the
system concerns to the response time. Exhaustive search, including branch and
bound, presents an intractable computational cost, since the number of possible
solutions is very large. Genetic algorithms [14], performing a randomly-directed
search, can be used in this problem, finding a sub-optimal solution within an
acceptable computational time. The genetic algorithm used in this work is the
evolution of a previous version presented in [11]. The main characteristics of the
new algorithm are described next.

Each block of a task can be locked or not in cache. An individual represents
the state of all blocks of all tasks in the system in one chromosome, where a
chromosome is a set of genes. Each gene has a size of only one bit and represents
the block state. The population is a set of individuals.

Fitness function must guide the genetic algorithm evolution, helping to find
the best solution. The fitness function must have three main characteristic: low
computational cost, find the best solution, and find this solution in fewer it-
erations. It is hard to find a fitness function that agree these characteristics,
and usually it is a complex function. In this work, the used fitness function is
the result of applying the schedulability test described in previous section to
each individual, considering the state – locked or not – of the blocks. WCET
for schedulability test is estimated using the WCET expressions described in
previous section. From the fitness function four types of results are obtained:

– Schedulable system, with number of locked blocks minor or equal to the
cache size. This is a valid individual.

336 A. Mart́ı Campoy et al.

– Schedulable system, with number of locked blocks greater than cache size.
This is a non-valid individual.

– No schedulable system, with number of locked blocks minor or equal to the
cache size. This is a very bad solution, but a valid individual.

– No schedulable system, with number of locked blocks greater than cache size.
This is a non-valid individual.

Also, fitness function returns for schedulable individuals the system utili-
sation, and for not schedulable individuals it returns a factor indicating how
bad is the individual (distance between failure time and the ICI). The existence
of invalid and non-schedulable individuals precludes the use of direct probabil-
ity setting as function of fitness value. This way, individuals are arranged in
three segments: higher positions for schedulable-and-valid individuals, following
valid-non-schedulable individuals, and lower positions for invalid individuals.
Into first segment, schedulable-and-valid individuals are arranged as function of
its utilisation (lower utilisation, higher position). Into second segment, valid-non-
schedulable individuals are arranged as a function of its factor of failure (higher
factor, higher position). Finally, invalid individuals are arranged as function of its
number of locked blocks (lower number of blocks, higher position). Once all indi-
viduals are well arranged, selection probability for crossover is set as function of
position. This allows including, with low probability, both non-schedulable and
non-valid individuals that help to increase the variability of the algorithm.

Crossover is performed choosing randomly a gene that divides the individual
into two parts, and exchanging the parts of two individuals, making two new
individuals. This process is repeated until the number of new individuals make
equal the population size.

Mutation is applied in a gene-basis to these new individuals in three ways:

– For individuals with number of locked blocks greater than cache size, muta-
tion randomly eliminates blocks from the set of locked-blocks.

– For individuals with number of locked blocks smaller than cache size, muta-
tion randomly adds blocks to the set of locked-blocks.

– For individuals with number of locked blocks equal than cache size, mutation
randomly exchange blocks, leaving unchanged the number of locked blocks.

In order to guarantee the use of a direct-mapped locking cache, after the
previous mutation, the algorithm looks if the set of locked blocks do not fit in a
direct-mapped cache, randomly exchanging locked blocks, when needed, making
them fit in a direct-mapped cache.

A new population is building with the individuals obtained from mutation,
and process is repeated a prior-defined number of times. For the accomplished
experiments presented further in this paper, the number of iterations is estab-
lished in 2.000, with a population of 200 individuals.

The genetic algorithm solves, at the same time, the problem of selecting main
memory blocks to load and lock in cache, and also, the schedulability analysis,
since the result from the fitness function for a valid individual is the response of
schedulability test.

Schedulability Analysis in EDF Scheduler with Cache Memories 337

5 Experimental Results

Above presented analysis allows to bound execution time interferences due to
cache related issues. However, although the effects of using the proposed cache
scheme can be bounded and incorparated to the schedulability analysis, the
performance advantages obtained from using cache memories in a predictable
way should be analysed.

Experimental results presented in this section show that preload and locking
instructions in cache not only makes the system predictable: it also offers a
performance close to the traditional caches (direct-mapped or set-associative)
with LRU or Pseudo LRU replacement algorithm.

To make experiments, the SPIM tool [15], a MIPS R2000 simulator is used.
The SPIM does not include neither cache nor multitask, so modifications to
include an instruction cache, multitasking (simulated and controlled by the sim-
ulator and not by the O.S.) and to obtain execution times has been made to the
original version of SPIM. Since this simulator does not include any architectural
improvement, cache effects can be analysed without interference. The routine to
load and lock in cache the selected instructions is incorporated in the simulator.
Tasks used in experiments are artificially created to stress the proposed cache
scheme. Main parameters of task are defined, like number of loops and nesting
level, size of tasks, size of loops, number of if-then-else structures and its re-
spective sizes. These parameters are fixed or randomly selected. A simple tool is
used to create tasks. The workload of any task may be a single loop, if-then-else
structures, nested loops, streamline code, or any mix of these. The size of task
code range from near 64 Kb to around 1Kb.

Each experiment is composed of a set of tasks and a cache size, ranging from
three to eight tasks and cache sizes from 1 Kbyte to 64 Kbytes. This way, the
two extreme scenarios are presented: code size much greater than cache size
(64:1) and code size lower than cache size. Each experiment is simulated using
direct-mapped, two-set associative, four-set associative and full associative cache,
calculating the system utilisation Ucache. For all cases, line size is 16 bytes (four
instructions). Time to transfer a block from main memory to the temporal buffer
is 10 cycles (Tmiss = 10). Execution of any instruction from the cache is 1 cycle,
and execution of any instruction from the temporal buffer is also 1 cycle. For
each experiment, the system utilisation is estimated using the genetic algorithm
Uestimated, and simulated in a locking cache using the blocks selected by the
genetic algorithm Ulocking.

Figure 4 presents the overestimation in the estimated utilisation by the ge-
netic algorithm, respect the actual utilisation (simulated) of the system when
locking cache is used. ((Uestimated/Ulocking) -1). Each bar represents the num-
ber of experiments with percentage of overestimation that lies in the interval
of the x-axis (i.e., 36 experiments have an overestimation between 0,01% and
0,05%). This figure shows that the estimated utilisation is quite accurate: The
overestimation is always below the 0,5%. So, pessimism introduced in WCET
calculation and schedulability analysis is not significant.

338 A. Mart́ı Campoy et al.

0 0 0 0
2 3

36

5 5
2

8 7
11

2
0

0

5

10

15

20

25

30

35

40

[1
0

-
10

0]
%

[5
 -

 1
0[

%

[1
 -

 5
[%

[0
,5

 -
 1

[%

[0
,1

 -
 0

,5
[%

[0
,0

5
-

0,
1[

%

[0
,0

1
-

0,
05

[%

[0
,0

09
 -

 0
,0

1[
%

[0
,0

08
 -

 0
,0

09
[%

[0
,0

06
 -

 0
,0

08
[%

[0
,0

04
 -

 0
,0

06
[%

[0
,0

02
 -

 0
,0

04
[%

[0
,0

01
 -

 0
,0

02
[%

[0
,0

 -
 0

,0
01

[%

E
st

im
at

ed
 <

si
m

ul
at

ed

ERROR

N
u

m
b

er
 o

f
ex

p
er

im
en

ts

Fig. 4. Overestimation estimated by the genetic algorithm

Figure 5 shows the accumulated frequency. Accumulated number of exper-
iments for the given overestimation between simulated and estimated system
utilisation using locking cache. Axis-y value is the percentage of experiments
with an overestimation lower than axis-x value. It can be observed that more
than 90% of the experiments present an overestimation below 0,05%.

Regarding the performance of the locking cache, Figure 6 compares the sys-
tem utilisation with or without locking cache. Conventional cache uses the map-
ping function that obtains the best performance for each case.

The figure depicts the performance ratio: simulation of actual system util-
isation with the best conventional-cache arrangement, versus the estimated
system utilisation obtained by the genetic algorithm with a locking cache
(Ucache/Uestimated). Tasks are grouped regarding this ratio. Each bar represents
the number of experiments with performance ratio (Ucache/Uestimated) that lies
in the interval of the x-axis.

Figure 7 draws accumulative values of previous figure. Axis-y value is the
percentage of experiments with performance ratio greater than axis-x value.
For around 50% of the experiments, the system utilisation is equal or lower
using locking cache, and in more than 60% of cases the performance loss is
negligible. In these cases, the worst case response time (WCRT) is not only
bounded, furthermore it makes the WCRT lower than execution time in a system
with a normal cache.

Schedulability Analysis in EDF Scheduler with Cache Memories 339

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10
,0

00
%

5,
00

0%

1,
00

0%

0,
50

0%

0,
10

0%

0,
05

0%

0,
01

0%

0,
00

9%

0,
00

8%

0,
00

6%

0,
00

4%

0,
00

2%

0,
00

1%

0,
00

0%

ERROR

A
cu

m
u

l.
F

re
q

u
en

cy

Fig. 5. Accumulated frequency of overestimation in estimated utilisation

0 0 0 1 2
4

8

2

5

9 9

5

2
0 0

25

0

5

10

15

20

25

30

[0
 -

 0
,1

]

]0
,1

 -
 0

,2
]

]0
,2

 -
 0

,3
]

]0
,3

 -
 0

,4
]

]0
,4

 -
 0

,5
]

]0
,5

 -
 0

,6
]

]0
,6

 -
 0

,7
]

]0
,7

 -
 0

,8
]

]0
,8

 -
 0

,9
]

]0
,9

 -
 1

]

]1
 -

 1
,1

]

]1
,1

-
1,

2]

]1
,2

-
1,

3]

]1
,3

-
1,

4]

]1
,4

-
1,

5]

>
1,

5

Performance ratio

N
u

m
b

er
 o

f
ex

p
er

im
en

ts

Fig. 6. Performance ratio obtained when using locking cache.

340 A. Mart́ı Campoy et al.

From the obtained results, we can conclude that the proposed cache scheme
is predictable, and it allows the application of EDF schedulability analysis in
systems with cache. The estimated utilisation is an upperbound of the actual
utilisation using locking cache: (Ulocking < Uestimated for all experiments). With
this technique, the predictability is obtained in many cases without performance
loss (Uestimated <= Ucache) for around 60% of experiments).

6 Conclusions

This work presents a novel technique that uses locking caches in the context
of real-time systems with EDF schedulers. In addition, algorithms to analyse
the proposed system are described. Compared to known techniques to achieve
cache predictability in Real-Time systems, this solution completely eliminates
the intrinsic cache interference, and gives a bounded value of the extrinsic one.

This technique allows real-time systems with dynamic scheduling profit from
the great performance increase produced by cache memories. And this is ac-
complished in a practical way, since the designer can easily analyse the system
to accomplish the schedulability test. In addition, the architecture is compati-
ble with other techniques to improve performance, like segmentation, precluding
the consideration of the complex interrelations amongst these techniques and
the cache.

This approach is very effective from the performance point of view. Simula-
tions results show that for around 60% of experiments the performance achieved

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 >1,5

Performance ratio

A
cu

m
u

l.
F

re
q

u
en

cy

Fig. 7. Accumulative performance ratio when using locking cache.

Schedulability Analysis in EDF Scheduler with Cache Memories 341

by using locking caches is almost similar to the one obtained with conventional
caches (without taking care of determinism).

The hardware resources required to implement this scheme are available in
some contemporary processors. To obtain the best results, some minor changes
have been proposed. These changes do not present difficulties in terms of tech-
nical complexity and production.

This work has also presented an algorithm to select the contents of the cache.
This selection delivers the best performance. The algorithm also calculates the
WCET and performs the schedulalibility analysis.

References

1. K. Takashio, S. Aoki, M. Murase, K. Matsumiya, N. Nishio, and H. Tokuda, “Smart
hot-spot: Taking out ubiquitous smart computing environment anywhere”, 2002,
International Conference on Pervasive Computing (Demo Presentations).

2. M. Weiser, “The computer for the twenty-century”, vol. 265, no. 3, pp. 94–104,
1991, Scientific American.

3. A. Freier, P. Kartiton, and P. Kocher, “The ssl protocol: version 3.0”, 1996, Tech
Rep., Internet-draft.

4. S. Kent and R. Atkinson, “Security architecture for the internet protocol”, 1998,
IETF RFC 2401.

5. W. Deffie and M. E. Hellman, “New directions in cryptography”, 1976, pp. 644–
654, IEEE Transactions on Information Theory IT-22.

6. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaing digital signatures
and public-key cryptosystems”, in Communications of the ACM, 1978, vol. 21, pp.
120–126.

7. Ensure Technologies Inc., “Xyloc”, 2001, http://www.ensuretech.com/.
8. Sony Corporation, “Felica: Contactless smart card system”, 2002,

http://www.sony.net/Products/felica/.
9. R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge location

system”, Tech. Rep. 92.1, ORL, 24a Trumpington Street, Cambridge CB2 1QA,
1992.

10. A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of
a context-aware application”, in International Conference on Mobile Computing
and Networking, 1999, pp. 59–68.

11. ITS America, “Intelligent transportation system”, 2002,
http://www.itsa.org/standards.

12. ETTM On The Web, “Electoronic toll collection system”, 2002,
http://www.ettm.com/.

13. H. Okabe, K.Takemura, S. Ogata, and T. Yamashita, “Compact vehicle sensor
using a retroreflective optical scanner”, in IEEE Conference of Intelligent Trans-
portation Systems, 1997, pp. 201–205.

14. ETTM On The Web, “Automatic vehicle identification”, 2002,
http://www.ettm.com/avi.htm.

15. M. Corner and B. Noble, “Zero-interaction authentication”, in International Con-
ference on Mobile Computing and Networking, 2002.

16. M. L. Dertouzos, “Control robotics: The procedural control of physical processes”,
in Proceedings of the IFIP Congress, 1974, pp. 807–813.

17. R. W. Conway, M. L. Maxwell, and L. W. Miller, “Theory of scheduling”, 1967,
Addison-Wesley.

Impact of Operating System on Real-Time
Main-Memory Database System’s Performance

Jan Lindström, Tiina Niklander, and Kimmo Raatikainen

University of Helsinki, Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University of Helsinki,Finland
{jan.lindstrom,tiina.niklander,kimmo.raatikainen}@cs.Helsinki.FI

Abstract. As long as there have been databases there has been a large
interest to measure their performance. However, operating system im-
pact on database performance has not been widely studied. Therefore,
this paper presents experimental results on operating system impact
on database performance. Two different operating systems are studied:
Linux and Chorus. Linux operating system is tested with different ker-
nel versions and different network speeds. Chorus is used as reference
point because it is a real-time operating system. Our results clearly in-
dicate that Linux can be used as a platform for real-time main-memory
databases, but the newest kernel version 2.4 should be used. Our simple
experiment also confirms that the UDP gives better response time than
TCP. The work done in the Linux community to reduce the long la-
tency in the kernel has been successful and with sufficiently long request
deadlines it can be used as a platform for real-time databases.

1 Introduction

Database performance is an important aspect of the database’s usability. The
performance of a database system depends not only on the database architecture
and algorithms, but also on the platform the database is running on.

Real-time databases are needed when the database requests must be served
within respecified time limits. The database is then designed to support the
timely execution on all levels of the database architecture. It provides transaction
scheduling, which supports priorities, deadlines, or criticality of the transactions.
Alternatively they can be run on a general purpose operating system which
supports real-time processes. Such functionality can be found, for example, in
Solaris.

Telecommunication is an example of an application area, which has database
requirements that require a real-time database or at least time-cognizant
database. A telecommunication database, especially one designed for IN ser-
vices [1], must support access times less than 50 milliseconds. Most database
requests are simple reads, which access few items and return some value based
on the content in the database.

Real-time databases have been designed for running mainly on real-time op-
erating systems, which can provide real-time scheduling and guaranteed max-
imum latencies in the kernel. Previous work on real-time databases in general

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 342–350, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Impact of Operating System 343

has been based on simulation. However, several prototypes of general-purpose
real-time databases has been introduced. StarBase [7] is constructed on top
of RT-Mach. RTSORAC is implemented over a thread-based POSIX-compliant
operating system and is based on an open OODB with real-time extensions [9].
Another object-oriented architecture is M2RTSS-architecture, which is main-
memory database system with real-time transaction scheduling [2].

Linux has gained popularity as a platform for web-servers and other network
services. We wanted to find out if it would be suitable as a platform for a real-time
database. The newest (February 2002) kernel version 2.4 supports priority-based
scheduling and the latencies in kernel code have also been partially reduced.

This paper is organized as follows. Section 2 presents am overview of the
main-memory databases and their requirements. Additionally, the prototype
real-time database system used in experiments is shortly presented. Section 3
presents evaluation environment. Section 4 presents experimentation results. Fi-
nally, Section 5 concludes this paper.

2 Database System

In main memory database systems data resides permanently in the main physical
memory. In some real-time applications, the data must be memory resident to
meet the real-time constraints [3].

A network database system must offer real-time access to data [5,6]. This is
due to the fact that most read requests are for logic programs that have exact
time limits. If the database cannot give a response within a specific time limit, it
is better not to waste resources and hence abort the request. As a result of this,
the request management policy should favor predictable response times with the
cost of less throughput. The best alternative is that the database can guarantee
that all requests are replied to within a specific time interval. The average time
limit for a read request is around 50ms. About 90% of all read requests must be
served in that time. For updates, the time limits are not as strict. It is better to
finish an update even at a later time than to abort the request.

Network database system services consist of two very different kinds of se-
mantics: service provision services and service management services. Service pro-
vision services define possible extra services for customers [4]. Service provision
transactions have quite strict deadlines and their arrival rate can be high (about
7000 transactions/second), but most service provision transactions have read-
only semantics. In transaction scheduling, service provision transactions can be
expressed as firm deadline transactions. Service management services defines
possible management services for customer and network administration [4]. Ser-
vice management transactions have opposite characteristics. They are long up-
dates which write many objects. A strict consistency and atomicity is required
for service management transactions. However, they do not have explicit dead-
line requirements. Thus, service management transactions can be expressed as
soft real-time transactions.

344 J. Lindström, T. Niklander, and K. Raatikainen

The prototype system used is based on the Real-Time Object-Oriented
Database Architecture for Intelligent Networks (RODAIN) [8] specification. RO-
DAIN Database Nodes that form one RODAIN Database Cluster are real-time,
highly-available, main-memory database servers. They support concurrently run-
ning real-time transactions using an optimistic concurrency control protocol with
deferred write policy. They can also execute non-real-time transactions at the
same time on the database. Real-time transactions are scheduled based on their
type, priority, mission criticality, or time criticality. All data in the database is
stored in the main-memory database. Data modification operations are logged
to the disk for persistence.

In order to increase the availability of the database each Rodain Database
Node consists of two identical co-operative units. One of the units acts as the
Database Primary Unit and the other one, Database Mirror Unit , is mirroring
the Primary Unit. Whenever necessary, that is when a failure occurs, the Primary
and the Mirror Units can switch their roles.

The client requests arrive via TCP/IP over a network directly to the database
process, which contains threads to serve the clients. Each client may use the
same connection for multiple transaction requests. The precoded real-time trans-
actions get all their parameters in the requests and give their answers in the
replies. No communication during the transaction execution is allowed between
the transaction and the calling client.

The client and RODAIN server are originally designed to communicate over
TCP. It provides a handy way for the client to recognize the failure of the server
assuming that the network does not fail in between. The client can trust in the
reliable communication, that the server has received each request and that it
can expect to receive a reply also.

3 Evaluation Environment

The database server was running on an Intel Pentium 450 MHz processor with
256 MB of main memory. A similar computer was used for the client. The com-
puters were connected using a dedicated network, the speed of which was con-
trolled by changing the hub connecting the computers. To avoid unnecessary
collisions, there was no other network traffic while the measurements were per-
formed.

Used database is based on a GSM model and transactions are simple one
item reads to Home Location Register (HLR). Database size is 30000 items.

All time measurements were performed on the client computer using the
gettimeofday function, which provides the time in microseconds. The client sends
the requests following a given plan, which describes the request type and the time
when the request is to be sent. When the request is about to be sent the current
time is collected and when the reply arrives the time difference is calculated.

Linux provides static priorities for time-critical applications. These are al-
ways scheduled before the normal time-sharing applications. The scheduling

Impact of Operating System 345

policy chosen was Round-robin (SCHED RR) using the scheduler function
sched setscheduler.

The database was also avoiding swapping by locking all the processes pages in
the memory using mlockall function. The swap causes long unpredictable delays,
because occasionally some pages are sent and retrieved from the disk. Because
in our experiment environment our database system was the only application
running no swapping occurred during the tests.

4 Experimentation Results

The measurements in the dedicated networks clearly show, that Linux can be
used as platform for a real-time main-memory database, at least when the disk
I/O is omitted and the request deadlines are suitably long (see Figure 1 for Linux
and Figure 2 for Chorus).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2000 4000 6000 8000 10000

R
es

po
nc

e
tim

e/
se

co
nd

s

Transaction number

Linux 2.2.19

Fig. 1. The request responce times for each request using Linux kernel 2.2.19 with 10
Mb Ethernet. All the figures have as x the request sequence number over the test and
as y the measured responce time in seconds.

Our initial tests with Linux-kernel 2.2.19 were not very encouraging (see
Figure 1). The occasional delays were over 50 milliseconds. Also the long delays
were grouped so, that when one went over the others were also more likely to
go over the assumed deadline of 50 milliseconds. The database server itself (see

346 J. Lindström, T. Niklander, and K. Raatikainen

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2000 4000 6000 8000 10000

R
es

po
nc

e
tim

e/
se

co
nd

s

Transaction number

Chorus/ClassiX

Fig. 2. The request responce times for each request using Linux kernel 2.2.19 as a
client and Chorus as a server with 10 Mb Ethernet.

figure 3) used only a fraction of the observed time as seen on the client. This
difference made us look more closely to the network behavior and the kernel
itself. Our experience from other projects involving Linux and time requirements
indicated that the change of the kernel to 2.4.x should be the first step.

Linux kernel 2.4 includes features that are designed to reduce the long time
periods within kernel with the interrupts disabled. This change did the trick.
The longest observed response time was slightly lower than 35 milliseconds, but
most of the response times were still gathered around the 10 milliseconds line
as in the 2.2 kernel experiment (see figure 4). Since 10 milliseconds is less than
the required 50 milliseconds, it can be used as long as no swap to the disk is
required.

However, there still is the same gathering around the 10 milliseconds. Adding
the low latency patch (see http://www.zip.com.au/ akpm/linux/schedlat.html)
did not remove that either, but it made the response times more deterministic.
All the values are on some particular level meaning some particular time value
(see figure 5). This is exactly what the patch is trying to do, it tries to reduce
the kernel latencies within some time limits. The distribution of the response
times clearly is no longer even over all time values.

The most surprising result came, when the speed of the network connection
was increased (see Figure 6). We were hoping to see some reduction in the
overall response times, since the network capacity was increased to almost 10
times. Some response times really dropped, but they reduced only to the nearest

Impact of Operating System 347

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
es

po
nc

e
tim

e/
se

co
nd

s

Transaction number

Linux 2.2.19 server responce times

Fig. 3. The request responce times inside the database.

low 10 milliseconds. Because we used TCP as the communication mechanism
between the client and the server the 20 milliseconds line is most probably due to
retransmissions of messages. This gathering is mainly due to the 10 milliseconds
scheduling delay usually visible on Linux.

We knew that the network communication was the dominating force, but
the switch from using connectionless UDP communication instead of the con-
nected TCP communication reduces all reply durations below 10 milliseconds
(see Figure 7).

Of course, the number of messages drops to a third, since the TCP acks are
not sent. This gives the most reduction, but it does not explain the concentration
visible in the TCP measurement.

Finally, Table 1 shows minimun, maximum, median, and average responce
times with different tests. Table shows also stardard deviation and variance of
the responce times.

5 Conclusion

Linux can be used as a platform a for real-time main-memory database if the
deadlines for the requests are feasible. The request must allow at least 10 mil-
liseconds simply for the network and operating system overhead. Although the
10 milliseconds in this experimentation also covered the costs of our database,

348 J. Lindström, T. Niklander, and K. Raatikainen

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2000 4000 6000 8000 10000 12000

R
es

po
nc

e
tim

e/
se

co
nd

s

Transaction number

Linux 2.4.17

Fig. 4. The request performance time for each request using Linux kernel 2.4.17 with
10 Mb Ethernet

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2000 4000 6000 8000 10000 12000

R
es

po
nc

e
tim

e/
se

co
nd

s

Transaction number

Linux 2.4.17 low latency

Fig. 5. The request performance time for each request using Linux kernel 2.4.17 low
latency patch with 10 Mb Ethernet

Impact of Operating System 349

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2000 4000 6000 8000 10000 12000

R
es

po
nc

e
tim

e/
se

co
nd

s

Transaction number

Linux 2.4.17 low latency 100MB

Fig. 6. The request performance time for each request using Linux kernel 2.4.17 low
latency patch with 100 Mb Ethernet

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 2000 4000 6000 8000 10000 12000

R
es

po
nc

e
tim

e/
se

co
nd

s

Transaction number

Linux 2.4.17 UDP

Fig. 7. The request performance time for each request using Linux kernel 2.4.17 with
100 Mb Ethernet, when the communication is connectionless

350 J. Lindström, T. Niklander, and K. Raatikainen

Table 1. Experimental statistics.

Test Min Max Median Average Deviation Variance
Linux 2.2.19 Figure 1 0.0027 0.0757 0.0116 0.0123 0.0065 4.2319-e-05
Chorus Figure 2 0.0023 0.0617 0.0109 0.0105 0.0063 3.9338e-05
Linux 2.4.17 Figure 4 0.0028 0.0336 0.0087 0.0081 0.0040 1.6035e-05
Linux 2.4.17 Figure 5 0.0022 0.0260 0.0092 0.0080 0.0034 1.1822e-05
Linux 2.4.17 Figure 6 0.000921 0.0212 0.0101 0.0086 0.0037 1.3739e-05
Linux 2.4.17 UDP Figure 7 0.00047 0.0082 0.000979 0.0012 0.00085 7.2258e-7

that was mainly due to the fact that there were no conflicts because all requests
were simple reads.

References

1. I. Ahn. Database issues in telecommunications network management. ACM SIG-
MOD Record, 23(2):37–43, June 1994.

2. S. Cha, B. Park, S. Lee, S. Song, J. Park, J. Lee, S. Park, D. Hur, and G. Kim.
Object-oriented design of main-memory dbms for real-time applications. In 2nd
Int. Workshop on Real-Time Computing Systems and Applications, pages 109–115,
Tokyo, Japan, October 1995.

3. H. Garcia-Molina and K. Salem. Main memory database systems: An overview.
IEEE Transactions on Knowledge and Data Engineering, 4(6):509–516, December
1992.

4. ITU. Introduction to Intelligent Network Capability Set 1. Recommendation Q.1211.
ITU, International Telecommunications Union, Geneva, Switzerland, 1993.

5. ITU. Distributed Functional Plane for Intelligent Network CS-1. Recommendation
Q.1214. ITU, International Telecommunications Union, Geneva, Switzerland, 1994.

6. ITU. Draft Q.1224 Recommendation IN CS-2 DFP Architecture. ITU, International
Telecommunications Union, Geneva, Switzerland, 1996.

7. Young-Kuk Kim and Sang H. Son. Developing a real-time database: The Star-
Base experience. In A. Bestavros, K. Lin, and S. Son, editors, Real-Time Database
Systems: Issues and Applications, pages 305–324, Boston, Mass., 1997. Kluwer.

8. J. Lindström, T. Niklander, P. Porkka, and K. Raatikainen. A distributed real-time
main-memory database for telecommunication. In Databases in Telecommunica-
tions, Lecture Notes in Computer Science, vol 1819, pages 158–173, Edinburgh,
UK, Co-located with VLDB-99, 1999.

9. V. Wolfe, L. DiPippo, J. Prichard, J. Peckham, and P. Fortier. The design of real-
time extensions to the open object-oriented database system. Technical report TR-
94-236, University of Rhode Island, Department of Computer Science and Statistics,
February 1994.

The Design of a QoS-Aware MPEG-4 Video

System�

Joseph Kee-Yin Ng �� and Calvin Kin-Cheung Hui

Department of Computer Science,
Hong Kong Baptist University,
Kowloon Tong, Hong Kong.

{jng,kchui}@comp.hkbu.edu.hk

Abstract. With the advance in computer and network technologies,
the real-time interaction and the on-time delivery of multimedia data
through the Internet by broadband network are becoming more popular.
A variety of multimedia systems and Internet applications have been
emerging, fulfilling the ever increasing demand on the Internet streaming
applications. This paper outlines the design of a MPEG-4 video system.
With the new features provided by the MPEG-4 standard, i.e. the
object-based media with arbitrary- shaped coding, object-based QoS
degradation is possible. It enables the system to discard the less impor-
tant objects within the video stream when the network is congested.
Our video system proposes a new transmission scheme for the system to
transmit MPEG-4 video over an open network. Based on the nature of
the video objects and their frames, transmission priorities among video
objects are assigned. The transmission scheme then regulates the flow
of the video data and their frames so that important data are delivered
on time to the video client regardless the delay fluctuation of the open
network.

Keywords: Quality of Service, QoS-Aware, MPEG-4 Video System,
QoS Control

1 Introduction

With the advance in computer and network technologies, multimedia systems
and Internet applications are becoming more popular. As broadband network
is prevailing, more clients are able to watch streaming videos or to play mul-
timedia data over the Internet in real-time. Therefore, there is an increasing
demand in the Internet for streaming video systems. Since Internet streaming
applications have a great demand on network bandwidth, video data should

� The work reported in this paper was supported in part by the RGC Earmarked
Research Grant under HKBU2074/01E, and by the Faculty Research Grant under
FRG/00-01/I-20.

�� Dr. Joseph Kee-Yin Ng is a senior member of IEEE.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 351–370, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

352 J.K.-Y. Ng and C.K.-C. Hui

be compressed before transmitted over the Internet. The Moving Pictures Ex-
perts Group (MPEG) intends to develop a digital media with high compression
efficiency. The MPEG-1 and MPEG-2 standard are widely adopted for high
quality video streaming and broadcasting system. Currently, MPEG keeps go-
ing to develop new media standards − MPEG-4 [1,2,3] and MPEG-7 [4,5,6].
The new MPEG standards focus not only on compression efficiency, but also on
media description. MPEG-4 provides object-based representation and MPEG-7
provides semantic based representation. The MPEG-4 standard provides new
features such as object-based media coding, scalability, and error-resilient tech-
niques. With the object-based encoding system in MPEG-4, the coding of the
scene can be classified into the coding of the foreground objects and the back-
ground objects. This is a good direction to take in attempting to reduce the
transmission bit rate by object-based QoS degradation. For example, when the
network is congested, the video stream can reduce the frame rate or the quality
for the background scene in which human pays less attention to. Our video sys-
tem proposes a transmission scheme to transmit MPEG-4 video over an open
network. The transmission scheme assigns different video objects with different
transmission priorities, which is based on the nature of the video content. The
transmission scheme then regulates the flow of the video data and their frames
so that important data are delivered on time to the video client regardless of the
delay fluctuation of the open network. In this paper, we will outline the design
of such a MPEG-4 video system.

2 Related Works

In a distributed MPEG video system, on time video delivery over an open net-
work is our main focus of studies. Besides the fact that the current Internet
can only provide best effort service, the major challenges of transmitting MPEG
videos over the Internet are the variable bit rate (VBR) characteristic of the
MPEG videos, insufficient bandwidth provided for video transmissions, and the
uncontrollable and highly dynamic nature of the Internet environment. Among
these facts, the special transmission characteristic from the variable bit rate
(VBR) of the MPEG videos makes the system difficult to adopt any traditional
scheduling algorithm for on-time video transmission.

To resolve these problems, many VBR transmission schemes have been devel-
oped and much effort have been put on the design of the transmission schemes for
distributed video systems to handle network congestion when streaming videos
over an open network [7,8,9,10,11]. For quality of service support, a number of
QoS control mechanisms have been proposed. Bolot and Turletti [8] proposed a
rate control mechanism for transmitting packet video over the Internet, Reibman
et al [18,14] and Reininger et al [18] made use of an adaptive congestion control
scheme to study the problem of transmitting VBR video over ATM networks.
Hasegawa and Kato [13] have implemented and evaluated a video system with
congestion control based on a two-level rate control.

The Design of a QoS-Aware MPEG-4 Video System 353

To make the system adaptive to the change of network constraint and to pre-
vent the network from further congestion, many systems use a software feedback
mechanism [10,16] to monitor the system status. According to the video client’s
status, adjustment is made in order to maintain the quality of service for the
video clients [12].

Players for streaming video systems like the Windows Media player from Mi-
crosoft [15], the QuickTime player from Apple [24], the WineCine Player from
Philips [26], the RealSystem from RealNetwork [17] and the EnvivioTV from
Envivio [25], are commercially available in the market. For these video systems,
they adopted the MPEG-4 video compression technology. MPEG-4 enhances the
encoded video quality and supports broad range of applications. The MPEG-4
encoding scheme is able to encode video ranging from narrow bandwidth net-
work (mobile network) to broadband network (ADSL, cable modem). They can
provide limited QoS guarantees on the video by stream switching. Based on the
available bandwidth, the video systems will dynamically adjust the bit rate with
high degree of overhead. The system encodes the media multi-bit-rates into a
single streaming media. Then the system automatically determines the current
available bandwidth and switches to the appropriate bit rate stream to serve
the video client. According to the bandwidth demand, the stream switch allows
the system to be adaptive to the environments. However, the drawback of the
system is that it requires extra-storage for additional copies of the video tracks.

Much effort has been put on the design of distributed video systems. The
OGI video system [12] is a preliminary design of a distributed video system with
a rate control mechanism. The system is developed with a software feedback
mechanism for adjusting the transmission rate for MPEG-1 video based on the
fluctuation of the network environment. The video system is not only adaptable
to the variations in the decoding frame rate, but also adaptable to the variations
in network bandwidth, network delay and delay jitter. Furthermore, the OGI
system uses the feedback mechanism with client/server synchronization, and
supports dynamic QoS control.

Based on the OGI video system, we developed the QMPEG video system
[19,20,23]. It enhances the software feedback mechanism that suits for multiple
clients. With the Priority Feedback Mechanism (PFB), the bandwidth can be
fairly shared among the video clients. QMPEG considers the transmission pat-
tern of the MPEG videos based on human perspective. Referring to the current
network status, the system dynamically adjusts the transmission patterns based
on the pre-defined GOP mapping table such that the network will not get fur-
ther congested and the video clients are better served. The QMPEGv2 video
system [21,22,30] further considers the QoS control of the video by means of a
video transmission scheduling scheme. It is a priority-driven transmission scheme
that regulates the transmission sequence of the video stream. QMPEGv2 assigns
transmission priority according to the urgency and the nature of the MPEG-1
video streams. The transmission scheme is responsible to regulate the flow of the
video data. Once it detects that the bandwidth is insufficient or buffer is under-
flow through the feedback mechanism from the video client, the video quality

354 J.K.-Y. Ng and C.K.-C. Hui

would be gracefully degraded by video server. The transmission priorities scheme
makes sure that important video data are delivered on time to the video client.

Since there are new features in the MPEG-4 standard which includes object-
based media coding, arbitrary-shaped coding, and temporal/spatial scalability,
we are trying to integrate most of these functions into the design of our proposed
video system. However, there are relatively few studies in this front. Liang et
al [31] outlines the design of a MPEG-4 client-server video system. It provides
spatial scalability and temporal scalability to adapt different client side envi-
ronments and network bandwidth. It also shows the idea of having a separate
encoding for foreground figures and background scene. K. Asrar et al [32,33] im-
plements the video system based on Delivery Multimedia Integration Framework
(DMIF). The DMIF-based MPEG-4 streaming video system enables interactive
media streaming over the internet.

Object-based coding is provided by the MPEG-4 standard, it provides not
only temporal scalability, but also object scalability. With QMPEGv2’s prede-
fined priority driven transmission scheme for on-time video delivery, our video
system can intelligently adjusts the bandwidth demand by means of skipping
some less important or human undetectable frames and objects. This study
shows the design of our proposed video system which is able to provide QoS
guarantees control for on-time video delivery based on human perspective.

3 The Design of the MPEG-4 Video System

3.1 The Overview of MPEG-4 Video System

MPEG-4 is a new standard, which targets for streaming multimedia over the
Internet. It was specified by the Moving Picture Experts Group (MPEG) com-
mittee, the working group within the International Organization for Standard-
ization (ISO). This working group has defined the widely adopted standards, i.e.
MPEG-1 and MPEG-2. The main concerns on MPEG-1 and MPEG-2 are about
the improvements of the storage capacity and transmission efficiency by means
of compressing the digital media. MPEG-1 tries to encode the digital storage
media so that the bit-rate can reach 1.5 Mbps. This compression technique is
widely applied to CD-ROM video application and MP3 audio systems. MPEG-2
is developed for handling a wider range of video applications and provides bet-
ter video quality at a bit-rate of around 3 Mbps. For examples, DVD, Broadcast
(Satellite) Services, Cable TV Distribution and Interactive Television Services.
Consequently, the design of MPEG-4 not only achieves storage and transmission
efficiency, but also supports a numerous of interactive multimedia applications.
The encode bit rates for MPEG-4 ranged from 5 kbps for small, black-and-white
security systems to 1 Gbps for large-screen, high-quality video systems and giant
screen of electronic cinema.

The outstanding features of MPEG-4 are object-based media representation
and scalability. Firstly, MPEG-4 represents the scene as composed of multiple
audio-visual objects, which are co-related in space and time domains. Let us

The Design of a QoS-Aware MPEG-4 Video System 355

Fig. 1. The original Akiyo scene

use a news broadcasting video clips as an example. The scene usually consists
of a reporter, some background objects and the associated audio objects. With
this object-based coding representation, MPEG-4 allows to encode individual
video object with arbitrary-shape. It achieves not only higher compression ra-
tios but also various quality metrics for QoS control. Next, scalability of the
video provides the properties that enables the adaptation for transmission over
heterogeneous networks and provides more flexibility to adjust the QoS for dif-
ferent environment and link bandwidth. Also, scalability allows a video decoder
to decode a portion of the coded bitstreams so that the resulted video quality can
be commensurate with the amount of data decoded. In fact, the temporal scal-
ability enables adaptable frame rates, thus the portion of Video Object Plane
(VOP) can be discarded. The object scalability allows the user to selectively
display a subset of the video objects. Therefore, video objects like background
scenes can be discarded based on the current environment.

3.2 Video Objects within a Video Scene

Video object is the basic element of a video scene. For a single video scene,
it can be separated into foreground and background. In human perspective,
those video objects in the foreground draw bigger attention than that in the
background. For example, a composed news reporter scene (Akiyo) is shown in
Figure 1. The news reporter is the main video foreground object of the scene. It
is independent to video background, in which the separated background scene
is shown in Figure 2. To encode by MPEG-4, each video object can be encoded

356 J.K.-Y. Ng and C.K.-C. Hui

Background scene Foreground scene

Fig. 2. Background and Foreground scenes of Akiyo

separately with different qualities based on its content or nature. Moreover,
the visual object can be selectively displayed onto the screen. Let us consider
the situation under network congestion. The video server can degrade the video
streams by mean of discarding some less important video objects, such as objects
in background. By doing so, the bandwidth demand by the resultant stream will
be reduced so as to maintain the continuity and smoothness of the streaming of
the video. Such QoS degradation on the video stream is possible because of the
fact that human beings always focus mainly on foreground objects rather than
background objects.

In our video system, the foreground video objects are sub-divided into Major-
Video-Object (MajorVO) and Minor-Video-Object (MinorVO). The MajorVO
refers to premier/key objects on the scene. It would be a person, a car or any
object that the content creator intents to show. The MinorVO refers to the visual
object in the foreground, but they may draw less attention from the users. On
the other hand, the background object is any object in the backdrop scene.
Compared to the foreground objects, the background is almost a still image.
Note that the classification in these video objects is subjective to the content
creator. While Figure 3 shows the original video scene for the container sequence,
Figure 4 demonstrates the classification of the container scene decomposed into
six video objects. The container is classified as a MajorVO, the small ship and
the flag are classified as MinorVO, whilst the remaining object (the Sea, the
Ground and the Sky) are classified as background video objects.

3.3 Data Size Ratios among Video Objects

In the previous section, we have discussed the video objects within a video scene.
This section try to focus on the discussion of the data size ratios among the
encoded video objects. We have set up an experiment for a container sequence
which can be decomposed into six video objects as shown in Figure 4. We encode
the whole video sequence with separated video objects by an MPEG-4 Video

The Design of a QoS-Aware MPEG-4 Video System 357

Fig. 3. The original Container scene

encoder which uses the Microsoft MPEG-4 Visual CODEC. All video objects
are encoded under the same environment including compression parameters and
frame rate. Figure 5 and Table 1 shows the distribution and the average data size
of the compressed bitstreams for each video object of the container sequence. We
observe that background objects are taking up a majority share of the bitstreams
from the video sequence and occupied over half of the bandwidth. Figure 5 also
indicates that the MajorVO (34%) and background objects (53%) contribute a
large proportion of the bitstream of the whole video sequence and the data size
ratios among MinorVO, MajorVO and background object are 1: 2.89: 4.32.

By the object-based media representation of MPEG-4, this can greatly en-
hance the strategy of QoS control for the transmission of video streams. Our
observation reveals that the majority of bitstreams is occupied by the back-
ground video objects, but the audience pay less attention to them. Therefore,
we can use a higher compression ratio for the background bitstream so as to
reduce its frame rate (temporal degradation) for this kind of video objects. An
example is illustrated in Figure 6. We maintain the video quality for the Ma-
jorVO (i.e. container) and reduce the video quality for the other video objects
in the scenes. Moreover, we also can enlarge the key frame interval for the back-
ground objects so that more bandwidth can be used by the foreground objects.
In summary, results have shown that object-based video encoding can enrich the
room for QoS control.

358 J.K.-Y. Ng and C.K.-C. Hui

Sea (BG 1) Ground (BG 2)

Sky (BG 3) Ship (MinorVO 1)

Flag (MinorVO 2) Container (MajorVO)

Fig. 4. Separate video objects of the Container scene

3.4 QoS Control within a Video Object

For video streaming system, the QoS control aims at maximizing the bandwidth
usage. It tries to maintain the video quality and keep the degradation of video

The Design of a QoS-Aware MPEG-4 Video System 359

Fig. 5. Bandwidth distribution of the Container video

quality as small as possible. In our previous video streaming system [21,22], the
mechanism for QoS control is based on temporal degradation of video quality.
It discards video frame(s) according to the predefined frame skipping pattern
when the current available bandwidth is not sufficiently enough to transmit all
the frames within a GOP. For the design of our new system, the mechanism
for QoS control employs the object-based coding characteristics. It is done by
frame-based skipping and object-based coding. The detailed design of the QoS
control mechanism for object-based MPEG-4 video streams is as follows.

A MPEG-4 video scene consists of a number of video objects(VOs). Each
object composes of a sequence video object planes(VOPs), so-called Groups of
VOPs (GOV) in MPEG-4. As mentioned in our studies [30], VOP dropping
within a GOV is important to the video quality in terms of smoothness. For
example, if a P-VOP within a GOV is discarded because of its late arrival, the
subsequence P-VOPs and B-VOPs cannot be decoded. Hence, to maintain the
minimum degradation of video quality, the VOPs would be dropped selectively

Table 1. Object size in the Container video

Object Size(KB)

Background 1 76
Background 2 25
Background 3 20
MinorVO 1 13
MinorVO 2 15
MajorVO 81

360 J.K.-Y. Ng and C.K.-C. Hui

Fig. 6. Reduce the video quality of the background scenes

Table 2. Different levels of QoS control

Level VOPs

B-VOP 2 B B B B B B B B B B
P-VOP 1 P P P P
I-VOP 0 I

and evenly within a GOV. Since MPEG-4 support arbitrary GOV size, it is
difficult to define a detail QoS level which is similar to the GOP mapping table
as described in our previous studies [20,21]. Therefore, we simply quantize the
QoS into three levels, as shown in Table 2. Every transmission starts from the
lowest base level 0, which transmits the I-VOP only. If sufficient bandwidth
is available, the next level, i.e. the transmission of the P-VOP, is triggered to
improve the video quality. To further enhance the video quality, the last level,
i.e. the transmission of the B-VOP, is activated. Besides that, if we quantize the
QoS from three to six levels as shown in Table 4, we can see that the scalability
can be further enlarged. The idea is to improve the smoothness of the video
incrementally.

Noted that this design is different from the Fine Granular Scalability (FGS)
as defined in MPEG-4. All levels are multiplexed into a single stream and the
video client/ video encoder do not need any extra support for this feature. The
video server dynamically transmits the video data from the base level to the
enhancement level.

The Design of a QoS-Aware MPEG-4 Video System 361

Table 3. Enhanced scheme for B-VOP in QoS control

Level VOPs

5 B B B
4 B B
3 B B B

B-VOP 2 B B
P-VOP 1 P P P P
I-VOP 0 I

Next, we want to show the inter-object degradation scheme for our video
system. In previous sections, we classify video objects into three types. They
are the background, the MinorVO and the MajorVO. Then, we prioritize these
objects for QoS degradation/Improvement control. The background video object
has the highest priority to be discarded, and the MajorVOs are the last to go.
Let us use an example to illustrate our idea for the QoS Control. Assuming a
scene with i background, j MinorVO and k MajorVO as shown in Figure 7. The
QoS scheme discards the highest priority objects (i.e. background objects) first.
The number of discarded objects is from 1 to i. If the resultant stream is still too
much for the available bandwidth, the scheme will then drop the MinorVOs and
lastly drop the MajorVOs. Figure 8 shows the aggregated bandwidth demand
for the inter-object degradation for the container sequences. We observed that
the bandwidth demand can be reduced by 33%, by discarding the first back-
ground objects. It can further reduce the bandwidth by not just discarding the
background objects, but evenly discard all the other video objects except the Ma-
jorVO. In this case, it will save over 55% of the bandwidth. Figure 9 shows the
sample scenes of object-based QoS degradation. In these examples, we assumed
that the discarded VOP are replaced by the previous VOP of the corresponding
objects. The left column shows the components for scene update, and the right
column shows the resultant scene. The dark area shown in Figure 10 reflects the
scene error (i.e. artifacts) when object is missed or discarded. However, the error
becomes un-observerable if the scene is padding with the corresponding VOPs
as shown in Figure 11.

With a frame-based and object-based QoS scheme, the demanded bandwidth
can be progressive reduced whilst QoS degradation is kept to a minimum.

3.5 The Client-Server Video System

Overall Architecture. In the previous sections, we have discuss about the
video objects within a video scene, the data size ratios among video objects, and
the QoS control within a video object. These provide the bases on how to do QoS
control, and by how much we can reduce the bandwidth demand. Having these
information, we now have to put everything together to construct our MPEG-4
video system.

362 J.K.-Y. Ng and C.K.-C. Hui

BG1

... ...

BG2 BGi MinorOV1 MinorOV2 MinorOVj

...

MajorOVkMajorOV1

QoS Degradation

QoS Improvement

Fig. 7. Object-based QoS improvement/degradation control

The proposed system is a MPEG-4 video streaming system that aims at
conveying MPEG-4 videos over an open network. That is, MPEG-4 videos are
streamed to the video clients through the Internet. Video streaming is done by
unicast transmission and Figure 12 shows an overall architecture of our video
streaming system. In general speaking, the video server of the system transmits
video streams to a number of video clients concurrently. Each video client, upon
receiving video objects from the stream, will inform the video server about its

0

50

100

150

200

250

S
tr

ea
m

 s
iz

e(
B

yt
e)

none BG 1 BG 2 BG 3 MinorVO 1 MinorVO 2

Object-based QoS degradation

MajorVO

MinorVO 2

MinorVO 1

Background 3

Background 2

Background 1

Fig. 8. Bandwidth demand on QoS degradation for the Container video

The Design of a QoS-Aware MPEG-4 Video System 363

Full Video

Discard Background 1(Sea)

Discard Background 2(Sky)

Fig. 9. (a) An example to show Object-based QoS degradation

364 J.K.-Y. Ng and C.K.-C. Hui

Discard Background 3(Ground)

Discard MinorVO 1(Flag)

Discard MinorVO 2(Ship)

Fig. 9. (b) An example to show Object-based QoS degradation

The Design of a QoS-Aware MPEG-4 Video System 365

Fig. 10. The scene with discarded background objects

Fig. 11. The scene with artifacts fixed by previous container VOPs

current status by sending it feedback messages through the open network. The
video server will then collect the feedback messages and react accordingly. That
is, by improving or degrading the video stream through its QoS control so as to
maintain the quality of the MPEG-4 video delivered for the video clients.

366 J.K.-Y. Ng and C.K.-C. Hui

Media Control/Signal

Muxed ESs

Internet

Client Client

Video Server

Client Client

Fig. 12. System overview

The transmission scheduling scheme in the video system defines a trans-
mission sequence based on our studies. The service discipline of the scheduling
scheme divides the video transmission into rounds. Each round is a basic unit for
the transmission management. Each round is divided into four sessions, namely
SESSION 0 to SESSION 3, with SESSION 0 bearing the highest priority for
transmission. Hence, each round starts from SESSION 0 and it switches to the
next session when the current session is completed. A round must complete
within the predefined round limit. At the end of a round, the current session is
stopped and the next round starts from SESSION 0 again. For example, when
the transmission cycle reaches the end of a round, which is still in SESSION
1, the unsent VOP are discarded. The first two sessions are designed for the

Table 4. A summary of the transmission scheme in the video server

Transmission Real-time Non real-time

Session SESSION 0 SESSION 1 SESSION 2 SESSION 3

Description Convey I-VOP Convey B-VOP Transmit for Prefetch
level and then level from low initial under
P-VOP level to high level. buffering. transmission
(from MajorVOs to control.
background objects)

The Design of a QoS-Aware MPEG-4 Video System 367

real- time data. In fact, SESSION 0 is transmitting only the mandatory part
and SESSION 1 is for the optional part of the real-time video data. The last
two sessions, SESSION 2 and SESSION 3, are for non-real-time VOP. Table 4
summarized the functions of these sessions.

The video streaming system distinguishes itself from the others by its trans-
mission scheduling scheme and the unique QoS control mechanism. These trans-
mission scheduling schemes regulate the flow of the video data and ensures that
important components are delivered on time at the client side if sufficient net-
work bandwidth is available. At all time, video transmission is under the QoS
control. This means VOPs may be discarded by the QoS control when the band-
width demand exceeds the current bandwidth available.

Video Server. The main function of the server is to convey the stored MPEG-4
streams to the video clients. It monitors the overall streaming status among the
streams and regulates the flow of the video stream so that the best QoS can
be kept. The video server transmits video streams to a number of video clients
concurrently. Each stream comprises of one or more Elementary Streams (ES).
MPEG-4 organizes the ES in Access Unit (AU). Using this concept for the video
ESs, the ES corresponds to a sequence of VOP and the AU comprises of the
entire VOP. The ES are packetized to a stream of Sync Layer (SL) packet with
timing information for synchronizing the Elementary Streams. The video server
then convey the SL packet which is encapsulated by the Delivery Layer packet
such as an IP packet. Figure 13 illustrates the streaming process of the video
server. Each ES is assigned a transmission priorities based on the nature of the
video objects. Video server transmits the VOP level by level and the video server
primarily conveys the I-VOP for the MajorVOs, follows by MinorVOs and lastly
the BackgroundVOs in each round.

MP4 file

B P B B IB

B P B B IB

B P B I

P I

III

BBB

PP P P

B B

B

AU

.
.
.

...

...

...

...

MajorVO

MinorVO

Backgound
Object

I-VOP layer (0)

B-VOP layer (2)

P-VOP layer (1)

BBB BB

.
.
. B-VOP layer (n)

MP4 file

...

...

...

.
.
.

.
.
.

II

SL-Packet

Fig. 13. Video server architecture

368 J.K.-Y. Ng and C.K.-C. Hui

Video Client and QoS-Aware Middleware. Considering the complex con-
struct of a MPEG-4 video client, it is complicate to design and to implement a
fully functional MPEG-4 video client. The major difficulty is the complexity of
the MPEG-4 decoder. It is because the decoder needs to handle and synchronize
between different video objects from multi-leveled video streams. Moreover, it is
also hard to support different MPEG-4 profiles. Therefore, instead of reinvent-
ing the wheel, a middleware is designed and placed in between the video server
and video decoder. This middleware is used for handling the QoS control and
communications to the third parity video decoders, like the EnvivoTV and the
QuickTime Player.

The middleware is an interface between video server and MPEG-4 video play-
ers. It aims at monitoring the network status, the receiving buffer status, and the
sending back of feedback messages from the client side to video server. Further-
more, the middleware is responsible for collecting and conveying the composed
streams to video decoder. All VOPs missing their deadlines or incomplete VOP
would be discarded by the middleware.

Based on the MPEG-4 standard and human behavior, we have explored the
possibility and investigated the room for reducing the MPEG-4 video stream’s
bandwidth demand without degrading the video quality. Together with the trans-
mission scheme in the server design, the feedback mechanism and the middleware
design, we have started the actual implementation of our MPEG-4 video system.

4 Summary

We have outlined the design of the MPEG-4 video system. The system is designed
to transmit MPEG-4 video over an open network. With the feedback mechanism
from the video clients, the video server will react accordingly so as to maintain
the video quality for each client. With the object shape coding method provided
in MPEG-4, it enables object- based QoS improvement/degradation in our sys-
tem. The QoS control is based on the transmission priorities for different video
objects in human perspective. The transmission scheme regulates the flow of the
video data, and at the same time the important data, which have the highest
priority, are enforced to be delivered on time at the video client regardless of the
delay fluctuation of the network.

References

1. Overview of the MPEG-4 Standard (http://mpeg.telecomitalialab.com/standards/
mpeg-4/mpeg-4.htm).

2. Peiya Liu, ”MPEG-4: A Multimedia Standard for the Third Millennium, Part 1”,
IEEE multimedia, pp.74-83, October-December 1999

3. Peiya Liu, ”MPEG-4: A Multimedia Standard for the Third Millennium, Part 2”,
IEEE multimedia, pp.76-84, January-March 2000

4. MPEG-7 Overview (http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-
7.htm).

The Design of a QoS-Aware MPEG-4 Video System 369

5. Peiya Liu, ”MPEG-7: The Generic Multimedia Content Description Standard, Part
1”, IEEE multimedia, pp.78-87, April-June 2002

6. Peiya Liu, ”MPEG-7: Overview of MPEG-7 Description Tools, Part 2”, IEEE

multimedia, pp.83-93, July-September 2002
7. V. Baiceanu, C. Cowan, D. McNamme, C. Pu and J. Walpole, ”Multiple Ap-

plications Require Adaptive CPU Scheduling”, Proc. of Workshop in Multimedia

Resource Management, December 1-2, 1996.
8. J. Bolot and T. Turletti, ”A Rate Control Mechanism for Packet Video in the

Internet”, Proc. of INFOCOM’94, pp. 1216-1223, 1994.
9. W. Bolosky, J. Barrera III, R.Draves, R. fitzgerald, G. Gibson, M.Jones, S. Levi,

N. Myhrvold, and R. Rashid, ”The Tiger Video Fileserver”, Proc. The 6th Inter-

national Workshop on Network and Operating System Support for Digital Audio

and Video, April 1996. Also available at http://www.research.microsoft.com/.
10. W. Bolosky, R. Fitzgerald, and J. Douceru, ”Distributed Schedule Man-

agement in the Tiger Video Fileserver”, Proc. SOSP’97, Also available at
http://www.research.microsoft.com/research/os/bolosky/sosp/cdrom.html.

11. J. F. Koegel Buford, Multimedia Systems, Addison Wesley, 1994.
12. S. Cen, C. Pu and R. Staehli, ” A Distributed Real-time MPEG video Audio

Player”, Proc. of the 5th International Workshop on NOSSDAV’95, April 1995.
13. T. Hasegawa, T. Hasegawa, T. Kato, ”Implementation and Evaluation of Video

Transfer System over Internet with Congestion Control based on Two Level Rate
Control”, Proc of RTSCA’99, pp.141-148, 1999.

14. H. Kanakia, P Mishra and A. Reibman, ”An adaptive Congestion control Scheme
for Real-Time Packet Video Transport” Proc. of ACM SIGCOMM ’93, pp20-31,
Sep. 1993.

15. Windows Media Technology from Microsoft (Available
at http://www.microsoft.com)

16. C. Pu and R. Fuhere, ”Feedback-Based Scheduling: a Toolbox Approach”, Pro-

ceeding of 4th Workshop on Workstation Operation Systems, October 14-15, 1993.
17. RealPlayer and RealSystems G2 form RealNetworks (www.realaudio.com).
18. R. Reibman, and A. Berger, ”On VBR video Teleconferencing over ATM Networks”

Proc. of IEEE GLOBECOM’92, pp. 314-319, 1992.
19. H. K. Wai, and J. Ng, ”The Design and Implementation of a Distributed MPEG

Video System”, Proceedings of the First HK ACM Postgraduate Research Day,
pp. 101 — 107, October 1998.

20. H. K. Wai, ”Priority Feed back Mechanism with Quality of Service Control for
MPEG Video System” MPhil Thesis, Department of Computer Science, Hong
Kong Baptist University, August 1999.

21. J. Ng, C. Hui, W. Wong, and K. Leung, ”A Transmission Scheme for Provid-
ing Streaming Support and QoS Control in a Distributed MPEG Video System”,
Technical Report, Dept. of Computer Science, Hong Kong Baptist University, Sept.
2000. http://www.comp.hkbu.edu.hk/˜jng/Tech-Rpt/JNG09-00.ps.

22. J. Ng, C. Hui, and W. Wong, ”A Multi-server Design for a Distributed MPEG
Video System with Streaming Support and QoS Control”, Proceedings of the

7th International Conference on Real-Time Computing Systems and Applications

(RTCSA 2000), pp. 160 — 165, December 2000.
23. K. Y. Lam, C. Ngan, and J. Ng, ”Using Software Feedback Mechanism for Dis-

tributed MPEG Video Player Systems”, Journal of Computer Communication ,
Vol. 21(15), pp. 1320 — 1327, 1998, Elsevier Science.

24. QuickTime from Apple (http://www.apple.com/quicktime).

370 J.K.-Y. Ng and C.K.-C. Hui

25. EnvivioTv from Envivio (http://www.envivio.com).
26. WebCine from philips (http://www.digitalnetworks.philips.com/).
27. J. Ng, ”A Reserved Bandwidth Video Smoothing algorithm for MPEG Trans-

mission”, Journal of Systems and Software, Volume 48, Issue 3, pp. 233 — 245,
November 1999.

28. J. Ng, ”Performance Analysis of Transmission schemes for VBR Traffic on a Real-
Time Network”, International Journal of Parallel and Distributed Systems and

Networks”, Volume 3, Issue 3, pp. 144 – 156.
29. J. Ng, K. Leung, and W. Wong, ”Quality of Service for MPEG Video in Human

Perspective”, Technical Report, Department of Computer Science,Hong Kong
Baptist University, July 2000.
(http://www.comp.hkbu.edu.hk/ jng/Tech-Rpt/JNG07-00.ps).

30. J. Ng, K. Leung, W. Wong, V. Lee, and C. Hui, ”A Scheme on Measuring MPEG
Video QoS with Human Perspective”, Proc. of the 8th International Conference

on Real-Time Computing Systems and Applications (RTCSA 2002), March 2002.
31. L. Cheung, M.E. Zarki, ”The Analysis of MPEG-4 Core Profile and its system de-

sign” Proceedings of Multimedia Technology and Applications conference (MTAC
2001), November 2001.

32. L.A. Haghighi, Y. Pourmohammadi, H.M. Aluweiri, ”Realizing MPEG-4 Stream-
ing Over the Internet: A Client/Server Architecture using DMIF” , Proceeding

of International Conference on Information Technology - Coding and Computing

(ITCC 2001), April 2001.
33. Y. Pourmohammadi, L.A. Haghighi, A. Mohamed, H.M. Aluweiri, ”Streaming

MPEG-4 over IP and Broadcast Networks: DMIF Based Architectures”, Proceed-

ings of The 11th International Packet Video Workshop, April 2001

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 371–388, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Constrained Energy Allocation for
Mixed Hard and Soft Real-Time Tasks*

Yoonmee Doh1, Daeyoung Kim2, Yann-Hang Lee3, and C.M. Krishna4

1 CISE Department, University of Florida,
Gainesville, FL 32611-6120, USA

ydoh@cise.ufl.edu
2 Information and Communications University, Munji-dong, Yusong-gu,

Daejon, 305-714, Korea
kimd@icu.ac.kr

3 Dept. of Computer Science and Engineering, Arizona State University
Tempe, AZ 85287-5406, USA

yhlee@asu.edu
4 Electrical & Computer Engineering Dept., University of Massachusetts

Amherst, MA 01003, USA
krishna@ecs.umass.edu

Abstract. Voltage-Clock Scaling (VCS) is an effective approach to reducing
total energy consumption in low power microprocessor systems. To provide
real-time guarantees, the delay penalty in VCS needs to be carefully considered
in real-time scheduling. In addition to real-time requirements, the systems may
contain non-real-time tasks whose response time should be minimized. Thus, a
combination of optimization objectives should be addressed when we establish
a scheduling policy under a power consumption constraint. In this paper, we
propose a VCS approach which leads to proper allocations of energy budgets
for mixed hard and soft real-time tasks. Based on the schedulability of VCS-
EDF, we investigate the characteristics of energy demand of hard periodic and
soft aperiodic tasks. Using simulation and subject to a given energy budget,
proper voltage settings can be chosen to attain an improved performance for
aperiodic tasks while meeting the deadline requirements of periodic tasks.

1 Introduction

Mobile computing and communication devices such as laptop computers, cellular
phones, and personal digital assistants (PDA’s) have become commonplace; the de-
mands for embedded applications on those devices are increasing. However, proces-
sors are also becoming increasingly power-hungry. For this reason, the field of
power-aware computing has gained increasing attention over the past decade.

* The work reported in this paper is supported in part by NSF under Grants EIA-0102539 and

EIA-0102696.

372 Y. Doh et al.

Simple techniques, such as turning off (or dimming) the screen while a system is
idle and shutting down hard disks while it is not accessed is now commonly adopted
in most portable device designs [1]. However, in many cases, re-activation of hard-
ware can take some time, and affect response time. Also, deciding when and which
device should be shut down and woken up are often far from trivial [3].

Another effective approach to power reduction is a technique called Voltage-Clock
Scaling or Dynamic-Voltage-Scaling in CMOS circuit technology. The power con-

sumed per every cycle in a digital circuit is given by fVNCP DDswLcmos
2= , where

CL is the output capacitance, Nsw the number of switches per clock, and f the clock
frequency. Due to the quadratic relationship between the supply voltage (VDD) and the
clock frequency, a small reduction in voltage can produce a significant reduction in
power consumption. However, lowering VDD increases the circuit delay following the

equation ()2

TDDDDd VVVkt −= , where k is a constant depending on the output gate

size and the output capacitance, and VT is the threshold voltage. This implies that the
clock frequency must be reduced and the execution time is extended [11]. Obviously,
the longer execution time may lead to performance degradation in application re-
sponse time and a failure to meet real-time deadlines.

Most of today’s processor cores have been designed to operate at different voltage
ranges to achieve different levels of energy efficiency, as shown in Table 1. For in-
stance an ARM7D processor can run at 33MHz and 5V as well as at 20MHz and
3.3V. The energy-performance measures at these two modes of operation are 185
MIPS/WATT and 579 MIPS/WATT, and the MIPS measures are 30.6 and 19.1, re-
spectively [7]. From these figures, if we switch from 33MHz and 5V to 20MHz and
3.3V, there will be around (579-185)/579=68% reduction in energy consumption at
an expense of (30.6-19.1)/19.1=60% increase in processing time. Kuroda et al. use
voltage scaling in the design of a processor core as shown in [4], in which they can
adjust internal supply voltages to the minimum automatically according to its operat-
ing frequency.

Table 1. Microprocessors that allow the core operate at different voltages and frequencies

Processors Voltage Speed
(MHz)

Power
Consumption

(Watt)
Features

StrongARM SA-2
[5]

1.30
0.75

600
150

0.45
0.04

12-fold energy reduction

Pentium-III
[6]

1.60
1.35

650
500

22
9

SpeedStep Technology
- 2 modes

Crusoe (TM5400)
[9][10]

1.65
1.10

700
200

2
1

16 levels
in steps of 33MHz

ARM7D
[7]

5.0
3.3

33
20

0.165
0.033

185 MIPS/W
579 MIPS/W

PowerPC860
[8]

3.3
2.4

50
25

1.3
0.241

2 modes

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 373

If low energy consumption is a desirable feature in real-time embedded systems,
voltage-clock scaling must cooperate with the task scheduling algorithms since the
power-delay tradeoff property in low power design affects meeting the strict time-
constraints of real-time systems. The execution of a high-priority at a low voltage and
slow clock rate may cause a low-priority task to miss the deadline due to the addi-
tional delay from the execution of the high priority task.

The concept of real-time scheduling has been applied to dynamic speed setting in
[12] by Pering et al. Regarding the impact on energy of the number of available
distinct voltage levels, Ishihara and Yasuura pointed out that at most two voltage
levels are usually enough to minimize energy consumption [13]. A minimum-energy
scheduler based on the EDF scheduling policy was proposed in [14], where an off-
line algorithm assigned the optimal processor speed setting to a critical interval that
requires maximum processing. Similar to the approach for EDF scheduling in [14],
Hong et al. considered a low energy heuristic for non-preemptive scheduling in [15]
and the optimal voltage setting for fixed-priority scheduling is studied in [16]. These
approaches require that the task release times must be known a priori. Using two-
mode voltage scaling under EDF scheduling, dynamic resource reclaiming was pro-
posed in [17], which is useful when task arrival instances or phases are not known a
priori and an extension of [18]. For the periodic task model and rate-monotonic
scheduling, two on-line voltage-scaling methods [19] were proposed, which change
voltage levels at the execution stage from the initially assigned levels as such changes
become necessary.

While VCS has been a well-populated research area, power-aware system design
has generally focused on minimizing total power consumption. For systems consist-
ing of soft aperiodic tasks, the objective of minimizing power consumption will result
in slow execution. On the other hand, in many cases, the battery capacity can be re-
plenished or there is a finite mission lifetime. Minimizing power consumption that
doesn’t utilize all available energy may not lead to optimal system performance. A
better power control strategy in such cases is to minimize the response times of soft
real-time tasks, providing that the deadlines of hard real-time tasks are met and the
average power consumption is bounded.

In this paper, we target battery-driven real-time systems, jointly scheduling hard
periodic tasks and soft aperiodic tasks, whose battery capacity is bounded in the fea-
sible range given by a set of tasks. The scheduling should guarantee meeting the task
deadlines of hard real-time periodic tasks and achieve average response time of aperi-
odic tasks that are as low as possible. Under the constraints of a bounded energy
budget, finding an optimal schedule for a task set should aim to satisfy both optimal
power consumption and strict timing constraints simultaneously.

We first investigate the characteristics of energy demands of periodic and aperi-
odic tasks focusing an EDF scheduling exploiting the feature of VCS. Based on the
energy requirement of mixed real-time tasks, we also propose a static scheduling for
energy budget allocation, which determines the optimal two-level voltage settings of
all tasks under bounded energy consumption, while guaranteeing that no deadline of
any periodic task is missed and that the average response time of aperiodic tasks is
minimized. The algorithm selects the voltage settings that have the minimum average

374 Y. Doh et al.

response time among the schedulable ones within a given energy consumption. To
schedule aperiodic tasks, we adopt the Total Bandwidth Server, which was proposed
by Spuri and Buttazzo and handles aperiodic tasks like periodic tasks within the re-
served bandwidth such that it outperforms other mechanisms in responsiveness [21].

The paper is organized as follows. In Section 2, we outline the preliminary system
model having several assumptions. Then, we discuss the characteristics of energy
demand and processor utilization under bounded energy budget in Section 3. Consid-
ering on the characteristics described in Section 3, energy allocation methods and an
algorithm of voltage assignment are described in Section 4. To illustrate the effec-
tiveness of the proposed algorithm, we evaluate its performance in Section 5 through
simulation studies. In Section 6, a short conclusion is provided.

2 System Model

For the targeted real-time systems, tasks may arrive periodically and have individual
deadlines that must be met. Or they can be aperiodic and can accrue computation
values, which are inversely proportion to their response times. Under a given bound
on energy consumption, we build a system model and make several assumptions as
follows.

2.1 Schedule for Periodic Tasks

For Earliest Deadline First (EDF) scheduling, a periodic task τi is modeled as a cyclic
computational activity characterized by two parameters, Ti and Ci, where Ti is the
minimum inter-arrival time between two consecutive computation instances and Ci

the worst-case execution time (WCET) of task τi. The EDF scheduling algorithm
always serves a task that has the earliest deadline among all ready tasks. The follow-
ing assumptions are analogous to assumptions made in real-time scheduling theory
[20].

• Tasks are independent: no task depends on the output of any other task.

• The deadline for task τi is equal to Di, which is less than Ti.

• The worst-case execution demand of each task τi, i.e. Ci, is known. The ac-
tual execution demand is not known a priori and may vary from one arrival
instance to the other.

• The overhead of the scheduling algorithm is negligible when compared to the
execution time of the application.

2.2 Schedule for Aperiodic Tasks

An infinite number of soft aperiodic tasks {Ji | i=0,1,2,…} are modeled as aperiodic
computation activities represented by two parameters, λ and μ, where λ is the average

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 375

inter-arrival time between two consecutive aperiodic instances and μ the average
worst-case execution time of all aperiodic tasks.

Aperiodic tasks are scheduled by Total Bandwidth Server (TBS) algorithm that
makes fictitious but feasible deadline assignment based on the available processor
utilization guaranteed by the isolation of bandwidth between periodic and aperiodic
tasks. In the TBS algorithm, the k-th aperiodic request arriving at time t = rk, a task
deadline

A

k
kkk U

C
)d,rmax(d += −1

(1)

is assigned, where Ck is the execution time of the request and UA the allocated proces-
sor utilization for aperiodic tasks. By definition d0=0. The request is then inserted into
the ready queue of the system and scheduled by the EDF algorithm, as are any other
periodic instances or aperiodic requests already present in the system.

Note that the assignment of deadlines is such that in each interval of time, the
processor utilization of the aperiodic tasks is at most UA. Hence, a set of periodic tasks

with utilization factor
=

=
n

i iiP TCU
1

and a TBS with a bandwidth UA is schedul-

able by EDF if and only if UA + UP ≤ 1. The definition and the formal analysis of this
algorithm are proved in [21]. Comparing to other scheduling algorithms for aperiodic
tasks, the TBS algorithm has a very simple implementation complexity and shows
very good performance in average response time.

2.3 Voltage Clock Scaling

• Voltage Switching
We assume voltage switching consumes a negligible overhead. This is also analo-

gous to the assumption made in classical real-time scheduling theory that preemption
costs are negligible [20]. Voltage switching typically takes a few microseconds. In
fact, a bound of the total overhead can be calculated by simply counting the number
of task arrivals and departures since voltage switches are only done at task –dis-
patching instances.

• Two Voltage Levels
The system operates at two different voltage levels. Ideally, a variable voltage

processor that has continuous voltage and clock setting in the operational range is
available as explained in Table 1. We assume a simple setting arrangement that the
processor in a real-time system can be dynamically configured in one of two modes:
low-voltage (L) -mode and high-voltage (H)-mode. In L-mode, the processor is sup-
plied with a low voltage (VL) and runs at a slow clock rate. Thus, task execution may
be prolonged but the processor consumes less energy. On the other hand, the proces-
sor can be set in H-mode, i.e. be supplied with a high voltage (VH) and run at a fast
clock rate, in order to complete tasks sooner at the expense of more energy consump-
tion. The operating speeds at L-mode and H-mode are denoted as αL and αH, respec-

376 Y. Doh et al.

tively, in terms of some unit of computational work. Depending on the voltage setting
for task τi, the worst-case execution time is Ci/αL or Ci/αH.

2.4 Bounded Energy Consumption

In battery-powered embedded systems, it is often equally important to control power
consumption to extend the battery lifetime and to enhance system performance. Given
that the battery can be replenished or the mission lifetime is limited, we may assume
that the available capacity can safely be consumed during a predefined interval of
operation. Thus, an average power consumption rate or energy budget can be set to
the ratio of available capacity to the target operation interval. Also, it is possible to
communicate with the battery such that the system and its scheduler can know the
current status of the battery capacity. One of the mechanisms for doing this is the
Smart Battery System (SBS), which has been now actively standardized and intro-
duced to battery-driven systems [2]. In the paper, we assume the embedded system,
whose processor is the major factor of the energy consumption

3 Energy Budget Allocation in Real-Time Embedded Systems

For all real-time tasks, the available energy consumption is confined to a given en-
ergy budget called EC, which has to be shared among periodic and aperiodic tasks. Let
EP and EA are the energy budget allocated to periodic tasks and aperiodic tasks, re-
spectively. The voltage-clock scaling problem is to find voltage settings for both
periodic and aperiodic tasks such that

• all periodic tasks are completed before their the deadlines and have an energy
consumption less than EP.

• all aperiodic tasks can attain the minimal response times while consuming an
energy less that EA.

• EP + EA ≤ EC

3.1 Periodic Tasks

Assume that, for periodic task τi, mi is the voltage setting determined between the two
possible modes, i.e. L-mode and H-mode and αi (mi) is the speed of task τi at mode mi.
Given mi for all of periodic task τi, the energy demand for periodic task of Ep is

)m(p
T

C

)m(
)m(E i

i

i

ii

iP =
α

1 (2)

where p(mi) is the power consumption at mode mi, iC the average execution time of

task τi In addition, the worst-case utilization is given by

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 377

=
i

i

ii

iP T

C

)m(
)m(U

α
1 (3)

If mi is H-mode for all periodic tasks, the processor runs at a fast clock rate all the
time, thereby minimizing the utilization. The maximum energy demand for the tasks
is represented as

H

i

i

H

P p
T

C
Emax =

α
1 (4)

and its utilization becomes

=
i

i

H

P T

C
Umin

α
1 (5)

On the contrary, if mi is L-mode for every periodic task τi, the processor runs at a
slow clock rate all the time such that the utilization is maximized, but consumes the
minimum possible energy. For the sake of schedulability, the tasks should be
scheduled in such a way that the utilization is less than unity Therefore, we define
min EP as an energy demand when there exists a set of {mi} so that the worst-case
utilization

1
1 ≤=

i

i

i

iP T

C

)m(
)m(U

α
 and)m(p

T

C

)m(
)m(E i

i

i

i

iP =
α

1
 is minimized.

(6)

In Fig. 1, we describe the relationship between energy consumption and utilization
for a set of periodic tasks. The maxima and minima are denoted as max EP and min EP

for the energy and max UP and min UP for the utilization, respectively. Again, min EP

follows equation (6). Regarding the feasibility of the energy constraint and the worst-
case utilization, EC must be greater than min EP and min UP should be no greater than
1. By its definition, if min UP is greater than unity with all H-mode executions, it is
impossible to find voltage settings to ensure that all tasks meet their deadlines. If max
UP is less than 1, the tasks are schedulable with all L-mode assignments and energy
consumption can never be less than min EP. In the case, max UP becomes

() =
i

i

L

P T

C
LU

α
1

 and min EP does () = L

i

i

L

P p
T

C
LE

α
1

.

If energy budget EP is given in the range from min EP to max EP, UP

available is the
available utilization corresponding to the allocated energy budget EP. And, by
searching a set of voltage settings meeting the given energy budget and schedulabil-
ity, energy demand and utilization for periodic tasks are determined as EP (mi) ≤ EP

and UP (mi) ≥ UP

available, respectively.

378 Y. Doh et al.

Schedulable

min EP EP

Energy

min UP 1

Utilization

max UP

maxEP

UP
available0

0

Fig. 1. The relationship between power consumption and utilization for a set of periodic tasks

3.2 Aperiodic Tasks

Denote by mA the voltage setting determined between the two possible modes for
aperiodic tasks, which have the average inter-arrival time of λ and the average worst-
case execution time of μ. If all of them are assigned in mode mA and the power con-
sumption at mode mA is p (mA), the energy consumption and utilization of them are

)m(p
)m(

)m(E A

A

AA λ
μ

α
1=

(7)

λ
μ

α)m(
)m(U

A

AA

1=
(8)

respectively.
Also, if all of them are assigned in L-mode or H-mode, they demand minimum en-

ergy min EA or max EA given by the following equations

L

L

A pEmin
λ
μ

α
1= and H

H

A pEmax
λ
μ

α
1=

(9)

having the utilization

λ
μ

α L

AUmin
1= and

λ
μ

α H

AUmax
1=

(10)

3.3 Energy Budget Allocations and Utilization

While the constraint EP + EA ≤ EC must be satisfied, we can decide how processor
utilization, task scheduling, and task response time are affected. From the viewpoint
of utilization, the more utilization is available for aperiodic tasks, the shorter the
deadlines that are assigned to them by the deadline assignment of equation (1). This
assigns higher priorities to them in EDF scheduling such that they can get a faster

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 379

response. To give more utilization to aperiodic tasks, the utilization of periodic tasks
must be shrunk and it can be done by assigning more tasks to H-mode, but requires
more energy consumption. Since the total energy budget is bounded, the energy
budget left to aperiodic tasks will be reduced. As a result, the aperiodic tasks must be
run in a low voltage mode and their response times will be extended.

Likewise, from the viewpoint of the energy budget, the portion assigned in H-
mode for aperiodic tasks should be maximized within an assigned energy budget EA to
get faster responsiveness. But, as before, if the energy demand of aperiodic tasks is
increased, the energy available for periodic tasks will be decreased. In consequence,
the available utilization for aperiodic tasks will be decreased due to the increased
execution time of periodic tasks, which may result in degradation in responsiveness.

Eventually, to get both schedulability and fast responsiveness under a bounded en-
ergy budget, an effective scheduling and energy allocation scheme is needed for
jointly scheduling hard periodic and soft aperiodic tasks. The scheduling should ad-
dress the concern of the trade-off between utilization and energy consumption as
shown in Fig. 1.

4 Constrained Energy Allocation Using VCS-EDF Scheduling

In this section, we describe an energy allocation scheme, which allocates bounded
energy budget to periodic and aperiodic tasks based on VCS-EDF scheduling, meet-
ing the requirements of real-time tasks, i.e. to meet deadlines of periodic tasks and to
get faster average response time for aperiodic tasks. Given an energy budget EC, con-
sidering the feasible range of energy demand determined by tasks, it finds voltage
settings for periodic tasks and the execution portion in H-mode and L-mode to the
worst-case execution time for aperiodic tasks under a bounded energy budget.

4.1 Energy Allocation Factors

Suppose that EP and EA can be allocated in the range of [min EP, max EP] and [min EA,
max EA], respectively, Emax = max EP + max EA, and Emin = min EP + min EA. If the
bounded energy consumption budget is given as EC, EC must fall into the range Emin ≤
EC ≤ Emax where min EP, min EA, max EP, and max EA are as defined in equations (4),
(5), and (9) to a given set of tasks. Then, voltage settings must be determined such
that the energy consumption satisfies the constraint of EP + EA ≤ EC, while guarantee-
ing the schedulability of periodic tasks and minimizing average response time for
aperiodic tasks. For ease of explanation, we define Ediff = Emax − Emin.

Let β and γ be energy allocation factors of aperiodic and periodic tasks, given by 0
≤ β ≤ 1 and 0 ≤ γ ≤ 1, respectively. Then, the energy budgets EP and EA allocated to
them are represented as

EP = min EP + β(max EP − min EP), (11)

380 Y. Doh et al.

EA = min EA + γ (max EA − min EA), (12)

respectively.
Suppose Δa = (max EA − min EA), Δp = (max EP − min EP), and Δc = EC − (min EA

+ min EP), respectively, then the inequality (EP + EA ≤ EC) becomes

γΔa + βΔp ≤ Δc.
Hence, β and γ are determined by

10 ≤−=≤
p

ac

Δ
ΔγΔβ and

a

c

a

pc

Δ
Δγ

Δ
ΔΔ ≤≤− (13)

respectively. The choice of γ determines β, and vice versa, and also determines EA and
EP by equations (11) and (12).

If γ=0 and γ=1, energy min EA and max EA are assigned to aperiodic tasks, i.e. as-
signing all aperiodic tasks in L-mode and H-mode, respectively. If γ is 0.6, energy
assigned for aperiodic tasks becomes (min EA + 0.6Δa). Unlike voltage settings for
periodic tasks, which are decided on the basis of a task, the running mode for aperi-
odic tasks are determined by the fraction in H-mode and L-mode. If the fraction as-
signed to H-mode is xH, then that assigned to L-mode becomes (1-xH). The energy
consumption needs to be bounded by the budget, and so

()
AL

L

H
H

H

H Ep
x

p
x ≤−+

λ
μ

αλ
μ

α
1 (14)

Similarly, the execution time of an aperiodic task is determined according to the
voltage modes and the deadline assigned in Equation (1) is adjusted. As for respon-
siveness, the greater the fraction of the processor utilization that is given to aperiodic
tasks, the better is the responsiveness expected under the TBS algorithm, because
shorter deadlines are assigned to them. Under energy budgets of EC and EP, the utili-
zation for aperiodic tasks will be increased if the voltage settings are determined to
allocate more H-mode to periodic tasks within the energy budget such that it can
minimize the utilization UP (mi) and make an increase in UA

available. We therefore have a
constrained optimization problem to determine the optimal voltage settings, maxi-
mizing H-mode execution, within the constraint of budget EP and guaranteeing that no
deadline of any periodic task is missed.

The optimization problem to find voltage settings for periodic tasks can be stated
as follows: Pick the task subsets H and L for voltage settings of H-mode and L-mode
such that

• H∪ L = {τ1,τ2, ..., τn}
• H∩ L = ∅

• =
i

i

i

iP T

C

)m(
)m(U

α
1

 is minimized

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 381

subject to the well-known sufficient condition1 for the schedulability of periodic tasks
under EDF, i.e.,

1
11 ≤+

∈∈ Li ii

i

LHi ii

i

H)D,Tmin(

C

)D,Tmin(

C

αα
(15)

and the energy consumption constraint of

P
Li ii

i

L

L

Hi ii

i

H

H E
)D,Tmin(

Cp

)D,Tmin(

Cp ≤+
∈∈ αα

This optimization problem can be treated equivalently to the decision problem of the
subset sum, which is NP-complete. Consequently, efficient search heuristics, e.g.,
branch-and-bound algorithms, should be employed to find a solution if n is large.

4.2 Algorithm for Energy Budget Allocation

We describe here the algorithm for the dynamic allocation explained in the previous
section. The algorithm outputs the energy allocation factors,β and γ, voltage settings for
periodic tasks, {mi}, and the percentage of H-mode assignment for aperiodic tasks, xH.

The Algorithm of VCS-EDF Scheduling Under Bounded Energy Consumption EC

1. Compute min EP, max EP, min EA, max EA, Emax, and Emin.

2. If EC is less than Emin = (min EP + min EA), there is
not enough energy to execute the workload.

3. If EC is in the range of Emin ≤ EC ≤ Emax, compute the
range of γ and β, EA and EP, accordingly.

4. For each γ in the range of 0 ≤ γ ≤ 1, execute the
following steps

(4a) Compute β, EA and EP,

(4b) Find {mi}, which satisfies
Pi

ii

i E)m(p
)m(T

C
≤⋅⋅

α
1 and

that ()
)m(T

C
mU

ii

i
iP α

1
⋅= is minimized, where mi is

voltage setting either in H-mode or L-mode for
periodic task τi, using simple search or branch-
and-bound algorithms.

1 The condition is also necessary if D

i
≥T

i
 for all i.

382 Y. Doh et al.

(4c) Compute UA
available = 1 – UP (mi).

(4d) Given EA, find xH, the fraction of execution in
H-mode for aperiodic tasks, and (1–xH) the frac-
tion in L-mode.

(4e) Applying the TBS algorithm for the deadline as-
signment UP (mi) and UA

available computed in step
(4b) and (4c), respectively, run VCS-EDF sched-
uling in voltage settings {mi} for periodic
tasks and xH and (1–xH) for aperiodic tasks.

5. Find γ having the minimum average response time from
the result of the scheduling in step 4.

6. The value of γ determined in step 5 is selected for
energy allocation, which gives the best performance
for aperiodic tasks, xH for running the aperiodic
tasks in H-mode and {mi} for voltage settings of the
periodic tasks are determined accordingly.

5 Simulation Evaluation

We analyze here the properties of sharing the bounded energy budgets between peri-
odic and aperiodic tasks based on VCS approach and evaluate the VCS-EDF scheme
to schedule mixed real-time tasks. For the power consumption and speed settings,
Motorola’s PowerPC 860 processor is used for our simulation, which can be operated
in a high-performance mode at 50MHz and with a supply voltage of 3.3V, or a low-
power mode at 25MHz and with an internal voltage of 2.4V[8] such that VH and VL

are fixed to VH=3.3 and VL=2.4. The power consumption in the high-performance
mode is 1.3 Watts (pH), as compared to 241mW (pL) in the low-power mode. The
clock rate at high voltage is 100% greater than at low voltage: αH=2.0 and αL=1.0.

A simulation study is performed to address the improvement of task execution time
with extra available energy. In other word, the system is assumed to possess enough
energy to complete the tasks and meet the deadline requirements. In addition, there is
extra energy that can be allocated to improve the response time of aperiodic tasks. Our
immediate objective of the simulation study is to see how the response time can be re-
duced through a proper voltage setting. Furthermore, this extra energy can be allocated
to periodic tasks such that the processor utilization reserved for periodic tasks is re-
duced. This leads to a reduction of deadline assignment in the total-bandwidth schedul-
ing scheme. On the other hand, the extra energy can be consumed by aperiodic tasks that
can result in a first-order effect in the reduction of response time.

In our simulation, we first generate 10 random task periods in the range of 100 to
1000 and set the task deadlines equal to their respective periods. The worst-case exe-

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 383

cution demands of the tasks are randomly chosen such that, for each simulation case,
no deadlines need be missed and the resultant utilization is set to Up (L)=0.8, 1.0, or
1.2, respectively. For aperiodic tasks, we adopt the exponentially distributed execu-
tion time with an average μ equal to 45. Then we let the inter-arrival time be expo-
nentially distributed with mean of between 450 (10% workload, i.e. UA (L)=0.1) and
112.5 (40%, i.e. UA (L)=0.4). The energy budget EC is set at each of several energy
levels in the range from (Emin+0.6Ediff) to (Emin+ Ediff).

To get fast responsiveness, how much energy budget can be allowed to periodic
and aperiodic tasks, respectively? Over various γ’s and constraint energy budgets, we
obtain the average response times of aperiodic tasks from the simulation and plot
them in Fig. 2. Regardless of increase in the energy budget, Fig. 2 reveals a trend of
reduction in average response time of aperiodic tasks as γ increases. The average
response time does not show always a monotonic decrease with an increase in γ. In
some regions, it has an abrupt increase or is flat over increasing γ. This occurs espe-
cially when EC =(Emin+0.6Ediff) or EC =(Emin+0.7Ediff).

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

100

Average Response Time to Gamma

Gamma
(a) Up=0.8, Ua=0.3

Av
er

ag
e

R
sp

Ti
m

e

0.6 Ed iff
0.7
0.8
0.9
1.0

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

100

Gamma
(b) Up=1.0, Ua=0.3

Av
er

ag
e

R
sp

Ti
m

e

0 0.2 0.4 0.6 0.8 1
20

50

100

150

200

Gamma
(c) Up=1.2, Ua=0.3

Av
er

ag
e

R
sp

Ti
m

e

0 0.2 0.4 0.6 0.8 1
20

200

400

600

800

1000

1200

Gamma
(d) Up=1.4, Ua=0.3

Av
er

ag
e

R
sp

Ti
m

e

Fig. 2. Responsiveness to the energy allocation of aperiodic tasks

Note that when we increase γ, aperiodic tasks are invoked more in high-voltage
high-speed execution. This results in a reduced CPU utilization, i.e. the utilization
required by aperiodic tasks under the voltage setting. On the other hand, as β is re-
duced, the energy allocated to the periodic tasks decreases which leads to an increase

384 Y. Doh et al.

in UP (mi) and a decrease in UA

available. The two reductions, one on the demand to com-
plete aperiodic tasks and the other one on the available utilization for aperiodic tasks,
can have a profound impact on the response times. Let the CPU utilization required
be denoted as UA

real and we show the ratio of UA

available to UA

real in Fig. 3. For instance,
with EC =(Emin+0.6Ediff) and γ=1.0 in Fig. 3(a), there still exists extra energy to be as-
signed to periodic tasks (β >0) and an optimal voltage setting is obtained which leads
to UP (mi)=0.55 and UA

available = 0.45. On the other hand, UA

real is reduced to 0.15 as we
increase γ to1.0. A ratio of 3 is then obtained and plotted in the Figure.

It is interesting to observe that, whenever the ratio is flat in Fig. 3, the average re-
sponse times have uneven decreases in Fig. 3. In fact, as long as the ratio of UA

available to
UA

real continues to increase, the processor possesses greater capacity to complete
aperiodic tasks and the response time drops. In contrast, there would be a monotonic
decrease in response time if the ratio were flat as we increase γ.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4
The Ratio of Available Utilization to the Min. Utilization for Aperiodic Tasks

Gamma
(a) Up=0.8 Ua=0.3

U
til

iz
at

io
n

R
at

io

0.6Ed iff
0.7
0.8
0.9
1.0

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

Gamma
(b) Up=1.0 Ua=0.3

U
til

iz
at

io
n

R
at

io

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

Gamma
(c) Up=1.2 Ua=0.3

U
til

iz
at

io
n

R
at

io

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

Gamma
(d) Up=1.4 Ua=0.3

U
til

iz
at

io
n

R
at

io

Fig. 3. The ratios of available utilization to the required utilization for aperiodic tasks

The other interesting observation in Fig. 3 is that utilization ratios are not available
for all of γ values. It indicates that the possible choices of γ only exist in the range where
the plots are shown. This is also evidenced in Equation (14) and is originated from the
definition of γ, in which the minimum value of γ means the percentage of energy avail-
able for aperiodic tasks after periodic tasks take energy budget as much as they can.

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 385

From these results, to get fast responsiveness of aperiodic tasks, the a greater portion
of the energy budget should be allocated to aperiodic tasks, and then voltage settings of
periodic tasks need to be determined within the energy budget remaining for them. Note
that the way we formulate the minimal energy budget is based on the schedulability for
periodic tasks and ensuring no CPU starvation for aperiodic tasks. If the energy budget
is below this minimum, aperiodic tasks will incur much longer response times.

To reveal the causes that lead to the flat regions in Fig. 3, we now investigate how the
energy budget is allocated to periodic and aperiodic tasks, respectively. In Fig. 4, we
show the energy sharing as percentages of allocated energy EP for periodic and EA for
aperiodic tasks to the maximum energy demand, Emax, that is the maximal energy con-
sumption by a given task set. The plots in Fig. 4 (a)~(c) cover the case when EC is
bounded to (Emin+0.6Ediff). But in Fig. 4 (d), we plot the energy percentages under EC =
(Emin+0.7Ediff) unlike the ones for other periodic workloads. The reason is the energy
budget (Emin+0.6Ediff) is too low to select proper voltage settings making the given set of
tasks schedulable under the periodic workload of UP =1.4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gamma (Ec=Emin+0.6Ediff)
(b) Up=1.0, Ua=0.3

En
er
gy
All
oc
ati
on
Pe
rce
nta
ge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gamma (Ec=Emin+0.6Ediff)
(c) Up=1.2, Ua=0.3

En
er
gy
All
oc
ati
on
Pe
rce
nta
ge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gamma (Ec=Emin+0.7Ediff)
(d) Up=1.4, Ua=0.3

En
er
gy
All
oc
ati
on
Pe
rce
nta
ge

Ec
Ep
Ep(mi)
Ea

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

The Percentage of Allocated Energy to Emax

Gamma (Ec=Emin+0.6Ediff)
(a) Up=0.8, Ua=0.3

En
er
gy
All
oc
ati
on
Pe
rce
nta
ge

 Fig. 4. Energy allocation percentage to the maximum energy demand

When a set of periodic tasks can make the most of the given energy budget EP, i.e. EP

(mi) ≤ EP, EP (mi) is determined by the chosen set of voltage settings, mi, in the VCS-EDF

386 Y. Doh et al.

algorithm subject to requirements imposed by the need to maintain schedulability. Thus,
there is a small discrepancy in energy consumption between EP and EP (mi).

Over several regions of γ, EP (mi) is kept at the same level even if EP is decreasing,
while being less than EP. In other words, the same voltage settings are selected for dif-
ferent EP’s. For all the possible combinations of voltage settings, if we sort them in de-
scending/ascending order according to energy demands, a discontinuity in energy de-
mands exists between any two sets of voltage settings adjacent in the sorted list. Let the
discontinuity in energy demand be an energy gap. Then, even if there is a small amount
of change in energy budget EP, it cannot change voltage settings unless it jumps
up/down any energy gap between adjacent energy levels. However, if the number of
periodic tasks is getting bigger, the flatness in Fig. 4 will be reduced because of the fine
energy gap between adjacent energy levels of discontinuous voltage settings.

It should be noticed the big drops in the response times of aperiodic tasks occur when
the voltage settings of periodic tasks result in a energy allocation EP (mi) that is very
close to the available budget EP. For instance, at γ’=0.1 and 0.5 of Fig. 4 (c), the settings
lead to a little reduction of UA

available which, combining with the decrease of UA

real, bring
about a considerable decrease in the task response time of Fig. 2 (c).

We now consider how much improvement we can obtain from an increased energy
budget. In Fig. 5, we show the evaluation results for the minimum average response
time to the constraint energy ranging from 0.6 to Ediff. The responsiveness of aperiodic
tasks for UA=0.1 and 0.2 is not much affected by the periodic tasks’ workload UP and the
constraint energy budget EC. Since every aperiodic task is assigned to H-mode (i.e.
γ’=1.0 to ensure minimal response time) and is allocated with the maximal energy
budget, the available energy budget for periodic tasks decreases as UA increases. As a
consequence, the increased workload in periodic tasks increases the average response
time for the case of UA=0.3 and 0.4 as UA

available is limited and the deadlines assigned to the
aperiodic tasks are extended.

6 Conclusion

In this paper, we have presented an algorithm to carry out voltage clock scaling in
workloads consisting of periodic hard and soft real-time tasks. The aim is to keep
within a predefined energy budget. The objective of the scheduling scheme is to mini-
mize the response time of aperiodic tasks while all deadlines of periodic tasks are met
and the total energy consumption is bounded by the energy budget. As we apply total
bandwidth scheduling for aperiodic tasks, we notice two conflicting factors in energy
budget allocation. When extra budget is assigned to aperiodic tasks, their execution can
be done in high-voltage and high-speed mode. This leads to a reduced response time. On
the other hand, the extra energy budget allocated to periodic tasks can result in a lower-
ing of the CPU utilization reserved for periodic tasks. This, in turn, leaves more avail-
able CPU utilization for aperiodic tasks and cause shorter deadlines as defined in the
total bandwidth scheduling scheme.

Our simulation study assumes that there the energy budget is enough to meet the hard
real-time periodic tasks and to complete the aperiodic tasks. In addition, here is extra

Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks 387

energy that can be allocated to either periodic or aperiodic tasks. Our results demonstrate
that the VCS-EDF scheduling gets the fastest responsiveness when the extra energy
budget is allocated to aperiodic tasks at their maximum energy demand such that all of
them can be run in H-mode. Given the requirement of responsiveness and any energy
budget, the proposed scheduling method can decide the voltage settings for periodic
tasks so that real-time tasks can share the bounded energy budget effectively. Therefore,
the work provides the battery-driven embedded real-time system designer with a general
view, which allows scheduling real-time tasks considering their general characteristics
of energy demands and processor utilization, given a constraint of bounded energy
availability.

0.60.70.80.91
22

24

26

28

30

32

34

36

38

40

Min. Average Response Time to Bounded Energy Consumption

The % of Energy to Ediff
(a) Up=0.8

M
in

. A
ve

ra
ge

R
sp

Ti
m

e

Ua=0.1
Ua=0.2
Ua=0.3
Ua=0.4

0.60.70.80.91
22

24

26

28

30

32

34

36

38

40

The % of Energy to Ediff
(b) Up=1.0

M
in

. A
ve

ra
ge

R
sp

Ti
m

e

0.60.70.80.91
22

24

26

28

30

32

34

36

38

40

The % of Energy to Ediff
(c) Up=1.2

M
in

. A
ve

ra
ge

R
sp

Ti
m

e

0.60.70.80.91
22

24

26

28

30

32

34

36

38

40

The % of Energy to Ediff
(d) Up=1.4

M
in

. A
ve

ra
ge

R
sp

Ti
m

e

Fig. 5. Average response time with respect to the bounded energy budget

References

1. Compaq, Intel, Microsoft, Phoenix, and Toshiba, “Advanced Configuration and Power
Interface specification,” available at http://www.intel.com/ial/powermgm/specs.html
(1996)

2. K.Lahiri, A.Raghunathan, S.Dey, D.Panigrahi, "Battery-Driven System Design: A New
Frontier in Low Power Design", International Conference on VLSI Design /ASP-DAC,
pp.261-267, Jan. 2002.

388 Y. Doh et al.

3. L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of Design Techniques for System-
Level Dynamic Power Management,” IEEE Trans. on Very Large Scale Integration Sys-
tems, Vol.8, No.3, (2000) 299 –316

4. T. Kuroda et. al., "Variable supply-voltage scheme for low-power high-speed CMOS
digital design," IEEE Journal of Solid State Circuits, Vol. 33, No. 3, (1998) 454-462

5. Jay Heeb, “The next generation of StrongArm,” Embedded Processor Forum, MDR
(1999)

6. Intel Corporation, “Mobile Pentium III Processor in BGA2 and micro-PGA2 packages,”
Datasheet Order #245302-00 (2000)

7. “Introduction to Thumb,” ARM Documentation, Advanced RISC Machines Ltd.
8. MPC860 PowerPC Hardware Specification, MPC860EC/D, Motorola (1998)
9. Transmeta Corporation, “TN5400Processor Specification,” available at

http://www.transmeta.com (2000)
10. J. Pouwelse, K. Langendoen, H. Sips, “Dynamic Voltage Scaling on a Low-Power Micro-

processor,” International Symposium on Mobile Multimedia Systems & Applications
(MMSA’2000) 157-164

11. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS digital design,”
IEEE Journal of Solid-State Circuits, 27(4), (1992) 473-484

12. T. Pering and R. Brodersen, “Energy Efficient Voltage Scheduling for Real-Time Operat-
ing Systems," The 4th IEEE Real-Time Technology and Applications Symposium, Works
In Progress Session (1998)

13. T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable volt-
age processors,” Proceedings of International Symposium on Low power Electronics and
Design (ISLED’98) 197-202

14. F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for Reduced CPU Energy,”
IEEE Foundations of Computer Science (1995) 374-382

15. I. Hong, D. Kirovski, G. Qu, M.P otkonjak and M. B. Srivastava, “Power Optimization of
Variable Voltage Core-based Systems,” Proceedings of the 35th annual conference on
Design Automation Conference (DAC’98) 176-181

16. Gang Quan and Xiaobo (Sharon) Hu “Energy Efficient Fixed-Priority Scheduling for
Real-Time Systems on Variable Voltage Processors,” Proceedings of 38th Design Automa-
tion Conference (2001)

17. Y. H. Lee, Y. Doh, and C. M. Krishna, “EDF Scheduling Using Two-mode Voltage-Clock-
Scaling for Hard Real-Time Systems,” Proceedings of Compilers, Architectures, and
Synthesis for Embedded Systems (CASES 2001)

18. C. M. Krishna and Y. H. Lee, “Voltage-Clock-Scaling Adaptive Scheduling Techniques
for Low Power in Hard Real-Time Systems,” IEEE Proceedings of Real Time Technology
and Applications Symposium (RTAS 2000)

19. Y. H. Lee and C. M. Krishna, “Voltage-Clock Scaling for Low Energy Consumption in
Real-Time Embedded Systems,” Real-Time Computing Systems and Applications
(RTCSA’99)

20. C.L.Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-
time Environment,” Journal of the ACM, Vol.20, (1973) 46-61

21. M. Spuri and G. Buttazzo, "Scheduling Aperiodic Tasks in Dynamic Priority Systems",
The Journal of Real-Time Systems, Vol. 10, No. 2, (1996) 179-210

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 389–397, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Energy-Efficient Route Maintenance Scheme for
Ad Hoc Networking Systems

DongXiu Ou2, Kam-Yiu Lam1, and DeCun Dong2

1 Department of Computer Science City University of Hong Kong
 83 Tat Chee Avenue, Kowloon Hong Kong

2 Institute of Traffic Information Engineering, Tong Ji University Shanghai, China
dxou@sh163.net,cskylam@cityu.edu.hk

Abstract. Although in recent years many excellent works have been done on
resolving the routing problem in ad hoc networking systems, the energy issue in
route maintenance has been greatly ignored. Due to movement of mobile hosts,
the energy consumption rate of a route may change with time. In this paper, we
propose the distance-based route maintenance (DBRM) scheme in which a
handoff mechanism is designed for switching the nodes in route maintenance to
minimize the energy consumption rate. In addition, in DBRM, mobile hosts in a
group may switch between different states of operations to conserve energy. In
the simulation experiments, we have shown that the amount of energy con-
served from using DBRM is significantly larger than both the IEEE standard
802.11 with fixed listen interval, and the power management scheme using
GAF with random listen interval.

Keywords: Ad hoc networks, energy aware computing, route maintenance,
data monitoring

1 Introduction

In recent years, the research in ad hoc networks has received growing interests. An ad
hoc networking system consists of a collection of mobile hosts and the system does
not have any fixed infrastructure, such as base stations in cellular networks. One of
the most important issues in ad hoc networking systems is routing. Due to limitations
in mobile communication, a mobile host may only communicate with the neighboring
mobile hosts, which are within its communication range. If a mobile host, called
source node, wants to communicate with another mobile host (node1), called destina-
tion node, it may initiate a routing algorithm to find the best route to connect to the
destination node. If the destination node is far from the current position of the source
node, the source node must depend on other mobile nodes, called relay nodes, to for-
ward the messages to the destination node.

1 Mobile hosts and nodes are used interchangeably in this paper.

390 D. Ou, K.-Y. Lam, and D. Dong

In last decade, various efficient routing algorithms have been proposed. Some of
them aim to minimize the communication overheads. Since most of the mobile hosts
may only have limited energy supply, the issues on how to minimize energy con-
sumption in route discovery and in data communication are attracting more and more
interests in recent years. An important issue, which has been greatly ignored in the
previous works in the area, is the energy consumption issue in route maintenance.
Route maintenance is important to real-time monitoring in mobile ad hoc networking
systems where a route has to be existed for a period of time until the end of the
monitoring period. For example, in a battlefield management system, the mobile hosts
may carry sensor devices to detect the existence of enemies. The commander, which
is also a mobile host, may submit a continuous query to a mobile host to get enemy
information. A continuous query has a begin time and end time. A route has to be
existed between the two hosts during the monitoring period so that sensor data can be
transmitted continuously to the commander.

The energy consumption rate of a route depends on the number of hops in the route
as well as the length of each hop. In addition, as shown in [2], minimizing the number
of the hops in a route may not be the most effective way in energy conservation. The
biggest saving in energy is to switch a mobile host to doze mode of operation [5].
Thus, another important concern in route maintenance is to determine which mobile
hosts in the system may be in doze mode and how long should they be in doze mode.
If too long mobile hosts are in doze mode, the choice of routes for connecting the
source and destination nodes will be affected.

In this paper, we propose a distance-based route maintenance (DBRM) scheme to
minimize the energy consumption rate in route maintenance. DBRM consists of two
parts. Firstly, it consists of a handoff mechanism for switching the nodes in forming
the route to minimize the energy consumption rate of the route in data communica-
tion. Secondly, it includes a mechanism to determine how the mobile hosts in the
system may switch between different states of operations with the objective to in-
crease the number and the length of mobile hosts in doze state, and at the same time to
minimize the impact on route maintenance. The remaining parts of the paper are or-
ganized as follows. Section 2 is the related works in the area. Section 3 presents the
problems. In Section 4, we introduce the proposed route maintenance scheme to con-
serve energy. Section 5 reports the performance of the proposed methods. The conclu-
sions of the paper are in Section 6.

2 Related Work

One of the most important areas in an ad hoc network is routing. In last few years, a
lot of efficient routing algorithms have been proposed. These methods can be divided
into two groups. The first group is called the on-demand protocols [1] in which a
route to connect the source node to the destination node will be searched upon the
receipt of the connection request. The second group is called the table-driven proto-
cols [4] in which the topology of the whole network is maintained the system. When a
connection is needed, the source node can select the route from its memory directly.
As shown in the previous works, the on-demand protocols have lower overhead while

An Energy-Efficient Route Maintenance Scheme for Ad Hoc Networking Systems 391

the table-driven protocols have lower delay in route discovery. To reduce the delay in
searching the route, a route maintenance scheme in the on-demand protocols is pro-
posed [1]. But the energy issue in route maintenance has been greatly ignored.

Energy conservation is a very important issue in ad hoc network systems since the
energy supply of most of mobile hosts is very limited. As explained in [3], a mobile
host may have several modes of operations, i.e., idle, doze, receive and transmit. [3]
shows that the ratios in energy consumption rate between doze, idle, receive and
transmit states are: 0.08: 1: 1.15: 1.58. Doze state has lowest energy consumption rate
and is much lower than the other states. Therefore, switching a mobile host to doze
state can save a lot of energy and it is the most effective way to conserve energy.

GAF [2] is a routing algorithm in which some nodes may switch to doze state to
conserve energy. The basic principle of GAF is to dividing the whole network area
into grids. Each node in a grid may connect to the nodes in the adjacent grids directly.
In GAF, only one node is needed to be active in a grid while the others may be in
doze state. The problems of GAF are: (1) which node should be the active node for
forming the route, and (2) how long the active node should be active. GAF propose
that the period for a node in active and non-active state may be randomly distributed.
It is obvious that if the random period is small, the nodes may change their states fre-
quently resulting in higher energy consumption. If it is large, the procedure in route
maintenance may be affected.

3 Problem Formulation

3.1 Operation Modes

The IEEE 802.11 standard [6] defines a power management scheme for ad hoc net-
working systems. A mobile host has two modes of operations: active mode and
power-saving (PS) mode. Comparing with active mode, the energy consumption rate
is lower if a mobile host is in PS mode. The mobile host in PS mode may either be in
awake state or in doze state. The energy consumption rate in doze mode is much
lower than that in awake state. To synchronize the operations of the mobile hosts in a
system, one of the active mobile hosts periodically broadcasts beacons to other mobile
hosts in the system. The time interval between the broadcast of successive beacons is
called beacon interval (BI). Each beacon contains an ATIM (ad hoc traffic indication
message) window. A mobile host operating in doze state enters the awake state prior
to each TBTT (Target Beacon Transmit Time). It listens to the ATIM from the bea-
con. It can easily see that the amount of energy conserved in a mobile host in doze
state depends on the lengths of BI and ATIM window.

3.2 Route Maintenance Problem

The set of mobile hosts in the system are classified into groups based on their geo-
graphical locations. Given a network of N nodes and let R = {S, G1, G2, …, Gm1, D} be
a sequence of relay groups from source node S to destination node D. Gi is called a

392 D. Ou, K.-Y. Lam, and D. Dong

relay group. All the nodes in a relay group Gi are equivalent in forming the route such
that each node in Gi can communicate with any nodes in Gi+1 directly. The routing
problem is to determine which member in a relay group should be chosen to form the
route. Other than the node chosen to be a part of the route, all other nodes in a relay
group may turn to doze mode to conserve energy.

It is assumed that initially the system adopts a route discovery algorithm to estab-
lish a route with minimum energy consumption rate for connecting node S to node D.
Two important factors in determining the energy consumption rate of a route are: (1)
the number of hop counts in the route; and (2) the energy consumption rate for com-
munication between the nodes in each hop in the route.

It is assumed that the number of relay groups (hops) in a route is fixed. Therefore,
the main concern in route maintenance is how to choose the next node in the groups to
form the route with minimal energy consumption rate. Owing to mobility of mobile
nodes, the energy consumption rate of a route may change with time. Thus the origi-
nal route may not be the best, it should be replaced by a new route. This is called
handoff operation. Therefore, the first problem in route maintenance is when and un-
der which condition to perform handoff operation. The second problem is how each
node determines when to go to doze state and its period for checking with ATIM in
the beacons to determine whether it should stay in doze or switch to awake state.

 Fig. 1. Handoff operation Fig. 2. Power Management in a Group

4 Distance-Based Route Maintenance (DBRM)

In this section, we introduce DBRM scheme which objective is to minimize the energy
consumption rate in route maintenance. We will define a data model for the mobile
hosts in a relay group, then discuss how to resolve the above two questions.

4.1 Mobile Host Modeling

The mobile hosts in a group are divided into two groups. One of the nodes, which is a
part of the route, is called active node since it remains active for receiving data from
the active node of its previous relay group and for transmitting data to the active node
of the next relay group. The other nodes in the group are called non-active nodes since
they stay in doze state. They periodically wake up to check with the beacons broad-
casting from the active node. The active node in the relay group Gi-1 is called the up-
hop node of the active node in group Gi while the active node in the relay group Gi+1

An Energy-Efficient Route Maintenance Scheme for Ad Hoc Networking Systems 393

is called the down-hop node. We define four attributes to model a node i in a relay
group: {wii, woi, wdi, wei}.

• wii denotes the path loss between the up-hop node and node i;
• woi denotes the path loss between node i and the down-hop node;
• wdi is the distance attribute between the active node of its group and node i;
• wei is the remaining energy level of node i.

wii and woi, are for choosing the next node to form the route, i.e., handoff operation.
The total path losses of two pairs of nodes (the up-hop node and node i, and node i
and the down- hop node) is wfdi = wii + woi. The objective in route maintenance is then
to choose the node in a group with minimal energy consumption rate to be the relay
nodes, i.e., NRelay= Min[wfd1 …wfdi].

wdi and wei are for deciding the period that a non-active node may state in doze
state before it wakes up to check with the beacons. wdi is defined as di/Rmax where Rmax

is the maximum transmission range and di is the distance between the active node of
its group and node i. wei is defined as Er/Em where Em is the maximum amount of en-
ergy available at a node and Er is the remaining energy at the node. We will explain in
section 4.3 that how the doze time (Ts) is decided.

4.2 Handoff Operation and Energy Saving

The determination of when to perform handoff operation for a route is based on the
energy consumption rate of the route. In this section, we will first explain how the
handoff operation is performed. Then, we will show how to calculate the energy cost
and the amount of energy conserved for the handoff operations.

The active node, which is a part of the route, broadcasts beacons to the members of
its group and listens to the beacons from the up-hop and down-hop relay nodes peri-
odically. When a non-active node wakes up, it listens to the beacons from the active
node of its group. Based on the radio strength for broadcasting the beacons to the non-
active nodes in its group, the active node can estimate the location of the just wake-up
non-active nodes. At the same time, the active node can estimate the locations of the
up-hop node and down-hop node from the strength of power required for receiving
the beacons from the up-hop and down-hop nodes. According to the location infor-
mation, the energy consumptions for transmitting a message through the non-active
nodes and through the active node in a group can be estimated [7]. If the first one is
significantly lower than the second one, the active node informs the non-active node
in the ATIM of its beacons to remain in awake (active) state after wake-up and to
become the next active node of the group. The currently active node then switches its
radio off and goes into doze state. This is called active node handoff.

In communication between the nodes in a hop, the energy consumption rate PT of
the transmitter depends on the sensitivity υ of the receiver and the path loss Lfd. The
path loss in free space Lfd [8]is a function of wavelength λ and distance d between the
transmitter and receiver, such as:

RTR

T
fd GG

d

P

P
L

⋅
⋅== 14

2

λ
π

 (1)

394 D. Ou, K.-Y. Lam, and D. Dong

where PT and PR are the powers of transmitter and the receiver in watt respectively .
GT and GR are the gains of the transmitter and the receiver antennas respectively.

As it is assumed that the mobile hosts can adjust their transmission power PT to
satisfy the sensitivity υ of receiver according to the path loss. It can be seen that wii is
Lfd between the up-hop node and node i. For example, in Fig. 1, B is the original ac-
tive node and B′ is a node in doze state. For the mobility of nodes, it may be: wiB +
woB > wiB′ + woB′. Define that Diff B′ B = (wiB′+ woB′)-(wiB +woB), if Diff B′ B < −Th, B’ will
be assigned to take up the route and B will switch to doze state. Th is the threshold for
the handoff operation.

Assuming that the energy cost for performing a handoff operation is Eh. Then the
amount of energy saved from the handoff operation is: Esi + Eh. If the number of
handoff operations during the period T is Nh, the total amount of energy saved is:

ES = Σ(Esi + Eh), i = 1, … Nh, (2)

4.3 Doze Period Decision

In the IEEE 802.11 standard, non-active node may wake up frequently if BI is small.
This is undesirable in conserving energy at a mobile node. We define the active rate
to express the degree in energy saving. Active rate is the ratio of the period of time a
node stay in awake state to the length of the period of time. To conserve more energy,
it is important to achieve a smaller active rate by prolonging the doze period of a node
such as in Fig. 2.

In DBRM, we aim to minimize the active rate of the nodes. Because the active
node generates beacons periodically to the non-active nodes in the group. However, if
the active node is not sending beacons, it may be in doze state for a moment in every
BI in order to conserve energy. For example, as shown in Fig. 2, the active node can
be in doze state during the leisure time (BI − ATIM_Win), such as F × (BI −
ATIM_Win), and F∈[0,1]. Then, the active rate Ara of an active node is:

 Ara = () BIWinATIMBIFBI /)_(−⋅− . (3)

To conserve more energy, in DBRM, the doze periods of the non-active nodes may
not be fixed and are not all the same. Two factors are considered in determining the
length of the doze period for a non-active node i. The first one is the distance attribute
wdi of node i. If node i is far away from the active node (small value of wdi), its doze
period Tsi (Tsi equals to LIi minus ATIM_Win approximately) may be small. The listen
interval of node i (LIi) is set as BIkLI ii ⋅= , ki=],)()([maxmax kBIvdRMin ii ⋅− =

]),1()([maxmax kwBIvRMin dii −⋅⋅ , where vi is the velocity of the node i, di is the dis-
tance between node i and the active node, kmax is a preset parameter. The equation can
make the node with a small wdi to have a large LI. Rmax/(vi⋅BI) gives the maximum
time that the node may move out of the transmission range of a node.

The second factor for determining the doze period of a node is the remaining en-
ergy level wei of the node. If wei is small, the node may have a low opportunity to be-
come the active node. Because wei is same as wdi, if they are small, LIi will be large.
Thus wei can be combined with wdi, and the average weighted value of them is (wdi +
wei)/2. Thus, the listen interval and active rate of node i are:

An Energy-Efficient Route Maintenance Scheme for Ad Hoc Networking Systems 395

ii
eidi

i
i LIWinATIMArBIk

ww

BIv

R
MinLI _,]),

2
1([max

max =×+−
⋅

= . (4)

The average active rate and the mean value of the active rates of the nodes in a
group can be calculated by combining equations (3) and (4). Assuming that the num-
ber of nodes in a relay group is NG. The average active rate of the nodes in a group
(Avg_ar) is:

 Avg_ar=)(
1 1

1
−

=+⋅ GN
i ia

G

ArAr
N

=)
_

(
1 1

1
−

=+ GN
i

i
a

G LI

WinATIM
Ar

N
. (5)

5 Simulation Studies

In order to investigate the benefits of using DBRM, we have implemented a simu-
lation program and performed simulation experiments to study the amount of en-
ergy saved using DBRM in route maintenance. In our simulation model, it is as-
sumed that there are N mobile hosts moving in a service area of 1000m×1000m.
The area is divided into grids and the size of a grid is 100m×100m. The maximum
transmission range Rmax of a mobile host is 224m. A conventional moving model,
the random walk model, is adopted to model the mobility of the mobile hosts. The
speed of a mobile host is uniformly distributed between Vmin = Vmax/2 and Vmax. Its
movement direction is distributed uniformly in [0, 2π]. At first the mobile hosts are
uniformly distributed in the service area. To simplify the model, it is assumed that
the mobile hosts cannot move out the service area.

In the simulation experiments, we compare DBRM with the power management
scheme in the IEEE 802.11 standard with fixed listen interval (802.11-LI) and GAF
with random listen interval (GAF-LI). We have performed two sets of experiments.
The first set of experiments investigates the amount of energy saved in using
DBRM when different values of handoff thresholds are used. In the second set of
experiments, we compare the average active rate (Avg_ar) of DBRM with that in
802.11-LI and GAF-LI. In 802.11-LI, the active node, which broadcast beacons, is
always active, and the nodes in PS mode listen to the beacons every beacon inter-
val. In GAF-LI, the nodes in a relay group play the role as the active node in turn.
When a node is active, other nodes are in doze state for a random period of time.

In this paper, the amount of energy saved is expressed as a negative value. When
the absolute value is larger, the amount of energy saved is higher. Fig. 3 shows the
amount of energy saved in DBRM when Vmax = 3, 6 and 9m/s respectively. Different
handoff thresholds are tested. When the velocity of the mobile hosts is higher, the
amount of energy saved is larger. It is because when the mobile hosts move with a
higher velocity, the active node will have a higher probability to move away from
its current position and consequently the energy consumption rate of the route be-
comes higher. Therefore, performing a handoff operation may be beneficial in con-
serving energy. As shown in Fig. 3, the biggest saving in energy is achieved when a
medium handoff threshold value is used. It is because if the threshold value is

396 D. Ou, K.-Y. Lam, and D. Dong

small, handoff operations are frequent and the total cost for handoff operation will
be heavy. On the other hand, if the handoff threshold value is large, the number of
handoff operations is small and the total amount of energy saved from the handoff
operations will be low. Fig. 4 shows the results when handoff cost Eh is varied.
Consistent with our intuition, when the handoff cost is smaller, the amount of en-
ergy saved is higher.

Fig. 5 shows the average active rate (Avg_ar) of the three schemes when the val-
ues of ATIM_Win/BI are changed. It can be seen that Avg_ar decreases with the
value of ATIM_Win/BI. It is because if the value of ATIM_Win/BI is smaller, the
period of time a node in active mode is shorter. Avg_ar of DBRM is smaller than
that of 802.11-LI and GAF-LI. At the same time, if ATIM_Win/BI is large, GAF-LI
is significantly better than 802.11-LI. However, if ATIM_Win/BI is very small, their
Avg_ar are similar. It is because both of them require at least one node in active
mode in the relay group at each time. Fig. 6 shows the results when the number of
nodes is varied. It can be seen that if the number of nodes is larger, Avg_ar is
smaller. The reason is when the number of nodes in the network increases, the node
number in a relay group increases too. Thus there are more nodes can be in doze
state for a longer duration. The consequence is a smaller Avg_ar. Consistent with
the results in Fig. 5, even if the number of nodes is the same, Avg_ar of DBRM is
still smaller than that of 802.11-LI and GAF-LI if they have same value of
ATIM_Win/BI.

Fig. 3. Energy saved Vs. handoff threshold Fig. 4. Energy saved Vs. handoff threshold

Fig. 5. Active rate Vs. ATIM_Win/BI Fig. 6. Active rate Vs. number of nodes

An Energy-Efficient Route Maintenance Scheme for Ad Hoc Networking Systems 397

6 Conclusions

Although routing is an important topic in mobile ad hoc networking systems, one of
the important issues, which have been greatly ignored in the previous research works,
is the energy issue in route maintenance. Route maintenance is an important issue for
data monitoring in ad hoc networking systems. In this paper, we propose DBRM
scheme for route maintenance. Handoff operations are designed for switching the
nodes in route maintenance to minimize the energy consumption rate. In addition, in
DBRM, only one node needs to be active in each relay group. Mobile hosts in a group
may switch between different states of operations to conserve energy and at the same
time to minimize the impact on handoff operations in route maintenance. In the
simulation experiments, we have shown that the amount of energy conserved from
using DBRM is significantly larger than both 802.11-LI and GAF-LI.

References

[1] David B. Johnson and David A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless
Networks (DSR)”, in Mobile Computing, 1996.

[2] Xu Ya, Heidemann, J. and Estrin, D, “Geography-informed Energy Conservation for Ad
Hoc Routing (GAF)”, in Proceedings of 2001 ACM Mobile Computing and Networking.

[3] Laura Marie Feeney, “An Energy Consumption Model for Performance Analysis of Rout-
ing Protocols for Mobile Ad Hoc Networks”, Mobile Networks and Application, vol. 6,
2001, pp. 239-249.

[4] Woo-Jin Choi, Sirin Tkinay, “An Efficient Table Driven Routing Algorithm for Wireless
Ad hoc Networks”, VTC 2001, pp. 2604-2608.

[5] Chavalit S. and C. C. Shen, “Coordinated Power Conservation for Ad hoc Networks”, in
International Conference in Computer Communication, 2002,pp. 3330-34.

[6] IEEE 802.11 standard, “Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications”, IEEE Press, May 1997.

[7] Kyu_Tae Jin and D. Ho Cho, “Optimal Threshold Energy Level of Energy Efficient MAC
for Energy-limited Ad-hoc Networks”, in 2001 IEEE Global Telecommunications Confer-
ence, pp. .2932-2936.

[8] Wei Ye, John Heidemann, DeBorah Estrin, “An Energy-Efficient MAC Protocol for
Wireless Sensor Networks”, in IEEE InfoCom 2002, pp. 1567-1576.

Resource Reservation and Enforcement for

Framebuffer-Based Devices

Chung-You Wei1, Jen-Wei Hsieh1, Tei-Wei Kuo1, I-Hsiang Lee1,
Yian-Nien Wu1, and Mei-Chin Tsai2

1 Depatment of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taitan 106, ROC

{r90023,d90002,ktw,b7506025,b7506027}@csie.ntu.edu.tw
2 Microsoft, Bellevue, WA 98006, USA

a-meicht@microsoft.com

Abstract. A framebuffer device provides an abstraction for the graph-
ics hardware. The way an application accesses a framebuffer device is
to map the framebuffer to the user space for direct access. To guarantee
real-time access to a framebuffer, the system should provide reservations;
both a budget for the framebuffer usage as well as a budget for running
on the CPU. In this paper, we propose an approach to reserve the us-
ages of framebuffer devices through the inclusion of codes in application
libraries. Without any modification of the original source code of frame-
buffer devices, we create a new ”virtual” device which maintains internal
data structures for framebuffer resource management. With the reserva-
tion mechanisms for both framebuffer devices and CPU, we can provide
a much smoother display service under heavy system workloads . . .

1 Introduction

The objective of an operating system is to provide a convenient and efficient
environment for users. Commercial operating systems are now equipped with
multimedia functionality and equipment, such as high-resolution monitors and
5.1-channel speakers. Although most commercial operating systems claim to
provide real-time support, their support is mainly based on CPU scheduling and
interrupt latency management. However, a multimedia presentation needs many
kinds of resources allocated by the operating systems in the right amount and in
an on-time fashion. For example, playing of video streams involves computation
time for decoding, disk/CD-ROM access for stream retrieval, handling of audio
and displaying devices, etc. With successful on-time resource allocations and
coordination, it is possible to display the stream in a frame rate expected by the
viewers.

The presentation of a multimedia session can require a substantial amount
of system resources in many ways. Proper hardware support, e.g., DSP-based
decoder chips or powerful display cards, is always a big help in meeting the
response time or performance requirements of applications. A major technical
issue is how to guarantee the allocation of the right resources, from hardware or

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 398–408, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Resource Reservation and Enforcement for Framebuffer-Based Devices 399

even software aspects, to an application in an on-time fashion. The considera-
tion of hardware and software resources together is now an even more important
issue because the advance of microprocessor technology has enabled the offload-
ing of many time-consuming services from CPU to hardware chips, such as those
for controllers and adaptor cards. The concept of special files in UNIX-like sys-
tems provides a good motivation for a uniform interface to the reservation of
hardware devices on UNIX-like systems. For example, I/O devices such as disks
and tape drives are special files, which could be manipulated by file and ioctl
operations. The goal of this paper is to explore a reservation methodology and
implementation methods for the reservation of I/O devices, especially that for
screen display.

Researchers in the area of real-time operating systems started exploring re-
source reservation and Quality-of-Service techniques over operating systems in
the last decade. Researchers proposed their work over various operating sys-
tems, such as Windows [7,8,9,10,11], Mach [13,14,15,16,17], Unix [1], Linux [2,3,
4,5,19,20] or other operating systems [12]. Sides [18] considered a real-time data
acquisition and display system in response to the requirements of the system-
wide adaptability to changes in the data stream. Mercer, et al. [13,14,15,16,17]
proposed the concept of time reservation and implemented the concept in the
Real-Time Mach at the Carnage Mellon University. The goal of this research
was to transform the Real-Time Mach into a multimedia operating system to
support various multimedia applications. They considered a microkernel-based
mechanism to let users reserve CPU cycles for threads. Kuo, et al. [8] proposed
to provide Windows NT soft QoS guarantee through the design of a Windows
NT middleware, called the Computing Power Regulator (CPR). Adelberg, et al
[1] presented a real-time emulation program to build soft real-time scheduling
on the top of UNIX. Childs and Ingram [5] chose to modify the Linux source
code by adding a new scheduling class called SCHED QOS to let applications
to specify the amount of CPU time per period. QoS scheduling is supported for
CPU and IDE disks. Lin, et al. [19,20] directly modified the scheduling mecha-
nism of Linux. The goal was to provide a ”general-purpose” real-time scheduling
framework which can handle time-driven, priority-driven, share-driven, and even
new scheduling schedulers. RTAI proposed by Mantegazza at DIAPM and RT-
Linux proposed by Yodaiken, et al. at New Mexico Institute of Technology [2]
represent two of the most successful real-time Linux solutions so far, where RTAI
and RT-Linux share a very similar system architecture. Their objectives were to
guarantee the resource requirements of hard real-time applications and to favor
the executions of soft real-time processes simultaneously.

The purpose of this paper is to propose a reservation methodology and im-
plementation methods for the resource reservation of framebuffers, which refer to
devices for screen display (and sometimes to the RAM buffer on display cards).
We propose not to modify the operating system or even any library functions
in libc/glibc for the portability of the implementation. We adopt a preload-
library approach, which loads specified library functions before any application
program executes so that the original library functions can be overridden. We

400 C.-Y. Wei et al.

propose a Quality-of-Service reservation and enforcement mechanism to guaran-
tee proper framebuffer usage for applications. The feasibility of the approach is
demonstrated by the implementation of a system prototype over Linux.

The rest of this paper is organized as follows: Section 2 provides an overview
of the entire problem. Section 3 describes the system architecture and our mech-
anism. Section 4 is the conclusion.

2 Problem Overview

There has been a lot of research done in resource reservation in real-time systems.
Although much work has been done in the reservation of computation power,
researchers have come to realize the need for multiple resources reservations.
Consider a system which is playing a movie. We must consider resources for the
processing unit and the display sub-system. The guarantee of the computation
service for a real-time task may not fully ensure that the task will work as we
expect. A display sub-system is an I/O device, similar to network or hard disks.
If the I/O speed is far less than that of CPU, the CPU might be idle waiting
for the completion of I/O requests for synchronous I/O. That may cause the
utilization of the entire system to drop. When we consider a system which must
have smooth display of video/data on the screen, we must not only consider
the management of the computation time but also the resource usage of display
devices.

Table 1. Performance of framebuffer-copying tasks and memory-copying tasks. *mem
denotes the time for data copying to memory. ***fb denotes the time for data copying
to framebuffer.

Machine CPU RAM Video RAM VGA card *mem **fb

Notebook Pentium3 128 MB 8 MB NeoMagic 11.61s 18.35s
(Sony PCG-SR7K) 600 MHz MagicMedia256XL+

Desktop (Intel Cerelon 32 MB 8 MB Trident Microsystems 16.29s 25.93s
440BX-82443BX/ZX 400 MHz Cyber 9525

host bridge)

Desktop (Intel Pentium2 256 MB 8 MB Nvidia/SGS 20.16s 33.01s
440BX-82443BX/ZX 300 MHz Thomson Rival128

host bridge)

To motivate the research, two simple experiments were done: In the first ex-
periment, we compared the efficiency levels between the task that copies data
from memory to memory and the task that copies data from memory to a frame-
buffer device. In order to eliminate the interference of caching, each task was run
30000000 times copying 4 bytes at a time. During each run, the address of desti-
nation was chosen randomly in a 1024 * 768 integer array. The latter task is what
is done for usual screen display. The experiment’s result is shown in Table 1. The

Resource Reservation and Enforcement for Framebuffer-Based Devices 401

second experiment was to measure the impact of framebuffer-copying on the en-
tire system. First, we ran two identical tasks that copy a huge amount of data
from memory to memory. Then, we replaced one job of the two tasks with the
copying of the same-size data from memory to the framebuffer. The evaluation
process was run 15000000 times while another process was run 30000000 times
to ensure the interference during the whole life time of the evaluation process.
Besides, in order to eliminate the effect of caching, during each run, we chose
the address of destination randomly for data copying in a 1024*768 integer ar-
ray, where each copy was of 4 bytes. The result is shown in Table 2. Note that
although the evaluation processes (data-copy from memory to memory) were
the same, it took much time to complete while another framebuffer-copying task
was running. That was because the data-copying to framebuffer had side effects
for other processes on the system. It would deteriorate the performance of the
whole system.

Table 2. Effect of a framebuffer-copying task on the entire system. *mem-to-mem
denotes the time for data copying from memory to memory while another identical
process running. ***mem-to-fb denotes the time for data copying from memory to
memory while another process copies data from memory to framebuffer.

Machine CPU RAM Video RAM VGA card *mem-to **mem-to-
mem fb

Notebook Pentium3 128 MB 8 MB S3 Savage 5.97s 6.20s
(Toshiba 3480) 600 MHz IX

Notebook Pentium3 128 MB 8 MB NeoMagic 5.6s 5.54s
(Sony PCG-SR7K) 600 MHz MagicMedia256XL+

Desktop (Intel Pentium2 256 MB 8 MB Nvidia/SGS 9.72s 9.94s
440BX-82443BX/ZX 300 MHz Thomson Rival128

host bridge)

Two conclusion can be drawn: (1) Copying between memory and frame-
buffer/memory is very time consuming, especially for multimedia applications
which display a large amount of data such as videos. (2) Data copying between
memory and framebuffer is, in general, slightly slower than data copying be-
tween memory and memory for older or less powerful machines. By considering
a general hardware architecture of a PC as shown in Figure 1, it is interesting to
have an observation that the host bus is going to be a major hot spot in resource
competition. All access to I/O devices must go through the north bridge (which
is the next primary hot spot). This observation underlies the research motivation
of this work.

The goal of this work is to manage the usages of displaying devices for ap-
plications. A process can reserve a budget for the usage of a displaying device
for each specified amount of time. If the requests from an application is over the
claimed budget reservation, the system can either skip the extra requests (saving
host bus usage) or merely execute the requests on a backup memory for later

402 C.-Y. Wei et al.

retrieval for a batch display on the device (reducing competition on the north
bridge).

processor

Display card

Video RAM
north bridge

main
memory

PCI
devices

ISA
devices

south bridge

Fig. 1. The hardware architecture of various buses

3 Admission and Usage Control on Framebuffer Devices

3.1 System Architecture

Writing of data to a framebuffer device under Linux is like writing of data to
a general I/O device. The speed of the I/O is dependent on several factors,
such as the hardware architecture of the machine. Figure 2 illustrates a popular
system diagram of the Intel 440BX AGPset system hardware architecture. The
performance of the host bus is determined by the processor and the main mem-
ory. Usually the host bus is the fastest bus in the system. The AGP (Advanced
Graphic Port) bus was introduced by Intel in 1997. It was designed for the heavy
demands of 3-D graphics. The AGP bus, as shown in Figure 2, is connected to the
host bus by the north bridge, and it could have the same performance as the host
bus. Display cards are usually designed over AGP slots, instead of PCI slots or
even ISA slots. Modern PCs are often used for entertainment, that require a lot
of power in displaying 3-D graphics. That is why machines that are designed and
delivered recently have less performance difference between memory-to-memory
copy and memory-to-framebuffer copy. We must point out that although the
research work in this paper targets framebuffer devices, the idea itself is very
general. It can be applied to other memory-mapped I/O devices on slower buses.

Resource Reservation and Enforcement for Framebuffer-Based Devices 403

Pentium II
Processor

Pentium II
Processor

82443BX
Host Bridge
(north bridge)

82371EB
PCI-to-ISA Bridge
(south bridge)

main
memorygraphics

device

 Video
 -DVD
 -Camera
 -VCR

Display

....

Gaphics
Local
Memory

Video BIOS

TV

Encoder

-VMI
-Video Capture

PCI Slots

Primary PCI Bus
(PCI BUS #0)

2X AGP Bus

66/100
MHz

USB
USB

2 IDE Ports
(Ultra DMA/33)

2 USB
Ports

System BIOS

ISA Slots

ISA Bus

System MGMT (SM Bus)

Host Bus

Fig. 2. Intel AGPset System Block Diagram

3.2 Reservation Algorithm and Mechanism

The Basic Mechanism. A framebuffer device in Linux is usually accessed by
memory-mapped I/O. When a process wants to write data to the video RAM
to show something on the screen, what it does is to first obtain the ”memory
address” of the video RAM and then just treat the video RAM as regular main
memory. As a result, a graphic application uses the library function memcpy()
to write graphic data to framebuffer devices. The common steps are as follows:
(1) Open the framebuffer device by the system call ”open” (2) Obtain the ad-
dress of the video RAM and map the address to its user-program space by the
”mmap” system call (3) Treat the mapped address of the video RAM as regular
main memory. Write graphic data to the video RAM using the library function
memcpy().

In this paper, we introduce a simple approach to insert an intermediate layer
for resource management of framebuffer devices, as shown in Figure 3. We pro-
pose to modify the system in the following way: (1) We first create a new device
which acts mostly like a framebuffer device with resource reservation and us-
age control functionality. (2) We modify the library function memcpy() to insert
some usage control mechanism for the new device that we created in Step 1. The
following section illustrates the algorithm for usage control.

404 C.-Y. Wei et al.

Graphic
application 1

New Virtual Devices
(with Resource Management Functionality)

Framebuffer
Devices

Gaphics
Hareware

............
Graphic
application N

Fig. 3. Intel AGPset System Block Diagram

Resource reservation and Usage Control. The purpose of this section is to
propose an algorithm for resource reservation and usage control of framebuffer
devices. Suppose that an application Ai requests a resource reservation to write
Bi bytes of data to a specified framebuffer devices within each Wi units of time.
For most graphic applications, the data rate transferred to framebuffer devices
is usually bounded. Thus, Bi and Wi can be determined reasonably by some
evaluations in advance. After the resource reservation is granted, the mechanism
proposed in the previous section should guarantee and ensure that Ai can write
no more than Bi bytes of data to the specified framebuffer device within each Wi

units of time. As shown in Figure 4, suppose that a request from Ai is made by
memcpy() to write H byes of data to the framebuffer device at time t. If the total
number of bytes being read and to be written to the framebuffer be H + Y + Z

within the Wi time frame is no more than Bi, then the request is granted, and
the write is executed immediately. Otherwise, the request is denied.

When a request is denied, two alternatives could be considered, as pointed
out in Section 2: (1) Throw away the request (saving bandwidth on the host
bus), and pretend that the memcpy() invocation is done. (2) Copy the data of
request to a backup memory for later retrieval for a batch display on the device
(reducing competition on the north bridge with other process executions).

X Y Z H

tstart start end end

time

Wi

Fig. 4. Illustration of writing requests to a framebuffer device

Resource Reservation and Enforcement for Framebuffer-Based Devices 405

Given a collection of admitted reservations T = {(B1, W1), (B2, W2), ...,
(B3, W3)} on a framebuffer device, suppose that a new reservation (B0, W0)
is made on the device where (Bi, Wi) means that Bi bytes might need to be
transferred within each Wi units of time. As long as the following formula is
satisfied, the new reservation is granted; otherwise, it is rejected:

∑ C(Bi)

Wi

≤ 1 . (1)

Here C(Bi) is the time needed to write Bi bytes to a framebuffer device. Note
that we assume that enough CPU time is reserved for each application considered
in this case because the focus of this research is on the reservation and usage
control of framebuffer devices. The copying of data to framebuffer devices takes
CPU time, and the copying time should be considered in the reservation of CPU
time. We refer interested readers to work in CPU time reservation. As noticed by
the readers, the formula above simply checks up whether the framebuffer devices
is overloaded. The formula is obvious because each invocation of memcpy() is
done synchronously, and we assume that no context switch happens. However, we
must point out when memcpy() can be done asynchronously (as can be for writes
to disks), the formula above must be revised to fit the scheduling algorithm that
reorders requests of memcpy(). For example, if the rate monotonic algorithm is
adopted, then the formula becomes as follows:

∑ C(Bi)

Wi

≤ n(2
1

n
− 1) . (2)

When asynchronous writes to framebuffer devices are supported, the admission
control for the reservations of CPU time will become slightly more complicated.
A naive solution is to reserve a budget of system CPU time for memcpy() writes
for the devices. It is similar to what is done for the reservations of CPU time for
applications and the system in the open system architecture proposed by Liu,
et al [6,10].

3.3 System Implementation

In system implementation, a ”virtual” device could be created for resource reser-
vation and usage control of each framebuffer device. Here, we use the word
”virtual” to indicate that there does not really have a corresponding physical
device. Instead, this virtual device needs to cooperate with an existing frame-
buffer device to achieve the task of drawing as shown in Figure 3. Instead of
opening a framebuffer device, application programs must open its correspond-
ing virtual device. Original requests to a framebuffer device are passed over to
its corresponding virtual device. The granting and rejections of requests to a
framebuffer device could be decided based on the algorithm presented in the
previous section. An important issue here is to have compatibility with existing
code when no resource reservation and usage control is needed. With renaming
of devices, there should be absolutely no need to modify existing code. It is also

406 C.-Y. Wei et al.

highly important to minimize the efforts in code modifications for user and even
system programs when resource reservation and usage control is needed. (Any
modification to any hardware is simply out of the question.)

In this paper, we focus on framebuffer devices which use the library func-
tion memcpy() to write graphic data to the devices. Instead of modifying the
operating systems, hardware, or even any library functions in libc/glibc (such as
memcpy()), we propose to adopt the idea of preload library, which loads specified
library functions before any application program (which needs resource reser-
vation) executes so that the original library functions can be overridden. The
procedure is simply done by setting the environment variable PRELOAD PATH

to the path where the overriding library functions exist. To replace the original
memcpy(), an overriding library function memcpy() is implemented and saved at
the specified path. The overriding function implements the resource reservation
and usage control algorithm presented in the previous section and then calls the
original memcpy() to make necessary data copying when any write request to a
framebuffer device is granted. We refer the interested reader to [21,22] for the
usage of preload library.

4 Conclusion

This paper explores a reservation methodology and implementation methods for
the resource reservation of framebuffers. We propose a Quality-of-Service reser-
vation and enforcement mechanism to guarantee proper framebuffer usage for
applications. Based on the usages and reservations of framebuffer devices, our
mechanism will determine when to drop the requests for displaying data. To
keep the portability and compatibility of the original system, we create a new
”virtual” device to maintain internal data structures for framebuffer resource
management. We also adopt a preload-library approach, which loads specified
library functions before any application program executes, to override the orig-
inal library functions.

With the advance of software and hardware technologies, there is an increas-
ing demand to study real-time resource reservation and Quality-of-Service sup-
port for various devices under heavy system workloads. For future research, we
shall extend our methodology to input devices, such as TouchPad. We will also
integrate various resource-reservation methodologies to have a general-purpose
approach for real-time resource reservation systems.

References

1. B. Adelberg, H.Garcia-Molina, and B.Kao, “Emulating Soft Real-Time Scheduling
Using Traditional Operating Systems Schedulers,” IEEE 15th Real-Time Systems
Symposium, December 1994, pp.292-298 .

2. M. Barabanov and V. Yodaiken, ”Introducing Real-Time Unix,” Linux Journal,
No. 34, Feb 1997.

Resource Reservation and Enforcement for Framebuffer-Based Devices 407

3. Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo, ”A Dynamic-Voltage-Adjustment
Mechanism in Reducing the Power Consumption of Flash Memory for Portable
Devices,” IEEE International Conference on Consumer Electronics, Los Angeles,
USA, June 2001.

4. Hsu-Min Chen, Sheng-Yao Zhuo, Chih-Yuan Huang, Tei-Wei Kuo, ”An USB-Based
Surveillance System over Wireless Network, the 7th International Conference on
Distributed Multimedia Systems, Taiwan, Sept 2001.

5. S. Childs and D. Ingram, ”The Linux-SRT Integrated Multimedia Operating Sys-
tems: Bring QoS to the Desktop,” IEEE 2001 Real-Time Technology and Applica-
tions Symposium, Taipei, Taiwan, ROC, pp. 135-140.

6. Z. Deng and J. W.-S. Liu, “Scheduling Real-Time Applications in an Open Envi-
ronment,”IEEE 18th Real-Time Systems Symposium, December 1997.

7. Mei-Ling Hsu, Wang-Ru Yang, Yuan-Ting Kao, Giun-Haur Huang, and Tei-Wei
Kuo, 1997, ”Providing Real-Time Access Control to Remote Resources,” The Third
Workshop on Real-Time and Media Systems (RAMS’97), Taipei, Taiwan, ROC,
pp. 137-143

8. Giun-Haur Huang, Shie-Kai Ni, and Tei-Wei Kuo, 1996, ”The Design and Im-
plementation of the CPU Power Regulator for Multimedia Operating Systems,”
IEEE 17th Real-Time Systems Symposium (RTSS’96), Work-In-Progress Session
Proceeding, Washington D.C., USA, pp. 27-30.

9. Tei-Wei Kuo, Sing-Ling Lee, Yi-Shan Lin, and Yu-Hua Liu, 1997, ”Providing
Video-On-Demand Services on Windows NT,” 1997 International Symposium on
Multimedia Information Processing (ISMIP’97), Taipei, Taiwan, ROC, pp. 226-
231.

10. Tei-Wei Kuo and Ching-Hui Li, 1999,”A Fixed-Priority-Driven Open Environ-
ment for Real-Time Applications,” the IEEE 20th Real-Time Systems Symposium,
Phoenix, USA, December, 1999.

11. Tei-Wei Kuo and Mei-Ling Hsu, ”A Software-Reuse Approach to Build Monitor
Porgrams for Soft Real-Time Applications,” Journal of Real-Time Systems (SCI),
Vol 19, Number 2, September 2000, pp.123-148.

12. Tei-Wei Kuo, Ji-Shin Rao, Victor Lee, Jun Wu, 2001, ”Real-Time Disk Scheduling
for Block-Stripping I2O RAID,” the 13th Euromicro Conference on Real-Time
Systems, Delft, Netherlands, June 2001.

13. Clifford W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves
for Multimedia Operating Systems,” Technical Report CMU-CS-93-157, School
of Computer Science, Carneigie Mellon University, May 1993.

14. Clifford W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves: An
Abstraction of Managing Processor Usage,” In Proceedings of the Fourth Workshop
on Workstation Operating Systems (WWOS-IV), October 1993.

15. Clifford W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves for
Multimedia Applications,” In Proceedings of the IEEE International Conference
on Multimedia Computing and Systems (ICMCS), May 1994, pp. 90-99.

16. Clifford W. Mercer, Ragunathan Rajkumar and Jim Zelenka, “Temporal Protec-
tion in Real-Time Operating Systems,” In Proceedings of the 11th IEEE WorkShop
on Real-Time Operating Systems and Software, May 1994, pp. 79-83.

17. Clifford W. Mercer and Ragunathan Rajkumar, “An Interactive Interface and RT-
Mach Support for Monitoring and Controlling Resource Management,” IEEE Real-
Time Technology and Applications Symposium, May 1995.

18. D.J. Sides, ”A Dynamically Adaptive Real-Time Data Acquisition and Display
System,” IEEE Real-Time Technology and Applications Symposium, May 1995.

408 C.-Y. Wei et al.

19. Y.C. Wang and K.J. Lin, ”Enhancing the Real-Time Capability of the Linux Ker-
nel,” the 5th Real-Time Computing Systems and Applications Symposium, Hi-
roshima, Japan, 1998.

20. Y.-C. Wang and K.J. Lin, ”Implementing a General Purpose Real-Time Schedul-
ing Framework in the RED-Linux Real-Time Kernel,” IEEE Real-Time Systems
Symposium, Arizona, USA, 1999, pp. 246-255.

21. ”Overriding Functions”,
http://sources.redhat.com/ml/libc-hacker/1998-12/msg00053.html

22. ”overloading symbols in glibc-2.2.3” ,
http://sources.redhat.com/ml/glibc-linux/2001-q3/msg00014.html

An Efficient B-Tree Layer for Flash-Memory

Storage Systems

Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo

Department of Computer Science and Information Engineering
National Taiwan University

Taipei, Taiwan, 106
Fax: +886-2-23628167

{d90003,d6526009,ktw}@csie.ntu.edu.tw

Abstract. With a significant growth of the markets for consumer
electronics and various embedded systems, flash memory is now an
economic solution for storage systems design. For index structures which
require intensively fine-grained updates/modifications, block-oriented
access over flash memory could introduce a significant number of
redundant writes. It might not only severely degrade the overall perfor-
mance but also damage the reliability of flash memory. In this paper,
we propose a very different approach which could efficiently handle
fine-grained updates/modifications caused by B-Tree index access over
flash memory. The implementation is done directly over the flash trans-
lation layer (FTL) such that no modifications to existing application
systems are needed. We demonstrate that the proposed methodol-
ogy could significantly improve the system performance and, at the
same time, reduce the overheads of flash-memory management and the
energy dissipation, when index structures are adopted over flash memory.

Keywords: Flash Memory, B-Tree, Storage Systems, Embedded Sys-
tems, Database Systems.

1 Introduction

Flash memory is a popular alternative for the design of storage systems because
of its shock-resistant, power-economic, and non-volatile nature. In recent years,
flash-memory technology advances with the wave of consumer electronics and
embedded systems. There are significant technology breakthroughs in both of
its capacity and reliability features. The ratio of cost to capacity has being in-
creased dramatically. Flash-memory storage devices of 1GB will soon be in the
market. Flash memory could be considered as an alternative to replace hard
disks in many applications. The implementation of index structures, which are
very popular in the organization of data over disks, must be now considered over
flash memory. However, with the very distinct characteristics of flash memory,
traditional designs of index structures could result in a severe performance degra-
dation to a flash-memory storage system and significantly reduce the reliability
of flash memory.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 409–430, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

410 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

There are two major approaches in the implementations of flash-memory
storage systems: The native file-system approach and the block-device emulation
approach. For the native file-system approach, JFFS/JFFS2[5], LFM[12], and
YAFFS [2] were proposed to directly manage raw flash memory. The file-systems
under this approach are very similar to the log-structured file-systems (LFS)
[17]. This approach is natural for the manipulation of flash memory because
the characteristics of flash memory do not allow in-place updates (overwriting).
One major advantage of the native file-system approach is robustness because
all updates are appended, instead of overwriting existing data (similar to LFS).
The block-device emulation approach is proposed for a quick deployment of
flash-memory technology. Any well-supported and widely used (disk) file-systems
could be built over a flash memory emulated block-device easily. For example,
FTL/FTL-Lite [9], [10], [11], CompactFlash [4], and SmartMedia [22] are popular
block device emulation, which provide a transparent block-device emulation.
Regardless of which approach is adopted, they share the similar technical issues:
How to properly manage garbage collection and wear-leveling activities.

With the increasing popularity of flash memory for storage systems (and the
rapid growing of the capacity), the implementations of index structures could
become a bottleneck on the performance of flash-memory storage systems. As
astute readers could point out that why not using binary search tree as index
structures. Binary search tree is applicable to be adopted in RAM, but flash
memory is considered as a block device (such as a hard disk) which has a small-
est unit (page) for reading or writing. If binary search tree is implemented in
flash-memory storage systems, many nodes could be modified frequently when
updates are needed. As a result, according to the characteristics of flash mem-
ory, many pages could be modified over flash memory for maintaining the binary
search tree. Therefore, B-Tree index structures are considered in the paper in-
stead of binary search tree. In particular, B-Tree is one of the most popular index
structures because of its scalability and efficiency. B-Tree indices were first in-
troduced by Bayer and McCreight [21]. Comer [6] later proposed its variation
called B+-tree indices in 1979. B-Tree index structures are extended to many
application domains: Kuo, et al. [23] demonstrated how to provide a predictable
performance with B-Tree. Freeston [19] showed multi-dimensiona B-Trees which
have good predictable and controllable worst-case characteristics. For the par-
allel environment, Yokota, et al. proposed Fat-Btrees [7] to improve high-speed
access for parallel database systems. Becker, et al. [3] improved the availability
of data by a multi-version index structure that supports insertions, deletions,
range queries, and exact match queries for the current or some past versions.

There are two critical issues which could have a significant impacts on the
efficiency of index structures over flash memory: (1) write-once with bulk-erase
(2) the endurance issue. Flash memory could not be over-written (updated)
unless it is erased. As a result, out-of-date (or invalid) versions and the latest
copy of data might co-exist over flash memory simultaneously. Furthermore, an
erasable unit of a typical flash memory is relatively large. Valid data might be
involved in the erasing, because of the recycling of available space. Frequent

An Efficient B-Tree Layer for Flash-Memory Storage Systems 411

erasing of some particular locations of flash memory could quickly deteriorate
the overall lifetime of flash memory (the endurance issue), because each erasable
unit has a limited cycle count on the erase operation.

In this paper, we focus on an efficient integration of B-Tree index structures
and the block-device emulation mechanism provided by FTL (flash translation
layer). We propose a module over a traditional FTL to handle intensive byte-
wise operations due to B-tree access. The implementation is done directly over
FTL such that no modifications to existing application systems are needed. The
intensive byte-wise operations are caused by record inserting, record deleting,
and B-tree reorganizing. For example, the insertion of a record in the system will
result in the insertion of a data pointer at a leaf node and, possibly, the insertion
of tree pointers in the B-tree. Such actions could result in a large number of
data copyings (i.e., the copying of unchanged data and tree pointers in related
nodes) because of out-place updates over flash memory. We demonstrate that
the proposed methodology could significantly improve the system performance
and, at the same time, reduce the overheads of flash-memory management and
the energy dissipation, when index structures are adopted over flash memory. We
must point that although only the block-device emulation approach is studied in
this paper, however, the idea of this paper could be easily extended to a native
flash-memory file system.

The rest of this paper is organized as follows: Section 2 provides an overview
of flash memory and discussions of the implementation problems of B-Tree over
flash memory. Section 3 introduces our approach and its implementation. Section
4 provides performance analysis of the approach. Section 5 shows experimental
results. Section 6 is the conclusion and future work.

2 Motivation

In this section, we shall briefly introduce the characteristics of flash memory.
By showing the very distinct properties of flash memory, the potential issues of
building a B-Trees index structure over a NAND flash memory are addressed as
the motivation of this work.

2.1 Flash Memory Characteristics

A NAND1 flash memory is organized by many blocks, and each block is of a fixed
number of pages. A block is the smallest unit of erase operation, while reads and
writes are handled by pages. The typical block size and page size of a NAND flash
memory is 16KB and 512B, respectively. Because flash memory is write-once, we
do not overwrite data on update. Instead, data are written to free space, and the
old versions of data are invalidated (or considered as dead). The update strategy
is called “out-place update”. In other words, any existing data on flash memory

1 There are two major types of flash memory in the current market: NAND flash and
NOR flash. The NAND flash memory is specially designed for data storage, and the
NOR flash is for EEPROM replacement.

412 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

could not be over-written (updated) unless it is erased. The pages store live data
and dead data are called “live pages” and “dead pages”, respectively. Because
out-place update is adopted, we need a dynamic address translation mechanism
to map a given LBA (logical block address) to the physical address where the
valid data reside. Note that a “logical block” usually denotes a disk sector. To
accomplish this objective, a RAM-resident translation table is adopted. The
translation table is indexed by LBA’s, and each entry of the table contains the
physical address of the corresponding LBA. If the system reboots, the translation
table could be re-built by scanning the flash memory. Figure 1 illustrate how to
retrieve data from flash memory by using the translation table.

After a certain number of page writes, free space on flash memory would
be low. Activities consist of a series of read/write/erase with the intention to
reclaim free spaces would then start. The activities are called “garbage col-
lection”, which is considered as overheads in flash-memory management. The
objective of garbage collection is to recycle the dead pages scattered over the
blocks so that they could become free pages after erasings. How to smartly choose
which blocks should be erased is the responsibility of a block-recycling policy. The
block-recycling policy should try to minimize the overhead of garbage collection
(caused by live data copyings). Figure2 2 shows the procedure of garbage col-
lection. Under current technology, a flash-memory block has a limitation on the
erase cycle count. For example, a block of a typical NAND flash memory could
be erased for 1 million (106) times. After that, a worn-out block could suffer from
frequent write errors. A “wear-leveling” policy intends to erase all blocks on flash
memory evenly, so that a longer overall lifetime could be achieved. Obviously,
wear-leveling activities would impose significant overheads to the flash-memory
storage system if the access patterns try to frequently update some specific data.

Translation table

.

.

.

1024

.

.

.

0

i

Flash memory

Fig. 1. The logical block address ”i” is mapped to the physical page number ”1024”
by the translation table.

2 A similar figure also appears in [18].

An Efficient B-Tree Layer for Flash-Memory Storage Systems 413

Table 1. Performance of a typical NAND Flash Memory

Page Read Page Write Block Erase
512 bytes 512 bytes 16K bytes

Performance(μs) 348 909 1,881

Energy Consumption(μjoule) 99 237.6 422.4

There are many issues in the management of flash memory: As mentioned
in the previous two paragraphes, the activities of garbage collection and wear-
leveling could introduce an unpredictable blocking time to time-critical applica-
tions. In particular, Kawaguchi, et al. [1] proposed the cost-benefit policy which
uses a value-driven heuristic function as a block-recycling policy. Kwoun, et al.
[13] proposed to periodically move live data among blocks so that blocks have
more an even life-time. Chang and Kuo [14] investigated how to properly man-
age the internal activities so that a deterministic performance could be provided.
On the other hand, the performance and energy consumption of reads, writes,
and erases are very different, as shown in Table 1. For portable devices, the
endurance of batteries is a critical issue. Because flash memory could also con-
tribute a significant portion of energy consumption, Chang and Kuo [15] intro-
duced an energy-efficient request scheduling algorithm for flash-memory storage
system to lengthen the operating time of battery-powered portable devices. Fur-
thermore, the handling of writes could be the performance bottleneck: Writing
to flash memory are relatively slow, and it could introduce garbage collection
and wear-leveling activities. To improve the overall performance, Chang and
Kuo [16] proposed an adaptive striping architecture which consists of several in-
dependent banks. A dynamic striping policy was adopted to smartly distribute
writes among banks to improve the parallelism.

Erased Block New Block

F F F F F F F F F F

L L L L L L F F F F

L D F

Step1: Chose a new block to do garbage

collection

Step2: Copy live pages from the erased

block to the new block

Step3: The erased block becomes a free

block

Live page Dead page Free page

L L D L L D L D L D

L L D L L D L D L D

F F F F F F F F F F L L L L L L F F F F

Fig. 2. Garbage collection

414 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

2.2 Problem Definition

A B-Tree consists of a hierarchical structure of data. It provides efficient opera-
tions to find, delete, insert, and traverse the data. There are two kinds of nodes
in a B-Tree: internal nodes and leaf nodes. A B-Tree internal node consists of a
ordered list of key values and linkage pointers, where data in a subtree have key
values between the ranges defined by the corresponding key values. A B-Tree
leaf node consists of pairs of a key value and its corresponding record pointer. In
most cases, B-Trees are used as external (outside of RAM) index structures to
maintain a very large set of data. Traditionally, the external storage are usually
block devices such as disks. In practice, we usually set the size of a B-Tree node
as the size which can be efficiently handled by the used block device. For exam-
ple, many modern hard disks could have equivalent response times to access a
512B sector and a 64KB chunk (due to the seek penalty, the rotational delay,
the DMA granularity, and many other factors). Therefore, a B-Tree node could
be a 64K chunk on the hard disk. To insert, delete, and re-balance B-Trees, B-
Tree nodes are fetched from the hard disk and then written back to the original
location. Such operations are very efficient for hard disks.

Recently, the capacity and reliability of flash memory grew significantly.
Flash-memory storage systems become good mass storage solutions, especially
for those applications work under extreme environments. For example, those
systems operate under severe vibrations or limited energy sources might pre-
fer flash-memory storage systems. Since a large flash-memory storage system is
much more affordable than ever, the issue on the efficiency of data accessing
becomes critical. For the development of many information systems, B-Tree are
widely used because of its efficiency and scalability. However, a direct adoption
of B-Tree index structures over flash-memory storage systems could exaggerate
the overheads of flash-memory management. Let us first consider usual oper-
ations done over B-Tree index structures: Figure 3 shows an ordinary B-Tree.
Suppose that six different records are to be inserted. Let the primary keys of the

100

30

A

B C

D E F G H I

60 95

10 40 70 120 180 220

150 200

97

J

20 45 85 130 185 250

Fig. 3. A B-Tree (fanout is 4).

An Efficient B-Tree Layer for Flash-Memory Storage Systems 415

records be 20, 45, 85, 130, 185, and 250, respectively. As shown in Figure 3, the
1st, 2nd, 3rd, 4th, 5th, and 6th records should be inserted to nodes D, E, F, H,
I, and J, respectively. Six B-Tree nodes are modified. Now let us focus on the
files of index structures since we usually store index structures separately from
the records. Suppose that each B-Tree node is stored in one page, then up to
six page writes are needed to accomplish the updates. If rebalancing is needed,
more updates of internal nodes will be needed.

Compared with operations on hard disks, updating (or writing) data over
flash memory is a very complicated and expensive operation. Since out-place
update is adopted, a whole page (512B) which contains the new version of data
will be written to flash memory, and previous data must be invalidated. The
page-based write operations could expectedly introduce a sequence of negative
effects. Free space on flash memory could be consumed very quickly. As a result,
garbage collection could happen frequently to reclaim free space. Furthermore,
because flash memory is frequently erased, the lifetime of the flash memory would
be reduced. Another problem is energy consumption. Out-place updates would
result in garbage collection, which must read and write pages and erase blocks.
Because writes and erases consume much more energy than reads, as shown in
Table 1, out-place updates eventually cause much more energy consumption.
For portable devices, because the amount of energy provided by batteries is
limited, energy-saving could be a major concern. The motivation of this work is
to reduce the amount of redundant data written to flash memory caused by index
structures to improve the system performance and reduce energy consumption.

3 The Design and Implementation of BFTL

In this section, we present an efficient B-Tree layer for flash-memory storage
systems (BFTL) with a major objective to reduce the redundant data written
due to the hardware restriction of a NAND flash memory. We shall illustrate the
architecture of a system which adopts BFTL and present the functionalities of
the components inside BFTL in the following subsections.

3.1 Overview

In our approach, we propose to have an insertable module called BFTL (an
efficient B-Tree layer for flash-memory storage systems, referred as BFTL for
the rest of this paper.) over the original flash translation layer (FTL). BFTL
sits between the application layer and the block-device emulated by FTL. The
BFTL module is dedicated to those applications which use services provided by
B-Tree indices. Figure 4 illustrates the architecture of a system which adopts
BFTL. BFTL consists of a small reservation buffer and a node translation ta-

ble. B-Tree index services requested by the upper-level applications are handled
and translated by BFTL, and then block-device requests are sent from BFTL
to FTL. When the applications insert, delete, or modify records, the newly gen-
erated records (referred as “dirty records” for the rest of this paper) would be

416 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

B-Tree-Related Applications

Reservation Buffer

BFTL

Node Translation

Table

Flash Memory

Flash Memory Translation Layer (FTL)

The Commit

Policy

Other Applications

Fig. 4. Architecture of a System Which Adopts BFTL.

temporarily held by the reservation buffer of BFTL. Since the reservation buffer
only holds an adequate amount of records, the dirty records should be timely
flushed to flash memory. Note that record deletions are handled by adding “in-
validation records” to the reservation buffer.

To flush out the dirty records in the reservation buffer, BFTL constructs
corresponding “index units” for each dirty record. The usage of index units are
to reflect primary-key insertions and deletions to the B-Tree index structure
caused by the dirty records. The storing of the index units and the dirty records
are handled in two different ways. The storing of the records is relatively simple:
The records are written (or updated) to an allocated (or the original) locations.
On the other hand, because an index unit is very small (compared with the size
of a page), the storing of the index units is handled by a commit policy. Many
index units could be smartly packed into few sectors to reduce the number of
pages physically written. Note that the “sectors” are logical items which are
provided by the block-device emulation of FTL. We would try to pack index
units belonging to different B-Tree nodes in a small number of sectors. During
this packing process, although the number of sectors to be updated is reduced,
index units of one B-Tree node could now exist in different sectors. To help
BFTL to identify index units of the same B-Tree node, a node translation table
is adopted.

In the following sub-sections, we shall present the functionality of index units,
the commit policy, and the node translation table. In Section 3.2 we illustrate

An Efficient B-Tree Layer for Flash-Memory Storage Systems 417

how a B-Tree node is physically represented by a collection of index units. The
commit policy which smartly flushes the dirty records is presented in Section
3.3. The design issues of the node translation table are discussed in Section 3.4.

3.2 The Physical Representation of a B-Tree Node: The Index

Units

When applications insert, delete, or modify records, the dirty records could be
temporarily held by the reservation buffer of BFTL. BFTL would construct a
corresponding “index unit” to reflect the primary-key insertion/deletion to the
B-Tree index structure caused by a dirty record. In other words, an index unit
could be treated as a modification of the corresponding B-Tree node, and a B-
Tree node could be logically constructed by collecting and parsing all relevant
index units. Since the size of a index unit is relatively small (compared to the
size of a page), the adopting of index units could prevent redundant data from
frequently being written to flash memory. To save space needed by the storing
of index units, many index units are packed into few sectors even though the
packed index units might be belonging to different B-Tree nodes. As a result, the
index units of one B-Tree node could exist in different sectors over flash memory,
and the physical representation of the B-Tree node would be different from the
original one.

To construct the logical view of a B-Tree node, relevant index units are
collected and parsed for the layer above BFTL, i.e., users of BFTL. Figure 5
illustrates how the logical view of a B-Tree node is constructed: Index units (I1,
I2, ... , Ik) of a B-Tree node are scattered over flash memory, and we could
form the B-Tree node by collecting its relevant index units over flash memory.
An index unit is of several components: data ptr, parent node, primary key,
left ptr, right ptr, an identifier, and an op flag. Where data ptr, parent node,
left ptr, right ptr, and primary key are the elements of a original B-Tree node.

data_ptr

parent_node

identifier

primary_key

op_flag

. . .
data_ptr

parent_node

identifier

primary_key

op_flag

data_ptr

parent_node

identifier

primary_key

op_flag

data_ptr

parent_node

identifier

primary_key

op_flag

A B-Tree Node

I3

I1

I2

Ik

Flash Memory

data_ptr

parent_node

identifier

primary_key

left_ptr

right_ptr

op_flag

A Index Unit

Fig. 5. The node consists of index units.

418 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

They represent a reference to the record body, a pointer to the parent B-Tree
node, a pointer to the left B-Tree node, a pointer to the right B-Tree node, and
and the primary key, respectively. Beside the components originally for a B-Tree
node, an identifier is needed: The identifier of an index unit denotes to which
B-Tree node the index unit is belonging. The op flag denotes the operation done
by the index unit, and the operations could be an insertion, a deletion, or an
update. Additionally, time-stamps are added for each batch flushing of index
units to prevent BFTL from using stale index units. Note that BFTL uses FTL
to store index units. As shown in Figure 5, index units related to the desired
B-Tree node are collected from flash memory. Index units could be scattered
over flash memory. The logical view of the B-Tree node is constructed through
the help of BFTL. As astute readers might point out, it is very inefficient to
scan flash memory to collect the index units of the same B-Tree node. A node
translation table is adopted to handle the collection of index units. It will be
presented in Section 3.4.

3.3 The Commit Policy

Dirty records are temporarily held by the reservation buffer of BFTL. The buffer
should be flushed out in a timely fashion. Index units are generated to reflect
modifications to B-Tree index structures, and the index units are packed into
few sectors and written to flash memory (by FTL). A technical issue is how

Logical view of a B-Tree

Index Structure
100

30

A

B C

D E F G H I

60 95

10 40 70 120 180 220

150 200

97

J

Reservation

Buffer

(in RAM)

Commit

Policy

20 25 85 180 185 250

A record

Primary key

Contents

N

Flash Memory Translation Layer (FTL)

Flash Memory

B
F

T
L

Index

units

Record

contents

Sector 1 Sector 2

20 25 18085 185 250

I1 I2 I3 I4 I5 I6

Fig. 6. The Commit Policy Packs and Flushes the Index Units.

An Efficient B-Tree Layer for Flash-Memory Storage Systems 419

to smartly pack index units into few sectors. In this section, we shall provide
discussions on commit policies for index units.

The reservation buffer in BFTL is a buffer space for dirty records. The buffer-
ing of dirty records could prevent B-Tree index structures over flash memory from
being intensively modified. However, the capacity of the reservation buffer is not
unlimited. Once the reservation buffer is full, some dirty records in the buffer
should be committed (written) to flash memory. We propose to flush out all
dirty records in this paper because a better analysis of dirty records is possible
to reduce updates of leaf nodes (We will demonstrate the approach later in the
performance evaluation.) Beside the storing of records, BFTL would construct
index units to reflect modifications to the B-Tree index structure. Since the size
of an index unit is smaller than the sector size provided by FTL (or the page
size of flash memory), many index units should be packed together in order to
further reduce the number of sectors needed. On the other hand, we also hope
that index units of the same B-Tree node will not be scattered over many sectors
so that the collection of the index units could be more efficient. A commit policy
is proposed to achieve both of the objectives. We shall illustrate the commit
policy by an example:

The handling of a B-Tree index structure in Figure 6 is divided into three
parts: the logical view of a B-Tree index structure, BFTL, and FTL. Suppose
that the reservation buffer could hold six records whose primary keys are 20, 25,
85, 180, 185, and 250, respectively. When the buffer is full, the records should
be written to flash memory. BFTL first generates six index units (I1 to I6) for
the six records. Based on the primary keys of the records and the value ranges
of the leaf nodes (D, E, F, G, H, I, and J in the figure), the index units could
be partitioned into five disjoint sets: {I1, I2} ∈ D, {I3} ∈ F , {I4} ∈ H, {I5}

∈ I, {I6} ∈ J . The partitioning prevents index units of the same B-Tree node
from being fragmented. Suppose that a sector provided by FTL could store three
index units. Therefore, {I1, I2} and {I3} would be put in the first sector. {I4},
{I5}, and {I6} would be put in the second sector since the first sector is full.
Finally, two sectors are written to commit the index units. If the reservation
buffer and the commit policy are not adopted, up to six sector writes might be
needed to handle the modifications of the index structure.

As astute reader may notice, the packing problem of index units into sectors
is inherently intractable. A problem instance is as follows: Given disjoint sets
of index units, how to minimize the number of sectors in packing the sets into
sectors?

Theorem 1. The packing problem of index units into sectors is NP-Hard.

Proof. The intractability of the problem could be shown by a reduction
from the Bin-Packing [20] problem: Let an instance of the Bin-Packing problem
be defined as follows: Suppose B and K denote the capacity of a bin and the
number of items, where each item has a size. The problem is to put items into
bins such that the number of bins is minimized.

The reduction can be done as follows: Let the capacity of a sector be the
capacity of a bin B, and each item a disjoint set of index units. The number of

420 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

disjoint sets is as the same as the number of items, i.e., K. The size of a disjoint
set is the size of the corresponding item. (Note that although the sector size
is determined by systems, the sector size could be normalized to B. The sizes
of disjoint sets could be done in the same ratio accordingly.) If there exists a
solution for the packing problem of index units, then the solution is also one for
the Bin-Packing problem.

Note that there exists many excellent approximation algorithms for bin-
packing. For example, the well-known FIRST-FIT approximation algorithm [24]
could have an approximation bound no more than twice of the optimal solution.

3.4 The Node Translation Table

Since the index units of a B-Tree node might be scattered over flash memory due
to the commit policy, a node translation table is adopted to maintain a collection
of the index units of a B-Tree node so that the collecting of index units could
be efficient. This section presents the design and related implementation issues
of the node translation table.

Since the construction of the logical view of a B-Tree node requires all index
units of the B-Tree node, it must be efficient to collect the needed index units
when a B-Tree node is accessed. A node translation table is introduced as an
auxiliary data structure to make the collecting of the index units efficient. A node
translation table is very similar to the logical address translation table mentioned
in Section 2.1, which maps an LBA (the address of a sector) to a physical page
number. However, different from the logical address translation table, the node
translation table maps a B-Tree node to a collection of LBA’s where the related
index units reside. In other words, all LBA’s of the index units of a B-Tree node
are chained after the corresponding entry of the node translation table. In order
to form a correct logical view of a B-Tree node, BFTL would visit (read) all
sectors where the related index units reside and then construct an up-to-date

A

B C

D E F G H I

A

B

C

¡K

I

A

B

C

.

.

.

I

(a) The logical view of a B-tree (b) The node translation table

23

42 34 100 53

23 100

2 100 15

Fig. 7. The Node Translation Table.

An Efficient B-Tree Layer for Flash-Memory Storage Systems 421

logical view of the B-Tree node for users of BFTL. The node translation table
could be re-built by scanning the flash memory when system is powered-up.

Figure 7.(a) shows a B-Tree with nine nodes. Figure 7.(b) is a possible con-
figuration of the node translation table. Figure 7.(b) shows that each B-Tree
node consists of several index units which could come from different sectors.
The LBA’s of the sectors are chained as a list after the corresponding entry of
the table. When a B-Tree node is visited, we collect all the index units belong-
ing to the visited node by scanning the sectors whose LBA’s are stored in the
list. For example, to construct a logical view of B-Tree node C in Figure 7.(a),
LBA 23 and LBA 100 are read by BFTL (through FTL) to collect the needed
index units. Conversely, an LBA could have index units which are belonging to
different B-Tree nodes. Figure 7.(b) shows that LBA 100 contains index units of
B-Tree nodes B, C, and I. Therefore, when a sector is written, the LBA of the
written sector might be appended to some entries of the node translation table
accordingly .

The following example which illustrates how BFTL locates a record, as shown
in Figure 8:

Step 1: An application issues a read command for accessing a record.

Step 2: If the record could be found in the reservation buffer, then return the
record.

Step 3: Otherwise; traverse the whole B-Tree form the root node by the node
translation table to search for the record.

Step 4: If the record is found, then return the record.

As astute readers may point out, the lists in the node translation table could
grow unexpectedly. For example, if a list after a entry of the node translation
table have 100 slots, the visiting of the corresponding B-Tree node might have
to read 100 sectors. On the other hand, 100 slots are needed in the node trans-
lation table to store the LBA’s. If the node translation table is handled in an
uncontrolled manner, it will not only deteriorate the performance severely but
also consume a lot of resources (such as RAM). To overcome the problem, we
propose to compact the node translation table when necessary. A system param-
eter C is used to control the maximum length of the lists of the node translation
table. When the length of a list grows beyond C, the list will be compacted. To
compact a list, all related index units are collected into RAM and then written
back to flash memory with a smallest number of sectors. As a result, the size of
the table could be bounded by O(N ∗C), where N denotes the number of B-Tree
nodes. On the other hand, the number of sector reads needed to visit a B-Tree
node can be bounded by C. Obviously, there is a trade-off between the over-
heads of compaction and the performance. The experimental results presented
in Section 5 could provide more insights for system parameter configuring.

422 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

B-Tree-Related Applications

Read

command

Return

Data

FTL

Reservation Buffer3

3 BFTL

1 2 4

Application

Layer

Flash File-

system Layer

Hardware

Layer
Flash Memory

Node Translation

Table

Fig. 8. The Procedures to Handle Searching in BFTL.

4 System Analysis

This section intends to provide the analysis of the behaviors of BFTL and FTL.
We derived the numbers of sectors read and written by FTL and BFTL to handle
the insertions of n records.

Suppose that we already have a B-Tree index structure residing on flash
memory. Without losing the generality, let a B-Tree node fit in a sector (provided
by FTL). Suppose that n records are to be inserted. That is, n primary keys
will be inserted into the B-Tree index structure. Assume that the values of the
primary keys are all distinct.

First, we shall investigate the behaviors of FTL. A B-Tree node under FTL
is stored in exactly one sector. One sector write is needed for each primary key
insertion when no node overflow (node splitting) occurs. If a node is overflowed,
one primary key in the node will be promoted to its parent node, and the node
is then split into two new nodes. The splitting could be handled by three sector
writes under FTL. Let H denote the current height of the B-Tree, and Nsplit

denote the number of nodes which are split during the handling of the insertions.
The numbers of sectors read and written by FTL to handle the insertions could
be represented as follows:

{
RFTL = O(n ∗ H)
WFTL = O(n + 2 ∗ Nsplit)

(1)

Suppose that the sector size remains the same under BFTL (note that BFTL
is above FTL), and the hight of the B-Tree is H. Let us consider the numbers of

An Efficient B-Tree Layer for Flash-Memory Storage Systems 423

sectors read and written over flash memory when n records are inserted: Because
BFTL adopts the node translation table to collect index units of a B-Tree node,
the number of sectors that are read to construct a B-Tree node depends on
the length of lists of the node translation table. Let the length of the lists be
bounded by C (as mentioned in Section 3.4), the number of sectors that are read
by BFTL to handle the insertions could be represented as follows: Note that C

is a control parameter, as discussed in the previous section.

RBFTL = O(n ∗ H ∗ C) (2)

Equation 2 shows that the BFTL might read more sectors in handling the
insertions. In fact, BFTL trades the number of reads for the number of writes.
The number of sectors written by BFTL could be calculated as follows: Because
BFTL adopts the reservation buffer to hold records in RAM and flushes them in
a batch, modifications to B-Tree nodes (the index units) could be packed in few
sectors. Let the capacity of the reservation buffer of a B-Tree be of b records.
As a result, the reservation buffer would be flushed by the commit policy at
least �n/b� times during the handling of the insertion of n records. Let N i

split

denote the number of nodes which are split to handle the i-th flushing of the

reservation buffer. Obviously,
∑�n/b�

i=1 N i

split
= Nsplit because the B-Tree index

structures under FTL and BFTL are logically identical. For each single step of
the reservation buffer flushing, we have b+N i

split
∗(fanout−1) dirty index units

to commit because the additional (fanout − 1) dirty index units are for the
newly created nodes during the splitting, where fanout is the maximum fanout
of the B-Tree. Note that N i

split
times (fanout − 1) in the formula because each

splitting will result in 2 new nodes, and the number of records in the 2 new
nodes is (fanout − 1). Furthermore, the splitting will result in the update of
the parent node of the new nodes (that contributes to b in the above formula).
Similar to FTL, suppose that a B-Tree node could fit in a sector. That means
a sector could hold (fanout-1) index units. Let Λ = (fanout − 1). The number
of sectors written by the i-th committing of the reservation buffer could be
(b

Λ
+ N i

split
). To completely flush the reservation buffer, we have to write at

least
∑�n/b�

i=1 (b

Λ
+ N i

split
) = (

∑�n/b�
i=1

b

Λ
) +Nsplit sectors. Since BFTL adopts the

FIRST-FIT approximation algorithm (as mentioned in Section 3.3), the number
of sectors written by BFTL could be bounded by the following formula:

WBFTL = O(2 ∗ (

�n/b�∑

i=1

b

Λ
) + Nsplit) = O(

2 ∗ n

Λ
+ Nsplit) (3)

By putting WFTL with WBFTL together, we have:

{
WBFTL = O(2∗n

Λ
+ Nsplit)

WFTL = O(n + 2 ∗ Nsplit)
(4)

Equation 4 shows that WBFTL is far less than WFTL, since Λ (the number
of index units a sector could store) is usually larger than 2. The deriving of
equations could provide a low bound for WBFTL. However, we should point

424 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

out that the compaction of the node translation table (mentioned in Section
3.4) might introduce some run-time overheads. We shall later show that when
Λ = 20, the number of sectors written by BFTL is between 1/3 and 1/13 of the
number of sectors written by FTL.

5 Performance Evaluation

The idea of BFTL was implemented and evaluated to verify the effectiveness and
to show the benefits of our approach. By eliminating redundant data written to
flash memory, we surmise that the performance of B-Tree operations should be
significantly improved.

5.1 Experiment Setup and Performance Metrics

A NAND-based system prototype was built to evaluate the performance of BFTL
and FTL. The prototype was equipped with a 4MB NAND flash memory, where
the performance of the NAND flash memory is included in Table 1. To evaluate
the performance of FTL, a B-Tree was directly built over the block-device em-
ulated by FTL. The greedy block-recycling policy [1,14] was adopted in FTL to
handle garbage collection.

Because we focused on the behavior of B-Tree index structures in this paper,
we did not consider the writing of data records over flash memory. Only the
performance of index operations was considered and measured. The fan-out of
the B-Tree used in the experiments was 21, and the size of a B-Tree node fits
in a sector. To evaluate the performance of BFTL, BFTL was configured as
follows: The reservation buffer in the experiments was configured to hold 60
records (unless we explicitly specified the capacity). As suggested by practical
experiences in using B-Tree index structure, we assumed that a small amount
of B-Tree nodes in the top levels were cached in RAM so that these “hot”
nodes could be accessed efficiently. The bound of the lengths of lists in the node
translation table was set as 3.

In the experiments, we measured the average response time of record inser-
tions and deletions. A smaller response time denotes a better efficiency in han-
dling requests. The average response time also implicitly reflected the overheads
of garbage collection. If there was a significant number of live page copyings
and block erasings, the response time would be increased accordingly. To fur-
ther investigate the behaviors of BFTL and FTL, we also measured the numbers
of pages read, pages written, and blocks erased in the experiments. Note that
Sector reads/writes were issued by an original B-Tree index structure or BFTL
when BFTL was not adopted or adopted, respectively. FTL translated the sector
reads/writes into page reads/writes to physically access the NAND flash mem-
ory. Live data copyings and block erases were generated accordingly to recycle
free space when needed. Readers could refer to Figure 4 for the system architec-
ture. The energy consumption of BFTL and FTL was measured to evaluate their
power-efficiency levels. Different simulation workloads were used to measure the
performance of BFTL and FTL. The details will be illustrated in later sections.

An Efficient B-Tree Layer for Flash-Memory Storage Systems 425

5.2 Performance of B-Tree Index Structures Creation

In this part of the experiments, we measured the performance of FTL and BFTL
in the creating of B-Tree index structures. B-Tree index structures were created
by record insertions. In other words, the workloads consisted of insertions only.
For each run of experiments, we inserted 24,000 records. We must point out
that although a B-Tree constructed by the 24,000 record insertions under FTL
occupied 868KB space on flash memory, however, the amount of total data writ-
ten by FTL was 14MB. Because a 4MB NAND flash memory was used in the
experiments, garbage collection activities would be started to recycle free space.
In the experiments, a ratio rs was used to control the value distribution of the
inserted keys: When rs equals to zero, that means all of the keys were randomly
generated. If rs equals to 1, that means the value of the inserted keys were in an
ascending order. Consequently, if the value of rs equals to 0.5, that means the
values of one-half of the keys were in an ascending order, while the other keys
were randomly generated. In Figure 11.(a) through Figure 11.(e), the X-axes
denote the value of rs.

Figure 11.(a) shows the average response time of the insertions. We can see
that BFTL greatly outperformed FTL: The response time of BFTL was even one-
twentieth of FTL when the values of the keys were completely in an ascending
order (rs = 1). BFTL still outperformed FTL even if the values of the keys
were randomly generated (rs = 0). When the keys were sequentially generated
(rs = 1), the number of sectors written could be decreased because index units of
the same B-Tree node would not be scattered over sectors severely. Furthermore,
the length of the lists of the node translation table would be relatively short
and the compaction of the lists would not introduce significant overheads. As
mentioned in the previous sections, writing to flash memory is relative expensive
because writes would wear flash, consume more energy, and introduce garbage
collection. Figure 11.(b) and Figure 11.(c) show the number of pages written and
the number of pages read in the experiments, respectively. The numbers could
reflect the usages of flash memory by FTL and BFTL in the experiments. If we
further investigate the behaviors of BFTL and FTL by putting Figure 11.(b)
with Figure 11.(c) together, we can see that BFTL smartly traded extra reads
for the number of writes by the adoption of the commit policy. On the other
hand, the extra reads come from the visiting of sectors to construct a logical
view of a B-Tree node, as mentioned in Section 3.4.

For the garbage collection issue, in Figure 11.(d) we can see that BFTL cer-
tainly suppressed the garbage collection activities when compared with FTL. In
some experiments of BFTL, garbage collection even did not start yet. As a result,
a longer lifetime of flash memory could be faithfully promised by BFTL. Figure
11.(e) shows the overheads introduced by the compaction of the node translation
table. In Figure 11.(e), we can see that the number of executions of compacting
was reduced when the values of the inserted keys were in an ascending order.
On the other hand, BFTL frequently compacted the node translation table if
the values of the inserted keys were randomly generated since the index units of

426 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

a B-Tree node were also randomly scattered over sectors. Therefore the length
of the lists could grow rapidly and the lists would be compacted frequently.

5.3 Performance of B-Tree Index Structures Maintenance

In the section, the performance of BFTL and FTL to maintain B-Tree index
structures was measured. Under the workloads adopted in this part of experi-
ments, records are inserted, modified, or deleted. To reflect realistic usages of
index services, we varied the ratio of the number of deletions to the number of
insertions. For example, a 30/70 ratio denotes that the thirty percent of total
operations are deletions and the other seventy percent of total operations are in-
sertions. For each run the experiments, 24,000 operations were performed on the
B-Tree index structures and the ratio of deletion/insertion was among 50/50,
40/60, 30/70, 20/80, and 10/90. Besides the deletion/insertion ratios, rs = 1
and rs = 0 (please see Section 5.2 for the definition of rs) were used as two
representative experiment settings.

The X-axes of Figure 9.(a) and Figure 9.(b) denote the ratios of dele-
tion/insertion. Figure 9.(a) shows the average response time under different
ratios of deletions/insertions. The average response time shows that BFTL out-
performed FTL when rs = 0 (the keys were randomly generated), and the
performance advantage was more significant when rs = 1 (the values of the keys
were in an ascending order). When rs = 1, the performance of BFTL greatly im-
proved when the ratio of deletions/insertions changed from 50/50 to 10/90. For
the experiment of BFTL under a 50/50 ratio, because records were frequently
inserted and deleted, a lot of index units for insertions and deletions were gen-
erated. As a result, BFTL had to visit more sectors to collect the index units
of a B-Tree node under a 50/50 ratio than under a 10/90 ratio. Different from
those of rs = 1, the performance gradually degraded when the ratio changed
from 50/50 to 10/90 when rs = 0 (random). Since the inserted keys were al-
ready randomly generated, a 10/90 ratio denoted more keys were generated and
inserted than a 50/50 ratio. As a result, more index units could be chained in
the node translation table so that the visiting of a B-Tree node was not very
efficient. Figure 9.(b) shows the number of block erased in the experiments. The
garbage collection activities were substantially reduced by BFTL, and they had
even not started yet in the experiments of rs = 1 of BFTL.

5.4 The Size of the Reservation Buffer and the Energy Consumption

Issues

In this part of experiments, we evaluated the performance of BFTL under dif-
ferent sizes of the reservation buffer so that we could have more insights in the
configuring of the reservation buffer. We also evaluated the energy consumptions
under BFTL and FTL. Because BFTL could have a reduced number of writes,
energy dissipations under BFTL is surmised to be lower than under FTL.

There is a trade-off to configure the size of the reservation buffer: A large
reservation buffer could have benefits from buffering/caching records, however, it

An Efficient B-Tree Layer for Flash-Memory Storage Systems 427

Table 2. Energy Dissipations of BFTL and FTL (joule)

Creation

BFTL FTL

rs=0 11.65 12.94

rs=1 0.931 11.104

Maintainence

BFTL FTL

50/50, rs=0 8.804 8.261

50/50, rs=1 6.136 9.826

10/90, rs=0 10.38 10.99

10/90, rs=1 1.593 9.515

(a) Average Response Time under Different

Ratios of Deletions/Insertions

(b) Number of Block Erased under Different

Ratios of Deletions and Insertions

0

100

200

300

400

500

600

700

800

50/50 40/60 30/70 20/80 10/90

Ratio of Deletions to Insertions

N
u
m

b
er

 o
f

E
ra

se
d
 B

lo
ck

s
(B

lo
ck

s)
BFTL rs=0 FTL rs=0

BFTL rs=1 FTL rs=1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50/50 40/60 30/70 20/80 10/90

Ratio of Deletions to Insertions

A
v
er

ag
e

R
es

p
o
n
se

 T
im

e
(m

s)

BFTL rs=0 FTL rs=0

BFTL rs=1 FTL rs=1

Fig. 9. Experimental Results of B-Tree Index Structures Maintenance.

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70 80 90 100 110 120

Size of Reservation Buffer (Records)

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
)

Fig. 10. Experimental Results of BFTL under Different Sizes of the Reservation Buffer

could damage the reliability of BFTL due to power-failures. Reservation buffers
with different size were evaluated to find a reasonably good setting. The exper-
iment setups in Section 5.2 were used in this part of experiments, but the value
of rs was fixed at 0.5. The size of the reservation buffer was set between 10
records and 120 records, and the size was incremented by 10 records. Figure 10

428 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

(a) Average Response Time of

Insertion after Inserting 24,000

Records

(b) Number of Pages Being Written

after Inserting 24,000

Records

(c) Number of Pages Being

Read after Inserting 24,000 Records

(d) Number of Erased Blocks after

Inserting 24,000 Records

(e) Number of Executions of Compact

Function after Inserting 24,000 Records

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

rs

A
v

er
ag

e
R

es
p

o
n

se

T
im

e
(m

s)

BFTL

FTL

0

10000

20000

30000

40000

0 0.2 0.4 0.6 0.8 1

 rs

N
u

m
b

er
 o

f
P

ag
es

B
ei

n
g

 W
ri

tt
en

 (
P

ag
es

)

BFTL

FTL

0

20000

40000

60000

80000

100000

0 0.2 0.4 0.6 0.8 1

 rs

N
u

m
b

er
 o

f
P

ag
es

 B
ei

n
g

R
ea

d
 (

P
ag

es
)

BFTL

FTL

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

rs

N
u

m
b

er
 o

f
E

ra
se

d
 B

lo
ck

s

BFTL

FTL

0

1000

2000

3000

4000

5000
6000

7000

0 0.2 0.4 0.6 0.8 1

rs

N
u

m
b

er
 o

f
E

x
ec

u
ti

o
n

s

o
f

C
o

m
p

ac
t

F
u

n
ct

io
n

BFTL

Fig. 11. Experimental Results of B-Tree Index Structures Creation.

shows the average response time of the insertions: The average response time
was significantly reduced when the size of the reservation buffer was increased
from 10 records to 60 records. After that, the average response time was linearly
reduced and no significant improvement could be observed. Since further increas-
ing the size of the reservation buffer could damage the reliability of BFTL, the
recommended size of the reservation buffer for the experiments was 60 records.

Energy consumption is also a critical issue for portable devices. According to
the numbers of reads/ writes/ erases generated in the experiments, we calculated
the energy consumption contributed by BFTL and FTL. The energy consump-
tions of reads/ writes/ erases are included in Table 1. The calculated energy
consumption of the experiments are listed in Table 2: The energy consumed by
BFTL was clearly less than FTL. Since page writes and block erases consume rel-
atively more energy than page reads, the energy consumption was reduced when

An Efficient B-Tree Layer for Flash-Memory Storage Systems 429

BFTL smartly traded extra reads for the number of writes. Furthermore, energy
consumption contributed by garbage collection was also reduced by BFTL since
BFTL consumed free space slower than FTL.

6 Conclusion

Flash-memory storage systems are very suitable for embedded systems such as
portable devices and consumer electronics. Due to hardware restrictions, the
performance of NAND flash memory could deteriorate significantly when files
with index structures, such as B-Tree, are stored. In this paper, we propose a
methodology and a layer design to support B-Tree index structures over flash
memory. The objective is not only to improve the performance of flash-memory
storage systems but also to reduce the energy consumption of the systems, where
energy consumption is an important issue for the design of portable devices.
BFTL is introduced as a layer over FTL to achieve the objectives. BFTL reduces
the number of redundant data written to flash memory. We conducted a series
of experiments over a system prototype, for which we have very encouraging
results.

There are many promising research directions for the future work. With the
advance of flash-memory technology, large-scaled flash-memory storage systems
could become very much affordable in the near future. How to manage data
records and their index structures, or even simply storage space, over huge flash
memory might not have a simple solution. The overheads in flash-memory man-
agement could introduce a serious performance in system designs.

References

1. A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory Based File System,”
USENIX Technical Conference on Unix and Advanced Computing Systems, 1995.

2. Aleph One Company, “Yet Another Flash Filing System”.
3. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer: “An Asymptotically

Optimal Multiversion B-Tree,” VLDB Journal 5(4): 264-275(1996)
4. Compact Flash Association, “CompactF lashTM 1.4 Specification,” 1998.
5. D. Woodhouse, Red Hat, Inc. “JFFS: The Journalling Flash File System”.
6. D. Comer, “The Ubiquitous B-Tree,” ACM Computing Surveys 11(2): 121-

137(1979).
7. H. Yokota, Y. Kanemasa, and J. Miyazaki: “Fat-Btree: An Update-Conscious Par-

allel Directory Structure,” ICDE 1999: 448-457
8. Intel Corporation, “Flash File System Selection Guide”.
9. Intel Corporation, “Understanding the Flash Translation Layer(FTL) Specifica-

tion”.
10. Intel Corporation, “Software Concerns of Implementing a Resident Flash Disk”.
11. Intel Corporation, “FTL Logger Exchanging Data with FTL Systems”.
12. Intel Corporation, “LFS File Manager Software: LFM”.
13. K. Han-Joon, and L. Sang-goo, “A New Flash Memory Management for Flash Stor-

age System”, Proceedings of the Computer Software and Applications Conference,
1999.

430 C.-H. Wu, L.-P. Chang, and T.-W. Kuo

14. L. P. Chang, T. W. Kuo,“A Real-time Garbage Collection Mechanism for Flash
Memory Storage System in Embedded Systems,” The 8th International Conference
on Real-Time Computing Systems and Applications (RTCSA 2002), 2002.

15. L. P. Chang, and T. W. Kuo, “A Dynamic-Voltage-Adjustment Mechanism in
Reducing the Power Consumption of Flash Memory for Portable Devices,” IEEE
Conference on Consumer Electronic (ICCE 2001), LA. USA, June 2001.

16. L. P. Chang, and T. W. Kuo, “An Adaptive Striping Architecture for Flash Mem-
ory Storage Systems of Embedded Systems,” The 8th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS 2002) September 24 ¡V
27, 2002. San Jose, California.

17. M. Rosenblum, and J. K. Ousterhout, “The Design and Implementation of a Log-
Structured File System,” ACM Transactions on Computer Systems 10(1) (1992)
pp.26-52.

18. M. Wu, and W. Zwaenepoel, “eNVy: A Non-Volatile, Main Memory Storage Sys-
tem,” Proceedings of the 6th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 1994), 1994.

19. M. Freeston, “A General Solution of the n-dimensional B-Tree Problem,” SIGMOD
Conference, San Jose, May 1995.

20. M. R. Garey, and D. S. Johnson, “Computers and intractability”, 1979.
21. R. Bayer, and E. M. McCreight: “Organization and Maintenance of Large Ordered

Indices,” Acta Informatica 1: 173-189(1972).
22. SSFDC Forum, ”SmartMediaTM Specification”, 1999.
23. T. W. Kuo, J. H. Wey, and K. Y. Lam, “Real-Time Data Access Control on B-Tree

Index Structures,” the IEEE 15th International Conference on Data Engineering
(ICDE 1999), Sydney, Australia, March 1999.

24. Vijay V. Vazirani, “Approximation Algorithm,” Springer publisher, 2001.

Multi-disk Scheduling for High-Performance

RAID-0 Devices

Hsi-Wu Lo1, Tei-Wei Kuo1, and Kam-Yiu Lam2

1 Department of Computer Science and Information Engineering
National Taiwan University

Taipei, Taiwan, ROC
FAX: 886-23628167

{d89015,ktw}@csie.ntu.edu.tw
2 Department of Computer Science

City University of Hong Kong
Kowloon, Hong Kong

Fax: 852-27888614
cskylam@cityu.edu.hk

Abstract. High-Performance I/O subsystems have become a must for
multimedia systems, such as video servers [15,16,18]. The proposing of
the Intelligent I/O (I2O) specifications [11] provides hardware vendors
an operating-system-independent architecture in building their solutions
for high-performance I/O subsystems. This paper targets one of the most
important performance issues in building an I2O RAID-0 device, which
is an important I2O implementation. We explore multi-disk scheduling
for I2O requests, which are usually associated with soft deadlines to
enforce quality-of-service requirements. The idea of Least-Remaining-
Request-Size-First (LRSF) is proposed for the request-level multi-disk
scheduling with the objective to improve the response-time require-
ments of I/O sub-systems. The proposed scheduling algorithm is then
extended to resolve the starvation problem and for SCAN-like disk ser-
vices. Finally, we exploit pre-fetching for I2O RAID-0 devices to further
improve their performance. The proposed methodologies are verified by
a series of experiments using realistic and randomly generated workloads.

Keywords: I/O subsystems, RAID-0 devices, intelligent I/O, multime-
dia storage systems, multi-disk scheduling, real-time disk scheduling

1 Introduction

High-Performance I/O subsystems have become a must for multimedia systems,
such as video servers [15,16,18]. With the strong demanding of high-performance
storage systems, more functionality is now pushed down to low-level drivers.
Complicated and intelligent I/O devices are emerging. Traditionally, hardware
vendors need to write drivers for each of their new products. The number of
products must multiply with the different operating environments and markets.
Significant overheads must also be paid for the testing and certification of the

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 431–453, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

432 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

OS and vendors’ driver versions. As drivers are getting overloaded, more CPU
time is consumed for low-level system (or I/O-related) operations. At the same
time, computer systems may suffer from potential hazard or lengthy blocking
time in system operations. It is often the price paid for better I/O performance.

The Intelligent I/O (I2O) specifications [11] are proposed by major players
in the industry, such as Microsoft, Intel, Hewlett-Packard, 3COM, Compaq, etc,
as a standard for the next-generation I/O subsystems. The goal is to provide in-
telligence at the hardware level and standardize platforms for all segments of the
industry. The I2O specifications let hardware/software vendors build intelligent
products that contain their own I/O controller for processing I/O transactions,
such as RAID controllers for storage and even ATM controllers for networking.
They specify an architecture that is operating-system-vendor-independent and
also adapts to existing operating systems, such as Microsoft Windows NT and
2000. That is, the I2O specifications enable the OS vendors to produce a single
driver for each class of devices and concentrate on optimizing the OS portion
of the driver. With an embedded processor, I2O adaptors can offload the major
I/O processing workload from the CPU and, at the same time, increase the I/O
performance.

Traditional work on disk scheduling has been focused on single disk systems,
such as SCAN, Shortest-Seek-Time-First (SSTF), Circular SCAN (C-SCAN),
and FIFO [21], where SCAN services disk requests on the way from one side of
the disk to the other side and then on the way back, etc. C-SCAN is a variation
of SCAN, except that C-SCAN always services disk requests from one side to the
other side, and as soon as the r/w head reaches the other side, it immediately
returns to the beginning of the disk, without servicing any request on the return
trip. SSTF always services the request closest to the current r/w head position.
FIFO services requests according to their arrival order. In particular, Jacobson
and Wilkes [12] proposed a highly efficient single-disk scheduling algorithm called
Shortest-Access-Time-First (SATF) and a starvation-free variant, in which a
request with the smallest access time is serviced first. They showed that SATF
is superior than many traditional algorithms, such as SCAN, C-SCAN, SSTF,
FIFO, etc, in terms of throughput. Methods are proposed to derive formula for
the rotation delay and seek time for any disk. Andrews, et a., [1] showed that
the optimization problem for single disk scheduling is an asymmetric traveling
salesman problem and provided approximation algorithms.

Traditional disk scheduling algorithms aim at maximizing the disk through-
put. They may not be suitable to multimedia applications where the requests
have response-time constraints. Reddy and Wyllie [17] are few of the first re-
searchers [2,3,5,7,10,17] who explored the tradeoff of seek-optimization tech-
niques (such as C-SCAN) and deadline-driven scheduling techniques (such as
the earliest-deadline-first algorithm [14]). They showed that a proper combi-
nation of the seek-optimization techniques and the deadline-driven scheduling
algorithms, such as SCAN plus the earliest-deadline-first algorithm (EDF), did
service a good number of video streams and have good response time. Abbott
and Garcia-Molina [2] proposed a SCAN-like deadline-driven algorithm. The al-

Multi-Disk Scheduling for High-Performance RAID-0 Devices 433

gorithm first picks up a request with the closest deadline and then services all
requests residing at cylinders between the current cylinder and the cylinder of the
request with the closest deadline. Chang, et al [5] proposed a deadline-monotonic
SCAN algorithm which guarantee hard deadlines of disk access, where the work-
load distribution (such as deadlines, disk addresses, etc) of disk access is known.
Chen and Little [8] explored storage allocation policies over single-disk storage
multimedia systems. Media objects were interleaved within a block to maintain
timing among the objects during data storage and retrieval. The goal is to min-
imize disk seek latency in playing back multiple multimedia sessions. Oyang, et
al. [18] considered a group of multimedia storage servers over Ethernet to deliver
video streams in an on-time fashion. A disk placement policy with a derived disk
bandwidth was proposed. Escobar-Molano and Ghandeharizadeh [16] considers
the display of structured video. A pre-reading technique was proposed to retrieve
objects in a structured video when disk bandwidth was not enough. Stringent
timing constraints were imposed on the system as hard deadlines.

Although researchers have proposed various excellent algorithms for single
disk scheduling, little work has been done for real-time multiple-disk scheduling,
especially for RAID storage systems. In particular, Weikum and Zabback [24]
studied the impacts of stripping size on RAID concurrency and performance.
Cheng, et al. [6] proposed to synchronize all disks for real-time RAID schedul-
ing. Sequential access is favored, at the cost of random access. The goal of this
research is to explore real-time disk scheduling for high-performance I2O RAID-
0 storage systems, where RAID-0 stands for an array of independent disks with
a block-stripping scheme. We shall focus on the design of high-performance I/O
subsystems under disk scheduling and refer interesting readers to many excel-
lent work on storage placement policies, e.g., [8,9,22]. We are interested in disk
scheduling algorithm which must not only maximize the I/O performance, e.g., in
terms of throughput or response time, but also minimize the number of requests
which miss their deadlines. In particular, we consider a commercial product AC-
ARD AEC 6850, which is a high-performance I2O RAID-0 adaptor released to
the market in 2000 by the ACARD Corp, and it can manage up to 75 hard disks
and contain 5 SCSI adaptors.

In this paper, we first illustrate the system architecture of I2O devices.
We then propose a request-based multi-disk scheduling algorithm called Least-

Remaining-Request-Size-First (LRSF), which can be integrated with any real-
time/non-real-time single-disk scheduling algorithm, such as SSTF and SCAN.
We extend LRSF by considering aging issues and SCAN-like disk scheduling
schemes. In order to further boost the performance of I2O RAID-0 devices, we
explore pre-fetching with and without enough caching memory. The proposed
algorithms and methodologies are evaluated by a series of experiments using
both randomly generated workloads and realistic workloads, for which we have
obtained very encouraging results.

The major contributions are two-fold: (1) We consider real-time RAID-0
scheduling under the important I2O system architecture. The idea of Least-

Remaining-Request-Size-First is proposed to improve the performance of I2O

434 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

Physical
Ssytem
Memory

I/O
Adapter A

I/O
Adapter B

Host PCI Bus

Address
Translate

Unit

se
co

nd
ar

y
PC

I
i960

Processor

IOP
Memory

SCSI
Adapter

SCSI
Adapter

SCSI
Adapter

SCSI
Adapter

SCSI
Adapter

CPU
CPU

CPU

SCSI
Device

SCSI
DeviceSCSI

Device

ACARD AEC 6850

Fig. 1. An I2O hardware architecture

RAID-0 devices for systems which require high-performance storage systems,
such as multimedia applications. (2) We extend LRSF-based scheduling to re-
solve aging issues and for SCAN-like disk service. We also explore pre-fetching
under I2O RAID-0 devices, which are shown pretty effective in further improv-
ing the I/O system performance. We must emphasize that the disk scheduling
problem and approaches considered in this paper are very practical, while not
much real-time disk scheduling work has been done in the past, especially for
RAID devices.

The rest of this paper is organized as follows: Section 2 illustrates the I2O
system architecture and its RAID implementation. Section 3 first defines I2O
RAID-0 requests and the performance goal. We then provide motivation for this
research and propose our methodologies for multi-disk scheduling. The proposed
methodologies are later extended to resolve aging issues and for SCAN-like disk
service. We then address pre-fetching for I2O RAID-0 devices. Section 4 is for
performance evaluation. Section 5 is the conclusion.

2 Intelligent Input/Output System Architecture

2.1 Intelligent Input/Output Architecture

An I/O interface provides a standard and uniform way for applications to access
I/O devices. It defines I/O system calls and lets applications indirectly invoke

Multi-Disk Scheduling for High-Performance RAID-0 Devices 435

vendor-supplied drivers to program the corresponding controllers/adaptors, and
the controllers/adaptors control devices to accomplish I/O transfers. The Intelli-
gent I/O (I2O) specifications [11] are proposed by major players in the industry
as a standard for the next-generation I/O subsystems. We illustrate the archi-
tecture of the I2O specifications by an example product ACARD AEC 6850,
which is to be released to the market in 2000 by the ACARD Corp. ACARD
AEC 6850 is an I2O RAID adaptor, which can manage up to 75 hard disks,
where RAID stands for the redundant array of independent disks. Its hardware
architecture is as shown in Figure 1. There are two major components: Host and
Target. A host can be any PC running a popular OS such as Microsoft Windows
2000. The host can have other I/O adaptors for other I/O devices. The target
is an I2O adaptor, such as ACARD AEC 6850 in this example. The interface
between the I2O adaptor and the host is currently defined as a PCI bus. ACARD
AEC 6850 has an embedded processor, such as Intel i960, memory, and up to
5 SCSI adaptors. Each SCSI adaptor may be connected to 15 disks. (Note that
IDE disks might be adopted in similar products.) The memory space of an I2O
adaptor can be mapped to the memory address domain of the host so that the
host and the target can communicate using DMA.

IRTOS

OSM

HOST

Message Layer
HDM
ISM

DDM

Fig. 2. I2O driver modules

The I2O architecture splits drivers into two parts: OS-Specific Module (OSM)
and Device Driver Module (DDM), as shown in Figure 2. OSM is implemented
at the host side, and DDM is at the target side. OSM provides an interface to
the host operating system and is usually supplied by OS vendors. OSM commu-
nicates with DDM via messages (on the top of a PCI bus). An I2O real-time
operating system (IRTOS) (and its related programs) runs on the I2O adaptor’s
processor to receive I/O requests from the host via OSM and schedules disk ser-
vices. All disk operations are initiated by invoking the appropriate DDM handler
functions. DDM may consist of two parts: Intermediate Service Module (ISM)
and Hardware Device Module (HDM). HDM contains hardware-specific code to
manage device controllers, and ISM lets hardware vendors add more functional-
ity to plain devices (stacked over HDM), e.g., having real-time disk scheduling
or resource management [11].

436 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

2.2 Intelligent Input/Output RAID

I2O devices are designed to fulfill the demand of high-performance I/O, and
one of the most important applications is I2O RAID’s. An I2O RAID device,
such as ACARD AEC 6850, may need to manage a number of disks with data
stripping technology. In particular, we are interested in RAID-0, in which data
are stripped in units of blocks such that an I/O request may be serviced by
several disks simultaneously. For the purpose of this section, an I/O request is
tentatively defined as a collection of i jobs (for i ≥ 1), which may be serviced by
different disks (I/O requests will be formally defined in Section 3.2.1).

We shall illustrate the system operation in terms of an I2O RAID-0 device
with four disks. According to the I2O specifications, there is an event queue for
the entire RAID device and each of its disks, as shown in Figure 3. Each of the
queues is a priority queue, where event priorities are determined by applications
(via OSM). An IRTOS (and its related programs) is an event-triggered system.
When the host issues an I/O request via OSM, the request is transformed into
a message and inserted into the corresponding message queue, as shown in Fig-
ure 4. The message insertion will trigger the execution of the corresponding
system thread to process the message and insert an event into the event queue
for the entire RAID device, as shown in Figure 3. The event carries all of the
necessary information for the I/O request received via OSM. In general, there is
a thread associated with each event queue. The event insertion will trigger the
execution of the thread assigned to the RAID device event queue. As a result,
the I/O request will be decomposed into a collection of jobs, and an event for
each of the jobs will be inserted into the event queue of the corresponding disk,
as shown in Figure 3. Threads which are assigned to the event queues of the
disks will then become ready to process their events and invoke DDM handler
functions to initiate I/O operations.

Disk1 Queue

e e
e

e e

e

e

Disk2 Queue Disk3 Queue Disk3 Queue

RAID Device Queue

Fig. 3. The event flow in an I2O RAID-0 device

Multi-Disk Scheduling for High-Performance RAID-0 Devices 437

Message
Queue

Request Msg

Target TID

Function Handler

Event

Target TID

Function Handler

Event Q

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Messages
from
OSM Event Dispatching

Fig. 4. Message dispatching in an I2O RAID-0 device

3 Real-Time I2O RAID-0 Scheduling

3.1 Motivation

An important objective of I2O RAID devices is to push down the I/O function-
ality to a lower level, i.e., the I2O controller level, such that high-performance
storage devices can be obtained. In this paper, we are interested in I2O RAID
devices, in which multiple disks are adopted to maximize the I/O bandwidth.
Disks with/without internal scheduling, such as SCSI and IDE disks, are po-
tential drives for our target I2O RAID devices. Our objective is to propose an
effective scheduling framework for multiple-disk scheduling such that the dead-
lines of requests are satisfied, and their response times are minimized.

Data stripping is a popular technology to distribute data over multiple disks
to utilize parallelism to maximize I/O bandwidth. Under the I2O specifications,
each I/O request has a reasonable deadline, and an I/O request may be up to
4GB (the byte count is of 4 bytes in BsaBlockRead request message) [11]. In
other words, a request may consist of a collection of jobs executing on several
disks. The deadline setting of an I/O request depends on many factors, such as
the type of the request, request slack (called TimeMultiplier in the I2O specifica-
tions), etc. For example, the deadline of a read (and write) request is defined as
TimeMultiplier × (RWV TimeoutBase + (RWV Timeout × size/64K)), where
RWV TimeoutBase and RWV Timeout are two constants set by OSM during
system initialization, and size and TimeMultiplier are the byte count and the
slack of the I/O request, respectively. The deadline of a cache flush request
or a device reset request for a specified DDM is defined as TimeMultiplier ×

timeout Base, where timeout Base is another constant set by OSM during sys-
tem initialization. The deadlines of I/O requests are, in general, soft deadlines

438 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

Table 1. I/O job parameters.

Jobs Time to Process Each Job

J1,1 13ms

J2,1 9ms

J3,1 12ms

J3,2 12ms

although, under some implementations, any deadline violation of certain I/O
requests may result in system reset.

Although various real-time and non-real-time disk scheduling algorithms have
been proposed for single-disk systems, they may not be suitable to the scheduling
of requests which involve multiple disks. Figure 5 shows a schedule of two disks
based on the shortest job first algorithm (SJF), where SJF services the smallest
job first. We ignore the seek time and rotation delay of jobs for the simplicity of
idea presentation. Let Ji,j denotes the jth job of the ith I/O request, and their
job sizes are listed in Table 1. The average response time is 18.33ms, where
the response time of a request is the maximum response time of its jobs, e.g.,
(25+9+21)/3. As astute readers may point out, since J3,2 already has a lengthy
response time, it makes no sense to schedule J3,1 before J1,1. After switching the
executions of J1,1 and J3,1, as shown in Figure 6, the average response time
becomes 15.67ms, e.g., (13 + 9 + 25)/3. This observation underlies the objective
of this research.

We must point out that past work on real-time or non-real-time disk schedul-
ing has been focused on pushing the performance of a single disk (in terms of
throughput or response time). Although it is still highly important to maximize
the performance of each disk in multi-disk scheduling, the consideration of each
request as a logical unit is of paramount importance to maximize the perfor-
mance of multi-disk devices, such as I2O RAID-0 devices. Nevertheless, we must
emphasize that any disk scheduling algorithm which considers the (request) re-
lationship among jobs over multiple disks should not sacrifice the performance
of individual disk too much. A compromise between request-based multi-disk
scheduling and single-disk scheduling must be achieved. In the following sec-
tions, we shall propose a framework to request-based multi-disk scheduling to
improve soft real-time performance of the I/O sub-systems.

9 12 2521

Disk1

Disk2

time

3,1 1,1J

J J

J

3,22,1

Fig. 5. A shortest-job-first schedule over two disks

Multi-Disk Scheduling for High-Performance RAID-0 Devices 439

Disk1

Disk2

time9 13 21 25

JJ

JJ

3,11,1

2,1 3,2

Fig. 6. A shortest-job-first schedule over three disks

3.2 Real-Time Multi-disk Scheduling

System Model for I2O RAID-0. Each I/O request on an I2O RAID-0 can be
modeled by four parameters ri = (arri, LBAi, si, di), where arri, LBAi, si, and
di are the arrival time, the starting logical block address (LBA), the size in bytes,
and the deadline of the I/O request ri, respectively. With block stripping, an
I2O adaptor must re-number the logical block addresses of blocks over its disks,
as shown in Figure 7, where the logical block address starts with 0. Suppose
that there are N disks managed by the I2O adaptor, and the block stripe size (or
physical block size) be B. A common approach is to assign the jth LBA of the ith
disk as the (N ∗B ∗ �(j/B)	+(i− 1) ∗B +(j%B))th LBA of the I2O device (for
0 ≤ j ≤ Max LBA Diski and 1 ≤ i ≤ N), where an I2O device is defined as
an I2O adaptor and its managed disks, and % is a mod operator. For example,
under the LBA re-numbering scheme of the ACARD AEC 6850 I2O RAID-0
devices, the block stripe size is 32 sectors, and each sector on an ordinary PC
disk is 512B. The LBA number of a block for an I2O device is called a I2O

LBA number or LBA number, when there is no ambiguity. The LBA number of
a block for a disk (managed by the I2O adaptor) is called a real LBA number.

RAID Disk Disk

Disk

Disk

1

2

n

Fig. 7. The block stripping of a RAID-0 device

440 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

The four parameters of an I2O I/O request ri = (arri, LBAi, si, di) can be
further abstracted as a collection of jobs executing on different disks (or a single
disk job if the I/O request is of a small size). That is, an I2O I/O request ri

can be re-defined as a tuple (arri, {Ji,1, · · · , Ji,ni
}, di), where each job Ji,j has

a disk number dski,j to execute the job, a size in bytes si,j , and a real LBA
number RLBAi,j as its starting LBA on its assigned disk. The completion time
of an I2O I/O request ri is the maximum of the completion time of all of its
jobs. Therefore, in order to meet the deadline of the I2O I/O request ri, every
job Ji,j must complete the I/O access of si,j bytes (starting from the real LBA
address RLBAi,j on disk dski,j) no later than the deadline di.

In this paper, we shall first propose the concept of request-based multi-disk
scheduling and then present our methods for pre-fetching and aging issues.

Least-Remaining-Request-Size-First Scheduling - A Multi-Disk

Scheduling Framework. The purpose of this section is to propose the idea of
request-based multi-disk scheduling called Least-Remaining-Request-Size-First

scheduling (LRSF). The objective is to speed up the service of the request with
the least remaining jobs (or size) and, at the same time, to minimize the perfor-
mance degradation of each individual disk. One major side-effect of LRSF is on
the synchronization of jobs belonging to the same request. (We shall discuss the
handling of large-size requests and the aging issue later.)

Let an I2O device manage N disks, and each disk be associated with a queue
of pending jobs. Each individual disk is scheduled by a single-disk scheduling
algorithm, such as SCAN, SSTF, EDF, etc, where the earliest deadline first
(EDF) algorithm schedules jobs in the order of their deadlines. The queue of
each disk is ordered according to its single-disk scheduling algorithm. Note that
SCAN (/C-SCAN) mentioned in this paper is, in fact, LOOK (/C-LOOK), where
LOOK (/C-LOOK) is a variation of SCAN (/C-SCAN), except that SCAN (/C-
SCAN) always moves the read/write head from one end of a disk to the other end.
LOOK (/C-LOOK) only moves the read/write head as far as the last request in
each direction [21]. The idea of LRSF is as follows:

Let Ji be the collection of the first R jobs in the disk queue of the ith disk,
where R is called the range parameter of LRSF. Let jk be a job in Ji and be
belonging to a request with the least remaining size. Suppose that j1 is the first
job in the disk queue of the ith disk. j1 should be scheduled for service on the ith
disk if j1 is jk, or the service of jk (before j1) may degrade the performance of
the ith disk too much. Otherwise, jk is scheduled for service. After the service,
the next job following the first R jobs in the disk queue of the ith disk joins Ji,
and the job scheduling repeats again. When there are no more than R jobs in
the disk queue, all jobs in the disk queue are in Ji.

The amount of performance degradation can be approximated by the evalu-
ation of a value function v(j1, jk) over j1 and jk. If the result of v(j1, jk) is less
than some specified threshold TH, then the service of jk (in front of j1) may
degrade the performance of the ith disk too much. For example, consider SSTF:
The definition of v(j1, jk) can be the ratio of the seek times of j1 and jk from the

Multi-Disk Scheduling for High-Performance RAID-0 Devices 441

Table 2. I/O job parameters.

Jobs Byte Counts Cylinder Number Disk Number

J1,1 512B 39 1

J1,2 512B 39 3

J2,1 512B 71 2

J2,2 512B 71 3

J3,1 512B 52 1

J4,1 512B 62 1

J4,2 512B 62 2

J4,3 512B 62 3

J5,1 512B 79 2

current r/w disk head’s position. TH can be any reasonable big number (or a
function of v(j1, jk)) as a threshold. In later sections, we shall address the issues
in processing large-size requests.

We shall illustrate LRSF by an example:

Example 1. LRSF with SSTF:

Let an I2O RAID-0 consist of three HP97560 SCSI disks, where their rotation
speed is 4, 002rpm. The seek time of the HP97560 SCSI disk can be modeled by
the following formula [12,19]:

seek time(seek dist) = 3.24 + 0.4
√

seek dist,

where seek dist is the seek distance in terms of cylinder numbers. The transfer
time of a sector, which is equal to 512B, is approximated as 0.23ms (i.e., time
to scan over a sector). Suppose that the disk r/w heads of the three disks are
originally located at cylinder numbers 55, 75, and 65, respectively, and all of the
disk arms are traveling towards smaller cylinder numbers initially.

Suppose that there are five requests with their byte counts, cylinder number,
and disk assignments listed in Table 2. Figure 8.(a) shows the disk queues sorted
according to SSTF. The response time of each job is listed in Table 3. The
average response time of requests is 9.58ms.

job

job

job

job

job

job

job

job

job

3,1

1,1

4,1

2,1

4,2

5,1

4,3

1,2

2,2

(a) Before Swapping (b) After Swapping

job

job

job

job

job

job

job

job

job

3,1

1,1

4,1 2,1

4,2

5,1

4,3

1,2

2,2

disk1 disk2 disk3 disk1 disk2 disk3

Fig. 8. SSTF schedules with/without LRSF

442 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

Table 3. Response times of jobs under SSTF

Jobs in Disk1 Response Time Jobs in Disk2 Response Time Jobs in Disk3 Response Time

J3,1 3.933ms J2,1 4.04ms J4,3 3.933ms

J4,1 9.091ms J5,1 8.411ms J2,2 8.373ms

J1,1 13.596ms J4,2 13.301ms J1,2 13.876ms

Table 4. Response times of jobs under LRSF-SSTF

Jobs in Disk1 Response Time Jobs in Disk2 Response Time Jobs in Disk3 Response Time

J3,1 3.933ms J5,1 4.04ms J2,2 4.220ms

J1,1 8.615ms J2,1 8.411ms J4,3 8.660ms

J4,1 13.773ms J4,2 12.851ms J1,2 13.818ms

Suppose that LRSF is considered with SSTF, and that the range parameter
R of LRSF is 3. Let the value function v(j1, jk) be the ratio of the seek times
of j1 and jk from the current r/w disk head’s position, and TH be 0.75. Since
job3,1 is belonging to the request with the least remaining size on the first disk,
and it is the first job in the first disk queue, job3,1 is scheduled for service on the
first disk. On the second disk, since job5,1 is belonging to the request with the
least remaining size on the second disk, and the value function v(job2,1, job5,1) =
4.04ms

4.04ms
= 1 is more than the threshold 0.75, job5,1 is scheduled for service on the

second disk, where job2,1 is the first job in the second disk queue. On the third
disk, job2,2 and job1,2 are both belonging to requests with the least remaining
size on the third disk. Since job2,2 is in front of job1,2, job2,2 is considered for
servicing first. Because the value function v(job4,3, job2,2) = 3.93ms

4.21ms
= 0.933 is

more than the threshold 0.75, job2,2 is scheduled for service on the third disk,
where job4,3 is the first job in the third disk queue. The response time of each job
under LRSF-SSTF is listed in Table 4, and the disk queues sorted according to
LRSF-SSTF are shown in Figure 8.(b). The average response time of all requests
is now 8.79ms, which is about 8% improvement in the average response time. �

3.3 Extensions: On-the-Way Scheduling and Aging Resolution

This section is meant to extend the proposed real-time disk scheduling algo-
rithm by further considering disk characteristics and aging issues. We shall first
integrate an on-the-way scheduling mechanism [12] (for SCAN-like service) with
LRSF and then resolve the aging and starvation issues.

On-The-Way Scheduling. One major reason for the superior performance
of SCAN and LOOK, especially when the workload is heavy, is because these
algorithms always service jobs collectively on their trips without moving the
disk head a lot. That is also the main reason why many real-time scheduling

Multi-Disk Scheduling for High-Performance RAID-0 Devices 443

Cylinder
250 500 750 1000 1250 1500 1750

r/w head target
position

current r/w
head position

on-the-way
region

(shaded area)

10

20

30

40

50

60

70

X2

X1

2

1

Se
ct

or

Fig. 9. The on-the-way region.

algorithms, such as EDF, do not perform well in general, when they are directly
applied in disk scheduling.

The purpose of this section is to integrate the Piggy-Back concept, which was
originally proposed to resolve the starvation problem in non-real-time single-
disk scheduling, with LRSF to improve their performance and to resolve the
starvation problems of large-size requests. We shall use the following example to
illustrate the idea of “on-the-way” scheduling.

Let the current disk r/w head stay at the 975th cylinder and the 4th sector,
as shown in Figure 91. Because the disk r/w head needs acceleration in moving
across cylinders, the two symmetric curves with the same ending point at the
current cylinder in Figure 9 show the time needed to travel between the cur-
rent cylinder and any target cylinder in terms of sectors. Suppose that the disk
scheduler decides that the next job to service stays at the 1250th cylinder and
the 55th sector. As shown in Figure 9, when the disk r/w head moves from the
975th cylinder to the 1250th cylinder, the disk r/w head would travel from the
4th sector to the 40th sector, because the disk keeps rotating. In order to go to
the target position, the disk r/w head needs to wait until the disk rotates from
the 40th sector to the 55th sector. Since the time to travel from the current
position to the target position is the same as that from the latter to the former,
the shaded area shown in Figure 9 denotes the collection of all blocks which can

1 A similar figure appears in [12].

444 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

be serviced on the way from the current disk r/w head position to the target
position without any extra effort. We call the shaded area the on-the-way region
from the current head position to the target position.

Distinct from LRSF, the on-the-way concept (i.e., the Piggy-Back concept)
provides a different level of consideration for disk scheduling. As the disk r/w
head moves from the current job to the next job (i.e., from the current head
position to the target position) based on LRSF and any single-disk scheduling
algorithm such as EDF (abbreviated as EDF/LRSF), all the jobs which fall in
the on-the-way region from the current job to the next job are serviced along
the way, regardless of their remaining request size and job priorities.

The integration of the on-the-way mechanism and LRSF (and other sin-
gle disk scheduling algorithm) has three major advantages: (1) The on-the-way
mechanism may help in improving the performance of large-size requests because
jobs of large-size requests may be serviced along the way when the disk is ser-
vicing jobs of small-size requests. Furthermore, the starvation problem may be
minimized indirectly because the remaining sizes of the large-size requests may
be reduced as other requests are serviced. Note that under LRSF, large-size re-
quests may suffer from bad services and probably starvation. (2) The on-the-way
mechanism can also help in improving the performance of real-time single-disk
scheduling algorithms such as EDF. Note that with the on-the-way mechanism,
EDF may service jobs collectively, similar to LOOK and C-LOOK, without mov-
ing the disk r/w head a lot. For example, on the way from the current job to the
target job, EDF may service jobs X1 and X2 along the way, even though they
may be belonging to large-numbered classes or have low priorities. (3) The on-
the-way mechanism may even improve the performance of non-real-time requests
without sacrificing real-time services, where non-real-time requests usually suffer
from less attention in servicing.

Aging Effects. Although the on-the-way mechanism may help in resolving the
starvation problem of large-size requests, there is still a chance that some large-
size requests still suffer from starvation during a heavy disk workload if the jobs
of some large-size requests may be located at cylinders which are always outside
the on-the-way regions of small-size requests’ jobs. The starvation problem is
particularly serious when LRSF is used with some other single-disk scheduling
algorithms which already suffer from the starvation problem, such as SSTF.
Requests may starve from services when single-job requests or requests which
have jobs located at cylinders close to the current head position keep coming, and
the disk r/w head never has a chance to move towards the jobs of starved (larger-
size) requests. Consequently, the large-size requests will have higher probability
of missing their deadlines.

A simple but effective approach to resolve the starvation problem is to move
jobs of those larger-size (or starved) requests forward (in starvation-oriented ser-
vices, such as SSTF) such that their services can be delivered. We can upgrade
the priorities/queue positions of (large-size) requests which have not been ser-
viced for a specified amount of time. If a large-size (or starved) request is not

Multi-Disk Scheduling for High-Performance RAID-0 Devices 445

serviced for a long time, it will be kept upgrading. Sooner or later, jobs of starved
requests will be at the beginning of disk queues and receive immediate services.

3.4 Pre-fetching for I2O RAID-0 Devices

An I2O RAID-0 device may be equipped with a large amount of memory for
pre-fetching or only a small amount of memory barely enough for its system
operation. This section is meant to explore pre-fetching in both cases. We must
emphasize that pre-fetching at the I2O RAID-0 level offers a different kind of
performance improvement, compared to the pre-fetching at the OS and disk-
drive levels. With the knowledge of the RAID configuration and workloads of
different disks, different disks may be initiated in parallel to do pre-fetching.
There are two ways for pre-fetching disk data into the memory. First, if the
disk workload is not very heavy, a smart way of pre-fetching at the I2O level
may utilize the disks, which may otherwise be idle, for pre-fetching. In this way,
pre-fetching may be achieved almost ”free” in many cases. Of course, the service
of the disk cannot be interrupted while pre-fetching is performing. Therefore,
if there is a new request entering into the system when the disk is servicing a
prefetch command. The disk will not service the request until the prefetching is
completed. In this situation, the performance of random access will be degraded.
Second, we can use the on-the-way (OTW) region to service prefetch commands.
This method needs more cost, because the prefetch commands, the large size
requests and the non-real time requests will compete for the OTW service.

When an I2O RAID-0 device is equipped with a large amount of memory for
pre-fetching, the pre-fetching can be done very intuitively: A segment of memory
may be allocated as a buffering region. When a request ri requests to access si

bytes starting from the I2O LBA number lbai, the I2O RAID-0 may soon issue
another request rnext

i
to access si bytes starting from the I2O LBA number

(lbai +si). The deadline of rnext

i
can be twice of the deadline of ri. The buffering

region can be managed under popular memory management schemes, such as
the least-recently-used (LRU) or FIFO schemes, where the LRU scheme always
selects the least recently used buffer for replacement.

When an I2O RAID-0 device is only equipped with a small amount of memory
barely enough for its system operation, pre-fetching is still possible. Pre-fetching
can be done by issuing SCSI commands, such as “PRE-FETCH” (the 0x34 SCSI
command), so that disk drives are given hints to try to cache sectors (at disk
drives’ internal cache) which might be accessed later.

With a more powerful processor such as ARM, it is possible to run a more
complicated pre-fetching algorithm inside an I2O RAID-0 device: For example,
when a disk is idle, it is possible to pre-fetch some sectors whose I2O LBA
numbers are close to the I2O LBA numbers of existing requests. As a result,
in an ideal case, an application may never need to wait for disk operations
to retrieve data. It might happen that, when an application sequentially reads
data in the I2O LBA number order, disks always finish pre-fetching in time in
obtaining data needed by the application.

446 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

Table 5. The value function of each algorithm.

Algorithm Value Function v(j1, jk) Threshold TH Remark

EDF (deadline1/deadlinek) 0.6 ratio of request deadlines

SATF (access time1/access timek) 0.8 ratio of access times

FIFO (arrival time1/arrival timek) 0.0 ratio of arrival times

C-LOOK (seek time1/seek timek) 0.1 ratio of seek times

SSTF (seek time1/seek timek) 0.1 ratio of seek times

Table 6. Simulation Benchmarks: WinBench98, Simulation Time = 100 seconds.

Name characteristics Remark

Business good locality, large request size applications, such as graphic play back software
such as Adobe PhotoShop and database applications

High End good locality, small request size applications, such as Visual C++

4 Performance Evaluation

4.1 Performance Metrics and Data Sets

The experiments described in this section are meant to assess the capability of
the LRSF multi-disk scheduling framework, the on-the-way mechanism (OTW),
and the pre-fetching mechanism in scheduling I2O RAID-0 requests. We have
implemented a simulation model for an I2O RAID-0 device under realistic bench-
marks and randomly generated workloads. We compare the performance of the
earliest deadline first algorithm (EDF), Shortest Access Time First (SATF) [12],
and some well-known disk scheduling algorithms, such as FIFO, C-LOOK, and
SSTF, with or without the LRSF framework.

Table 5 shows the value function and the threshold of the LRSF framework
for each simulated algorithm. The value function of each algorithm was defined
based on its individual scheduling discipline. The threshold for an algorithm was
defined based on a series of experiments to optimize LRSF for each algorithm.
In general, a highly efficient single-disk scheduling algorithm, such as SATF,
usually has a larger threshold to prevent LRSF from carelessly swapping jobs in
queues.

Since we are interested in disk scheduling where the requests have soft real-
time constraints, the primary performance metric used are the miss ratio and
the average response time of the requests AVG Resp. Note that in a soft real-
time system, a request still has some value even after its deadline. Miss ratio is
defined as the ratio of requests that their miss deadlines. Let numi and missi

be the total number of requests and deadline violations during an experiment,
respectively. Miss Ratio is calculated as missi

numi

.
There are two parts in the simulation experiments. The first one uses ran-

domly generated workloads to evaluate the capability of LRSF and OTW in
minimizing the miss ratio and the average response time of requests. The second
part is based on real benchmarks, as shown in Table 6, to assess the perfor-
mance improvement of pre-fetching. Note that disk-scheduling algorithms with

Multi-Disk Scheduling for High-Performance RAID-0 Devices 447

Table 7. Simulation Parameters.

Parameters Value Remark

Request Deadline Slack (1, 30) That is “TimeMultiplier”

RWVTimeoutBase 6.0

RWVTimeout 0.1

Arrival Pattern Poisson Distribution mean = (3, 7)

Block Stripe Size 32 sectors 1 sector = 512B

LBA Range (0, 100000)

Request Size (1, 512) unit: sector

Number of Disks 4

Sustained Transfer Rate 2MB/seconds

Time Granularity 1ms

Simulation Time 100seconds

pre-fetching should only be evaluated under realistic workloads to have a mean-
ingful performance comparison. Two major disk benchmarks were adopted: They
are “Business” and “High-End” workloads under WinBench98 [4]. The “Busi-
ness” workload stands for applications such as databases and graphic play back
software such as Adobe PhotoShop, and the “High-End” workload stands for
applications such as Visual C++. The randomly generated data sets were gen-
erated based on the parameters of real disks HP 97560 [12,19] and a commer-
cial I2O product ACARD AEC 6850. The deadlines of requests were calculated
based on the I2O specifications, where TimeMultiplier ranged from 1 to 30. The
deadline of a request was defined as TimeMultiplier × (RWV TimeoutBase +
(RWV Timeout × size/64K)). The arrivals of requests followed the Poisson dis-
tribution with a mean ranging from 3ms to 7ms. Each request may request data
of a size ranging from 1 sector to 512 sectors. The block strip size (or physical
block size) is 32 sectors. Four HP97560 SCSI disks were adopted, and their sus-
tained transfer rate was 2MB/seconds. The simulation time was 100, 000ms.
The simulation parameters are summarized in Table 7.

4.2 Experimental Results

Randomly Generated Data. Figure 10.a and 10.b show the miss ratio and
the average response time of requests under EDF with/without LRSF and
OTW. EDF with LRSF and OTW (EDF/LRSF-OTW) and EDF with LRSF
(EDF/LRSF) greatly out-performed EDF when the workload is heavy. For ex-
ample, when the inter-arrival time of requests was 4ms, EDF/LRSF-OTW im-
proved EDF by 65% and 25% in terms of the average response time and the miss
ratio, respectively. When the inter-arrival time of requests was large, e.g., 7ms,
LRSF and OTW still improved the performance of EDF significantly in terms
of average response time although the miss ratios were similar.

Figure 11.a and 11.b show the miss ratio and the average response time of re-
quests under SATF with/without LRSF and OTW. When the inter-arrival time
of requests decreased from 7ms to 3ms, the performance difference among SATF

448 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

0

5

10

15
20

25

30

35

40

45

50

4 5 6 7

Inter-arrival Time (ms)

M
is

s
R

at
io

(%
)

EDF

EDF / LRSF

EDF / LRSF - OTW

0

10

20

30

40

50

60

4 5 6 7

Inter-arrival Time (ms)

A
ve

ra
ge

Re
sp

on
se

T
im

e
(m

s)

EDF

EDF / LRSF

EDF / LRSF - OTW

(a) Average Response Time over Raid-0 disks (b) Miss Ratio over Raid-0 disks

Fig. 10. The miss ratio and the average response time of EDF with/without LRSF
and OTW

0

50

100

150

200

250

300

3 4 5 6 7

Inter-arrival Time

A
ve

ra
ge

Re
sp

on
se

T
im

e
(m

s)

SATF

SATF/LRSF

SATF/LRSF - OTW

0

10

20

30

40

50

60

3 4 5 6 7

Inter-arrival Time

M
is

s
R

at
io

(%
)

SATF

SATF/LRSF

SATF/LRSF - OTW

(a) Average Response Time over Raid-0 disks (b) Miss Ratio over Raid-0 disks

Fig. 11. The miss ratio and the average response time of SATF with/without LRSF
and OTW

with LRSF and OTW (SATF/LRSF-OTW), SATF with LRSF (SATF/LRSF),
and SATF without LRSF (SATF) gradually increased. When the system work-
load was low, e.g., 7ms, every SATF-based algorithm did equally well. We must
point out that SATF is a very effective disk scheduling algorithm. That is why
less improvement was achieved. Note that in [12], SATF was shown being supe-
rior than many traditional algorithms, such as SCAN, C-SCAN, SSTF, FIFO,
etc. In general, SATF/LRSF improved SATF by around 5% in terms of average
response time and by around 10% in terms of miss ratio when the workload
is heavy. SATF/LRSF-OTW improved SATF/LRSF again by less than 5% in
terms of average response time and by around 3% in terms of miss ratio. Totally,
SATF/LRSF-OTW improved SATF by around 10% in terms of average response
time and by around 13% in terms of miss ratio when the inter-arrival rate was

Multi-Disk Scheduling for High-Performance RAID-0 Devices 449

0

50

100

150

200

250

300

350

6.5 7 7.5

Inter-arrival Time

A
v

er
ag

e
R

es
p

on
se

T
im

e
(m

s)

FIFO

FIFO / LRSF

FIFO / LRSF - OTW

0

5

10

15

20

25

30

35

40

45

6.5 7 7.5

Inter-arrival Time

M
is

s
ra

ti
o

(%
)

FIFO

FIFO / LRSF

FIFO / LRSF - OTW

(a) Average Response Time over Raid-0 disks (b) Miss Ratio over Raid-0 disks

Fig. 12. The miss ratio and the average response time of FIFO with/without LRSF
and OTW

no more than 4ms. The improvement of LRSF on SATF was not as large as that
on EDF because SATF had better optimization on disk access time.

Figure 12.a and 12.b show the miss ratio and the average response time
of requests under FIFO with/without LRSF and OTW. The inter-arrival time
of requests ranged from 7.5ms to 6.5ms, instead of from 7ms to 3ms. It was
because the performance of FIFO was very bad when the workload was heavy,
e.g., < 6ms. From the figures, we can see that, in general, FIFO/LRSF improved
FIFO by around 5% in terms of average response time and by around 12%
in terms of miss ratio (when the inter-arrival time was no more than 7ms).
FIFO/LRSF-OTW improved FIFO/LRSF significantly (by around 1, 100%) in
terms of average response time and (by around 300%) in terms of miss ratio
when the inter-arrival time was 6.5ms. It was clear that LRSF slightly improved
FIFO, and OTW improved the performance of FIFO significantly because of the
SCAN-like service scheme under OTW.

Figure 13.a and 13.b show the miss ratio and the average response time of
requests under C-LOOK with/without LRSF and OTW. The inter-arrival time
of requests ranged from 7ms to 4ms, instead of from 7ms to 3ms, because the
system was overloaded when the inter-arrival time was 3ms. In general, LRSF
improved the miss ratio of C-LOOK but at the cost of average response time.
It was because LRSF might skip requests on the way from one side of the disk
to the other side under C-LOOK. This affected the efficiency of the C-LOOK
algorithm. Figure 13.a and 13.b show that OTW improved the performance of an
I2O disk significantly because OTW also considered the optimization of rational
delay, while C-LOOK only considered seek time. C-LOOK with LRSF and OTW
had the best performance, compared to other combinations of C-LOOK, LRSF,
and OTW. C-LOOK/LRSF-OTW improved the average response time and the
miss ratio of C-LOOK by around 1100% and 40%, respectively.

450 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

0

200

400

600

800

1000

1200

1400

4 5 6 7

Inter-arrival Time (ms)

A
ve

ra
ge

Re
sp

on
se

T
im

e
(m

s)

C-LOOK

C-LOOK / LRSF

C-LOOK / LRSF - OTW

C-LOOK / OTW

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4

Inter-arrival Time (ms)

M
is

s
R

at
io

(%
)

C-LOOK

C-LOOK / LRSF

C-LOOK / LRSF - OTW

C-LOOK / OTW

(a) Average Response Time over Raid-0 disks (b) Miss Ratio over Raid-0 disks

Fig. 13. The miss ratio and the average response time of C-LOOK with/without LRSF
and OTW

(a) Average Response Time over Raid-0 Disks (b) Miss Ratio over Raid-0 Disks

0

100

200

300

400

500

600

700

4 5 6 7

Inter-arrival Time

A
ve

ra
ge

R
es

po
ns

e
T

im
e

(m
s)

SSTF

SSTF/LRSF

0

10

20

30

40

50

60

70

80

90

4 5 6 7

Inter-arrival Time

M
is

s
R

a
tio

(%
)

SSTF

SSTF/LRSF

Fig. 14. The miss ratio and the average response time of SSTF with/without LRSF
and OTW

Figure 14.a and 14.b show the miss ratio and the average response time of
requests under SSTF with/without LRSF. Since SSTF was not compatible with
OTW (because there was virtually nothing in the on-the-way region between
the current disk head and the shortest-seek-time job), SSTF was not simulated
with OTW. The inter-arrival time of requests ranged from 7ms to 4ms, instead
of from 7ms to 3ms, because the system was overloaded under SSTF when the
request inter-arrival time was 3ms. In general, LRSF improved the performance
of SSTF significantly in both miss ratio and average response time. The average
improvement on average response time and miss ratio was about 20% and 12%,
respectively, when the request inter-arrival time was no more than 5ms. The
average response time under SSTF, when the request inter-arrival time was 4ms,

Multi-Disk Scheduling for High-Performance RAID-0 Devices 451

0

200

400

600

800

1000

1200

1400

1600

1800

EDF FIFO C-LOOK SSTF SATF

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

without prefetch

with prefetch

0

100

200

300

400

500

600

700

800

EDF FIFO C-LOOK SSTF SATF

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

without prefetch

with prefetch

(b) High End(a) Business

Fig. 15. The average response time of all scheduling algorithms under the WinBench98
”Business” and ”High-End” workloads.

was not shown because the simulation disk queue was overflowed (where the
queue has 512 entries).

WinBench98-Based Results for Pre-fetching. While the previous section
explores the performance improvement of LRSF and OTW on multi-disk schedul-
ing algorithms, the purpose of this section is to assess the performance improve-
ment of the pre-fetching mechanism. We considered a commercial product AC-
ARD AEC 6850 with four HP97560 SCSI disks. Let each disk drive have 1MB
internal caching space for pre-fetching, and the I2O adaptor have no caching
space. We must emphasize that if the I2O adaptor had non-zero caching space,
the simulation results (to be described later) would be even better.

Figure 15.a and 15.b show the average response time of all scheduling algo-
rithms with/without pre-fetching under the WinBench98 ”Business” and ”High-
End” workloads, respectively. In general, SATF and SSTF out-performed other
scheduling algorithms in terms of the average response time. Pre-fetching could
improve the less-efficient single-disk scheduling algorithms such as EDF and
FIFO significantly, e.g., about 10% improvement for EDF and FIFO under both
WinBench98 ”Business” and ”High-End” workloads. Even for SATF and SSTF,
pre-fetching improved their performance by around 4% under the ”Business”
workload and by around 3% under the ”High-End” workload. As astute readers
might point out, pre-fetching could be used with LRSF and OTW, as shown in
the previous section. Similar improvement could be achieved.

5 Conclusion

There has been an increasing demand for high-performance I/O subsystems in
the past decades. I2O devices are of the choices for application systems with

452 H.-W. Lo, T.-W. Kuo, and K.-Y. Lam

stringent response-time requirements, such as multimedia servers. This paper
targets an important performance issue in the design of I2O RAID-0 devices,
where scheduling of multi-disk requests with performance constraints has been
often ignored in the past. Our goal is to improve the soft real-time performance of
I2O RAID-0 devices to fit the needs of many application systems with stringent
performance requirements, such as video servers, and to verify our results under
a realistic product ACARD AEC 6850 and real workloads, where ACARD AEC
6850 is a high-performance I2O RAID-0 adaptor to be released to the market in
2000 by the ACARD Corp. We explore real-time multi-disk scheduling under I2O
RAID-0 to improve the I/O performance in minimizing the number of deadline
violations and mean response time. We illustrate the system architecture of I2O
devices and define their performance goal. We propose a request-based real-
time multi-disk scheduling algorithm called Least-Remaining-Request-Size-First

(LRSF), which can be integrated with any real-time/non-real-time single-disk
scheduling algorithm, such as SSTF and C-LOOK. We then explore aging issues
and SCAN-like disk service. Pre-fetching is also explored under I2O RAID-0 to
further improve the I/O system performance. The capability of our approach is
evaluated using randomly generated and realistic workloads.

The emerging of I2O specifications provides a standard for the next-
generation I/O subsystems. With major players in the industry actively involved,
providing truly high-performance I2O devices is the only way to survive in the
market. This work targets one of the most important issues in the design of I2O
devices. For the future research, we shall explore various approximate algorithms
for multi-disk and single-disk scheduling to fit different I2O RAID devices which
might adopt embedded processors with different computing power. We shall also
explore multi-disk scheduling for other types of I2O RAID devices, such as those
for mirroring and parity-based stripping schemes.

References

1. M. Andrews, M.A. Bender, L. Zhang, ”New Algorithms for the Disk Scheduling
Problem,” Proceeding on the 37th Annual Symposium on Foundations of Computer

Science, 1996, pp. 550-559.

2. R.K. Abbott and H. Garcia-Molina, ”Scheduling I/O Requests with Deadlines: a
Performance Evaluation,” IEEE 11th Real-Time Systems Symposium, Dec 1990,
pp. 113-124.

3. J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz, ”Disk Schedul-
ing woth Quality of Service Guarantees,” IEEE International Conference on Mul-

timedia Computing and Systems, 1999, pp.400-405.

4. http://www.zdnet.com/etestinglabs/stories/benchmarks/0,8829,2326114,00.html

5. R.-I. Chang, W.-K. Shih, and R.-C. Chang, “Deadline-Modification-SCAN with
Maximum-Scannable-Groups for Multimedia Real-Time Disk Scheduling,” IEEE

19th Real-Time Systems Symposium, December 1998, pp. 40-49.

6. P. Chang, H. Jin, X. Zhou, Q. Chen, and J. Zhang, ”HUST-RAID: High Perfor-
mance RAID in Real-Time System,” IEEE Pacific Rim Conference on Communi-

cation, Computers, and signal Processing,, 1999, pp. 59-62.

Multi-Disk Scheduling for High-Performance RAID-0 Devices 453

7. S. Chen, J.A. Stankovic, J.F. Kurose, and D.F. Towsley, “Performance Evaluation
of Two New disk scheduling Algorithms for Real-Time Systems,” Journal of Real-

Time Systems, 3(3):307-336, 1991.
8. H.J. Chen, T.D.C. Little, ” Storage Allocation Policies for Time-Dependent Mul-

timedia Data,” IEEE Transactions on Knowledge and Data Engineering, October
1996.

9. Ed Chang and A. Zakhor, ”Cost Analyses for VBR Video Servers,” IEEE Multi-

media, Fall 1996.
10. K. Hwang and H. Shih, ”Real-Time Disk Scheduling Based on Urgent Group and

Shortest Seek Time First,” the 5th Euromicro Workshop on Real-Time Systems,

1993, pp. 124-130.
11. Intelligent I/O (I2O) Architecture Specifications, Ver 2.0, I2O SIGTM , March 1999.
12. D.M. Jacobson and J. Wilkes, ”Disk Scheduling Algorithms Based on Rotational

Position,” Technical Report HPL-CSP-91-7rev1, Hewelett-Packard Company, 1991.
13. T.-W. Kuo, Y.-H. Liu, and K.J. Lin, “Efficient On-Line Schedulability Tests for

Priority Driven Real-Time Systems,” IEEE 2000 Real-Time Technology and Ap-

plications Symposium, Washington D.C., USA, June 2000.
14. C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment,” JACM, Vol. 20, No. 1, January 1973, pp. 46-61.
15. D. Meliksetian, F.F.K. Yu, C.Y.R Chen, ”Methodologies for Designing Video

Servers”, IEEE Transcations on Multimedia, March 2000.
16. M.L.E- Molano, S. Ghandeharizadeh, ”On Coordinated Display of Structured

Video”, IEEE Multimedia, July-September 1997.
17. A.L.N. Reddy, J.C. Wyllie, ”I/O Issues in a Multimedia System”, IEEE Computer,

March 1994.
18. Y.J. Oyang, C.H. Wen, C.Y. Cheng, M.H. Lee and J.T. Li, ”A Multimedia Storage

System for On-Demand Playback”, IEEE Transactions on Consumer Electrontics,
February 1995.

19. C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive Modeling,” IEEE

Computer, March 1994, 27(3):17-29.
20. A.L. N. Reddy and J.C. Wyllie, “I/O Issues in Multimedia System,” IEEE Trans-

actions on Computers, March 1994.
21. A. Silberschatz P.B. Glavin and G. Gagne“Operating System Concepts,”, 6th Ed.,

Addison Wesley, 2001.
22. S. Tsao, ”A Low Cost Optical Storage Server for Near Video-on-Demand Systems,”

�IEEE Transcation on Broadcasting, March, 2001.
23. B.L. Worthington, G.R. Ganger, Y.N. Patt, and J. Wilkes, “On- Line Extraction

of SCSI Disk Drive Parameters”, ACM SIGMETRICS, May 1995, pp. 146-156.
24. G. Weikum and P. Zabback, ”Tuning of Stripping Units in Disk-Array-Based File

Systems,” Interoperability in Multidatabase Systems, 1991. IMS ’91. Proceedings.,
First International Workshop on , 1991 , Page(s): 280 -287.

Database Pointers: A Predictable Way of
Manipulating Hot Data in Hard Real-Time

Systems�

Dag Nyström1, Aleksandra Tešanović2,
Christer Norström1, and Jörgen Hansson2

1 Dept. of Computer Engineering, Mälardalen University
{dag.nystrom,christer.norstrom}@mdh.se

2 Dept. of Computer Science, Linköping University
{alete,jorha}@ida.liu.se

Abstract. Traditionally, control systems use ad hoc techniques such as
shared internal data structures, to store control data. However, due to
the increasing data volume in control systems, these internal data struc-
tures become increasingly difficult to maintain. A real-time database
management system can provide an efficient and uniform way to struc-
ture and access data. However the drawback with database management
systems is the overhead added when accessing data. In this paper we
introduce a new concept called database pointers, which provides fast
and deterministic accesses to data in hard real-time database manage-
ment systems compared to traditional database management systems.
The concept is especially beneficial for hard real-time control systems
where many control tasks each use few data elements at high frequen-
cies. Database pointers can co-reside with a relational data model, and
any updates made from the database pointer interface are immediately
visible from the relational view. We show the efficiency with our approach
by comparing it to tuple identifiers and relational processing.

1 Introduction

In recent years, the complexity of embedded real-time controlling systems has
increased. This is especially true for the automotive industry [1]. Along with this
increased complexity, the amount of data that needs to be handled has grown in
a similar fashion. Since data in real-time systems traditionally is handled using
ad hoc techniques and internal data structures, this increase of data is imposing
problems when it comes to maintenance and development.

One possible solution to these problems is to integrate an embedded real-
time database management system (RTDBMS) within the real-time system. A
RTDBMS can provide the real-time system with a uniform view and access of
data. This is especially useful for distributed real-time systems where data is
� This work is supported by ARTES, a network for real-time research and graduate

education in Sweden.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 454–465, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Database Pointers: A Predictable Way of Manipulating Hot Data 455

shared between nodes. Because of the uniform access of data, the same database
request is issued regardless if the data is read at the local node or from a dis-
tributed node. Furthermore, RTDBMSs can ensure consistency, both logical and
temporal [2]. Finally, RTDBMSs allow so called ad hoc queries, i.e., requests for
a view of data performed during run-time. This is especially useful for manage-
ment and system monitoring. For example, consider a large control system being
monitored from a control room. Suddenly, a temperature warning is issued. An
ad hoc query showing the temperatures and pressures of multiple sub-systems
might help the engineers to determine the cause of the overheating.

Integrating a RTDBMS into a real-time system also has drawbacks. There
will most certainly be an added overhead for retrieving data elements. This
is partly because of the indexing system used by most database management
systems (DBMS). The indexing system is used to locate where in the memory a
certain data element is stored. Usually, indexing systems use some tree structure,
such as the B-tree [3] and T-tree [4] structures, or a hashing table [5].

An increase of the retrieval times for data has, apart from longer task execu-
tion, one additional drawback. Since shared data in a concurrent system needs to
be protected using semaphores or database locking systems, the blocking factor
for hot data can be significant. Hot data are data elements used frequently by
multiple tasks. Hot data is sensitive to congestion and therefore it is of utmost
importance to lock hot data for as short time as possible. Furthermore, it is im-
portant to bound blocking times to allow response time analysis of the system.
Examples of hot data are sensor readings for motor control of a vehicle, e.g.,
rpm and piston position. These readings are continuously stored by I/O tasks
and continuously read by controlling tasks. A congestion involving these heav-
ily accessed data elements might result in a malfunction. On the other hand,
information regarding the level in the fuel tank is not as crucial and might be
accessed less frequent, and can therefore be considered non-hot data.

In this paper we propose the concept of database pointers, which is an exten-
sion to the widely used tuple identifiers [6]. Tuple identifiers contain information
about the location of a tuple, typically a block number and an offset. Database
pointers have the efficiency of a shared variable combined with the advantages
of using a RTDBMS. They allow a fast and predictable way of accessing data in
a database without the need of consulting the DBMS indexing system. Further-
more database pointers provide an interface that uses a “pointer-like” syntax.
This interface is suitable for control system applications using numerous small
tasks running at high frequencies. Database pointers allow fast and predictable
accesses of data without violating neither temporal or logical consistency nor
transaction serialization. It can be used together with the relational data model
without risking a violation of the database integrity.

The paper is outlined as follows. In section 2 we describe the type of systems
we are focusing on. In addition, we give a short overview of tuple identifiers and
other related work. Database pointers are explained in section 3, followed by
an evaluation of the concept, which is presented in section 4. In section 5 we
conclude the paper.

456 D. Nyström et al.

2 Background and Related Work

This paper focuses on real-time applications that are used to control a process,
e.g., critical control functions in a vehicle such as motor control and brake con-
trol. The flow of execution in such a system is: (i) periodic scanning of sensors,
(ii) execution of control algorithms such as a PID-regulators, and (iii) propaga-
tion of the result to the actuators.

The execution is divided into a number of tasks, e.g., I/O-tasks and control
tasks. The functions of these tasks are fixed and often limited to a specific
activity. For example, an I/O-task’s only responsibility could be to read the
sensor-value on an input-port and write it to a specific location in memory, e.g.,
a shared variable [7].

In addition to these, relatively fixed control tasks, a number of management
tasks exists, which are generally more flexible than the control tasks, e.g., man-
agement tasks responsible for the user interface.

2.1 Relational Query Processing

Relational query processing is performed using a data manipulation language
(DML), such as SQL. A relational DML provides a flexible way of viewing and
manipulating data. The backside of this flexibility is performance loss.

Figure 1 shows a typical architecture of a DBMS. The DBMS provides access
to data through the SQL interface. A query, requesting value x, passed to this
interface will go through the following steps:

1. The query is passed from the application to the SQL interface.
2. The SQL interface requests that the query should be scheduled by the trans-

action scheduler.
3. The relational query processor parses the query and creates an execution

plan.
4. The locks needed to process the query are obtained by the concurrency

controller.
5. The tuple containing x is located by the index manager.
6. The tuple is then fetched from the database.
7. All locks are released by the concurrency controller.
8. The result is returned to the application.

Finally, since the result from a query issued to a relational DBMS is a relation
in itself, a retrieval of the data element x from the resulting relation is necessary.
This is done by the application.

In this example we assume a pessimistic concurrency control policy. However,
the flow of execution will be roughly the same if a different policy is used.

Database Pointers: A Predictable Way of Manipulating Hot Data 457

Tuples

Index

Relational Query processor

SQL
interface

Queries

Transaction
scheduler

Lock table

Concurrency
controller

x

Fig. 1. Architecture of a typical Database Management System.

2.2 Tuple Identifiers

The concept of tuple identifiers was first proposed back in the 70’s as internal
mechanisms for achieving fast accesses to data while performing relational oper-
ations, such as joins and unions. It was implemented by IBM in an experimental
prototype database called System R [6]. A tuple identifier is a data type con-
taining a pointer to one tuple stored either on a hard drive or in main memory.
Usually, a tuple is a rather short array of bytes containing some data. For a
relational model, one tuple contains the data for one row of a relation.

A decade later, it was proposed in [8] that tuple identifiers could be used
directly from the application via the DBMS interface. This would enable appli-
cations to create shortcuts to hot data, in order to retrieve them faster. The
concept is also implemented in the Adabas relational DBMS [9] under the name
Adabas Direct Access Method. In Adabas, tuple identifiers are stored in a hash
table and can be retrieved by the user for direct data access. A disadvantage
of this concept is the inability to move or delete tuples at run-time. To be able
to perform deletions or movements of tuples in Adabas, a reorganization utility
must be run, during which the entire database is blocked.

Applications using tuple identifiers must be aware of the structure of the
data stored in the tuples, e.g., offsets to specific attributes in the tuple. This
makes it difficult to add or remove attributes from relations, since this changes
the structure of the tuples.

2.3 Related Work

Apart from tuple identifiers, the concept of bypassing the index system to achieve
faster data access has been recognized in other database systems. The RDM
database [10] uses a concept called network access, which consist of a network

458 D. Nyström et al.

of pointers. Network pointers shortcut data used in a predefined order. The
implementation is, however, static and cannot be dynamically changed during
run-time.

In the Berkeley database [11], a concept called queue access is implemented,
which allows enqueueing and dequeueing of data elements without accessing
the index manager. The approach is primarily suited for data production and
consumption, e.g., state machines.

The Pervasive.SQL database [12], uses the interface Btrieve to efficiently ac-
cess data. Btrieve supports both physical and logical accesses of tuples. Logical
accesses uses a tuple key to search for a tuple using an index, while physical
access retrieves tuples based on their fixed physical locations. One database file
contains tuples of the same length in an array. Btrieve provides a number of
operations that allows stepping between the tuples, e.g., stepNext or stepLast.
The Btrieve access method is efficient for applications in which the order of
accesses is predefined and the tuples are never moved during run-time. Further-
more, restructuring the data within the tuples is not possible.

Some database management systems use the concept of database cursors as
a part of their embedded SQL interface [13]. Despite the syntactical similarities
between database pointers and database cursors they represent fundamentally
different concepts. While database cursors are used to access data elements from
within query results, i.e., result-sets, database pointers are used to bypass the
index system in order to make data accesses more efficient and deterministic.

3 Database Pointers

The concept of database pointers consists of four different components:

– The DBPointer data type, which is the actual pointer defined in the appli-
cation.

– The database pointer table, which contains all information needed by the
pointers.

– The database pointer interface, which provides a number of operations on
the database pointer.

– The database pointer flag, which is used to ensure consistency in the
database.

Using the concept of database pointers, the architecture of the DBMS given
in figure 1, is modified to include database pointer components, as shown in
figure 2. To illustrate the way database pointers work, and its benefits, we use
the example presented in section 2.1, i.e., the request for retrieving the data x
from the database.

Using the database pointer interface, the request could be made significantly
faster and more predictable. First, a read operation together with the database
pointer would be submitted to the database pointer interface. The database
pointer, acting as an index to the database pointer table array would then
be used to get the corresponding database pointer table entry. Each database

Database Pointers: A Predictable Way of Manipulating Hot Data 459

pointer table entry consists of three fields: the physical address of data element
x, information about the data type of x, and eventual locking information that
shows which lock x belongs to. Next the lock would be obtained and x would be
read. Finally, the lock would be released and the value of x would be returned
to the calling application. The four components of the database pointer and its
operations are described in detail in sections 3.1 to 3.4.

Out

In

Out

In

I/O task

I/O task

I/O task

I/O task

Non critical
control task

User
interface

task

Hard RT-system Soft RT-system

Non critical
control task

Critical control task

Critical control task

D
B
M
S

D
b

 p
o

in
ter

in
terface

S
Q

L
in

terface

 Tuples

Index

Lock table

Relational Query processor

Db pointer table

ptr
lockinfo
type

Sched-
uler

CC-
control

DBMS

Db pointer
interface

x

SQL
interface

bot()
query()
commit()

bind()
read()
write()
remove()

ptr
lockinfo
type

Fig. 2. Architecture of a controlling system that uses a DBMS with database pointers.

3.1 The DBPointer Data Type

The DBPointer data type is a pointer declared in the application task. When the
pointer is initialized, it points to a database pointer table entry, which in its turn
points to the actual data element. Hence the DBPointer could be viewed as a
handle to a database pointer. However, due to the database pointer’s syntactical
similarities with a pointer variable, we have chosen to refer to it as a pointer.

460 D. Nyström et al.

3.2 The Database Pointer Table

The database pointer table contains all information needed for the database
pointer, namely:

1. A pointer to the physical memory location of the data element inside the
tuple. Typically, the information stored is the data block the tuple resides
in, an offset to the tuple, and an offset to the data element within the tuple.

2. The data type of the data element pointed by the database pointer. This is
necessary in order to ensure that any write to the data element matches its
type, e.g., it is not feasible to write a floating point value to an integer.

3. Lock information describing the lock that corresponds to the tuple, i.e., if
locking is done on relation granules, the name of the relation should be stored
in as lock information. Note, if locks are not used in the DBMS, i.e., if opti-
mistic concurrency control is used, some other serialization information can
be stored in the database pointer table entry instead of the lock information.

3.3 The Database Pointer Interface

The database pointer interface consists of four operations:

1. bind(ptr,q) This operation initializes the database pointer ptr by binding
it to a database pointer table entry, which in turn points to the physical
address of the data. The physical binding is done via the execution of the
query q, which is written using a logical data manipulation language, e.g.,
SQL. The query should be formulated in such a way that it always returns
the address of a single data element. By using the bind operation, the binding
of the data element to the database pointer is done using a logical query,
even though the result of the binding is physical, i.e., the physical address is
bound to the database pointer entry. This implies that no knowledge of the
internal physical structures of the database is required by the application
programmer.

2. remove(ptr) This operation deletes a database pointer table entry.
3. read(ptr) This operation returns the value of the data element pointed by

ptr. It uses locking if necessary.
4. write(ptr,v) This operation writes the value v to the data element pointed

by ptr. It also uses locking if necessary. Furthermore, the type information in
the database pointer entry is compared with the type of v so that a correct
type is written.

The pseudo codes for the write and read operations are shown in figure
3. The write operation first checks that the types of the new value matches
the type of the data element (line 2), and then obtains a write lock for the
corresponding lock (line 4), i.e., locks the relation that the data element resides
in. The data element is then updated (line 5), and finally the lock is released
(line 6). The read operation obtains the corresponding read lock (line 10), reads
the data element (line 11), releases the lock (line 12), and then returns the value
to the application (line 13).

Database Pointers: A Predictable Way of Manipulating Hot Data 461

1 write(DBPointer dbp, Data value){
2 if(DataTypeOf(value) != dbp->type)
3 return DATA_TYPE_MISMATCH;
4 DbGetWriteLock(dbp->lockInfo);
5 *(dbp->ptr) = value;
6 DbReleaseLock(dbp->lockInfo);
7 return TRUE;

}

8 read(DBPointer dbp){
9 Data value;
10 DbGetReadLock(dbp->lockInfo);
11 value = *(dbp->ptr);
12 DbReleaseLock(dbp->lockInfo);
13 return value;

}

Fig. 3. The pseudo codes for the write and read operations

3.4 The Database Pointer Flag

The database pointer flag solves the problem of inconsistencies between the index
structure and the database pointer table, thus enabling tuples to be restructured
and moved during run time.

For example, if an additional attribute is inserted into a relation, e.g., a
column is added to a table, it would imply that all tuples belonging to the relation
need to be restructured to contain the new data element (the new column).
Hence, the size of the tuples changes, relocation of the tuples to new memory
locations is most probable. Since a schema change is performed via the SQL
interface, it will use and update the index in the index manager. If one of the
affected tuples is also referenced from a database pointer entry, inconsistencies
will occur, i.e., the database pointer entry will point to the old physical location
of the tuple.

Each database pointer flag that is set in the index structure indicates that
the tuple flagged is also referenced by a database pointer. This informs the
index manager that if this tuple is altered, e.g., moved, deleted, or changed, the
corresponding database table entry must be updated accordingly.

3.5 Application Example

To demonstrate how a real-time control system could use a RTDBMS with a
database pointer interface, we provide an application example. Consider the
system shown in figure 2 which is divided into two parts:

1. A hard real-time part that is performing time-critical controlling of the pro-
cess. The tasks in this part use the database pointer interface.

462 D. Nyström et al.

2. A soft real-time part that handles user interaction and non-critical control-
ling. It uses the flexible SQL interface.

A hard real-time controlling task that reads a sensor connected to an I/O
port is shown in figure 4. The task reads the current sensor value and updates
the corresponding data element in the database. The task consists of two parts,
an initialization part (line 2-4), which is run one time, and an infinite loop that
is periodically polling the sensor and writing the value to the database (line 5-8).

The initialization of the database pointer is done by first declaring the
database pointer (line 3) and then binding it to the data element containing
the oil temperature in the engine (line 4). The actual binding is performed in
the following four steps:

1. A new database pointer table entry is created.
2. The SQL query is executed and the address of the data element in the tuple

is stored in the database pointer table entry.
3. The data type information is set to the appropriate type, e.g., unsigned

int.
4. The locking information is set, e.g., if locking is done at relation granules,

the locking information would be set to engine.

1 TASK OilTempReader(void){
2 int s;
3 DBPointer *ptr;
4 bind(&ptr, "SELECT temperature

FROM engine WHERE
subsystem=oil;");

5 while(1){
6 s=read_sensor();
7 write(ptr,s);
8 waitForNextPeriod();

}
}

engine
subsystem temperature pressure

hydraulics 42 27
oil 103 10

cooling water 82 3

Fig. 4. An I/O task that uses a database pointer and its corresponding relation.

After performing these four steps, the database pointer is initialized and
ready to be used. The control loop is entered after the initialization (line 5). In
the control loop a new sensor value is collected (line 6), the value is then written
to the RTDBMS using the database pointer operation write (line 7). Finally,
the task sleeps until the next period arrives (line 8).

4 Concept Evaluation

In table 1 we compare the different access methods: tuple identifiers (TiD’s),
database pointers (DbP’s), and relational processing (Rel). Both tuple identifiers

Database Pointers: A Predictable Way of Manipulating Hot Data 463

Table 1. A comparison between tuple identifiers, database pointers, and relational
processing.

Criteria TiD’s DbP’s Rel
Interface Pointer based x x

Relational x
Data access Physical x x

Logical x x
Characteristics Can handle tuple movements x x

Can handle attribute changes x x

and database pointers use a pointer based interface, which provides fast and
predictable accesses to data inside a DBMS. However, it is not as flexible as
most relational interfaces, e.g., SQL.

Furthermore, database pointer and tuple identifiers both access data based
on direct physical references, in contrast to relational accesses that use logical
indexing to locate data. However, database pointers bind the pointer to the data
element using logical indexing, but access the data element using physical access.

Tuple identifiers have two drawbacks, firstly they are sensitive to schema
changes, and secondly the physical structure of the database is propagated to the
users. The former results in a system that can only add tuples instead of moving
or deleting them, while the latter requires that the application programmer
knows of the physical implementation of the database. Database pointers remove
both of these drawbacks. Due to the flag in the index system, the database
pointer table can be updated whenever the schema and/or index structure is
changed, allowing attribute changes, tuple movements and deletions. Moreover,
since the database pointer is bound directly to a data element inside the tuple
instead of to the tuple itself, no internal structures are exposed.

The major advantage with accessing the data via pointers instead of going
through the index system is the reduction of complexity. The complexity for the
T-tree algorithm is O(log2n + 1

2 log2
n
k), where n is the number of tuples in the

system and k is the number of tuples per index node [14]. The complexity for
database pointers and tuple identifier is O(1). As can be seen, there is a constant
execution time for accessing a data element using a database pointer or a tuple
identifier, while a logarithmic relationship exists for the tree-based approach.
There is however one additional cost for using the relational approach which we
will illustrate with the following example.

We already showed how the oil temperature of an engine can be accessed
using database pointers. Figure 5 shows the pseudo code for the same task,
which now uses an SQL interface instead of the database pointer interface. In
line 5, the Begin of transaction is issued and the actual update is performed
in line 6, using a C-like syntax that resembles of the function printf. The actual
commit is performed in line 7. In figure 5 all tuples in the relation engine have to
be accessed to find all that fulfill the condition subsystem = oil. This requires
accessing all three tuples.

464 D. Nyström et al.

1 TASK OilTempReader(void){
2 int s;
3 while(1){
4 s=read_sensor();
5 DB_BOT();
6 DB_Op("UPDATE engineSET temperature=%d

WHERE subsystem = oil;",s);
7 DB_COMMIT();
8 waitForNextPeriod();

}
}

Fig. 5. An example of a I/O task that uses a Relational approach.

It can, of course, be argued that precompiled transactions would be used
in a case like this. Precompiled transactions are transactions that have been
evaluated and optimized pre-run time. Such transactions can be directly called
upon during run-time, and is normally executed much more efficient than an
ad-hoc query. However, this does not influence the number of tuples accessed,
since no information of the values inside the tuples are stored there. Therefore,
all three tuples have to be fetched anyway.

5 Conclusions and Future Work

In this paper we have introduced the concept of database pointers to bypass the
indexing system in a real-time database. The functionality of a database pointer
can be compared to the functionality of an ordinary pointer. Database pointers
can dynamically be set to point at a specific data element in a tuple, which
can then be read and written without violating the database consistency. For
concurrent, pre-emptive applications, the database pointer mechanisms ensure
proper locking on the data element.

We have also showed an example of a real-time control application using
a database that supports both database pointers and a SQL interface. In this
example the hard real-time control system uses database pointers, while the soft
real-time management system utilizes the more flexible SQL interface.

The complexity of a database operation using a database pointer compared
to a SQL query is significantly reduced. Furthermore, the response time of a
database pointer operation is more predictable.

Currently we are implementing database pointers as a part of the COMET
DBMS, our experimental database management system [15]. This implementa-
tion will be used to measure the performance improvement of database pointers
for hard real-time controlling systems. Furthermore, different approaches for han-
dling the interference between the hard real-time database pointer transactions
and the soft real-time management transactions are investigated.

Database Pointers: A Predictable Way of Manipulating Hot Data 465

References

1. Casparsson, L., Rajnak, A., Tindell, K., Malmberg, P.: Volcano - a revolution in
on-board communications. Technical report, Volvo Technology Report (1998)

2. Ramamritham, K.: Real-time databases. International Journal of distributed and
Parallel Databases (1993) 199–226

3. Kuo, T.W., Wei, C.H., Lam, K.Y.: Real-Time Data Access Control on B-Tree
Index Structures. In: Proceedings of the 15th International Conference on Data
Engineering. (1999)

4. Lu, H., Ng, Y., Tian, Z.: T-tree or b-tree: Main memory database index structure
revisited. 11th Australasian Database Conference (2000)

5. Litwin, W.: Linear hashing: A new tool for file and table addressing. In: Proceed-
ings of the 6th International Conference on Very Large Databases. (1980)

6. Astrahan, M.M., et al.: System R: Relational Approach to Database Management.
ACM Transactions on Database Systems 1 (1976) 97–137

7. Nyström, D., Tešanović, A., Norström, C., Hansson, J., B̊ankestad, N.E.: Data
Management Issues in Vehicle Control Systems: a Case Study. In: Proceedings of
the 14th Euromicro Conference on Real-Time Systems. (2002)

8. de Riet, R.P.V., et al.: High-Level Programming Features for Improving the Effi-
ciency of a Relational Database System. ACM Transactions on Database Systems
6 (1981) 464–485

9. Software AG / SAG Systemhaus GmbH: Adabas Database .
http://www.softwareag.com (2003)

10. Birdstep Technology ASA: Rdm dbms. http://www.birdstep.com (2002)
11. Sleepycat Software Inc.: Berkeley db. http://www.sleepycat.com (2001)
12. Pervasive Software Inc.: Pervasive.sql. http://www.pervasive.com (2001)
13. Date, C.J.: An Introduction to Database Systems. Addison-Wesley (2000)
14. Lehman, T.J., Carey, M.J.: A Study of Index Structures for Main Memory

Database Management Systems. In: Proceedings of the 12th Conference on Very
Large Databases, Morgan Kaufmann pubs. (Los Altos CA), Kyoto. (1986)

15. Tešanović, A., Nyström, D., Hansson, J., Norström, C.: Towards Aspectual
Component-Based Development of Real-Time Systems. In: Proceedings of the
9th International Conference on Real-Time and Embedded Computing Systems
and Applications. (2003)

Extracting Temporal Properties from Real-Time
Systems by Automatic Tracing Analysis

Andrés Terrasa�1 and Guillem Bernat2

1 Departamento de Sistemas Informáticos y Computación
Technical University of Valencia (SPAIN)

aterrasa@dsic.upv.es
2 Real-Time Systems Research Group

Department of Computer Science
University of York (UK)
bernat@cs.york.ac.uk

Abstract. Statically analyzing real-time systems normally involves a
high degree of pessimism, but it is necessary in systems requiring 100%
guarantee. However, lots of less critical systems would significantly ben-
efit from combining such static analysis with empirical tests. Empirical
tests are based on observing the system at run time and extracting infor-
mation about its temporal behavior. In this sense, this paper presents a
generic and extensible framework that permits the extraction of temporal
properties of real-time systems by analyzing their run-time traces. The
analysis is based on event-recognition finite state machines that compute
the temporal properties with a computational cost of O(1) per observed
event in most of the cases. The framework is instantiated in order to
extract some typical temporal properties (such as computation time or
response time of tasks), which can serve as a template to define new ones.
Finally, the paper also shows how the framework can be implemented on
a real system, exclusively using state-of-the-art technology; in particular,
the Trace and Real-Time Extensions of the POSIX standard.

1 Introduction

One of the main problems of statically analyzing real-time systems is that it usu-
ally involves a high degree of pessimism. The typical a priori, analytical study of
the system checks the worst-case scenario for each task against the task require-
ments. However, this worst-case scenario, which can make the analysis reject a
task, may not actually happen at run time. For example, consider the highest
priority task in a system where resources are shared by using some sort of Pri-
ority Ceiling Protocol. The worst-case blocking time of this task is the longest
critical section of all the low priority tasks sharing a resource with the task.
If this blocking time is too large for the task temporal requirements, then the
� This work was developed during a research stay of this author at the University of

York, and partially funded by grant CTIDIB/2002/61 from the Valencian Govern-
ment (Spain) and by EU funded project FIRST (IST-2001-34140).

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 466–485, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Extracting Temporal Properties from Real-Time Systems 467

task set will be rejected by the off-line analysis, even though the lower priority
task may never happen to block the highest priority task (for example, if their
periods are harmonic). In fact, the pessimism is likely to be higher, consider-
ing that techniques for calculating the critical section worst-case execution time
have probably overestimated it.

Despite its inherent pessimism, this analytical study is required in systems
needing 100% guarantee (such as mission-critical systems). However, lots of other
less critical systems would significantly benefit from combining such static anal-
ysis with empirical tests. Empirical tests are based on observing the system at
run time and extracting information about its temporal behavior. This benefit
will be shown with three examples featuring different types of systems. In the
first example, consider a hard system on which the off-line analysis has rejected
a task because its worst-case response time slightly exceeds its deadline. If em-
pirical tests show that the analytical test was very pessimistic, then the system
designer may decide to run the system anyway, knowing that the probability of
this worst-case scenario actually happening for the task is very low. The second
example is a system with a mixed set of hard and soft tasks, scheduled by some
sort of flexible scheduling algorithm in order to improve the overall response
quality. Flexible scheduling techniques are speculative, in the sense that they
try to guess which is the most effective way to schedule tasks in order to max-
imize the obtained value. If their speculations are based on pessimistic values,
then part of their effectiveness is lost; conversely, more accurate, actually ob-
served values can improve the overall scheduling process. The third and final
example would be a soft real-time system, on which no schedulability analysis is
normally performed. Again, this system would benefit from having a consistent
mechanism of testing the system performance, allowing the designer to tune it
appropriately. Please note that our aim is not to substitute the off-line analysis
by empirical tests on systems requiring hard guarantees, but to combine the two
approaches order to obtain the best of both.

Empirical tests involve two different activities: extracting run-time informa-
tion and analyzing it. The extraction of system information at run-time can be
done by several different instrumentation techniques, ranging from pure hard-
ware to pure software mechanisms, with mixed hardware-software alternatives
in the middle. In this range of solutions, there is a double (inverse) gradation of
intrusiveness and price, with pure hardware instrumentation being at one end
(least intrusive and most expensive) and pure software instrumentation being at
the other end.

The analysis of the run-time information, which is usually called execution
trace, can be performed by following a custom-made approach or by applying a
general framework. In this paper, we introduce a general framework for extract-
ing temporal properties from real-time systems by analyzing run-time traces.
The characteristics of this framework are summarized as follows:

– The system needs to be instrumented, but the actual instrumentation tech-
nique is not imposed by the framework. The instrumentation typically places
trace points at both the operating system and the application code.

468 A. Terrasa and G. Bernat

– As the system runs, trace points generate events, which are sequentially
stored to form a run-time trace.

– Traces are automatically analyzed in order to reconstruct the system evolu-
tion as state transitions.

– Temporal properties are defined as function over pre-defined sequences of
state transitions. These sequences are detected by using finite state machines
over the observed trace.

– The maximum computational cost of processing each observed event is O(n),
with n being the number of tasks, while the regular cost of many of the
events is O(1). This feature limits the properties that can be studied by the
framework, but ensures the predictability and bounds the overhead related
to the analysis. This, in turn, permits performing on-line analysis of events,
if necessary.

The framework defined here is generic and extensible, meaning that it is
intended to capture any interesting aspect of the system temporal behavior.
However, since one of the main benefits of empirical tests is to compare their
results with off-line analyses, the natural properties to be studied are those that
are calculated by these analyses. These include system-related properties, such
as utilization, and task-related properties such as response times, computation
times, blocking times, jitter factors, etc. The paper presents how to instantiate
the framework in order to deduce some of these properties, which can serve as
a guideline on how to define new ones.

Finally, the paper also introduces a case study of the framework, entirely
based on the POSIX suite of standards. In particular, the extraction of the
properties described on the paper has been implemented on RT-Linux, a real-
time kernel that follows a subset of the POSIX real-time extensions called the
Minimal Realtime System Profile [1]. This kernel has been enhanced by a trace
subsystem, conforming with the POSIX Trace standard [2], which has been used
as the actual mechanism of extracting the traces [11]. The conclusion of the case
study is that POSIX-conforming systems can successfully adopt the framework
in real-life applications; and this, in turn, proves the framework’s ability to be
employed in systems using state-of-the-art, standard technology.

The paper outline is as follows: Section 2 presents the related work, including
a brief survey of approaches using trace analysis and a summary of the POSIX
Trace standard and the RT-Linux operating system. Section 3 introduces the
general framework for automatically extracting temporal properties. Section 4
details how the framework can be used for study some of the most interest-
ing temporal properties of a real-time system. This section is intended to be as
a guide to any new temporal property that the designer is interested in. Sec-
tion 5 presents the case study, on which the framework has been implemented
in a POSIX-like real-time operating system. Implementation issues and results
from the property extraction are also presented. Finally, Section 6 states the
conclusions of the paper and proposes some future lines of work.

Extracting Temporal Properties from Real-Time Systems 469

2 Related Work

2.1 Trace Analysis

The approach of studying the behavior of a system by observing its events is
not novel, although it has been mainly applied to other, non-real-time domains.
This section summarizes some contributions in this area.

Probably, one of the first approaches of expressing the behavior of a system
in terms of traces, events, states (processes) and transitions is the theory of
Communicating Sequential Processes (CSP) [7]. The purpose of such theory is
to define a mathematical space of processes (along with its operators), by which it
is possible to formally demonstrate communication properties of such processes.

Event Based Behavior Abstraction (EBBA) [6] is a general model intended
to be used as a debugging formalism in distributed systems. It is based on a
hierarchy of events, on which the lowest (primitive) event are directly observed
from the distributed system under study, while higher level events are based on
clustering of primitive or other higher level events. In short, EBBA provides an
event recognition engine and an behavioral analysis model provided by the user
(based on the EDL grammar). The comparison between the events detected by
the engine and the models provided by the user permits to point out whether
the system behavior is correct or not.

FORMAN (FORMal ANnotation) language [4] is a general framework for
debugging programs. It is based on two concepts: an event grammar that per-
mits an automatic instrumentation of the program source code (implemented
in a high-level target language), and a language to express computations over
the program trace (or H-space), after its execution. The language is used to
write assertions over single events or event patterns (sequences) on the trace,
allowing for the evaluation of debugging rules, queries of variable values, profile
information, statistics, etc.

The trace assertion method for abstract specification of software [5,9] is a
formal methodology for program specification on which programs are abstractly
specified by means of its observable features or properties (outputs as a function
of inputs), rather than by the algorithms that they implement. The specification
method is founded on describing (1) which functions of the program can be
called (events), (2) which are the legal sequences of these calls (traces) and (3)
which is the observable output at the state reached by each legal sequence. The
methodology was initially intended for demonstrating formal properties of the
program specifications, such as consistency and completeness, but later work
has used it for other purposes, such as specifying (and reproducing) program
behaviors in terms of assertion about traces [12].

Our framework shares, or inherits, some of the key ideas of such pieces of
work, such as deducting or validating behaviors by observing the system evolu-
tion, although with a complete different aim. The main purpose in our approach
is not to specify, demonstrate or debug functional properties of a system, but
to deduce temporal ones. The issue of temporal behavior of real-time systems
has been actually addressed by some formalisms such as the timed automata [3];

470 A. Terrasa and G. Bernat

however, these formalisms are normally focused on validating the intended be-
havior of a system, rather than extracting actual temporal properties.

Finally, another main difference between the framework proposed here and
most of previous work, with maybe the exception of the work by Stewart et
al. [10], is that the main source of event information is not the program to be
run, but the operating system. Therefore, instrumentation is primarily done at
the operating system code. Depending on the operating system support and on
the properties that the user is interested on, it may be necessary to instrument
the program source code too, but only as a complement to the information
obtained from the operating system.

2.2 The POSIX Trace Standard

The POSIX Trace standard establishes a set of portable interfaces which allow
applications to have access to trace management services, which are implemented
at the operating system level. This standard has been recently integrated within
the last approved version of the complete POSIX suite of standards [2]. The
POSIX Trace standard is founded on two main data types (trace event and
trace stream) and is also based on three different roles which are played during
the tracing activity (the trace controller process, the traced process and the
analyzer process). These concepts are now detailed.

A trace event is defined as a data object representing an action which is exe-
cuted by either a running process (user trace event) or by the operating system
(system trace event). User events are explicitly generated by the application, by
calling a specific trace function, while system events are internally generated by
the operating system. Each user or system event belongs to a particular trace
event type (an internal identifier) and it is associated with a trace event name
(a human-readable string), by which it can be later recognized. Each time an
event is traced, the trace system is required to store some information about the
event including, among others, the identifier of the process (and thread) that
traced the event, the memory address at which the trace function was called
and a timestamp (with a minimum precision of one microsecond). Optionally,
arbitrary extra data can be associated with the event when the application or
the operating system trace it. All this information, mandatory and optional, has
to be reported when the event is retrieved for analysis.

A trace stream is defined as a non-persistent, internal (opaque) data object
containing a sequence of trace events plus some internal information to interpret
those trace events. That is, streams are where events are stored (when traced)
and where events are read from (when retrieved). The standard defines that a
trace stream is explicitly created to trace a particular process (or a set of related
process). Trace events can be either retrieved directly from the stream (on-line
analysis) or permanently stored in a file called a log. In the latter case, analysis
can only be done after the tracing is over and all the events have been stored in
the log file (off-line analysis).

The standard defines three different roles in each tracing activity: trace con-
troller process (TCP), traced (or target) process (TP) and trace analyzer process

Extracting Temporal Properties from Real-Time Systems 471

(TAP). In the most general case, each of these roles is executed by a separate
process. However, nothing in the standard prevents from having two (or even the
three) of these roles executed by the same process (possibly by different threads).
The TCP is the process that sets the tracing system up, including the creation
of the stream(s), in order to trace a (target) process. The TP is the process that
is being traced. This process can only register new user event types and trace
events belonging to these types. The TAP is the process in charge of retrieving
the stored events from a trace stream, in order to analyze them. If the stream
does not have a log, then both the target and the analyzer processes access the
stream concurrently, the former for tracing events and the latter for retrieving
these events.

2.3 RT-Linux and Its Implemented POSIX Standards

RT-Linux (Real-Time Linux) [13] is a small real-time operating system which is
able to concurrently execute a set of real-time threads and a Linux system, which
here refers to the Linux kernel plus all the user processes being executed by the
kernel. The sharing of the processor between the real-time tasks and the Linux
system is done in a complete unfair way, in the sense that real-time tasks are
always given the processor in preference of the Linux system and without delays,
independently of the actions taken by the Linux kernel. These bounded latencies
are achieved by giving the Linux kernel a set of virtual interrupts instead of the
real (hardware) ones, which are managed by RT-Linux only. Typical RT-Linux
applications are decoupled in two parts: a real-time part, comprising a set of
real-time tasks, and a non-real-time part, implemented as one or more Linux
processes. Both parts can communicate via either shared memory or bidirectional
channels called RT-fifos.

RT-Linux has lately adopted the external interface established by the POSIX
Minimal Realtime System profile [1], which describes the requirements of the
smallest POSIX-conforming real-time operating system. On the hardware side,
these requirements include only one processor, no explicit memory protection,
no mass storage devices and, in general, simple hardware devices operated syn-
chronously. On the software side, the requirements establish a simple program-
ming model in which the real-time system is executed by only one process (with
complete POSIX thread support [2]), without the need of a file system or user
interaction.

The POSIX Trace standard has been recently added to RT-Linux (see [11]
for a detailed description). The implementation has restricted the subset of the
standard to the case of having on-line analysis of events only, but with the
possibility of dynamically filtering of event types. Following the RT-Linux model,
the trace support has made available at both the RT-Linux and Linux levels.
As a result, events can be traced and retrieved by real-time tasks and Linux
processes concurrently.

472 A. Terrasa and G. Bernat

3 Systems, Events, States, and Properties

This section introduces the framework to deduce temporal properties by observ-
ing the real-time system at run time. In short, the framework is based on four
concepts: the system to be studied, the set of events that can be observed from
the system, the set of states that can be derived from the events and the prop-
erties that can be calculated through the observation process. The framework’s
general structure is pictured in Figure 1, while each of these concepts is detailed
below.

Operating System

Tasks
Application

Original System

Events
Derived

Events
Basic

Target System
Model System

In
st

ru
m

en
ta

tio
n

Temporal Properties

Fig. 1. An outline of the framework.

The framework distinguishes among three different systems: the original sys-
tem, the target system and the model system. The original system (S) is the real
system under study, before being instrumented. This system is formed by a set
of runnable real-time tasks (potentially belonging to different real-time applica-
tions) plus an operating system or kernel in charge of scheduling and running
these application tasks. The real system cannot be observed unless some instru-
mentation is performed over it. Since the framework does not impose a particular
instrumentation mechanism, it cannot assume that the instrumentation does not
affect the behavior of the original system. Therefore, the instrumented system is
actually our target system (T), the system which properties are deduced from.
The model system (M) is the view of the target system that can be deduced by
means of the observation process, that is, it is the model of the target system.
The model system is defined in terms of a set of properties of interest plus a
set of finite state machines, which are used as recognition engines for events and
as computation tools for properties. In general, if model system M successfully

Extracting Temporal Properties from Real-Time Systems 473

represents the behavior of the target system T , the properties than can be de-
duced in M also hold in T . These properties might also be extrapolated to S,
probably with just some loss of precision. However, the exact influence of the
instrumentation in the original system’s behavior heavily depends on the ac-
tual instrumentation technique, and hence such extrapolations should be done
carefully.

As the target system executes, its internal state changes. Some of these state
changes are detected by the instrumentation and converted into basic events,
which are the observation individuals. When observed, these basic events trigger
state transitions in the model system. Some of these transitions can generate
other (derived) events, and so on. The framework defines properties as func-
tions over particular sequences of state transitions, with these transitions being
detected by finite state machines (deterministic finite automata).

An event is a value that triggers an instantaneous state transition in the
model system. In fact, since the system model is likely to be internally formed
by several automata, a single event may produce transitions in more than one
automaton (although this may still be seen as a single state change for the entire
system model). For each automata, a transition is triggered if the last produced
event matches the transition condition, which is formed by an event pattern and
some logical expressions. There are two types of events: basic and derived. Basic
events are directly observed from the target system, that is, they are produced by
the instrumentation at either the operating system or the application code. These
events usually represent significant state changes in the target system. Derived
events are triggered inside the model system, when a particular sequence of
events (basic or derived) is detected. The model system uses the same recognition
engine, based on finite state machines, to trigger derived events and to calculate
system properties. The process works like this: a basic event normally triggers
a state transition in one or more automata; the result of these state transitions
may result in a derived event being produced, which can in turn produce state
transitions in the same or other automata. Note that, if the event recognition
process is to be done on-line, then there must be an upper bound in the amount
of events that can be successively derived by a single basic event being observed,
in order to bound the computation time of the property extraction process. Each
event is defined by means of an event type, a timestamp (which indicates the
moment at which the event was either observed or derived) and, optionally, some
extra data depending on the event type (as, for example, the task identifier in
a task-related event type). The purpose of the timestamp is to partially order
events1.

At any particular point in time, the target system and the model system are
each in a certain state. Strictly speaking, the state of the target system is the
current hardware state, plus the internal state of the operating system, plus the
internal state of each process (and each task inside the process). However, the

1 Although this is not imposed by the framework, typical temporal properties of a
real-time system will need the timestamp of basic events to be set by an absolute,
monotonic real-time clock in the target system.

474 A. Terrasa and G. Bernat

framework assumes that there is only a (normally small) subset of this state
that can be detected by the instrumentation. This is called the set of observable
states of the target system. State changes between observable states are notified
by means of basic events. In the model system, the state of the system is the
current state of all the automata used to derive events and properties plus the
current value of all the properties. The calculation of some properties may need
the use of auxiliary variables; if so, the current value of all the auxiliary variables
also forms part of the model system state.

A property is some value about the system execution which is of particu-
lar interest. Each property is abstractly defined as a function of a sequence of
states (or transitions). Conceptually, the model system defines a different finite
state machine or automaton to calculate each property, although the implemen-
tation may join some of these automata in order to improve performance. The
calculation of each property is actually carried out by means of semantic rules,
which are pieces of code that can be attached to transitions and states of the
automaton; these semantic rules are executed when the transition is triggered or
when the state is reached. As a result, the evolution of the automaton naturally
computes the property, whose final value is calculated when a terminal state of
the automata is reached. Semantic rules may also use auxiliary variables in order
to store partial results during the automata evolution. The framework defines
three types of properties: single values throughout the execution (such as, for
example, the total system utilization), sequences of values (such as the response
times of a task) or a statistically accumulated figure over a value sequence (such
as the worst-case computation time of a task).

Overall, the framework establishes a direct relationship between properties,
events and states. This relationship can be looked at from two alternative view-
points, depending on the instrumentation possibilities in the target system:

a) the properties to extract conditions the states that the model system has to
keep track of, which in turn defines which basic events need to be observed
from the target system; or

b) the events that can be observed in the target system restricts which states
can be derived in the system model and thus which properties can be ex-
tracted.

4 Study of Basic Temporal Properties

This section explains how to apply the framework described above in order to
extract some relevant temporal properties of a generic (but typical) real-time
system. The study presented here is independent of a particular application, as
long as it follows the computational model presented below. For space limitation
reasons, this paper only shows how to extract four temporal properties; however,
the study below can be seen as a template by which other properties can be
defined.

The study begins with the presentation of the computational model, that
is, the set of assumptions that the target system must follow. Then, it presents

Extracting Temporal Properties from Real-Time Systems 475

the automaton model, which establishes the characteristics and notation of the
automata that will be used to deduce properties. The final subsection shows how
to actually extract some interesting properties of the target system: a system-
related property (utilization) and three task-related properties (computation
time, blocking time and response time per task release). For each property, the
computational cost of the automata processing is also included.

4.1 Computational Model of the Target System

The target system considered here is formed by a real-time application plus an
operating system, both running on a single-processor computer. The following
list summarizes the behavioral restrictions that must hold on the system:

– The application comprises a fixed set of N tasks.
– Each application task is either periodic or sporadic.
– Each task is statically assigned a priority.
– The operating system scheduler applies a fixed-priority preemptive dispatch-

ing policy.
– Tasks may share resources. If they do, resource access is exclusively arbi-

trated by using the Immediate Priority Ceiling Protocol.
– The minimal set of basic events that the instrumentation is required to

report is the following: (1) for each context switch, an event denoted as CSW
has to report the identifier of the new running task and the timestamp;
(2) each time a task changes its runnable state, the new state has to be
reported along with the task identifier and the timestamp. Significant states
are: “ready” (RDY) and “finished” (FNS), respectively indicating that the
task is runnable and finished (that is, suspended waiting for its next release);
and (3) for each task, an event denoted as PRI has to report the initial (static)
priority of each task, along with its identifier, when it is created.

– The process in charge of extracting the temporal properties is reported all
the events without loss. The issue of building property automata which are
robust under event loss conditions is currently being studied.

4.2 Event and Automaton Model

This section specifies a model for events and automata which is compatible with
the framework. This model will be used below to define the properties under
study.

Each event generated by the instrumentation is a tuple (Y, t, i, κ), where:

– Y ∈ {CSW, RDY, FNS, PRI}, that is, Y is the event type.
– t is the event timestamp.
– i is the task identifier (all the events here are to be task-related). Task

identifiers are ordered inversely with task priorities, with task ’0’ being the
highest and task ’N-1’ the lowest. Task ’N’ here denotes the ’idle task’.

476 A. Terrasa and G. Bernat

– κ denotes additional, event-specific information. For example, in events of
type PRI, this will stand for the task new priority.

According to the framework, each property is conceptually specified by an
automaton, which can be defined by five related elements: (1) a set of states,
(2) a set of transitions, (3) a list of semantic rules attached to the states and/or
transitions, (4) variables to store the property values, and (5) an optional list of
auxiliary variables. Among them, the set of transitions is probably the only issue
that needs further explanation, particularly about how a transition can express
the conditions on which it becomes triggered.

In this automaton model, each transition is labelled with a condition of the
form: “[label]: pattern [, expression [,. . .]]”. Inside this condition, the label sim-
ply identifies each transition. The event pattern is a tuple, equivalent to the event
tuple, on which some of the elements are literal (constant) while some others can
have a generic value. In the patterns of the automata below, the notation uses
underline typeface for literals and italic typeface for generic values (i.e., values
that can be instantiated). The optional expressions add more logical conditions
to the transition to be triggered. In general, an event will trigger a particular
transition if, first, the event matches the pattern (all the pattern literals occur
in the event) and second, all the expressions is satisfied. Expressions are typi-
cally boolean conditions involving event data and/or some property values. The
model also permits automata to have λ-transitions.

4.3 Some Property Examples

System Utilization. The system utilization can be easily calculated as 1 minus
the utilization of the “idle” task. As a result, the only event needed to be ob-
served for this property is the context switch (CSW). The utilization automaton,
represented in Figure 2, needs two auxiliary variables, itime and istart, indicat-
ing the total accumulated idle time and the start of a idle period, respectively.
The table in Figure 2 shows the semantic rules related to each transition. At any
given time t, following formula can be used to calculate the system utilization:
U(t) = 1.0 − itime

t . The computational cost of this automaton is O(1) with each
event of type CSW.

Response Time. The response time of a task is calculated as the time on which
the task finishes its release minus the last time it was released. In terms of events,
this is calculated as the time elapsed between the pair of events RDY and FNS for
any particular task. The automaton for calculating the response time of task τi

is shown in Figure 3. Note that, due to the λ-transition, the automaton succes-
sively calculates all the response times of task τi. The response-time automaton
for each task τi needs two straightforward semantic rules. These rules operate
with the property variable, called rtime, and an auxiliary variable to store the
moment at which the release started, called rstart. The computational cost of
this automaton is O(1) for each RDY and FNS events corresponding to each task.

Extracting Temporal Properties from Real-Time Systems 477

BUSY
System

System
IDLE

(CSW, ,),i t[T2]:
(i = N)

(CSW, N,)[T1]: t

(CSW, N,)

Initial

[T3]: t

[T4]: (CSW, ,)i t

Transition Semantic rules

[T1] itime := 0; istart := t;

[T2] itime := 0;

[T3] istart := t;

[T4] itime := itime + (t - istart);

Fig. 2. System utilization automaton.

τ i
Ready

τ i
Finished

(RDY, i,)[T1]: t

(FNS, i,)[T2]: t

λ

Initial

Transition Semantic rules

[T1] rstart = t;

[T2] rtime = t - rstart;

Fig. 3. Response-time automaton for task τi.

Computation Time. The computation time of a task is the sum of the intervals
on which the task is running. Since the computation time is a typical per-release
property, the automaton has to calculate the task computation time of a single
release; that is, between a RDY and a FNS event of a given task τi. Apart from
these two events, the automaton needs to get all CSW events that both put τi

478 A. Terrasa and G. Bernat

to run and remove τi from running. As in the previous section, a λ-transition
is used to return to the initial state, in order to repeat the calculation release
over release. The computation time automaton for task τi is shown in Figure 4.
Semantic rules in Figure 4 use ctime as the property variable to calculate the task
computation time over a release and the auxiliary variable cstart to remember
the start time of a running interval for task τi.

τ i

τ i

τ i
Running

(CSW, i,)[T2]: t

(CSW, i,)[T4]: t

(FNS, i,)[T5]: t

(j = i)

Ready

λ

Initial

Finished

(CSW, ,),[T3]: tj

Running

Other
task

(RDY, i,)[T1]: t

Transition Semantic rules

[T1] ctime = 0;

[T2] cstart = t;

[T3] ctime = ctime + (t - cstart);

[T4] cstart = t;

[T5] ctime = ctime + (t - cstart);

Fig. 4. Computation-time automaton for task τi.

The computational cost of this automaton is O(1) for events RDY and FNS
and O(2) for each event CSW, since this event effectively removes a task from
running and puts another task to run (thus, the event causes a transition in the
automata of both tasks).

Blocking Time. In the IPCP algorithm [8], a task that wants to have exclusive
access to a resource immediately raises its priority to the priority ceiling of that
resource. In this protocol, a task τi may only be blocked when it is released, if
a lower priority task τj has previously raised its priority to a ceiling which is
higher than or equal to the priority of τi. Once τi is chosen to run, no more
blocking can occur to the task in this release. An example of this behavior is
shown in Figure 5, which depicts a time diagram of a real application execution,
featuring tasks, A, B, and C (in decreasing priority order). The figure shows the
blocking of medium-priority task B by lower-priority task C, due to the fact that
the latter has locked semaphore m0 and raised its priority (at time 1) before the

Extracting Temporal Properties from Real-Time Systems 479

former is released (at time 2). The blocking lasts until task C unlocks m0 and
retrieves its original priority (at time 3). During the blocking interval, higher
priority A preempts task C, but this execution interval is not to be considered
blocking time for task B.

Fig. 5. Run-time scenario where task C blocks task B.

This behavior can be detected by an automaton that checks the priority of
the running task when a given task τi is released. If the running task has lower
priority, then blocking may happen, but only until τi gets to run. During this
interval, the task which is blocking τi may be preempted by tasks with priorities
higher than τi, with these intervals not forming part of τi’s blocking time. As
explained for the computation-time automaton above, the blocking automaton
also needs a λ-transition in order to successively calculate the blocking factor of
each release of task τi. The automaton is presented in Figure 6. Some transitions
have logical tests in addition to event patterns, indicating that the transition
is only produced if the pattern is instantiated by the current event and the
condition is true at that moment. These conditions need two properties that
have to be calculated by auxiliary, simple automata: the property variable Run
stores the identifier of the currently running task; the property variable Prio[i]
stores the initial, static priority of task τi. The automata for these properties
are straightforward.

The semantic rules for this automaton effectively accumulate the blocking
time (btime) over a period of time between the task release and its first tick.
In order to do so, an auxiliary variable (bstart) is used to store the start of a
blocking interval. Note that this automaton could be simplified (for example, by
removing the “τi Finished” state and making the “τi Running” to be the final
state); however, we have chosen to present it in this form in order to illustrate

480 A. Terrasa and G. Bernat

τ i
Finished

Running
τ i

Initial

(FNS, i,)[T7]: t

(CSW, i,)[T5]: t (CSW, i,)[T6]: t

Prio[Run] < Prio[i]()

τ i

Prio[Run] > Prio[i]()
(RDY, i,),[T2]: t

Prio[j] < Prio[i]()

[T4]:
(j = i),
(CSW, ,),tj

Prio[i] < Prio[k]()

[T3]:
(k = i),
(CSW, ,), tk

Blocked
i

Interfered

λ

(RDY, i,),[T1]: t

τ

Transition Semantic rules

[T1] btime = 0; bstart = t;

[T2] btime = 0;

[T3] btime = btime + (t - bstart);

[T4] bstart = t;

[T5] btime = btime + (t - bstart);

[T6] (void)

[T7] (void)

Fig. 6. Blocking-time automaton for task τi.

how release-like properties will typically use the FNS event type in order to mark
the end of the property calculation.

The computational cost of this property is O(1) for each RDY and FNS events
and O(N) for CSW events. A single context switch may affect the blocking state
of many tasks at once. As a result, a CSW event may need to be given to the
blocking-time automata of all tasks in the worst case.

Extracting Temporal Properties from Real-Time Systems 481

5 Case Study

The previous section presented how to instantiate the framework to extract
properties from a generic system. This section presents a case study in which the
instantiation is followed a step further, presenting the low level, implementation
issues that arise when these properties are extracted from a real system. In
particular, the target system of the case study is a POSIX real-time application
running on Open RT-Linux version 3.1, which has been enhanced by adding
a POSIX Trace subsystem, as explained in Section 2.3. The section presents
first the low-level system model, since it conditions the application behavior,
and hence the event interpretation. Then, it explains how the target system has
been instrumented in order to extract the required event types for analysis. And
finally, it presents the property extractor process, which is the program that
actually analyzes the trace and deduces the temporal properties.

The study presented in last section can directly be implemented in the case
study because the target system follows the computational model presented
above. In particular, sample applications have been implemented by using these
restrictions:

– Each application consists of periodic and sporadic tasks with a static as-
signment of priorities. In particular, each task has been assigned a different
priority.

– All tasks are scheduled according to the POSIX “SCHED FIFO” scheduling
policy.

– Tasks sharing resources do so by means of using mutexes that follow the
POSIX “PRIO PROTECT” protocol.

– Application tasks use a particular function to wait until its next release, with
this function being only used for this purpose. In particular, periodic tasks
use the absolute version of clock nanosleep while sporadic tasks wait in a
pthread cond wait call.

The mechanism used for extracting and retrieving events is the POSIX Trace
system implemented in RT-Linux. According to the Trace standard, operating
systems can introduce new system event types for their own needs. This pos-
sibility has been used here in order to extract as many of the required events
as possible by instrumenting the RT-Linux kernel only. In fact, all the temporal
properties studied so far (fully listed below) can be extracted by only analyzing
a few system event types, which are compatible with the abstract event types
defined in Section 4.1. The actual system event types that the RT-Linux kernel
instrumentation produces are the following: (1) context switch, every time a new
task is put to run, including the task identifier; (2) task state change, every time
a task changes its runnable state, including both the task identifier and the new
state; (3) task priority change when the task is created and each time that it
explicitly changes its priority afterwards, including the task identifier and the
new priority; and (4) system call invocation, every time a task invokes a system

482 A. Terrasa and G. Bernat

call of interest2, including the invoked system call, the invoking task and any
other relevant parameter in the call. According to the POSIX Trace standard, an
automatic timestamp is registered for all the traced events, so this information
does not have to be explicitly traced by the instrumentation.

At run time, a stream without log is created in RT-Linux before the ap-
plication begins to execute. This stream is then set to filter out both all user
event types and each non-interesting system event type. Thus, the stream only
registers the event types which are relevant to the property extractor process,
effectively minimizing the tracing overhead. Early experiments have shown that
the overhead of tracing and retrieving a single event is usually less than 500
nanoseconds (each) in a typical Pentium III processor (see [11] for details).

The property extractor (PE) process (which corresponds to the framework’s
model system) has been implemented as a user Linux process. This program ac-
cess the trace stream created in RT-Linux, retrieving all the events traced by the
RT-Linux kernel as the real-time application runs. For each event retrieved, the
PE process passes it to the appropriate automata, in order to calculate the tem-
poral properties of interest. For each of these properties, a different automaton
has been implemented as a as a table (of states versus events) containing point-
ers to the appropriate semantic rules. The PE main function contains the very
simple and fast automata engine, which basically gets each new event, identifies
which automata are “interested” in the event and then triggers the correspond-
ing transitions in these automata. Our experiments show that the execution time
of the PE typically takes less than 2μs per automaton transition on a 850 Mhz.
Pentium III processor. This low overhead makes possible the on-line analysis of
a reasonable amount of properties, specially given the fact that, from the RT-
Linux application viewpoint, the property calculation is done in the background
(that is, by a Linux process).

Currently, the set of properties that the PE is able to calculate are: the
system utilization, the current running task, the base priority (and successive
priorities) of each task, and eight properties per task invocation: computation
time, response time, blocking time, interference, inter-arrival time, release jit-
ter, input jitter (begin-to-begin) and output jitter (end-to-end). For each task,
the PE stores all the release-dependent values for a maximum number of task
invocations, but also keeps some statistical values of each of them, such as the
minimum, maximum and average.

Finally, just to illustrate the utility of such property extraction, let us con-
sider the following experiment involving a very simple, three-task application
which use a single mutex to achieve mutual exclusion over a resource. From
highest to lowest priority, tasks are labelled A, B and C and their periods are 5,
10 and 15 ms, respectively. The experiment show the effect of blocking in task
B, in two cases: (1) task C is released slightly earlier than the other two (80 μs);
and (2) all tasks are released at the same time. Figure 7 shows the results of
these experiments.

2 For example, the system call that is known to signal the finish of the task current
release.

Extracting Temporal Properties from Real-Time Systems 483

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
co

nd
s)

Invocations

Evolution of temporal properties of task B (exp. 1)
Response time

Computation time
Interference suffered

Blocking time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

ic
ro

se
co

nd
s)

Invocations

Evolution of temporal properties of task B (exp. 2)
Response time

Computation time
Interference suffered

Blocking time

Fig. 7. Property extractor results for task B in experiments 1 (above) and 2. Experi-
ment 1 had tasks A and B with a initial offset of 80 μs, while experiment 2 had all three
tasks initially released at the same time.

The two graphics show the evolution of four temporal parameters of task B

during its first 50 invocations, including the computation time, the blocking time,
the interference and the response time. As it can be easily seen by comparing

484 A. Terrasa and G. Bernat

both graphics, the effect of the blocking time of task B practically disappears
just by putting a different offset on task C, greatly decreasing task B’s response
time. However, the off-line analysis would have calculated the same worst-case
response time for task B in either case.

This small example shows the utility of the property extractor has for the
designer, who can use its results to compare them with the analytical test. Fur-
thermore, just by changing the configuration and run the system again, the exact
effects that this change produces in the system behavior can easily be checked,
in real conditions and independently of how big or complex the application is.

6 Conclusions

The main conclusion of this paper is that the application of a consistent frame-
work for observing real-time systems can greatly enhance our knowledge about
their behavior, compared to the results of the off-line analysis, which can only
obtain the worst-case behavior. This paper has presented such framework, and
has illustrated its capabilities by showing how some interesting temporal prop-
erties can be deduced from a generic but typical real-time system. Many other
properties can be extracted by applying the same scheme. The constant (or,
at most, linear) computational complexity of the property extraction process
permits this process to run as a part of the real-time application, if necessary.

The type of temporal properties which are naturally interesting to know
about a real-time system (computation times, response times, etc.) influences
the fact that the instrumentation is mainly done at the operating system level.
In this sense, the paper’s case study has shown the ability of the POSIX Trace
standard to provide such instrumentation. The conclusion of the case study is
that POSIX-conforming real-time operating systems with the Trace option can
be used to automatically extract temporal properties of applications by tracing
a reasonably small set of system events. This, in turn, has proven the framework
to be adopted by systems using current technology.

Currently, research is being done towards using the temporal property ex-
traction process to build flexible schedulers that work with actual observations
rather than off-line estimations. Other research lines about this subject include
fault-tolerant schemes that can deal with event loss in the process and a full
characterization of the relationship between the event types that can be ob-
served from a system and the temporal properties that can be extracted.

References

1. “1003.13-1998 IEEE Standard for Information Technology–Standardized Applica-
tion Environment Profile (AEP)—POSIX r© Realtime Application Support” [0-
7381-0178-8].

2. “1003.1TM Standard for Information Technology—Portable Operating System In-
terface (POSIX r©)”. IEEE Std. 1003.1-2001, Open Group Technical Standard Base
Specifications, Issue 6.

Extracting Temporal Properties from Real-Time Systems 485

3. Alur R., and Dill, D.L. (1994). “A Theory of Timed Automata”. Theoretical Com-
puter Science Vol. 126, No. 2, April 1994, pp. 183-236.

4. Auguston, M. (1995). “Program Behavior Model Based on Event Grammar and
its Application for Debugging Automation”, Proc. of the 2nd Intl. Workshop on
Automated and Algorithmic Debugging, Saint-Malo, France, May 1995.

5. Bartussek, A.W., and Parnas, D.L. (1977). “Using traces to write abstract specifi-
cations for software modules”. UNC Rep. TR 77-012, Univ. North Carolina, Chapel
Hill.

6. Bates, P. (1995). “Debugging heterogeneous distributed systems using event-based
models of behavior”. ACM TransactIons on Computer Systems, Vol 13, No 1, Feb.
1995, pp. 1–31.

7. Brookes, S.D., Hoare, C.A.R., and Roscoe, A.W. (1984). “A Theory of Communi-
cating Sequential Processes”. Journal of the ACM, Vol. 31, No. 3, July 1984, pp.
560–599.

8. Klein, Mark H. and Ralya, T. (1990). “An analysis of input/output paradigms for
real-time systems”. Technical Report, Software Engineering Institute. CMU/SEI-
90-TR-19, 1990.

9. McLean, J. (1984). “A formal method for the abstract specification of software”.
Journal of the ACM, Vol. 31, No. 3, July 1984, pp. 600–627.

10. Stewart, D.B., Schmitz, D.E., and Khosla, P.K. (1992). “The Chimera II real-time
operating system for advanced sensor-based control applications”. IEEE Trans-
actions on Systems, Man, and Cybernetics, Vol. 22, No. 6, Nov./Dec. 1992, pp.
1282-1295.

11. Terrasa, A., Pachés, I., and Gacŕıa-Fornes, A. (2001). “An Evaluation of the POSIX
Trace standard implemented in RT-Linux”. Proc. of the 2001 IEEE Intl. Sympo-
sium on Performance Analysis of Systems and Software, Tucson (AZ), pp. 30–37.

12. Wang, Y., and Parnas, D.L. (1993). “Simulating the behaviour of software modules
by trace rewriting”. Proc. of the 15th intl. conference on Software Engineering,
Baltimore (MA), May 1993, pp. 14–23.

13. Yodaiken, V. (1999). “An RT-Linux Manifesto”. Proc. of the 5th Linux Expo,
Raleigh, North Carolina, May 1999.

Rigorous Modeling of Disk Performance
for Real-Time Applications

Sangsoo Park and Heonshik Shin

School of Computer Science and Engineering and Institute of Computer Technology,
Seoul National University, Seoul 151-744, Korea

sspark@cslab.snu.ac.kr,shinhs@snu.ac.kr

Abstract. Performance modeling of magnetic disks allows the prediction of the
disk service time which is useful for on-line decision support for soft real-time
applications. In this paper, we propose a new performance model of disk access
time to estimate the bounded disk service time. Our proposed model focuses on
modeling the head positioning time to fully utilize the disk I/O bandwidth by
exploiting the geometric layout of the disk. The experimental results show that
our proposed model can estimate the disk service time with less than 10% error
on average.

1 Introduction

Magnetic disks play a key role in many modern applications, such as multimedia com-
puting, internet services, and databases. Nowadays, demands for timely data services
are rapidly increasing in soft real-time applications like on-demand media streaming
and time-constraint query [3,10]. Performance modeling of disks is used to predict the
disk service time for on-line decision support in these application areas. For example,
the admission controller component of multimedia servers should decide whether a new
request can be accepted or not by predicting available disk I/O bandwidth based on disk
performance model. Also, the query optimizer of real-time databases makes use of the
disk performance model to estimate the disk service time for each transaction to meet
the query deadline [14].

Most of the disk performance models in the previous research are, however, over-
simplified. Some of them are so pessimistic that disks are tend to be under-utilized while
others only account for the average case so the timing constraints are not often satis-
fied. Though simulation-based models are able to predict the disk I/O performance very
accurately, their high complexity makes on-line decision impossible.

The goal of this paper is to precisely model disk performance to estimate more
accurate disk service time on-line for a given disk I/O workload. It attempts to bound
the disk service time to help meet timing constraints for soft real-time applications.

The rest of this paper is organized as follows: An overview of characteristics of disks
is provided for performance modeling in Section 2. Our proposed disk performance
model is described in Section 3 and the experimental evaluation of its performance is
presented in Section 4. Finally, this paper is concluded in Section 5.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 486–498, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Rigorous Modeling of Disk Performance for Real-Time Applications 487

2 Characteristics of Disks and Disk Drives

2.1 Mechanical Components

A disk drive is composed of mechanical components and an embedded controller [11].
As depicted in Figure 1, mechanical components contain one or more platters with blocks
and tracks on them. It should be noted that although there are several heads, the disk drive
has only a single read/write channel that can be switched from a disk head to another. A
block called a sector can be located by < Cylinder#, Head#, Sector# >.

arm

`

`

`

platter
head

cylinder

sector track

rotation

seek

Fig. 1. Mechanical components of a disk drive

Traditional disks have the same number of sectors per track across the whole cylin-
ders. Because the tracks are longer at the outside of a platter than at the inside, the storage
density is not maximized in this configuration. Modern disks have adopted disk-zoning
techniques to maximize the storage capacity [4]. A zone of disk is a group of contiguous
cylinders with the same number of sectors per track. There are typically about a dozen of
zones on a disk and the outer zones have more sectors per track than the inner ones. Also,
as the platter rotates at a constant speed, disk has higher transfer rates from the outer
zones than from the inner ones. Throughout the paper the terms tracks and cylinders are
used interchangeably.

2.2 Embedded Controller

An embedded disk controller interfaces between the host and the mechanical components
of the disk drive [7]. Figure 2 depicts the internal architecture of an embedded controller.

For each disk I/O session, the host issues a series of disk I/O requests to the disk with
starting logical block address (LBA) and request size, or < LBA, size >. The details of
the subsequent processes are hidden from the host. The embedded controller first queues
the requests and decodes the LBAs according to the LBA to < Cylinder#, Head#,
Sector# > mapping table.

While decoding an LBA, the controller performs sparing and track skewing opera-
tions. Because it is very expensive to manufacture platters without bad sectors, and bad

488 S. Park and H. Shin

micro
processor

bus interface

memory read/write
circuit

head
positioning

circuit

LBA to <C,H,S>
table

cache
command

queue

bus

arm

head

Fig. 2. Internal architecture of embedded controller

sectors may develop after manufacturing, it is necessary to maintain a list of bad sec-
tors [11]. Remapping of bad sectors to good sectors while translating LBAs to physical
sector numbers is referred to as sparing.

n n+1 bad n+2 bad n+3

(a) type-1

n n+1 bad n+3 bad n+5

MAX n+2 n+4

(b) type-2

Fig. 3. Sparing

There are two types of bad sectors. The bad sectors found during low-level formatting
are remapped as shown in Figure 3a. We denote this type of bad sectors as type-1. On
the other hand, disks develop bad sectors as time elapses. We denote this type as type-2.
There are several ways of remapping type-2 bad sectors that occur after the low-level
formatting. For example, as depicted in Figure 3b, we can re-map the bad sectors to the
spare sectors located beyond the last LBA sector.

The tracks have different starting positions. The distance of starting positions of
two neighboring tracks is called a track skew as shown in Figure 4. Because the head
switching requires a time delay, the head would pass the target sector LBA (n+1) during
the head switching, if there were no track skew. In this case extra rotational delay may
as well be required to access the target sector [11].

After decoding LBAs, the embedded controller schedules the requests in the queue
so that it tries to minimize the service time. There have been well-known disk scheduling
algorithms like SCAN, C-SCAN and SSTF [16]. The embedded controller also provides
caches with read-ahead capability [2,12]. It utilizes the locality of the disk I/O requests
in an attempt to minimize the service time [5,13].

3 Proposed Disk Performance Model

Traditional applications, which mainly deal with text-based data, have predictable disk
access patterns. In general, their disk I/O requests are based on the sequential access

Rigorous Modeling of Disk Performance for Real-Time Applications 489

head i

head (i+1)

LBA n

LBA (n-1)

LBA (n+1)

rotating

track
skew

Fig. 4. Track skewing

pattern. But, in case of soft real-time applications with multimedia data, the disk access
pattern is assumed to be random because the data is usually distributed over a disk and
operations on them are often unpredictable [9]. This assumption obviates the need or
the role of disk cache, for the cache reduces the overall disk service time only when
the access patterns are suitable for the cache policies typically in the case of sequential
access or repeated access on the same data.

To introduce a new disk performance model, we first illustrate the disk I/O requests
and performance parameters. The notations used throughout are summarized in Table 1.

Table 1. Summary of notations

Symbol Description

Ri i-th disk I/O request (Bi, Li)
Bi Staring logical block address of Ri

Li Request size of Ri (Total number of sectors of Ri)
Li,j Number of sectors in Zone j of Ri

Ei,j Number of bad sectors in Zone j of Ri

ti Service time of Ri (ms)
tmove(a,b) Head positioning time from Sector a to Sector b (ms)
ttrans(i) Data transfer time of Ri (ms)

B Sector size (512 bytes)
trev One revolution time of platter (ms), 60

RPM
× 1000

rdisk(j) Transfer rate in Zone j (bytes/sec),
Dj×B

R
× 1000

Dj Number of sectors per track in Zone j
ttskew(i) Total track skewing time of Ri (ms)

tzskew(j,h) Maximum track skewing time in Zone j and Head h (ms)
tdelay Maximum transfer delay (ms)

tseek(a,b) Seek time between two cylinders, which contain Sectors a and b respectively (ms)
tφ(a,b) Angular difference between Sector a and b (ms)

For each disk I/O session, the host issues a series of disk I/O requests to the disk
in the form of a tuple of starting LBA and request size. We denote a disk I/O request
i,< Bi, Li >, as Ri, and a set of sequential Ri’s as R where Bi and Li stand for starting
logical block address and request size of the request Ri, respectively. In this paper our
proposed disk performance model focuses on estimating the disk service time for any

490 S. Park and H. Shin

given R. The performance model thus developed will be used to bound the disk service
time for soft real-time applications that have timing constraints.

Figure 5 describes a typical processing sequence when a host presents disk read
requests R. The embedded controller receives the requests, adds them in the scheduling
queue, schedules them by a predefined scheduling algorithm, and then accesses the
target sectors by the head positioning circuits and read/write circuits. As a result of disk
scheduling, R is re-ordered as R′ =< R1, R2, · · · , Rn >.

seek
rotational

delay
read

sectors

track
skew

controller:
transfer to host

host:
send requests

controller:
schedule
requests

R1 R2
RN

controller:
inform host

interface
bus

disk drive

transfer
delay

Fig. 5. The process of disk I/O requests

For any given ordered set of R′, the total disk service time t is sum of the disk
service time ti of each disk I/O request Ri plus overheads incurred by the interface bus
and command processing in the embedded controller. We assume these overheads are
negligible compared with other performance parameters. Thus, for a disk I/O session
the total disk service time for a set of requests R can be written as follows:

t =
n∑

i=1

ti + tdelay (1)

The disk service time of each disk I/O request Ri is the sum of the head positioning
time from the last sector of the last disk I/O request Ri−1 to the first sector of the current
disk I/O request Ri and the data transfer time of Ri, i.e.,

ti = tmove(B(i−1)+L(i−1)−1,Bi) + ttrans(i) (2)

where B0 is the LBA at which the previous disk I/O session terminates and L0 is set to
one to compensate the constant, −1.

3.1 Data Transfer Time

Data transfer time of disk I/O request Ri, ttrans(i), is the sum of the read/write time of
data as the head reads/writes the corresponding sectors and the track skewing time when

Rigorous Modeling of Disk Performance for Real-Time Applications 491

the head moves from a track to its adjacent track (or cylinder). The read/write time of
data is simply the number of corresponding sectors times the transfer rate in the zone
that Ri deals with. In case the request addresses more than one zone, we must consider
each zone separately for precise analysis. That is, the request size Li is divided into
smaller pieces for the zones under consideration, Li,j .

Now we shall consider the effect of bad sectors encountered by Ri. Although a type-
1 bad sector does not contain any data, it must pass by the disk head. For this reason,
it is sufficient to add the number of corresponding sectors to Li or Li,j . For a type-2
bad sector, the remapped sparing sector is most probably located far from Bi; so it is
reasonable to say that the type-2 bad sector requires additional head positioning time.
Hence we suggest that a new disk I/O request Rn+i for each type-2 bad sector be added
to R.

To calculate ttskew(i), the total track skewing time of Ri, we first count the number
of occurrences of track skewing in Ri for each zone and for each head. Then we multiply
it by corresponding maximum track skewing time, which can be found in tzskew(j,h)
matrix as shown in Table 3. Therefore, the total data transfer time for Ri can be obtained
as follows:

ttrans(i) = (
∑

j

Li,j + Ei,j

rdisk(j)
) × B × 1000 + ttskew(i) (3)

where j is the zone number.

3.2 Head Positioning Time

The head positioning time consists of the seek time and the rotational delay. Most of
the disk performance model in the previous research is oversimplified in modeling the
head positioning time. Seek time is approximated for the average case as a function of
the number of tracks s to be moved [11]. Eq. (4) summarizes this seek time model for
the disk with voice coil mechanism.

tseek(s) =
{

c1 + c2 ×
√

s if s ≤ threshold
c3 + c4 × s if s > threshold

(4)

where c1 and c3 are the head settle time, and c2 and c4 are proportional coefficients.
As for the second factor, some assume the rotational delay is one revolution time, i.e.,

the worst case delay [8,15]. Though it can estimate the bounded disk service time, obvi-
ously it under-utilizes a disk. The others assume rotational delay is half of the revolution
time, i.e., the expected mean time when the requests are assumed to be randomly dis-
tributed over the sectors of the given cylinder [12]. Though this estimation better utilizes
a disk, it cannot always satisfy the timing constraints of the real-time applications. Thus,
the bounded disk service time t estimated based on the traditional disk performance
model is as follows:

t = tseek(s) + trev + ttrans(b) (5)

where ttrans(b) is the data transfer time of b sectors in the traditional model.

492 S. Park and H. Shin

2

4

6

8

10

12

14

16

18

1

3
6
1

7
2
1

1
0
8
1

1
4
4
1

1
8
0
1

2
1
6
1

2
5
2
1

2
8
8
1

3
2
4
1

3
6
0
1

3
9
6
1

4
3
2
1

4
6
8
1

5
0
4
1

5
4
0
1

5
7
6
1

6
1
2
1

6
4
8
1

6
8
4
1

7
2
0
1

7
5
6
1

7
9
2
1

seek distance (cylinder)

se
e
k
 t

im
e
 (
m
s

)
min

max

Fig. 6. DCAS-34330W seek time

In the sense of high precision, our proposed model focuses on accurate on-line
estimation of head positioning time, rather than relying on approximate conceptual
model. In order to grasp realistic behavior of a disk drive and its components, we have
gone through extensive experiments to measure the seek time as a function of seek
distance.

The experimental results are shown in Figure 6. In contrast to Eq. (4), microscopically
speaking, the seek time is not a simple function of seek distance. Instead, it should be
noted that there exist rather large differences between maximum and minimum values
because of the thermal expansion, bearing conditions, and other factors. As seen from
this experiment it is suggested to maintain the table by which a seek distance is mapped
to a seek time. As to the variance in the seek time, we will return to this subject at the
end of this section.

So far, in the analysis of disk service time, the seek time and rotational delay which
are the two most important performance parameters have been considered separately;
their obvious interplay has been neglected. Their interdependence will become clear if
we utilize the geometrical layout information of a disk.

Let us now shed new light on the relationship between the seek time and the ro-
tational delay. We now model the head positioning time from the previous sector of
the last disk I/O request Ri−1 to the first sector of the current disk I/O request Ri,
i.e., tmove(B(i−1)+L(i−1)−1,Bi), using the geometric location of two sectors: LBA at
(B(i−1) + L(i−1) − 1) and LBA at Bi. Figure 7 shows the three cases in calculating
the head positioning time. Angular difference tφ(a,b) is defined as the rotation time from
Sector b to Sector a or the head movement line for a and b at (B(i−1) + L(i−1) − 1) and
Bi, respectively.

Case 1. tseek(a,b) ≤ tφ(a,b) (Figure 7a)

Upon reading/writing Sector a, the disk head moves to the track which Sector b is
located at. Meanwhile, the disk rotates at a given speed. What counts in these movements

Rigorous Modeling of Disk Performance for Real-Time Applications 493

rotation

b

a

tseek(a,b)

head

t (a,b)

(a)

b

a

tseek(a,b)

rotation
head

t (a
,b)

(b)

b

a

tseek(a,b)

rotation

head

t (a,b)

trev

t re
v

a'

(c)

Fig. 7. Head positioning time from Sector a to Sector b

is whether the head can reach the target track before the target sector (Sector b) moves
past the line of head movement. If the seek time is less than the angular difference as
depicted in Figure 7a, upon reaching the target sector, the head must wait there until the
target sector gets under the head. Thus, the total head positioning time is equal to the
angular difference, i.e.,

tmove(a,b) = tφ(a,b) (6)

Case 2. tφ(a,b) < tseek(a,b) ≤ trev (Figure 7b)

In this case, the target Sector b passes by the line of head movement while the disk
head moves towards the target track. This necessitates the disk to make one more full
revolution before Sector b is placed under the head. Thus the total head positioning time
amounts to the angular difference plus the full revolution time, i.e.,

tmove(a,b) = tφ(a,b) + trev (7)

Case 3. tseek(a,b) > trev (Figure 7c)

In this case, after one revolution of disk, the head is still on the move towards the
target track and the Sector b rotates past the same position as that given at the time when
an initial seek started. If we take a snapshot at this moment, the disk behaves as if the
head started a new seek one revolution time after the initial seek. Supposing that Sector
a′ is passing under the head at that instant of time, the total head positioning time (from
Sector a to Sector b) is equivalent to the sum of trev and the head positioning time from
Sector a′ to Sector b, i.e.,

tmove(a,b) = tmove(a′,b) + trev (8)

It is noteworthy that the above procedure can be applied recursively so we can address
the cases where the head requires more than one revolution of disk to reach the target
sector. Algorithm 1 summarizes our approach to calculating the head positioning time.

494 S. Park and H. Shin

Algorithm 1 Algorithm for calculating head positioning time
procedure tmove(a,b)

1: if tseek(a,b) ≤ tφ(a,b) then
2: Return tφ(a,b)

3: else if tφ(a,b) < tseek(a,b) ≤ trev then
4: Return tφ(a,b) + trev

5: else
6: a′ = head position after trev

7: Return tmove(a′,b) + trev

8: end if

As aforementioned, large variance in the seek time causes untoward effect on the
prediction of disk performance. Depending on the degree of variation, the seek time
may or may not be less than the angular difference, resulting in either Case 1 or Case
2. This uncertainty is illustrated in Figure 8 where pmin(b) and pmax(b) denote the
geometric locations of Sector b after the minimum seek time and the maximum seek
time, respectively. In the case of the minimum seek time, Case 1 is applied whereas in the
case of the maximum seek time, Case 2 is applied when calculating the head positioning
time. In other words, for the same head movement, the head positioning time may differ
by as much as one revolution time. It is thus necessary to adopt the maximum seek time
to estimate the bounded disk service time.

a

rotation

head

b
min seek time

 max seek time

pmax(b)

pmin(b)

Fig. 8. Effect of the variance in seek time

4 Performance Evaluation

To verify our disk performance model, we have conducted a series of experiments on a
Linux-based PC equipped with one IBM DCAS-34330W disk drive. We have obtained
the values of parameters using its data sheet [6], SCSI commands in Table 2 and parameter
extracting algorithms in [1,17].As noted in Section 2.2, the embedded controller provides
caches; however, we disable them to accurately evaluate the proposed model.

Rigorous Modeling of Disk Performance for Real-Time Applications 495

Table 2. Parameter extracting SCSI commands

SCSI command Page Disk drive parameters

MODE SELECT 0C Cylinder range for each Zone
03 Number of sectors per a track,

maximum track skewing time
08 Caching parameters

SEND DIAG 40 Request a translation from LBA to
< Cylinder#, Head#, Sector# >

RECV DIAG 40 Retrieve SEND DIAG result
READ DEFECT N/A List of bad sectors

The number of heads is 6 and the rotational speed is 5400RPM . Figure 6 shows the
seek time curve graph and Table 3 shows Dj , the number of sectors per track in Zone j,
and tzskew(j,h), the maximum track skewing time in Zone j and Head h.

Table 3. Number of sectors per track, track skewing time (DCAS-34330W)

Zone Cylinder Sectors Maximum track skewing time for each head (ms)
range per track 0 1 2 3 4 5

0 0-857 211 1.89 2.00 1.84 2.05 2.31 2.68
1 858-2684 198 1.85 2.00 1.85 2.02 2.35 2.69
2 2685-3362 184 1.81 1.99 1.87 2.05 2.35 2.71
3 3363-4287 176 1.89 2.02 1.83 2.02 2.33 2.71
4 4288-5379 165 1.88 2.02 1.82 2.02 2.35 2.69
5 5380-6242 154 1.80 2.02 1.87 2.02 2.35 2.67
6 6243-6920 145 1.84 2.07 1.84 2.00 2.37 2.80
7 6921-8209 132 1.85 2.02 1.85 2.02 2.35 2.69

To minimize the effects of other processes, we activate only the process which is
used to measure the disk service time. Figure 9 shows the disk service time with respect
to disk I/O requests when the disk sequentially accesses the sectors which are allocated
contiguously over Zone 0. In this experiment, 256KB is used for each disk I/O request.
In this access pattern, the disk head moves to adjacent tracks only; so the transfer time
and track skewing time are the only two factors that account for the disk service time. We
first assess the disk performance with I/O requests through the file system, of which the
results are shown in Figure 9b. Also, for the direct I/O technique, we disable the features
which the file system provides such as read-ahead and buffer cache. The results of the
direct I/O are shown in Figure 9a. It should be noted that using the file system produces
much larger variance in disk service time. Judging from this comparison analysis, we
suggest that the experiment should adopt direct disk I/O rather than disk I/O through file
system.

In order to evaluate the proposed model, we have performed an experiment of reading
randomly distributed sectors. The experiment employs 64KB per disk I/O request with
10 different workloads. We measure the actual disk service time for each disk I/O request

496 S. Park and H. Shin

20

25

30

35

40

45

50

1 21 41 61 81 101 121 141 161 181

disk I/O request

d
is

k
 s
e
rv

ic
e
 t

im
e
 (
m
s

)

(a) Direct I/O

20

25

30

35

40

45

50

1 21 41 61 81 101 121 141 161 181

disk I/O request

d
is

k
 s
e
rv

ic
e
 t

im
e
 (
m
s

)

(b) File system

Fig. 9. Direct I/O vs File system

and compare the results with the estimated service time based on our proposed model.
We also estimate the service time based on the traditional model shown in Eq. (5). Note
that the traditional model assumes the worst case disk service time that includes the head
positioning time equivalent to the seek time plus one revolution time. The estimation is
performed using the randomly generated access patterns.These two models are compared
experimentally as shown in Figure 10.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

disk I/O request

d
is

k
 s
e
rv

ic
e
 t

im
e
 (
m
s

)

measured min

measured max

proposed model

traditional model

Fig. 10. Experimental result for 64KB × 10

Figure 10 shows that the estimated disk service time based on our model is very
accurate and bound the actual measured disk service time. In the figure the third disk
I/O request indicates that the seek time variance affects the head positioning time as
illustrated in Figure 8. We may point out that in this case, the minimum and the maximum
service time differ by one revolution time. The first two vertical bars in Figure 10
demonstrate this difference pictorially.

Rigorous Modeling of Disk Performance for Real-Time Applications 497

We have performed more extensive experiments by reading randomly distributed
sectors for the performance evaluation of our model. We conduct experiments by reading
randomly distributed sectors. The experiments use 100MB workloads with 512KB,
1MB, 1.5MB, 2MB per disk I/O request. In Figure 11, we present the experimental
results for 1MB request size only becase the requests of other sizes show the similar
results. Table 4 summarizes the experimental results.

400

500

600

700

800

900

1000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

disk I/O request

d
is

k
 s
e
rv

ic
e
 t

im
e
 (
m
s

)

measured

proposed

model

traditional

model

Fig. 11. Experimental result for 1MB

From these results we can assert that our proposed model is plausible in the sense
that it is able to estimate the bounded disk service time with less than 10% error on
average. In contrast, the traditional model shows about 40% error on average as shown
in Table 4

Table 4. Summary of experimental results

Disk I/O request size Avg. measured Avg. estimation error (ms)
service time (ms) Proposed model Traditional model

512KB 285.26 28.00 113.02
1MB 530.87 51.03 214.62

1.5MB 774.19 71.74 312.43
2MB 1011.27 92.63 412.21

5 Summary

In this paper, we have proposed a new performance model of disks that is capable of
estimating the bounded disk service time on-line precisely. In the traditional approach,

498 S. Park and H. Shin

the disk performance models deal with the seek time and the rotational delay separately
on the basis of unrealistic conditions. For the rigorous analysis of disk service time, we
exploit the geometric layout of disks to model the head positioning time more accu-
rately in realistic conditions. We have verified our proposed model through extensive
experiments on a Linux-based PC equipped with one SCSI disk drive. The experimental
results show that our proposed model bounds the disk service time with less than 10%
error, reducing the error bound by approximately 75% compared with the traditional
disk performance model.

References

1. ANSI. Draft proposed american national standard for information systems - small computer
system interface-2 (scsi-2), 1996.

2. Meng Chang Chen, Jan-Ming Ho, Ming-Tat Ko, and Shie-Yuan Wang. A SCSI disk model
for multimedia storage systems. International Journal of Computer Systems Science and
Engineering, 14(3):147–154, 1999.

3. Jim Gemmell, Harrick M. Vin, Dilip D. Kandlur, P. Venkat Rangan, and Lawrence A. Rowe.
Multimedia storage servers: A tutorial. IEEE Computer, 28(5):40–49, 1995.

4. S. Ghandeharizadeh, S. Kim, C. Shahabi, and R. Zimmermann. Placement of continuous
media in multi-zone disks, 1996.

5. A. Hospodor. Hit-ratio of caching disk buffer. In Proceeding of the 97th IEEE Computer
Society International Conferrence, pages 427–432, 1992.

6. IBM. Hard disk drive specifications for dcas-34330w, 1996.
7. C. Y. Choi. K. Whang. Overlapped disk access for real-time disk I/O. In Proceedings of

the 6th International Conference on Real-Time Computing Systems and Applications, pages
263–269, 1999.

8. C. Martin, P. Narayan, B. Ozden, R. Rastogi, and A. Silberschatz. The fellini multimedia
storage system, 1998.

9. Banu Ozden, Rajeev Rastogi, and Abraham Silberschatz. Buffer replacement algorithms for
multimedia storage systems. In International Conference on Multimedia Computing and
Systems, pages 172–180, 1996.

10. Krithi Ramamritham. Real-time databases. Distributed and Parallel Databases, 1(2):199–
226, 1993.

11. Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE Computer,
27(3):17–28, 1994.

12. Elizabeth A. M. Shriver, Arif Merchant, and John Wilkes. An analytic behavior model for
disk drives with readahead caches and request reordering. In Measurement and Modeling of
Computer Systems, pages 182–191, 1998.

13. A. SilberSchatz, P. Galvin, , and G. Gagne. Applied Operating System Concepts. John Wiley
& Sons, 2000.

14. Peter Triantafillou, Stavros Christodoulakis, and Costas Georgiadis. A comprehensive ana-
lytical performance model for disk devices under random workloads. Knowledge and Data
Engineering, 14(1):140–155, 2002.

15. Harrick M. Vin, Pawan Goyal, and Alok Goyal. A statistical admission control algorithm for
multimedia servers. In ACM Multimedia, pages 33–40, 1994.

16. B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling algorithms for modern disk
drives. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 241–251, Nashville, TN, USA, 16–20 1994.

17. Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-line extraction
of SCSI disk drive parameters. Technical Report CSE-TR-323-96, 19 1996.

Bounding the Execution Times of DMA I/O
Tasks on Hard-Real-Time Embedded Systems

Tai-Yi Huang, Chih-Chieh Chou, and Po-Yuan Chen

National Tsing Hua University, Hsinchu Taiwan 300, ROC
{tyhuang,ccchou,pychen}@cs.nthu.edu.tw http://eos.cs.nthu.edu.tw/

Abstract. A cycle-stealing DMA I/O task proceeds by stealing bus cy-
cles from the CPU. The execution time of the DMA I/O task depends on
the sequence of CPU instructions executing concurrently with it. This
paper presents a method for bounding the worst-case execution time
of a cycle-stealing DMA I/O task executing concurrently with a set of
CPU tasks on a single-processor system. Our method uses the dynamic-
programming technique to minimize the computational cost. We con-
ducted exhaustive simulations on a widely-used embedded controller.
The experimental results demonstrate our method safely and tightly
bounds the worst-case execution times of cycle-stealing DMA I/O tasks.

1 Introduction

In a hard-real-time system, both CPU tasks and I/O tasks are required to com-
plete executions by their deadlines. A task that executes longer than its allocated
computation time may lead to missed deadlines and the failure of the whole sys-
tem. In such a system, it is essential that the worst-case execution time (WCET)
of each task be known in advance [10, 5, 13]. To tightly bound the WCET, the
interference between concurrently executing CPU tasks and I/O tasks must be
considered.

This paper presents a method for bounding the WCET of a cycle-stealing
DMA I/O task. A DMAC may operate either in the burst mode or in the cycle-
stealing mode. In the burst mode, a DMAC gains the control of the I/O bus once
it is free and retains its ownership until all data transfers complete. Because a
burst-mode DMA I/O task monopolizes the I/O bus, other tasks cannot interfere
its execution time. In contrast, a DMAC that operates in the cycle-stealing
mode transfers data by ”stealing” bus cycles from an executing CPU task. We
present here a method for bounding the WCET of a cycle-stealing DMA I/O
task executing concurrently with a set of preemptable CPU tasks on a single-
processor embedded system. We use the dynamic-programming technique in the
development of this method to minimize the computational cost. Finally, we
demonstrate the correctness of our method through exhaustive simulations.

Most of the previous studies focused on bounding the WCETs of CPU tasks
[2, 9, 11, 6, 12, 14, 3, 8]. Muller et al. [11] developed a static cache simulation to
bound the WCETs of CPU tasks executed on a contemporary machine with the

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 499–512, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

500 T.-Y. Huang, C.-C. Chou, and P.-Y. Chen

CPU
DMA

Controller

Bus

Controller

I/O Bus

Main

Memory
I/O Device

Fig. 1. The architecture of the machine model

instruction cache. Lim et al. [9] proposed a timing analysis technique for modern
multiple-issue machines such as superscalar processors. Kim et al. [6] presented
quantitative analysis results on the impacts various architecture features on the
accuracy of WCET predictions. All of the above methods invariably assume
that a CPU task to be analyzed executes without any interference of I/O tasks
in the system. In a hard-real-time system, I/O tasks have been restricted to
appear at the predefined areas such as the beginning and end of CPU tasks [15,
7]. To our knowledge, our work is the first one that attempts to bound the
interference between CPU tasks and cycle-stealing DMA I/O tasks. For this
reason, we cannot do any direct comparison between our work and any previous
study.

The rest of the paper is structured as follows. Section 2 describes the machine
model. Section 3 analyzes the properties of instruction sequences executing con-
currently with cycle-stealing DMA I/O. Section 4 presents a recursive formula for
bounding the WCET of the DMA I/O task. Section 5 implements the recursive
formula with the dynamic-programming technique. We present our experimental
results in Section 6. Finally, Section 7 concludes this paper.

2 The Machine Model

We adopt here the commonly-used single-processor machine model shown in
Figure 1. In this model the DMAC operates in the cycle-stealing mode. Either
the CPU or the DMAC, but not both, can hold the bus and transfer data at the
same time. We assume that signal transmission in the bus is instantaneous. Our
analytical method is applicable on a simple architecture where the instruction
caching and pipelining is disabled.

An instruction cycle consists of a sequence of operations to fetch and execute
an instruction. The sequence takes one or more machine cycles. A machine cycle
requires one or more processor clock cycles to execute. We assume that the CPU
is synchronous: the beginning of each machine cycle is triggered by the processor
clock. We classify all machine cycles into two categories: B (bus-access) cycles

Bounding the Execution Times of DMA I/O Task 501

and E (execution) cycles. A B-cycle is a machine cycle during which the CPU
uses the I/O bus. In contrast, the CPU does not use the bus when it is in an
E-cycle.

To access the bus, the DMAC first sends a bus request. If the bus is already
used by the CPU, the DMAC waits. When the bus is free, there is a short delay,
called the bus master transfer time (BMT), while the DMAC gains the control
of the bus and start transferring data. At the end of each transfer of a unit of
data, if there is no bus request from the CPU, the DMAC may continue to hold
the bus and transfer data. Otherwise, the DMAC must release the bus, and after
another BMT delay the CPU gains the control of the bus.

Let DT denote the time the DMAC takes to transfer a unit of data. Let m
be the maximum units of data the DMAC can transfer during the sequence of
machine cycles Bi → E1 → E2 → · · · → Ek → Bi+1. Let T be the total execution
time of the k consecutive E-cycles when they execute alone. We can compute m
by the equation

m =
⌈

T − BMT
DT

⌉
. (1.1)

Let Tc be the period of a clock cycle. Because each machine cycle is triggered
by the processor clock, the exact worst-case delay suffered by the sequence of
E-cycles is equal to

d =
⌈

m ∗ DT + 2 ∗ BMT − T
Tc

⌉
∗ Tc. (1.2)

The derivation for these two equations can be found in our previous work [4].
Because on a simple architecture each instruction cycle begins with a B-

cycle to fetch the instruction, we can analyze the effect of cycle-stealing on
each instruction independently, without considering the other instructions. Let
W (I) denote the WCET of an instruction I when it executes concurrently with
DMA I/O and let M(I) denote the maximum units of data the DMAC transfers
during the execution of I. We obtain W (I) by summing the execution time of
the instruction when it executes without DMA I/O and the worst-case delays of
all the E-cycle sequences, computed by Eq. (1.2), in the instruction. Similarly,
we can use Eq. (1.1) to obtain M(I).

The workload discussed in this paper consists of a DMA I/O task and K
independent CPU tasks. The DMA I/O task, denoted by AD, transfers Z units
of data. Here we define the execution time of AD as the interval from when the
DMAC receives an interrupt indicating the start of the data transfer to when
the CPU receives an interrupt notifying the completion of the data transfer.
Based on the deterministic behaviors shown by most hard-real-time embedded
software, we model a CPU task as a sequence of CPU instructions. Each of the
K CPU tasks, denoted by A1, A2, . . . , AK , has an arbitrary release time and
is preemptable. In contrast, the DMA I/O tasks AD is nonpreemptable. We
assume that AD is initialized by a task other than the K CPU tasks. After AD

is initialized, this CPU task is blocked. Thus, AD may execute concurrently with
any of the K CPU tasks. The WCET prediction obtained by our method bounds

502 T.-Y. Huang, C.-C. Chou, and P.-Y. Chen

a+j+1

B E E B

Ia-1 Ia
t 1

E E E

Ia+j I
t 2

data transfers

DMA I/O task

ZZ-1

Fig. 2. The execution time of a DMA I/O task

the execution time of AD whether the CPU tasks are scheduled by any fixed
(such as Rate-Monotonic [10]) or dynamic (such as Earliest-Deadline-First [5])
priority algorithm.

To simplify the discussion, we assume that the CPU is never idle during
the execution of AD. We will remove this assumption later by modeling an idle
period as an instruction of a special CPU task, and our method still bounds the
WCET of AD at the same time complexity.

3 The Properties of a Concurrent Instruction Sequence

Let S denote a sequence of instructions Ia → · · · → Ia+j executing concurrently
with the DMA I/O task AD. Because interrupts are processed between instruc-
tion cycles, AD and Ia begin at the same time, and AD and Ia+j end at the same
time. Consequently, the WCET of the sequence S, denoted by W (S), is bounded
by the sum of the WCET of each instruction when it executes concurrently with
DMA I/O. That is

W (S) = W (Ia) + · · · + W (Ia+j).

Example 1: Let AD execute concurrently with S as shown in Figure 2. The
CPU signals the DMAC to start its data transfer at time t1 and starts the
execution of Ia at the same time. The DMAC signals the CPU the completion
of the last unit of data during the execution of Ia+j . Because interrupt signals
are processed between instruction cycles, the CPU is notified the completion of
AD at t2, when the last instruction Ia+j completes its execution. The execution
time of AD is equal to (t2 − t1), that is bounded by W (Ia) + · · · + W (Ia+j). ��

Property 1: The DMA I/O task AD and the sequence S begin and end at
the same time. The WCET of S is bounded by the sum of the WCET of each
instruction when DMA I/O is present.

Bounding the Execution Times of DMA I/O Task 503

The DMAC must transfer the last unit of data during the execution of Ia+j .
Some of the E-cycles in Ia+j may not be utilized by the DMAC as shown by the
example in Figure 2. In contrast, the DMAC must fully utilize all the E-cycles
in the rest of the instructions to transfer data. The sequence of instructions
Ia → · · · → Ia+j must satisfy

a+j−1∑
i=a

M(Ii) < Z ≤
a+j∑
i=a

M(Ii).

Property 2: The DMAC must fully utilize all the E-cycles in every instruction
of S except Ia+j . In addition, the last unit of data must be transferred during
the execution of Ia+j .

The sequence S may contain instructions from any of the K CPU tasks.
Among the instructions in S, let Si denote the set of instructions from the CPU
task Ai. Si is either an empty set or a subsequence of contiguous instructions of
the task Ai.

Example 2: Let S be the sequence of instructions I1 → I2 → I3 → I4 →
I5. Assume that {I2, I4, I5} are from the CPU task A1, {I1, I3} are from A2.
I2 → I4 → I5 must be a subsequence of contiguous instructions of A1. Similarly,
I1 → I3 must be a subsequence of A2. ��

Property 3: Among the instructions of S, the set of instructions from the same
CPU task must be a subsequence of contiguous instructions of the CPU task.

4 The Recursive Formula

Let Y denote the set of all possible sequences of instructions that may execute
concurrently with the DMA I/O task AD. We can obtain the WCET of AD,
denoted by W (AD), as the maximum W (S) for every S ∈ Y ; that is

W (AD) = max
∀S∈Y

W (S).

This brute-force method requires the availability of the set of all possible
sequences. It is difficult, if not impossible, to find all possible sequences in a
set of preemptable CPU tasks with arbitrary release times. In this section we
describe a recursive formula for bounding W (AD) without enumerating all the
possible sequences.

4.1 The Derivation

Let us divide Y into K disjoint subsets Y1, Y2, . . . , YK in such a way that the
subset Yα consists of all the sequences where the last instruction of each sequence

504 T.-Y. Huang, C.-C. Chou, and P.-Y. Chen

is from the task Aα. Let W(K,Z,α) denote the maximum W (S) for every S ∈ Yα.
We can redefine W (AD) as

W (AD) = max
1≤α≤K

W(K,Z,α). (2)

Let us further divide Yα into a number of disjoint subsets. Let Y
(m1,m2,...,mK)
α

denote a subset of sequences in Yα such that each sequence S in this subset has
the property: the DMAC transfers mi units of data during the executions of the
instructions from the task Ai. Let W

(m1,m2,...,mK)
α denote the maximum W (S)

for every S ∈ Y
(m1,m2,...,mK)
α . We can define W(K,Z,α) as

W(K,Z,α) = max{W (m1,m2,...,mK)
α } (3)

where
(1) m1 + m2 + · · · + mK = Z, and
(2) 0 < mα, and 0 ≤ mi for i
= α.

To compute W
(m1,m2,...,mK)
α , we first define fi(mi) and pi(mi). Let Ia →

· · · → Ia+j be a subsequence of contiguous instructions of the task Ai such that

mi =
a+j∑
l=a

M(Il). (4)

Let Fmi
i denote the set of all possible subsequences of Ai that satisfy Eq. (4).

We define fi(mi) to be the maximum W (S) for every S ∈ Fmi
i . That is

fi(mi) = max
∀S∈F

mi
i

W (S). (5)

Similarly, let Ia → · · · → Ia+j be a subsequence of contiguous instructions of
the task Ai such that

a+j−1∑
l=a

M(Il) < mi ≤
a+j∑
l=a

M(Il). (6)

Let Pmi
i denote the set of all possible subsequences of Ai that satisfy Eq. (6).

We define pi(mi) as
pi(mi) = max

∀S∈P
mi
i

W (S). (7)

Let us get back to a sequence S ∈ Y
(m1,m2,...,mK)
α . According to Property 3,

the sequence S is in fact the concatenation of the subsequence Si of each task
Ai such that the DMAC transfers mi units of data during the execution of the
subsequence Si. Accordingly, W (S) is equal to the sum of W (Si), i = 1 to K.
We can use fi(mi) and pi(mi) to define W

(m1,m2,...,mK)
α as

W (m1,m2,...,mK)
α = e1(m1) + e2(m2) + · · · + eK(mK) (8)

Bounding the Execution Times of DMA I/O Task 505

where

ei(mi) =
{

pi(mi) if i = α,
fi(mi) if i
= α. (9)

In other words, ei(mi) is equal to the maximum W (S) for every S ∈ Fmi
i , if

i
= α, or equal to the maximum W (S) for every S ∈ Pmi
i , if i = α.

Example 3: Let K = 3 and Z = 3. By Eq. (2), the WCET of the DMA I/O task
AD is equal to the maximum of W(3,3,i), i = 1, 2, 3. We use Eq. (3) to compute
each W(3,3,i). For example,

W(3,3,1) = max{W
(1,2,0)
1 , W

(1,1,1)
1 , W

(1,0,2)
1 , W

(2,1,0)
1 , W

(2,0,1)
1 , W

(3,0,0)
1 }.

We then use Eqs. (8) and (9) to compute each term in the max function. For
example,

W
(1,2,0)
1 = p1(1) + f2(2) + f3(0), and

W
(2,1,0)
1 = p1(2) + f2(1) + f3(0).

��
The computation of W(3,3,1) in the example excludes the cases of W

(0,3,0)
1 ,

W
(0,2,1)
1 , W

(0,1,2)
1 , and W

(0,0,3)
1 due to the requirement in Property 2. By im-

plementing Property 2 with the settings of pi(0) to −∞, i = 1 to K, we can
generalize the definition of W(K,Z,α) to the following form

W(K,Z,α) = max{e1(m1) + e2(m2) + · · · + eK(mK)}

where ei(mi) is given by Eq. (9) and the max function is over all m1, m2, . . . , mK

such that
(1) m1 + m2 + · · · + mK = Z, and
(2) 0 ≤ mi ≤ Z, i = 1, 2, . . . , K.

By considering mK separately, we can further rewrite the above formula as

W(K,Z,α) = max
0≤g≤Z

{max{e1(m1) + e2(m2) + · · · + eK−1(mK−1)} + eK(g)}

where the inner max function is over all m1, m2, . . . , mK−1 such that

(1) m1 + m2 + · · · + mK−1 = Z − g, and
(2) 0 ≤ mi ≤ Z − g, i = 1, 2, . . . , K − 1.

Since the inner term in the above formula is exactly W(K−1,Z−g,α), we simplify
it to

W(K,Z,α) = max
0≤g≤Z

{W(K−1,Z−g,α) + eK(g)}.

After considering the terminative condition of this recursive formula, we obtain

W(K,Z,α) =
{

e1(Z) if K = 1,
max0≤g≤Z{W(K−1,Z−g,α) + eK(g)} if K > 1.

(10)

Again, ei(mi) is given by Eq. (9). Finally, Eqs. (2) and (10) together give a
recursive formula for computing the WCET of the DMA I/O task AD.

506 T.-Y. Huang, C.-C. Chou, and P.-Y. Chen

Input: the CPU task Aα, a sequence of Uα instructions.
Output: the entries f [α, z] and p[α, z], z = 0, 1, . . . , Z.

Procedure:
for z = 0 to Z do

for j = 1 to Uα do {
1. find a longest subsequence that starts with the j-th instruction

and belongs to F z
α;

2. if ((such a subsequence exists) and
(its WCET is larger than f [α, z])) then
– set f [α, z] to the WCET of the subsequence;

3. find a longest subsequence that starts with the j-th instruction
and belongs to P z

α;
4. if ((such a subsequence exists) and

(its WCET is larger than p[α, z])) then
– set p[α, z] to the WCET of the subsequence;

}

Fig. 3. The procedure that computes f [α, z] and p[α, z] for the task Aα

4.2 Table Construction

The computation of Eq. (10) requires frequent accesses to both fi(mi) and
pi(mi). To avoid computing the same fi(mi) and pi(mi) repeatedly, we pre-
compute each fi(mi) and pi(mi), and store the results in the tables f [i, mi] and
p[i, mi], respectively, for i = 1 to K and mi = 0 to Z.

Figure 3 lists the procedure for constructing the tables f [α, z] and p[α, z] of a
CPU task Aα, z = 0, 1, . . . , Z. Here we let Uα denote the number of instructions
in Aα. Initially, we set f [α, 0] to 0, f [α, z] to −∞, z = 1 to Z. In addition,
we set p[α, z] to −∞, z = 0 to Z. We update the table f [α, z] each time we
locate a subsequence in Aα that belongs to F z

α and whose WCET is larger than
the current value. Similarly, we update the table p[α, z] each time we locate a
subsequence in Aα that belongs to P z

α and has a larger WCET. If at the end
of the procedure an entry f [α, z] (or p[α, z]) still has the value of −∞, this fact
implies that it is impossible to find in the task Aα a subsequence of instructions
that belongs to F z

α (or P z
α). The following examples illustrate how the procedure

works.

Example 4: Table 1 gives the timing information of a CPU task Aα. This task
consists of 5 instructions, I1 to I5. Column 2 and 3 lists the values of W (Ii) and
M(Ii) for each instruction Ii. When z = 3 and j = 3, the procedure in Figure 3

Bounding the Execution Times of DMA I/O Task 507

Table 1. The timing information of a CPU task Aα

Ii W (Ii) M(Ii)
I1 10 2
I2 8 1
I3 12 2
I4 10 1
I5 14 2

finds that the subsequence I3 → I4 belongs to both F 3
α and P 3

α because

2 =
3∑

i=3

M(Ii) < z = 3 ≤
4∑

i=3

M(Ii) = 3.

The WCET of the subsequence is 22 = W (I3) + W (I4). We update f [α, 3] to
22 if 22 is larger than the current value of f [α, 3]. Similarly, we update p[α, 3] if
22 > p[α, 3]. ��

Example 5: When z = 4 and j = 3, the procedure finds the subsequence
I3 → I4 → I5 belongs to P 3

α because

3 =
4∑

i=3

M(Ii) < z = 4 ≤
5∑

i=3

M(Ii) = 5.

The WCET of the subsequence I3 → I4 → I5 is 36. We update p[α, 4] if 36 is
larger than the current value of p[α, 4]. On the other hand, because there is no
subsequence that begins with I3 and belongs to F 4

α, we leave f [α, 4] unchanged.
��

4.3 Running-Time Complexity

Instead of searching through the sequence of instructions repeatedly, the steps 1
and 3 of the procedure shown in Figure 3 can be carried out in constant time by
utilizing the information calculated in a previous iteration of the loop. Specifi-
cally, the subsequences that start with the (j − 1)-th instruction can be used to
locate the subsequences that start with the j-th instruction. Consequently, the
running-time complexity of the procedure shown in Figure 3 can be optimized
to O(ZUα). To construct the whole tables of f [k, z] and p[k, z] for k = 1 to K
and z = 0 to Z, we apply this procedure to each of the K CPU tasks. The time
complexity is

∑K
k=1 O(ZUk) = O(ZU), where U is the sum of the number of

instructions of these K CPU tasks.
The procedure shown in Figure 4 uses the tables f [α, z] and p[α, z] together

with Eq. (10) to compute W(K,Z,α). The time complexity for computing W(K,Z,α)
with this procedure is O(ZK). Finally, the time complexity of computing W (AD)

508 T.-Y. Huang, C.-C. Chou, and P.-Y. Chen

Input: – the tables f [α, z] and p[α, z], z = 0, 1, . . . , Z.
– the definitions of ei(mi) given in Eq. (9).

Output: the value of W(k,z,α).

Procedure: EQ10(k, z, α)
1. if (k == 1) then return e1(z);
2. set R to 0;
3. for g = 0 to z do {

– set T to (EQ10(k − 1, z − g, α) + ek(g));
– if (T > R) then set R to T ;

}
4. return R;

Fig. 4. The procedure that implements Eq. (10)

with the recursive formula is O(ZU) + O(KZK). In other words, the time com-
plexity of the recursive formula grows exponentially as the number of CPU tasks
grow.

5 A Dynamic-Programming Method

The problem with the procedure shown in Figure 4 is that it computes the
same W(k,z,α) repeatedly in the process of computing W(K,Z,α). To avoid redun-
dant computation, we implement Eq. (10) by the procedure shown in Figure 5.
This procedure uses the dynamic-programming technique that first computes
the solutions to all subproblems. It proceeds from the small subproblems to the
larger subproblems, storing the answers in a table. Here we store the value of
W(k,z,α) in the entry W [k, z, α]. The time complexity of computing W(K,Z,α)
by this dynamic-programming method is O(KZ2). Thus, the time complexity of
computing W (AD) by this dynamic-programming method is O(ZU)+O(K2Z2),
where Z is the number of units of data to be transferred by AD, K is the number
of CPU tasks that may execute concurrently with AD, and U is the sum of the
number of instructions of these K CPU tasks.

Another advantage of the dynamic-programming method is that the table
W [k, z, α] built for the purpose of bounding the WCET of AD can be used to
bound the WCET of other DMA I/O tasks which execute concurrently with
the same K CPU tasks. For example, to compute the WCET of another DMA
I/O task AD′ which transfer Z ′ units of data, Z ′ < Z, by Eq. (10) we need to
compute first W [K, Z ′, α]. Because W [K, Z ′, α] had already been computed in
the process of computing the WCET of AD, we can obtain W (AD′) directly,
without another full evaluation of Eq. (10). Suppose that there are totally γ
DMA I/O tasks in the system that can execute concurrently with these K CPU

Bounding the Execution Times of DMA I/O Task 509

Input: – the tables f [k, z] and p[k, z], k = 1 to K, z = 0 to Z.
– the definitions of ei(mi) given in Eq. (9).

Output: the table W [k, z, α], k = 1 to K, z = 0 to Z.

Procedure:
1. set W [1, z, α] to e1(z), z = 0 to Z.
2. for k = 2 to K do

for z = 0 to Z do {
set W [k, z, α] to −∞;
for g = 0 to z do {

if (W [k − 1, z − g, α] + ek(g) > W [k, z, α]) then {
– set W [k, z, α] to (W [k − 1, z − g, α] + ek(g));

}
}

}

Fig. 5. A dynamic-programming method for Eq. (10)

tasks, and each DMA I/O task transfers Zi units of data, i = 1, 2, . . . , γ. The
time complexity of bounding the WCETs of these DMA I/O tasks is

O(ZmaxU) + O(K2Z2
max)

where Zmax is the maximum value of Z1, Z2, . . . , Zγ .
The discussion thus far assumes that the CPU is never idle during the exe-

cution of the DMA I/O task AD. We now remove this assumption. Suppose that
there is an idle period. Let m denote the number of units of data the DMAC
transfers during this period. We model this idle period as an instruction Il of a
special CPU task AK+1, called the background task. Because the DMAC takes
at most (2 ∗ BMT + DT) to transfer a unit of data, the execution time of this
period is bounded by m ∗ (2 ∗ BMT + DT). That is

M(Il) = m, and W (Il) = m ∗ (2 ∗ BMT + DT).

Let S denote a mixed sequence of instructions and idle periods that executes
concurrently with AD. Let S′ denote the new sequence of instructions after re-
placing each idle period in S with an instruction of the background task AK+1.
The new sequence S′ holds the three properties discussed in Section 3. Conse-
quently, by adding the background task AK+1 to the set of the K CPU tasks
that can execute concurrently with AD and setting

f [K + 1, z] = p[K + 1, z] = z ∗ (2 ∗ BMT + DT), z = 0, 1, . . . , Z,

the dynamic-programming method given in Figure 5 still bounds the WCET of
AD at the time complexity of O(ZU) + O(K2Z2) when CPU idle periods are
allowed.

510 T.-Y. Huang, C.-C. Chou, and P.-Y. Chen

Table 2. The CPU task set

Program Brief Description Instructions
QuickSort Recursive QuickSort 3,124
BubbleSort Sequential BubbleSort 2,763
FFT Fast Fourier Transform 3,662
Spline Cubic Spline function 2,101
Gaussian Gaussian Elimination 1,436
Mtxmul Matrix Multiplication 1,170
Correlate Track-Correlate function 814
Mtxmu12 Loop-unrolled version of Mtxmul 884

Table 3. The simulation results for DMA I/O tasks

The length of the I/O task
250 500 750 1000

W (AD)/Wr(AD) 1.060 1.029 1.017 1.014
W (AD)/Wp(AD) 1.063 1.028 1.013 1.006

6 Experimental Results

We demonstrate the correctness of our method through exhaustive simulations.
Given a set of CPU tasks and a DMA I/O task AD, we first used our dynamic-
programming method to compute W (AD). We next simulated the concurrent
execution of the CPU task set and AD under the round-robin scheduling algo-
rithm and the fixed priority assignment algorithm, and recorded the execution
time of AD. Tasks were simulated for all possible combinations of release times,
and in the case of fixed priority assignment, all possible combinations of pri-
ority assignments were simulated. To make exhaustive simulation feasible, we
allowed scheduling points to occur only every 100 instructions. We use Wr(AD)
and Wp(AD) to denote the maximum execution time of AD found by the simu-
lation when the CPU tasks are scheduled by the round-robin and fixed priority
assignment scheduling algorithms, respectively.

Our tested workload consists of eight CPU tasks and a DMA I/O task. Ta-
ble 2 lists the eight CPU tasks used in the simulation experiment. Each CPU task
is an execution trace of a commonly-used program executed on the MC68030.
We used the MC68030 in this experiment because it is a widely-used embed-
ded processor for which instruction timing information is available. Column 3
of Table 2 lists the number of instructions in each CPU task. We obtained from
the Motorola 68030 manual [1] the timing information of each instruction in the
traces. The clock frequency of the microprocessor was 20 MHZ: the period of a
clock cycle Tc was 50 ns. We assume a 0-wait memory was used in this experi-
ment, and each DMA transfer of a unit of data took two clock cycles. Hence, we
set DT to 100 ns. Finally, BMT was 5 ns.

Bounding the Execution Times of DMA I/O Task 511

Table 3 shows the experimental results for DMA I/O tasks that trans-
fer different units of data. Rows 2 and 3 of Column 2 give the values of
W (AD)/Wr(AD) and W (AD)/Wp(AD), respectively, when the DMA I/O task
AD transfers 250 units of data. We repeated the same experiment for DMA
I/O tasks that transfer 500, 750, 1000 units of data, and the results are shown
in Columns 3, 4, and 5. As explained in Section 5, our dynamic-programming
method only computes the WCET of the DMA I/O task that transfers 1000
units of data. The WCETs of the other three DMA I/O tasks are obtained in a
table-driven manner.

For every of the eight cases investigated in this experiment, our WCET pre-
diction W (AD) is always larger than the maximum execution time of the DMA
I/O task recorded in the exhaustive simulations, i.e., 1 ≤ W (AD)/Wr(AD) and
1 ≤ W (AD)/Wp(AD). This result verifies that our method safely bounds the
WCET of the DMA I/O task. Our method overestimates the WCET for at most
6.3% when the CPU tasks are scheduled by the fixed priority assignment algo-
rithm and the DMA I/O task transfers 250 units of data. The percentage of
overestimation is smaller with a longer DMA I/O task. This behavior results
from the overestimation on the last instruction of the sequence that executes
concurrently with the DMA I/O task; our method assumes that every E-cycle
sequence of the last instruction is fully utilized in the WCET computation. Ob-
viously, the overestimation during the last instruction will have a smaller effect
on the WCET prediction of a longer DMA I/O task. Finally, our method still
produces 0.6% and 1.4% overestimation on the WCET of the DMA I/O task
with the round-robin and the fixed priority assignment scheduling algorithms, re-
spectively. This small amount of overestimation is caused by the 100-instruction
scheduling distance allowed in the exhaustive simulation. This limit considerably
trims down the set of possible instruction sequences that may execute concur-
rently with the DMA I/O task. We are confident that, by allowing scheduling
points to occur on every instruction, the overestimation by our method will
be practically negligible. In summary, the experimental results show that our
method safely and tightly bounds the WCET of a cycle-stealing DMA I/O task.

7 Conclusions

In this paper we first analyzed the properties of an instruction sequence that
executes concurrently with a cycle-stealing DMA I/O task. Based on these prop-
erties we next derived a recursive formula for bounding the WCET of a cycle-
stealing DMA I/O task executing concurrently with a set of CPU tasks with
arbitrary release times and priority assignments. We reduced the running-time
complexity by a dynamic-programming technique. We demonstrated the cor-
rectness of the dynamic-programming method with an exhaustive simulation.
The experimental results show that our method safely and tightly bounds the
WCETs of cycle-stealing DMA I/O tasks. The success of our work encourages
the inclusion of cycle-stealing DMA I/O to fully utilize the bandwidth of the
I/O bus in a hard-real-time embedded system.

512 T.-Y. Huang, C.-C. Chou, and P.-Y. Chen

Acknowledgments. This research was supported in part by National Science
Council, R.O.C., under Grant NSC 91-2213-E-007-034 and by Ministry of Edu-
cation, R.O.C., under Grant MOE 89-E-FA04-1-4.

References

1. MC68030 Enhanced 32-bit Microprocessor: User’s Manual. Motorola, 1987.
2. Jakob Engblom and Andreas Ermedah. Modeling complex flows for worst-case

execution time analysis. In Proceedings of the 21th Real-Time System Symposium,
pages 163–174, November 2000.

3. C. Healy, R. Arnold, F. Muller, D. Whalley, and M. Harmon. Bounding pipeline
and instruction cache performance. IEEE Transactions on Computers, 48(1):53–
70, January 1999.

4. Tai-Yi Huang and Jane W.-S. Liu. Predicting the worst-case execution time of
the concurrent execution of instructions and cycle-stealing DMA I/O operations.
ACM SIGPLAN Notices, 30(11), November 1995.

5. Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In Proceedings of the 12th Real-Time
System Symposium, pages 129–139, 1991.

6. Sung-Kwan Kim, Rhan Ha, and Sang Lyul Min. Analysis of the impacts of over-
estimation sources on the accuracy of worst case timing analysis. In Proceedings
of the 20th Real-Time System Symposium, pages 22–31, December 1999.

7. Mark H. Klein and Thomas Ralya. An anlysis of input/output paradigms for real-
time systems. Technical Report CMU/SEI-90-TR-19, CMU Software Engineering
Institute, July 1990.

8. Yan-Tsun Steve Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. In Proceedings of the 32nd ACM/IEEE Design
Automation Conference, pages 456–561, June 1995.

9. Sung-Soo Lim, Jung Hee Han, Jihong Kim, and Sang Lyul Min. A worst case
timing analysis technique for multiple-issue machines. In Proceedings of the 19th
Real-Time System Symposium, pages 334–345, December 1998.

10. C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 10(1):46–61, 1973.

11. Frank Muller, David Whalley, and Marison Harmon. Predicting instruction cache
behavior. In ACM SIGPLAN Workshop on Languages, Compilers, and Tools for
Real-Time Systems, June 1994.

12. Chang-Yun Park and Alan C. Shaw. Experiments with a program timing tool
based on source-level timing schema. IEEE Computer, pages 48–57, May 1991.

13. Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

14. Henrik Theiling and Christian Ferdinand. Combining abstract interpretation and
ILP for microarchitecture modelling and program path analysis. In Proceedings of
the 19th Real-Time System Symposium, pages 144–153, December 1998.

15. A. Vrchoticky and P. Puschner. On the feasibiity of response time predictions–
an experimental evaluation. Technical Report 2/91, Institute fur Technische Infor-
matik Technische Universitat Wien, March 1991.

Introducing Temporal Analyzability Late in the
Lifecycle of Complex Real-Time Systems

Anders Wall1, Johan Andersson1, Jonas Neander1, Christer Norström2, and
Martin Lembke2

1 Department of Computer Engineering, Mälardalen University,
Box 883, Väster̊as, Sweden,

{anders.wall,jan98053,jonas.neander}@mdh.se
2 ABB Robotics, Väster̊as, Sweden

{christer.e.norstrom,martin.lembke}@se.abb.com

Abstract. Many industrial real-time systems have evolved over a long
period of time and were initially so simple that it was possible to predict
consequences of adding new functionality by common sense. However, as
the system evolves the possibility to predict the consequences of changes
become more and more difficult unless models and analysis method can
be used.
In this paper we describe our approach to re-introducing analyzability
into a complex real-time control system at ABB Robotics. The system
consists of about 2 500 000 lines of code. Traditional real-time models and
analyses, e.g. fixed priority analysis, were not applicable on this large and
complex real-time system since the models are too simple for describing
the system’s behavior accurately, and the analyses are too pessimistic.
The proposed method is based on analytical models and discrete-event
based simulation of the system behavior based on these models. The
models describe execution times as statistical distributions which are
measured and calculated in the existing system. Simulation will not
only enable models with statistical execution times, but also correctness
criterion other than meeting deadlines, e.g. non-empty communication
queues. Having accurate system models enable analysis of the impact
on the temporal behavior of, e.g. customizing or maintaining the soft-
ware. The case study presented in the paper shows the feasibility of the
method. The method presented is applicable to a large class of complex
real-time systems.

1 Introduction

Large and complex real-time computer systems usually evolve during a long
period of time. The evolution includes maintenance and increasing the system’s
functionality by adding new features. Eventually, if ever existed, the temporal
model of the system will become inconsistent with the current implementation.
Thus, the possibilities to analyze the effect of adding new features with respect
to the temporal behavior will be lost. For small systems this may not be that a
big problem, but for large and complex systems the consequences of altering the

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 513–528, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

514 A. Wall et al.

implementation cannot be foreseen. Introduce, or re-introduce, analyzability is
the task of re-engineer the system and construct an analytical temporal model
of it. The work presented in this paper is the result from an activity where
we tried to re-introduce temporal analyzability in a robot control system at
ABB Robotics which consist of approximately 2 500 000 LOC. Initially, we tried
to apply traditional real-time analyses. However, applying classical real-time
models and analyses on large and complex system, e.g. as fixed priority analysis
(FPA) [1] [2] [3], often results in a too pessimistic picture of the system due
to large variations in execution times and semantic dependencies among tasks.
FPA is based on the fact that if a set of tasks, possible periodical with worst case
execution times (wcet) and deadlines less or equal to their periods, is schedulable
under worst-case conditions, it will always be schedulable. The result from such
an analysis is of a binary nature, i.e. it does not give any numbers on probability
of failure, it just tell if the system is guaranteed to work or not. In this work, the
result from an FPA would be negative, i.e. assuming worst-case scenarios, the
system will not be temporal correct in terms of meeting all its deadlines. FPA
assumes a task model where deadlines are assigned to every task. In the robot
controller we have investigated is the temporal correctness defined in terms of
other criteria. Some of the tasks can have their deadlines derived from these
criteria, but not all tasks can easily be assigned a deadline. An example of
another correctness criterion is a message queue that must never be empty.

Further, a task may execute sporadically and with great variations in execu-
tion times. To be safe in an FPA, the periodicity of sporadic tasks is modeled as
having a frequency equal to the minimum inter-arrival time. Using the worst-case
scenario in terms of both execution time (maximum) and periodicity (minimum),
is not sufficient as the result would be to pessimistic.

Since traditional temporal models and analysis do not apply to the class of
systems we have studied, we have used a simulation-based approach. In this
paper we describe our approach to analysis of complex real-time system’s tem-
poral behavior. The simulations are based on analytical models of the system
made in our modeling language ART-ML (Architecture and Real Time behav-
ior Modeling Language). By using simulations, we can define other correctness
criterion than satisfying deadlines as mentioned before. Instead of always assum-
ing worst-case scenarios, we can use execution time distributions. ART-ML also
permits the behavior of tasks to be modeled, i.e. on a lower level than the soft-
ware architecture. This permits a more precise model to be created as semantic
relations among tasks can be introduced. Moreover, we propose how to utilize
our methodology by putting it into the scope of a development process. The
tool suit, in which the simulator is a part, also includes tools for measuring an
existing system implementation, as well as tools for processing measurements.
For instance, we have developed a tool which given a set of different execution
times of a task calculates the corresponding execution time distribution.

We have studied other simulators such as STRESS and DRTSS. The STRESS
environment is a collection of CASE tools for analyzing and simulating behavior
of hard real-time safety-critical applications [4]. STRESS is primarily intended

Introducing Temporal Analyzability Late in the Lifecycle 515

as a tool for testing various scheduling and resource management algorithms.
It can also be used to study the general behavior of applications, since it is a
language-based simulator. STRESS has no support for modeling distributions of
execution times or memory allocation.

Another simulation framework is DRTSS [5], which allows its users to con-
struct discrete-event simulators of complex, multi-paradigm, distributed real-
time systems. The DRTSS framework is quite different from STRESS, although
they are closely related. DRTSS has no language where the behavior can be
specified. A language that describes the behavior of components is necessary for
achieving the goals of our work and excludes DRTSS as a possible solution.

In [6], an analytical method for temporal analysis of task models with stochas-
tic execution times is presented. However, sporadic tasks cannot be handled. A
solution for this could not easily be found. Without fixed inter-arrival times, i.e.
in presence of sporadic tasks, a least common divider of the tasks inter-arrival
times can not be found.

The outline of this paper is as follows: In Section 2, we put our method into
the context of a developing process. Section 3 describes our approach to measure
the existing system, build analytical models based on those measurements, and
using the analytical models for simulating the system’s temporal behavior. We
also introduce the modeling language developed. In Section 4 we discuss the
validation of our method which was done as a case study on a large and complex
industrial real-time system. Finally Section 5 concludes the paper and gives
indications of future work.

2 The Process

The introduction of a analyzable model of a system brings a continuous ac-
tivity of maintaining the model. The model should always be consistent with
the current implementation of the system, i.e. the implementation should be a
true refinement of the model. Consequently, our method must be an integrated
part of a company’s development process. In this section we will briefly describe
the activities associated with the analytical model. Figure 1 depicts the general
activities required in our method. Note that the process described here only
concerns the method we are proposing. Important activities such as verification
and validation of the implementation are omitted.

The first activity in making an existing system analyzable with respect to its
temporal behavior is re-engineering of the system. Typically, the re-engineering
activity includes identifying the structure of the system, measuring the system,
and populating the model. By comparing the result from analyzing the system
using the analytical model with the temporal behavior of the real system confi-
dence in the model can be established.This is exact the same procedure as used
in developing models for any kind of systems.

As the system evolves, each new feature should be modeled and the impact of
adding it to the existing system should be analyzed. This enables early analysis,
i.e. before actually integrating the new feature into the system. Detecting flaws at

516 A. Wall et al.

Is the change
feasible?

no

yes

Create initial
model by re-
engineer the

existing system

Validate the
model

Model the new
feature

Feedback
measurements of
the new feature to

the model

Implement the
new feature

Fig. 1. The process of constructing and maintaining an analyzable system.

an early stage is often more cost effective than discovering the problem late in the
testing phase of the development process. Note, that such an approach requires a
modeling language that support models on different level of abstractions. ART-
ML has this property which will be further described in Section 3. Modeling of
new features should be part of the company’s design phase.

Finally, when the new feature has been implemented and integrated into the
system the model of that feature can be refined by feeding back information
from the implementation into the model. Hence, a more précised model is imple-
mented. This activity is typically performed in conjunction with the verification
phase of a company’s development process.

3 The Method

To create a model of the system data measured from the target system is needed.
The accuracy of the model is dependent on the quality of the measured data.
The measuring of the data should affect the system as little as possible. Too big
probe effect on the system will result in an erroneous model and might cause
wrong decisions regarding future developments.

A suitable notation is necessary for creating a system model. The language
has to support both the architecture (i.e. nodes, tasks, semaphores, message
queue) and the behavior of the tasks in different levels of abstractions. It should
be possible to compare the beahvior of the created model with the target system
in an easy way in order to iteratively improve the model to satisfactory level,
illustrated in figure 2.

Our approach to analysis of the temporal behavior is simulation since our
notation not only describes the architecture of the target system, but also the
behavior of the included tasks. Simulation allows execution times expressed as
distributions. We analyzing the output from the simulator by defining properties
of interest. An example of such a property is the probability of missing a deadline

Introducing Temporal Analyzability Late in the Lifecycle 517

Probe and
measure the

system

Process
measurements

Build a model
and simulate

Process
simulation

results

Fig. 2. The work flow of making an analytical model

requirement on a task. Moreover, the simulation approach allow us to define non-
temporal related properties, e.g. non-empty message queues.

3.1 Measuring and Processing Data

Measuring data in a software system requires the introduction of software probes
if no hardware probes are used [7]. The data of interest is resource utilization,
e.g. task execution times, memory usage or sizes of messages queues. We used
software probes in order to log task switches and message queues. The measured
data is stored in static allocated memory at runtime, in binary format. All for-
matting of the output is done offline, writing to a file at runtime is too time
consuming. This minimizes the probe effect, i.e. the part of the execution time
that is caused by the probe.

The output from the system is a text-file containing task switches, time
stamps, and the number of messages in different queues. The size of the output
can be very big, several hundred kilobytes per monitored second of execution. To
manually analyze that data for developing a model would be too time-consuming.
We have therefore developed a tool that extracts data from a log and compute
the statistical distribution of each task’s execution time. In table 1 is the result
of processing data from a task shown.

In order to calculate the statistical distribution for a set of execution times
for a task, we divide all execution times into instance equivalence classes (IEC).
Formally we define an IEC as:

Definition 1 An instance equivalence class IEC is a subset of execution time
instances of a task E, IEC ⊂ E, defined by its upper bound max(IEC) ∈ E
and its lower bound min(IEC) ∈ E and a threshold that specifies the interval
between max(IEC) and min(IEC). ��

A task instance’s execution time is a member of the IEC In iff it is larger or
equal to min(In) but less or equal than max(In). In the model are all instances
in a IEC represented as the average execution time of the IEC which have the
probability of occurrence equal to the number of instances in the IEC divided
by the total number of measured instances for a task. For example, consider the
first entry in table 1 which express that, with the probability of 61.5 %, is the
execution time for the task 360.097 time units. Consequently, the execution time
of tasks in our method is represented as a set of pairs consisting of the average
execution time of an IEC and its probability of occurrence.

518 A. Wall et al.

Definition 2 The execution time for task t, t.exe, is a set of pairs, 〈iec, p〉 where
iec is the average execution time of an IEC and p is its probability of occurance.

��

An algorithm was developed to automatically identify the boundaries min(I)
and max(I) for all IEC:s given a set of execution times for a task and a threshold.
The algorithm is recursive. Initially all instances are sorted by their execution
time using the quicksort algorithm. The sorted list constitutes the initial IEC, I0
for the task. Next, the largest difference in execution time between two adjacent
instances in the sorted list is located. If the largest difference is larger than a
specified threshold, the list I0 is split into two new IEC:s and recursive calls are
conducted with each of the two new IEC:s. Consequently, the threshold specifies
mathematically how big variations there can be in execution times belonging to
the same IEC. From the system modeling point of view the threshold has two
purposes. First, it can be used to filter small variations in execution times due
to cache memories or branch prediction units, i.e. independent from the control-
flow. Moreover, threshold can also specify the level of abstraction with which the
temporal behavior is modeled. A large threshold results in a more coarse-grained
distribution, i.e. less number of IEC:s for a task. Below the equation for finding
distinct IEC:s, given a set of sorted execution times, is displayed.

∀〈xi, xi+1〉∃〈xj , xj+1〉 ∈ I0 :
abs(xj − xj+1) > abs(xi − xi+1) ∧
abs(xj − xj+1) ≥ threshold ∧ i
= j

As a result from applying the equation above on a sorted set of execution
time instances we may get two new potential IEC, Ik and Ik+1 where min(Ik) =
min(Ik−1), max(Ik) = xj , and min(Ii+1) = xj+1, max(Ik+1) = max(Ix−1). If no
gap is found greater than the threshold, the final IEC is already found and the
recursion is stopped. When the recursion is stopped, the largest and the smallest
execution time in the list is considered to define the boundaries of an IEC.

The measured data can also be graphically visualized in a chronological order,
see Figure 3. Studying such a graph may reveal executional dependencies among
tasks. Introducing those dependencies will make the model more accurate with
respect to the implemented system as they reduce pessimism.

3.2 The ART-ML Language

The notation developed, ART-ML, is composed of two parts, the architecture
model, and the behavior model. The architecture model describe the tempo-
ral attributes of tasks, e.g. period times, deadlines, priorities. The architecture
model also describes what resources there are in the system.

The behavior model describes the behavior of the tasks in the architecture
model. Thus the behavior is encapsulated by the architecture model. The be-
havioral modeling language is an imperative, Turing-complete language close to
Basic and C in its syntax.

Introducing Temporal Analyzability Late in the Lifecycle 519

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0 1 2 3 4 5 6 7

Time (s)

Fig. 3. An example of measured execution times

mainbox TASK_C_MAILBOX 4;
mainbox TASK_C_MAILBOX 6;

const msgcode_ref_request 1001;
const msgcode_ack 1002;

task APERIODIC_TASK_C
trigger mailbox TASK_C_MAILBOX
priority 2

behavior{

Table 1. An example of statistical distribution of a task. N =
∑

n, were n is the
number of instances in an IEC.

Min time Max time Average time n n/N

287.265 420.876 360.097 131 0.615
577.448 604.320 590.884 2 0.094
4176.659 1 0.047
4797.058 5024.122 4911.885 12 0.056
5177.941 6829.881 5829.924 65 0.305
11962.947 1 0.0047
12814.769 1 0.0047

520 A. Wall et al.

variable incoming;
incomming = 0;

recv(incoming, TASK_C_MAILBOX)
timeout 100;

if (incoming == msgcode_ref_request){
recv(incoming, TASK_C_MAILBOX)
timeout 10000;

execute((60,6200),(40,6750));
send(TASK_B_MAILBOX, msgcode_ack);

}else{
chance(80){
execute((63,400),(37,470));

}else{
execute((100,1000));

}
}

}

Two constructs make ART-ML unique compared to other modeling languages
that has been studied: the execute-statement and the chance-statement.

The execute statement describe the partial execution time of the code in
the target system, i.e. the execution time for a complete task or part of a task.
The execution time for a task is represented by a statistical distribution. A
probability distribution is implemented as a list of pairs that corresponds to
the calculated IEC:s described in Section 3.1. Every pair has a probability of
occurrence and an execution time. When a task performs an “execute” it supplies
a probability distribution as parameter. An execution time is picked according
to the distribution and the task is put into “executing state”. When a task has
been allowed to execute for that amount of time, the next statement, if any, in
that task’s behavior description is executed. In the example below, the execute
statement will execute 10 time units with the probability of 19 % and 56 time
units with the probability of 81 %:

execute((19,10), (81, 56));

The chance statement implements a stochastic selection. Stochastic selection
is a variant of an IF-statement, but instead of comparing an expression with zero,
the expression is compared with a random number in the interval [1-100]. If the
value of the expression is less than the random number, the next statement
is executed. If not, the else-statement is executed if there is one. Stochastic
selection is used for mimic tasks behavior observed as a black box. For instance,
we can observe that a task sends a message to a particular queue with a certain
probability by just logging the queue. This can be model with stochastic selection
such that we send a message with the observed probability. For instance, it is
possible to specify that there is a 19 % chance of sending a message:

Introducing Temporal Analyzability Late in the Lifecycle 521

chance(19)
send(mbox1, msg)

The language has also support for message passing through the primi-
tives send and recv. Both can be associated with timeouts. Moreover, binary
semaphores can be specified in ART-ML through semtake and semgive. Sem-
take can be used in combination with a timeout as well.

3.3 Modeling on Different Level of Abstraction

When creating a model of the tasks in the target system, a level of abstraction has
to be chosen. That level defines the accuracy of the model. The lower abstraction
level, the more detailed and accurate model. There is no point in using the lowest
possible level of abstraction, i.e. a perfect description. In that case, the actual
code could be used instead. Using an extremely high level of abstraction results
in a model that is not very accurate and is therefore of limited use. The best
result is something in between these two extremes.

In the ART-ML language, very detailed models of task can be made, theoret-
ically perfect ones. By describing blocks of code only by their execution time (i.e.
an execute-statement in the model), the abstraction level is raised to a higher
level. The more code that is described by an execute-statement, the higher level
of abstraction. The highest abstraction-level possible is if all code of the task is
described using a single execute statement.

It is possible to use any level of abstraction when describing a task using the
ART-ML language. It is therefore possible to describe different tasks at different
levels of abstraction. This property of the language enables the model to be
improved (in terms of level of detail) task by task.

The execution time distributions used also has different levels of abstraction.
The measured data from the target system is somewhat filtered when creating
the distributions. The recorded instances are grouped into equivalence classes.
This causes data to be lost. The level of abstraction is in this case the number of
intervals used to describe the execution time of the task. This level of abstraction
impacts the accuracy of the model.

If there are multiple tasks in the system that is of no interest and do not affect
the behavior of other tasks, they can be modeled as a single task at maximum
abstraction level, i.e. only by a single execution-time probability distribution.
This reduces the complexity of the model without affecting the accuracy of the
result regarding the tasks of interest. However, it is required that all tasks in a
group has the same or adjacent priorities. Moreover, tasks can only be grouped
in such a way that no other modeled task, i.e. not part of the group, has a
priority within the range of a group. For instance, consider a composed task
consisting of two task, a with high priority, and c having low priority. Moreover,
consider task b which is also part of the system and runs at mid priority. Task
a should be able to preempt task b, but task c should not. Thus, the composed
task has to run on different priorities in order to reflect the control flow of the
implemented system. We refer to such a group of tasks as a composed task.

522 A. Wall et al.

Formally we can express the rules of grouping tasks into composed tasks, i.e.
assigning execution time distribution, period time and priority, in a way that
preserves the utilization of the CPU which the tasks in the group contributes
with. First the set of tasks to compose, C, have to be normalized with respect
to the period times. The composed task will run with the shortest period time
among the participating tasks. Consequently, the period time of the composed
task c is:

c.T = min
t∈C

(t.T)

Normilizing the tasks in such a way that the CPU utilization is preserved
requires re-calculating the exection times for all IEC:s described in Section 3.1,
for all tasks in C.

∀t ∈ C∀i ∈ t.exe :
c.T

t.T
i.iec

The resulting execution time distribution for the composed task is obtaind by
calculating the cartesian product, V, of all t.exe where t ∈ C, i.e. t1.exe×t2.exe×
... × tn.exe. Every n-pair which is part of the cartesian product corresponds to
an executional scenario. For instance, 〈x1, x2, ..., xn〉 corresponds to the scenario
where task 1 executes for x1.iec time units, task 2 executes x2.iec time units,
and so on.

c.exe = {〈iec, p〉|∀v ∈ V : iec =
∑
∀j∈v

j.iec ∧ p =
∏

∀j∈v

j.p}

The final c.exe is obtained by merging pairs in c.exe that have equal iec:s
(cmp. the generation of IEC:s described in Section 3.1). For the set of pairs,
{〈iec, p1〉, ..., 〈iec, pn〉} ⊆ c.exe, of all pairs having the same execution time, the
merged pair remaining in c.exe is 〈iec,

∑n
i=1 pi, where

∑n
i=1 pi is the probability

that task c, executes iec time units.
Finally, the priority of the composed task c, c.p, is assigned the maximum

priority of the tasks participating in the composition.

c.p = max
∀t∈C

(t.p)

As an example consider the composition of two tasks: a and b. Task a executes
with the distribution a.exe={(1,0.75), (2,0.25)}, and a.T=10. Task b executes
with the distribution b.exe={(2,0.5), (3,0.5)} and a.T=5. Normalizing the exe-
cution of task a, i.e. a.exe={(1 5

10 ,0.75), (2 5
10 ,0.25)} gives the cartesian product,

V, equal to ((0.5,0.75), (2,0.5)), ((0.5,0.75), (3,0.5)), ((1,0.25), (2,0.5)), ((1,0.25),
(3,0.5))}. The cartesian product V results in a execution time distribution for
the composed task, c.exe equal to {(2.5,0.375), (3.5,0.375), (3,0.125),(4,0.125)},
c.T = 5.

The assignment of temporal attributes to composed tasks described above
is a coarse approximation of the system behavior. Ideally, all tasks are modeled
individually. However, in order to limit the modeling effort, and to prune the

Introducing Temporal Analyzability Late in the Lifecycle 523

state space, such approximations can be practical. The result from the case study
presented in Section 4 indicates that the use of composed tasks is quite adequate.
The result of applying the proposed rules may lead to situations where execution
times are longer than the period time. This corresponds to a system overload
which are possible in the implementation.

3.4 Simulating the System Behavior

The simulation-based approach used in this work allows correctness criterion
other than meeting deadlines. An example of other correctness criterion could
be the non-emptiness of certain message-queues. The system studied in this work
had such a criterion. If a certain message-queue got empty, it was considered a
system failure.

Simulation also allows us to specify arbitrary system cycles. FPA assumes
cycles equal to the Least Common Multiple of the period times in the task set
(LCM). However, there exists systems such as the robot controller investigated
as part of this work, where the cycle times are determined by other criterion.
For instance, in the robot case, the system cycle is determined by the robot
application, i.e. the cycle time of the repetitive task which it is programmed to
do.

When designing the simulator, two different approaches were identified. The
most intuitive was to let the simulator parse the model and execute it statement
by statement. The other approach was to create a compiler that translated the
high level ART-ML model into simple instructions and construct the simulator
as a virtual machine that executes the instructions. A test was made to compare
the performance of the two approaches based on two prototypes. The virtual
machine solution performed significantly better which is crucial for an analysis
tool.

The simulator engine is based on three parts, the instruction decoder, the
scheduler and the event-processing. The instruction decoder executes the in-
structions generated by the compiler, i.e. it is the virtual machine. Some of the
instructions generate events when executed, e.g. execute, send, semtake. The
simulator engine acts upon the generated event, e.g. semtake, is only possible
if the semaphore is free which only the simulator knows. An event contains a
timestamp, type of event, and an id of the source task. The timestamp specifies
when the event is to be fired. Consequently, new decisions about what task to
execute are taken upon an event. The scheduler decides what task to execute
according to the fixed priority strategy.

The execute kernel-call, the consumption of time, is what drives the simu-
lation forwards. First, an execution time is selected according to the distribu-
tion that is provided as an argument to execute. The current time is increased
with that amount of time, or until an event interferes with the execution. If
an event occurs during the execution of a task, the execution is suspended, the
event is taken care of and the scheduler makes a new decision. The next time
the preempted task is allowed to execute, it will restart the execution of the
execute-instruction, remembering how much time it has left for execution.

524 A. Wall et al.

Since an “execute” kernel call is necessary for pushing the simulation for-
wards, there must always be a task that is ready to execute and contains such
a statement. Due to this it is mandatory to have an idle-task in the simulation
that consumes time if no other task is ready.

4 A Robotic Control Cystem

The method described in this paper was a result from studying the possibility of
introducing analyzability in a large and complex real-time system. The system we
have investigated is a robotic control system at ABB Robotics initially designed
in the beginning of the nineties. In essence, the controller is object-oriented and
consists of approximately 2 500 000 LOC divided on 400-500 classes organized
in 15 subsystems. The system contains three nodes that are tightly connected,
a main node that in essence generates the path to follow, the axis node, which
controls each axis of the robot, and finally the I/O node, which interacts with
external sensors and actuators. In this work we have studied a critical part in
the main node with respect to control. The controller runs on the preemptive
multitasking real-time operating system VxWorks. Maintaining such a complex
system requires careful analyses to be carried prior to adding new functions or
redesigning parts of the system to not introduce unnecessary complexity and
thereby increasing both the development and maintenance cost.

4.1 The Model

We have modeled some critical tasks for the concrete robot system in the main
node (see Figure 4). The main node generates the motor references and brake
signals required by the axis computer. The axis node sends requests to the main
node every 4’th millisecond and expects a reply in the form of motor references.
This depends on three tasks: A, B, and C. B and C have high priority, are
periodic, and runs frequently. A executes mostly in the beginning of each robot
movement and has lower priority. The final processing of the motor references
is performed by C. C sends the references to the axis node. Moreover, C is
dependent on data produced by B. If the queue between them becomes empty,
C cannot deliver any references to the axis node. This state is considered as a
critical system state and the robot halts. A sends data to B when a movement
of the robot is requested. If the queue between A and B gets empty, the robot
movement stops. In this state, B sends default references to C. The complete
model is presented in [8]. All comments have been removed and variable names
have been changed for business secrecy reasons. The model is not complete with
respect to all components in the system. All tasks, other than A, B and C,
have been grouped into two composed tasks according to the rules described in
Section 3.3. One of the two composed tasks has higher priority than A, and the
other has lower priority than A. This is one way in which we can utilize different
level of abstractions in our model.

Introducing Temporal Analyzability Late in the Lifecycle 525

Queue
Task

A
Task

B
Task

C

Queue 1 Queue 2 Queue 3
Axis

Computer

Fig. 4. The task structure of the critical control part of the system

4.2 The Results

The model we made is quite an abstraction of the existing system. There were
approximately 60 tasks in the system which was reduced to six in the model.
This level of abstraction was selected since there were three tasks of particular
interest which was modeled in details. The rest of the tasks were modeled as two
composed task. Finally, an extern subsystem was modeled as a task. The 2 500
000 LOC in the existing implementation was reduced to 200 LOC in the model.

A more detailed model would not only represent a more accurate view of the
system, it will also prune the state-space which the simulator has to consider.
For instance, removing impossible system states by introducing functional de-
pendencies among tasks will reduce the states that the simulator must explore.
Thus, the simulation time is reduced.

Despite our course-grained model, the result when comparing response times
produced by the simulator and the response times measured on the system is
quite good. In Figure 5 and Figure 6 are the response times from the simulation
and the real system plotted. The resemblance is obvious. However, methods for
formally analyzing the correctness of a model should be developed as a contin-
uation of this work.

5 Conclusions

System complexity can be handled informally in early phases of large software
system’s life time. However, as the system evolves due to maintenance and the
addition of new feature, the harder it gets to predict the temporal behavior. Even
though a formal model of the temporal domain was initially constructed, it may
become obsolete if it is not updated to reflect the changes in the implementation.

The method proposed in this paper is intended for the introduction, or re-
introduction, of analyzability into complex system with respect to temporal be-
havior. A suitable modeling language, ART-ML, was developed, as well as tools
for measuring execution times and the length of message queues in the exist-
ing system. Moreover, a tool for processing the measured data was developed.
The data processing tool approximates the execution time distributions for the
investigated tasks.

A discrete-event based simulator was used when analyzing the temporal be-
havior of systems described in ART-ML. The simulation approach was chosen

526 A. Wall et al.

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

Fig. 5. The simulated response time distribution

since no existing analytical method for analyzing the temporal behavior of a
real-time system can express execution times as probabilistic distributions. Fur-
thermore, the simulation approach enables us to define correctness criterion other
than meeting deadlines, e.g. non-empty message queues in the system.

The method has been successfully applied in a case study of a robot controller
at ABB Robotics where a model was constructed and the temporal behavior
was simulated. Even though the model was rather abstract in terms of both
functional dependencies and temporal behavior, the results were very promising.
Based on this result we claim that our method can be applied on a large class
of systems.

ART-ML is still a prototype, thus many improvements of the method and the
language are possible. Currently we are expanding ART-ML to also support the
modeling and analysis of multi-processor systems. Moreover, we are considering
constructions in ART-ML to describe complete product lines, i.e. a set of related
products that share software architecture and software components. If such con-
structions exist, the impact of altering the behavior of a software component can
be analyzed for all products that use it.

The scheduling strategy used by the simulator is fixed in the current imple-
mentation. To make our method more general in terms of the variety of systems
on which it can be applied we will consider the ability to specify different schedul-
ing strategies in simulator.

The only output from the simulator is a trace of the execution. It contains
very much information. An ability to search that information would ease the
analysis of the result. Some sort of query language could be implemented where

Introducing Temporal Analyzability Late in the Lifecycle 527

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0 1 2 3 4 5 6 7

Fig. 6. The measured response time distribution

the user could specify monitors and triggers. A monitor specifies a property of
the model that is to be recorded and what to record (min, max, average. . .). A
trigger specifies a condition and an action, for example alert if a message-queue
is empty.

Finally, we need methods for evaluating the validity of a model by consider-
ing the simulation results compared to the system behavior. Models are always
abstractions of the real world, thus we must provide evidence that the imple-
mentation is indeed a refinement of the model.

References

1. Buttazzo, G.C.: Hard Real-Time Computing Systems: PredictableScheduling Algo-
rithms and Applications. ISBN 0-7923-9994-3. Kluwer Academic Publisher (1997)

2. Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W., , Wellings, A.J.: Fixed priority
pre-emptive scheduling: An historical perspective. Real-Time Systems Journal 8
(1995) 173–198

3. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in hard-
real-time environment. Journal of the Association for Computing Machinery 20
(1973) 46–61

4. Audsley, N., Burns, A., Richardson, M., Wellings, A.: STRESS: A Simulator for
Hard Real-Time Systems. Software-Practive and Experience 24 (1994) 534,564

5. Storch, M., Liu, J.S.: DRTSS: a simulation framework for complex real-time sys-
tems. In: Proceedings of the 2nd IEEE Real-Time Technology and Applications
Symposium (RTAS ’96), Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA
(1996)

528 A. Wall et al.

6. Manolache, S., Eles, P., Peng, Z.: Memory and Time-efficient Schedulability Analysis
of Task Sets with Stochastic Execution Time. In: Proceedings of the 13nd Euromi-
cro Conference on Real-Time Systems, Department of Computer and Information
Science, Linköping University, Sweden (2001)

7. Shobaki, M.E.: On-chip monitoring of single- and multiprocessor hardware real-
time operating systems. In: 8th International Conference on Real-Time Computing
Systems and Applications, IEEE (2002)

8. Andersson, J., Neander, J.: Timing Analysis of a Robot Controller (2002)

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 529–544, 2004.
© Springer-Verlag Berlin Heidelberg 2004

RESS: Real-Time Embedded Software Synthesis and
Prototyping Methodology*

Trong-Yen Lee1, Pao-Ann Hsiung2, I-Mu Wu3, and Feng-Shi Su2

1 Department of Electronic Engineering,
National Taipei University of Technology, Taipei, Taiwan, R.O.C.

tylee@ntut.edu.tw
http://www.ntut.edu.tw/~tylee

2 Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan, R.O.C.

pashiung@cs.ccu.edu.tw
3 Department of Electrical Engineering,

Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan, R.O.C.
u9473@ms48.hinet.net

Abstract. In this work, we propose a complete methodology called RESS
(Real-Time Embedded Software Synthesis) for the automatic design of real-time
embedded software. Several issues are solved, including software synthesis,
software verification, code generation, graphic user interface, and system emu-
lation. To avoid design errors, a formal approach is adopted because glitches in
real-time embedded software are intolerable and very expensive or even impos-
sible to fix. Time Complex-choice Petri Nets are used to model real-time em-
bedded software, which are then synthesized using a time extended quasi static
scheduling algorithm. The final generated C code is prototyped on an emulation
platform, which consists of an 89C51 microcontroller for executing the soft-
ware, an FPGA chip for programming the hardware for different applications,
and some input/output devices. Two application examples are used to illustrate
the feasibility of the RESS methodology.

1 Introduction

Real-time embedded systems have made a man’s life more convenient through easier
controls and flexible configurations on many of our home amenities and office equip-
ments. Due to the growing demand for more and more functionalities in real-time
embedded systems, an all-hardware implementation is no longer feasible because it is
not only costly, but also not easily maintainable or upgradeable. Thus, software has
gradually taken over a large portion of a real-time embedded system’s functionalities.
But, along with this flexibility, real-time embedded software has also become highly
complex. The past approach of starting everything from scratch is no longer viable.

* This work was partially supported by research project grant NSC-90-2218-E-014-009 from

National Science Council, Taiwan, ROC.

530 T.-Y. Lee et al.

We need to use tools that automate several tedious tasks, but though there are some
tools available for the design of embedded software, yet there is still a lack for a gen-
eral design methodology. In this work, we are proposing a complete methodology,
covering issues such as software synthesis, software verification, code generation, and
system emulation.

An embedded system is one that is installed in a large system with a dedicated
functionality. Some examples include avionics flight control, vehicle cruise control,
and network-enabled devices in home appliances. In general, embedded systems have
a microprocessor for executing software and some hardware in the form of ASICs,
DSP, and I/O peripherals. The hardware and software work together to accomplish
some given function for a larger system. Embedded software is often hardware-
dependent, thus it must be co-developed along with the development of the hardware,
or the interface must be clearly defined. To satisfy all user-given constraints, formal
approaches are a well-accepted design paradigm for embedded software [1], [2], [3],
[4], [5].

Software synthesis is a process in which a formally modeled system can be synthe-
sized by a scheduling algorithm into a set of feasible schedules that satisfy all user-
given constraints on system functions and memory space. Due to its high expressive-
ness, Petri nets are a widely-used model. We propose and use a high-level variant of
the model called Time Complex-Choice Petri Nets (TCCPN). TCCPN extends the
previously used models called Free-Choice Petri Nets [6]. Thus, our synthesis algo-
rithm also extends a previously proposed quasi-static scheduling algorithm. Details on
the model and the proposed Time Extended Quasi-Static Scheduling (TEQSS) algo-
rithm along with code generation will be given in Section 3.2.

Software verification formally analyzes the behavior of synthesized software to
check if it satisfies all user-given constraints on function and memory space. In this
verification process, we use the well-known model checking procedure to automati-
cally verify synthesized software schedules. Further, we also need to estimate the
amount of memory used by a generated software schedule. Details of this procedure
will be given in Section 3.3.

Finally, the generated real-time embedded software is placed into an emulation
platform for prototyping and debugging. The software code is downloaded into a
single chip microcontroller. The hardware for software code emulation is pro-
grammed on an FPGA chip. According to the real-time embedded software specifica-
tions, the settings of the input/output devices are configured. The embedded hardware
and the I/O devices are then used for monitoring the functions of the real-time em-
bedded software through a debugger.

The proposed RESS methodology will be illustrated using two examples: a Vehicle
Parking Management System (VPMS) [7] and a motor speed control system. Details
are given in Section 4.

This article is organized as follows. Section 2 gives a brief overview about previ-
ous work on embedded software synthesis, verification, and code generation. Section
3 describes the software synthesis method and our emulation platform architecture.
Two real-time embedded system examples are given in Section 4. Section 5 con-
cludes the article and gives directions for future research work.

RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology 531

2 Previous Work

Several techniques for software synthesis from a concurrent functional specifica-
tion have been proposed [6], [8], [9], [10], [11], [12], [13], [14]. Buck and Lee
[9] have introduced the Boolean Data Flow (BDF) networks model and proposed
an algorithm to compute a quasi-static schedule. However, the problem of sched-
uling BDF with bounded memory is undecidable, i.e. any algorithm may fail to
find a schedule even if the BDF is schedulable. Hence, the algorithm proposed by
Buck can find a solution only in special cases. Thoen et al. [10] proposed a tech-
nique to exploit static information in the specification and extract from a con-
straint graph description of the system statically schedulable clusters of threads.
The limit of this approach is that it does not rely on a formal model and does not
address the problem of checking whether a given specification is schedulable. Lin
[11] proposed an algorithm that generates a software program from a concurrent
process specification through an intermediate Petri-Nets representation. This
approach is based on the strong assumption that the Petri Net is safe, i.e. buffers
can store at most one data unit. This on one hand guarantees termination of the
algorithm, on the other hand it makes impossible to handle multirate specifica-
tions, like FFT computations and down-sampling. Safeness implies that the model
is always schedulable and therefore also Lin’s method does not address the prob-
lem of verifying schedulability of the specification. Moreover, safeness excludes
the possibility to use Petri Nets where source and sink transitions model the in-
teraction with the environment. This makes impossible to specify inputs with
independent rate. Later, Zhu and Lin [12] proposed a compositional synthesis
method that reduced the generated code size and thus was more efficient.

Software synthesis method was proposed for a more general Petri-Net frame-
work by Sgroi et al. [6]. A quasi-static scheduling algorithm was proposed for
Free-Choice Petri Nets (FCPN) [6]. A necessary and sufficient condition was
given for a FCPN to be schedulable. Schedulability was first tested for a FCPN
and then a valid schedule generated. Decomposing a FCPN into a set of Conflict-
Free (CF) components which were then individually and statically scheduled.
Code was finally generated from the valid schedule.

Balarin et al. [2] proposed a software synthesis produce for reactive embedded
systems in the Codesign Finite State Machine (CFSM) [15] framework with the
POLIS hardware-software codesign tool [15]. This work cannot be easily ex-
tended to other more general frameworks.

Recently, Su and Hsiung [13] proposed an Extended Quasi-Static Scheduling
(EQSS) using Complex-Choice Petri Nets (CCPNs) as models to solve the issue
of complex choice structures. Gau and Hsiung [14], [16] proposed a Time-
Memory Scheduling (TMS) method for formally synthesizing and automatically
generating code for real-time embedded software, using the Colored Time Petri
Nets model. In our current work, we use a time extension of EQSS called TEQSS
[17] to synthesize real-time embedded software and use the code generation pro-
cedure from [13] to generate the C code for 8051 microcontroller.

Several simulation or emulation boards for single chip micro-controller, such
as Intel 8051 or ATMEL 89c51, have been developed. As we know, the platform

532 T.-Y. Lee et al.

for real-time embedded software synthesis is still lacking. Therefore, we develop
a flexible emulation environment for real-time embedded software system. To the
best of our knowledge, there are some emulation platforms available for embed-
ded system design such as [18], [19]. In [18], a reconfigurable architecture plat-
form for embedded control applications aimed at improving real time perform-
ance was proposed. In [19], the authors present the technology assessment of
N2C platform of CoWare Inc., which proposes a solution to the co-design/co-
simulation problem.

3 Embedded Software Synthesis and Prototyping Methodology

In the automatic design of real-time embedded software, there are several issues to
be solved, including how software is to be synthesized and code generated, how
software is to be verified, and how software code is to be emulated. Each of these
issues was introduced in Section 1 and will be discussed at length in the rest of this
Section.

The overall flow of real-time embedded software synthesis and the emulation of
the generated software code on our prototype platform is as shown in Fig. 1. Given
a real-time embedded software specification, we analyze it and then decide the
requirements of the hardware within which the embedded software is to be exe-
cuted. The hardware is then synthesized by an FPGA/CPLD development tool and
programmed into the chip of ALTERA or XILINX on our platform.
On synthesis, if feasible software schedules cannot be generated then we rollback to
the embedded software specification and ask the user to recheck or modify the
specification. If feasible software schedules can be generated, then a C code for
8051 microcontroller will be generated by a code generation procedure. The ma-
chine executable code will be then generated using a 8051-specific C compiler. The
target machine code is finally loaded into the 89C51 or 87C51 microcontroller chip
on the platform.

3.1 Software Synthesis and Code Generation

Software synthesis is a scheduling process whereby feasible software schedules are
generated, which satisfy all user-given functional requirements, timing constraints,
and memory constraints. Here, we use a previously proposed Time Extended Quasi-
Static Scheduling (TEQSS) method for the synthesis of real-time embedded soft-
ware. TEQSS takes a set of TCCPN as input along with timing and memory con-
straints such as periods, deadlines, and an upper bound on system memory space.
TCCPN is defined as follows.
Definition 1. Time Complex-Choice Petri Nets (TCCPN)
A Time Complex-Choice Petri Net is a 5-tuple (P, T, F, M0,), where:

RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology 533

 P is a finite set of places,
 T is a finite set of transitions, P ∪ T ≠ ∅, and P ∩ T = ∅,
 F: (P × T) ∪ (T × P) → N is a weighted flow relation between places and transi-

tions, represented by arcs, where N is the set of nonnegative integers. The flow
relation has the following characteristics.

 Synchronization at a transition is allowed between a branch arc of a choice
place and another independent concurrent arc.

 Synchronization at a transition is not allowed between two or more branch
arcs of the same choice place.

 A self-loop from a place back to itself is allowed only if there is an initial to-
ken in one of the places in the loop.

 M0: P → N is the initial marking (assignment of tokens to places). and
 : T → N×(N∪∞), i.e. (t)=(α, β), where t ∈ T, α is the earliest firing time

(EFT), and β is latest firing time (LFT). We will use the abbreviations)(tατ and

)(tβτ to denote EFT and LFT, respectively.

Graphically, a TCCPN can be depicted as shown in Fig. 2, where circles represent
places, vertical bars represent transitions, arrows represent arcs, black dots represent
tokens, and integers labeled over arcs represent the weights as defined by F. Here, F(x,
y) > 0 implies there is an arc from x to y with a weight of F(x, y), where x and y can be a

Fig. 1. Real-Time Embedded Software Synthesis and Prototyping Methodology

 Embedded
Software

Specification

Embedded Software Analysis

Hardware
Specification

Software
Specification

Graphic M odel
Petri Net M odel

Compiler and
Sim ulation

Scheduling

Schedulable ?
Functional
Correct ?

No

Yes Yes

No

Embedded Software Emulation Platform

Software Code
Generation

Hardware Code
Loading

534 T.-Y. Lee et al.

place or a transition. Conflicts are allowed in a TCCPN, where a conflict occurs when
there is a token in a place with more than one outgoing arc such that only one enabled
transition can fire, thus consuming the token and disabling all other transitions. The
transitions are called conflicting and the place with the token is also called a choice
place. For example, decelerate and accelerate are conflicting transitions in Fig. 2. Intui-
tions for the characteristics of the flow relation in a TCCPN, as given in Definition 1, are
as follows. First, unlike FCPN, confusions are also allowed in TCCPN, where confusion
is a result of synchronization between an arc of a choice place and another independently
concurrent arc. For example, the accelerate transition in Fig. 2 is such a synchronization.
Second, synchronization is not allowed between two or more arcs of the same choice
place because arcs from a choice place represent (un)conditional branching, thus syn-
chronizing them would amount to executing both branches, which conflicts with the
original definition of a choice place (only one succeeding enabled transition is executed).
Third, at least one place occurring in a loop of a TCCPN should have an initial token
because our TEQSS scheduling method requires a TCCPN to return to its initial marking
after a finite complete cycle of markings. This is basically not a restriction as can be seen
from most real-world system models because a loop without an initial token would result
in either of two unrealistic situations: (1) loop triggered externally resulting in accumula-
tion of infinite number of tokens in the loop, or (2) loop is never triggered. Through an
analysis of the choice structures in a TCCPN, TEQSS generates a set of conflict-free
components and then schedules each of them, if possible. Once each component can be
scheduled to satisfy all constraints, the system is declared schedulable and code is gener-
ated in the C programming language.

Semantically, the behavior of a TCCPN is given by a sequence of markings, where
a marking is an assignment of tokens to places. Formally, a marking is a vector M =
<m1, m2, …, m|P|>, where mi is the non-negative number of tokens in place pi ∈ P.

Fig. 2. Automatic Cruise Controller TCCPN Model

speed
limit

sensor

preceding
vehicle
distance
sensor

current speed
< speed limit

distance >
threshold

yes

no

no

yes

decelerate

accelerate

[1,1]

[2,4]

[1,3]

[2,4]

[3,5]

decelerate
[1,3]

RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology 535

Starting from an initial marking M0, a TCCPN may transit to another marking through
the firing of an enabled transition and re-assignment of tokens. A transition is said to
be enabled when all its input places have the required number of tokens, where the
required number of tokens is the weight as defined by the flow relation F. An enabled
transition not necessarily fire. But upon firing, the required number of tokens is re-
moved from all the input places and the specified number of tokens is placed in the
output places, where the specified number of tokens is that specified by the flow
relation F on the connecting arcs.

Time Extended Quasi-Static Scheduling. The details of our proposed TEQSS algo-
rithm are as shown in Table 1. Given a set of TCCPNs S = { Ai | Ai = (Pi, Ti, Fi, Mi0,
τi), i = 1, 2, …, n} and a maximum bound on memory μ, the algorithm finds and proc-
esses each set of complex choice transitions (Step (1)), which is simply called Com-
plex Choice Set (CCS) and is defined as follows.
Definition 2. Complex Choice Set (CCS)
Given a TCCPN Ai = (Pi, Ti, Fi, Mi0, τi), a subset of transitions C ⊆ Ti is called a com-
plex choice set if they satisfy the following conditions.

 There exists a sequence of the transitions in C such that any two adjacent tran-
sitions are always conflicting transitions from the same choice place.

 There is no other transition in Ti \ C that conflicts with any transition in C,
which means C is maximal.

From Definition 2, we can see that a free-choice is a special case of CCS. Thus,
QSS also becomes a part of TEQSS. For each CCS, TEQSS analyzes the mutual ex-
clusiveness of the transitions in that CCS and then records their relations into an Ex-
clusion Table (Steps (2)-(5)). Two complex-choice transitions are said to be mutually
exclusive if the firing of any one of the two transitions disables the other transition.
When the (i, j) element of an exclusion table is True, it means the ith and the jth transi-
tions are mutually exclusive, otherwise it is False. Based on the exclusion table, a
CCS is decomposed into two or more conflict-free (CF) subsets, which are sets of
transitions that do not have any conflicts, neither free-choice nor complex-choice.
The decomposition is done as follows (Steps 6-14). For each pair of mutually exclu-
sive transitions t, t', do as follows.

 Make a copy H' of the CCS H (Step (11)),
 Delete t' from H (Step (12)), and
 Delete t from H' (Step (13)).

Based on the CF subsets, a TCCPN is decomposed into conflict-free components
(subnets) (Steps (15)-(16)). The CF components are not distinct decompositions as a
transition may occur in more than one component. Starting from an initial marking for
each component, a finite complete cycle is constructed, where a finite complete cycle
is a sequence of transition firings that returns the net to its initial marking. A CF com-
ponent is said to be schedulable (Step (19)) if a finite complete cycle can be found for
it and it is deadlock-free. Once all CF components of a TCCPN are scheduled, a valid
schedule for the TCCPN can be generated as a set of the finite complete cycles. The
reason why this set is a valid schedule is that since each component always returns to
its initial marking, no tokens can get collected at any place. Satisfaction of memory

536 T.-Y. Lee et al.

bound is checked by observing if the memory space represented by the maximum
number of tokens in any marking does not exceed the bound. Here, each token repre-
sents some amount of buffer space (i.e., memory) required after a computation (tran-
sition firing). Hence, the total amount of actual memory required is the memory space
represented by the maximum number of tokens that can get collected at all the places
in a marking during its transition from the initial marking back to its initial marking.

TEQSS_Schedule(S, μ)
S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n};
μ: integer; // Maximum memory
{
while (C = Get_CCS(S) ≠ NULL) { (1)
// Construct Exclusion Table ExTable for CCS C
Initialize_Table(ExTable);//Initialize table to

False (2)
for each transition t in C (3)
for each transition t' in C (4)
if (M_Exclusive(t, t')) ExTable[t, t'] = True;

(5)
// Decompose CCS C into conflict-free subsets
D = {C}; // D is a power-set of C (6)
for each subset H in D (7)
for each transition t in H (8)
for each transition t' in H (9)
if (ExTable[t, t'] = True) { (10)
H' = Copy_Set(H); (11)
Delete_Trans(H, t'); (12)
Delete_Trans(H', t); (13)
D = D ∪ H'; } (14)

// Decompose a TCCPN into subnets according to D
for each subset H in D (15)
Decompose_TCCPN(S, H); (16)

}
// Schedule all CF components
for each TCCPN Ai in S (17)
for each conflict-free subnet X of Ai { (18)
Xs = Schedule(X, μ); (19)
if (Xs=NULL) return ERROR; (20)
else TEQSSi=TEQSSi ∪ Xs; } (21)

Check_Time(TEQSS1, …, TEQSSn); (22)
Generate_Code(S, μ, TEQSS1, …, TEQSSn); (23)

}

Table 1. Time Extended Quasi-Static Scheduling Algorithm

RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology 537

Finally, time is checked using a worst-case analysis (Step (22)) and the real-time em-
bedded software code is generated (Step (23)), the details of which are given in the
following paragraph.
Code Generation with Multiple Threads. In contrast to the conventional single-
threaded embedded software, we propose to generate embedded software with multi-
ple threads, which can be processed for dispatch by a real-time operating system. Our
rationalizations are as follows:

With advances in technology, the computing power of microprocessors in an embed-
ded system has increased to a stage where fairly complex software can be executed.

Due to the great variety of user needs such as interactive interfacing, networking,
and others, embedded software needs some level of concurrency and low context-
switching overhead.

Multithreaded software architecture preserves the user-perceivable concurrencies
among tasks, such that future maintenance becomes easier.

The procedure for code generation with multiple threads (CGMT) is given in Table
2. Each source transition in a TCCPN represents an input event. Corresponding to
each source transition, a P-thread is generated (Steps (1), (2)). Thus, the thread is
activated whenever there is an incoming event represented by that source transition.
There are two sub-procedures in the code generator, namely Visit_Trans() and
Visit_Place(), which call each other in a recursive manner, thus visiting all transitions
and places and generating the corresponding code segments. A TCCPN transition
represents a piece of user-given code, and is simply generated as call t_k; as in
Step (3). Code generation begins by visiting the source transition, once for each of its
successor places (Steps (4), (5)).

In both the sub-procedures Visit_Trans() (Steps (1)-(3)) and Visit_Place() (Steps
(6-8)), a semaphore mutex is used for exclusive access to the token_num variable
associated with a place. This semaphore is required because two or more concurrent
threads may try to update the variable at the same time by producing or consuming
tokens, which might result in inconsistencies. Based on the firing semantics of a
TCCPN, tokens are either consumed from an input place or produced into an output
place, upon the firing of a transition. When visiting a choice place, a switch()
construct is generated as in Step (3).

3.2 Embedded Software Verification

There are three issues to be handled in software verification, that is: “what to verify”,
“when to verify”, and “how to verify”? Each of these issues is solved as follows.

In solution to the “what to verify” issue, TCCPN models are translated into timed
automata models which are then input to a model checker. Timed automata models
are easier to verify than TCCPN models because of its state space can be finitely
represented. Since both TCCPN and timed automata are formal models, there is an
exact mapping between the two. For example, a marking of a TCCPN is mapped to a
state location of a timed automaton. Concurrency in TCCPN is mapped to two or
more concurrent timed automaton. Source transitions in TCCPN are mapped to initial

538 T.-Y. Lee et al.

states of timed automata. Non-deterministic choice places in TCCPN are mapped to
states with branching transitions in timed automata. Loops in TCCPN are mapped to
loops in timed automata.

Table 2. Code Generation Algorithm for TEQSS

Generate_Code(S, μ, TEQSS1, TEQSS2, …, TEQSSn)
S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n};
μ: integer; // Maximum memory
TEQSS1, …, TEQSSn: sets of schedules of conflict-
free TCCPNs
{
for each source transition tk ∈ ∪i Ti do { (1)
Tk = Create_Thread(tk); (2)
output(Tk, "call t_k;"); (3)
for each successor place p of tk (4)
Visit_Trans(TEQSSk, Tk, tk, p); (5)

}
Create_Main(); (6)

}

Visit_Trans(TEQSSk, Tk, tk, p) {
output(Tk, "mutexs_lock(&mutex);"); (1)
output(Tk, "p.token_num += weight[t_k, p];");(2)
output(Tk, "mutexs_unlock(&mutex);"); (3)

Visit_Place(TEQSSk, Tk, p); (4)
}

Visit_Place(TEQSSk, Tk, p) {
if(Visited(p) = True) return; (1)
if(Is_Choice_Place(p) = True) (2)
output(Tk, "switch (p) {"}; (3)

for each successor transition t' of p (4)
if(Enabled(TEQSSk, t')) { (5)
output(Tk, "mutexs_lock(&mutex);"); (6)
output(Tk,"p.token_num-=weight[p,t'];"); (7)
output(Tk, "mutexs_unlock(&mutex);"); (8)
output(Tk, "call t';"); (9)
for each successor place p' of t' (10)
Visit_Trans(TEQSSk, Tk, t', p'); (11)

output(Tk, "break;"); } (12)
output(Tk, ")"); (13)

}

RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology 539

In solution to the “when to verify” issue, we propose to verify software after scheduling
(synthesis) and before code generation. Our rationalization is based on the fact that before
scheduling or after code generation, the state-space is much larger than after scheduling
and before code generation. A formal analysis proves this fact. Intuitively, before schedul-
ing the state-space is much unconstrained than after scheduling, thus we have to explore a
larger state-space if we verify before scheduling. Further, after code generation the state-
space is also larger than that before code generation because upon code generation a lot of
auxiliary and temporary variables are added, which add to the size of the state-space un-
necessarily.

In solution to the “how to verify” issue, we adopt a compositional model checking ap-
proach, where two timed automata are merged in each iteration and reduced using some
state-space reduction techniques such as read-write reduction, symmetry reduction, clock
shielding, and internal transition bypassing. The reduction techniques have all been imple-
mented in the State Graph Manipulators (SGM) tool, which is a high-level model checker
for real-time systems modeled as timed automata with properties specified in timed com-
putation tree logic (TCTL). After the globally reduced state-graph is obtained, it is model
checked for satisfaction of some user-given TCTL property. Details can be found in [20].

3.3 Graphic User Interface and Platform Architecture

As shown in Fig. 3, we designed a graphical user interface for real-time embedded soft-
ware specification input using Petri Net model. The designer draws the required behav-
ior of embedded software as Petri Nets using the icons in the GUI. By clicking the
“schedule” button, the tool generates the schedules. The designer can view the job
scheduling states in the generation region and the scheduling bar of the GUI.

A platform supports a hardware-software environment for hardware emulation and
software execution. In this work, we design a platform with an architecture as shown in

Fig. 3. Graphical User Interface for Real-Time Embedded Software Synthesis

540 T.-Y. Lee et al.

Fig. 4. The FPGA/CPLD chip is programmed according to the hardware requirements of
an embedded system. The embedded software is downloaded into the microcontroller. If
microcontroller memory is not enough, then external memory can be used. The in-
put/output devices, such as keyboard, LCD display, LED display, and input switch are
connected to FPGA/CPLD chip and microcontroller using a bus. The procedure adopted
for emulating embedded software in a platform is as follows. (1) The embedded soft-
ware code is downloaded into the ROM or Flash memory, (2) The settings of the I/O
devices are configured according to the embedded software specifications, (3) The
emulation platform is booted, input conditions are changed, and the output functions are
checked for satisfaction of the functional requirements of the embedded software.

4 Embedded System Examples

In this section, we use two embedded system examples to illustrate our proposed
embedded software synthesis and prototyping methodology. The first example is
display subsystem of Vehicle Parking Management System (VPMS) example, which
includes three subsystems: entry management system, exit management system, and
display system. The display system consists of a control system (counter and display
interface) and a 7-segment display device. The counter value (count) indicates the
number of available parking vacancies. Further details on the VPMS specification can
be found in [7].

The display system in VPMS was modeled as a TCCPN as shown in Fig. 5 and the
TCCPN transitions are given in Table 3. The embedded software code generated for
the display system is shown in Fig. 6, which was emulated using our RESS platform.
We use two input switches to simulate the Car in and Car out signals, respectively,
and then use a 7-segment display to show the number of available parking vacancies.

Another example is a motor speed control system, whose TCCPN model is as
shown in Fig. 7. The main function of this system is to adjust the speed of a motor
based on its current speed. There are two timers T0, T1 and two interrupts INT0,

Bus

Keyboard
LCD

Display

LED and
7-Segment

Display

Input
 Switch

FPGA/CPLD
Chip

Single Chip
Microcontroller

Memory

 Fig. 4. Hardware-Software Prototype Platform Architecture

RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology 541

INT1 that drive the system. On software synthesis, that is, TEQSS, there are two
feasible schedules for this system as given in Table 4, where an asterisk on a partial
schedule indicates a loop of at least one iteration. The generated code is shown in Fig.
8, which was emulated on our RESS platform. We use two input switches to connect
the trigger of INT0 and INT1, respectiv ely. Motor speed is displayed by an LCD
display device.

P2

P1

P3

t1

t2

t5

t4

t3

t6

t7

t8

[1, 2]

[1, 3]

[1, 2]

[1, 2]

[1, 2]

[1, 3]

[1, 1]

[1, 3]

 Table 3. TCCPN Transitions in
 Display System

Place Description
P1 Counter value

updated
P2 Signal polling

complete
P3 Digit selected

Transition Description
t1 Initial counter
t2 Poll signal
t3 Select digit
t4 Decrement

counter
t5 Increment coun-

ter
t6 Check count
t7 No operation
t8 Display digit

Fig. 6. Software Code for VPMS Display System

Display C-code
{(t1 t2 t4) (t1 t2 t5) (t1 t2 t6) (t1 t2 t7) (t1 t3
t8)}
t1;
while (true) {
if (p1) {

t2;
switch (p2) {
Case Car in: t4;
Case Car out: t5;
Case Time stamp button pushed: t6;
Case Default: t7;

}/* End of switch */
}/* End of if */
else {t3; t8;}

}/* End of while */

Fig. 5. Petri Net Model of Display System

542 T.-Y. Lee et al.

5 Conclusion and Future Work

A complete methodology called RESS was proposed for emulating hardware and
synthesizing and executing embedded software, which includes a time-extended quasi-
static scheduling algorithm, a code generation procedure, and an emulation platform.
The methodology will not only reduce development time for embedded software, but
also aid in debugging and testing its functional correctness. This version of our real-
time embedded software synthesis tool has a new graphical user interface to increase
its user-friendliness. How to transfer the software code for applying to ARM-based
systems will be our future work.

Clear new rdgflg
and end

Increase drive

t1

t2

Decrease drive

t3

Set up T0, T1
Set up INT0, INT1

New rdflg ==True no

yes

yes

no Too slow

[1, 2]

[1, 2]

[1, 2]

[1, 2]

[1, 2]

t5

t6

t4

t0

Fig. 7. Motor Speed Control System TCCPN Model

Table 4. Feasible Schedules for Motor System

TCCPN #T #P #S Schedules

MSCS 7 4 2 <t0, <t1>*, t2, t3, t5, t6>,
 <t0, <t1>*, t2, t3, t4, t6>

#T: #transitions, #P: #places, #S: #schedules

P0

P1

P2

P3

[1, 2]

[1, 3]

RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology 543

References

1. K. Altisen, G. Gobler, A.Pneuli, J. Sifakis, S. Tripakis, and S. Yovine, “A framework for
scheduler synthesis,” In Proceedings of the Real-Time System Symposium (RTSS’99), IEEE
Computer Society Press, 1999.

2. F. Balarin and M. Chiodo. “Software synthesis for complex reactive embedded systems,” In
Proceedings of International Conference on Computer Design (ICCD’99), IEEE CS Press,
October 1999, 634 – 639.

3. L. A. Cortes, P. Eles, and Z. Peng, “Formal co-verification of embedded systems using
model checking,” In Proceedings of EUROMICRO, 2000, 106 – 113.

4. P.-A. Hsiung, “Formal synthesis and code generation of embedded real-time software,” In
International Symposium on Hard-ware/Software Codesign (CODES'01, Copenhagen,
Denmark), ACM Press, New York, USA, April 2001, 208 – 213.

5. P.-A. Hsiung, W.-B. See, T.-Y. Lee, J.-M Fu, and S.-J. Chen, “Formal verification of em-
bedded real-time software in component-based application frameworks,” In Proceedings of
the 8th Asia-Pacific Software Engineering Conference (APSEC 2001, Macau, China),
IEEE CS Press, December 2001, 71 – 78.

6. M. Sgroi and L. Lavagno, “Synthesis of embedded software using free-choice Petri nets,”
IEEE/ACM 36th Design Automation Conference (DAC’99), June 1999, 805 – 810.

7. T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen, “A case study in codesign of distributed systems —
vehicle parking management system,” In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA'99, Las Vegas,
USA), CSREA Press, June 1999, 2982–2987.

void *thread_run0(void *arg) {
 t0(); pthread_mutex_lock(&mutex); opera-
tion(t0,p0,'+')
 switch(p0) { case 1 : do{ if(check_enable(t1)) {
 mutex_operation(p0,t1,'-');
 t1();mutex_operation(p0,t1,'+'); } }

while(pla0);
 pthread_mutex_unlock(&mutex); break;
 case 2 : if(check_enable(t2))

{ operation(p0,t2,'-'); t2();
 pthread_mutex_unlock(&mutex);
 pthread_mutex_lock(&mutex); opera-
tion(t2,p1,'+')
 switch(p1) { case 3 : if(check_enable(t3)) {
 operation(p1,t3,'-'); t3();
 pthread_mutex_unlock(&mutex);
 pthread_mutex_lock(&mutex);
 operation(t3,p2,'+') … }}}}

Fig. 8. Code for Motor Speed Control

544 T.-Y. Lee et al.

8. P.-A. Hsiung, “Formal Synthesis and Control of Soft Embedded Real-Time Systems," In
Proceedings 21st IFIP WG 6.1 International Conference on Formal Techniques for Net-
worked and Distributed Systems (FORTE'01, Cheju Island, Korea), Kluwer Academic
Publishers, August 2001, 35 – 50.

9. J. Buck, Scheduling dynamic dataflow graphs with bounded memory using the token flow
model, Ph. D, dissertation, UC Berkeley, 1993.

10. F. Thoen et al, “Real-time multi-tasking in software synthesis for information processing
systems,” In Proceeding of the International System Synthesis Symposium, 1995, 48 – 53.

11. B. Lin, “Software synthesis of process-based concurrent programs,” IEEE/ACM 35th De-
sign Automation Conference (DAC’98), June 1998, 502 – 505.

12. X. Zhu and B. Lin, “Compositional software synthesis of communicating processes,” IEEE
International Conference on Computer Design, October 1999, 646 – 651.

13. F.-S. Su and P.-A. Hsiung, “Extended quasi-static scheduling for formal synthesis and code
generation of embedded software,” In Proceedings of the 10th IEEE/ACM International
Symposium on Hardware/Software Codesign, (CODES'2002, Colorado, USA), IEEE CS
Press, May 2002, 211 – 216.

14. C.-H. Gau and P. -A. Hsiung, “Time-memory scheduling and code generation of real-time
embedded software,” In Proceedings of the 8th International Conference on Real-Time
Computing Systems and Applications (RTCSA'2002, Tokyo, Japan), March 2002, 19 – 27.

15. F. Balarin et al., Hardware-software Co-design of Embedded Systems: the POLIS Ap-
proach, Kluwer Academic Publishers, 1997.

16. P.-A. Hsiung and C.-H. Gau, “Formal Synthesis of Real-Time Embedded Software by
Time-Memory Scheduling of Colored Time Petri Nets,” In Proceedings of the Workshop on
Theory and Practice of Timed Systems (TPTS'2002, Grenoble, France), Electronic Notes in
Theoretical Computer Science (ENTCS), April 2002.

17. P.-A. Hsiung, T.-Y. Lee, and F.-S. Su, “Formal Synthesis and Code Generation of Real-
Time Embedded Software using Time-Extended Quasi-Static Scheduling,” In Proceedings
of the 9th Asia-Pacific Software Engineering Conference (APSEC'2002, Queensland, Aus-
tralia), IEEE CS Press, December 2002.

18. M. Baleani, F. Gennari, J. Yunjian, Y. Patel, R. K. Brayton, A. Sangiovanni-Vincentelli,
“HW/SW partitioning and code generation of embedded control applications on a recon-
figurable architecture platform,” In Proceedings of the Tenth International Symposium on
Hardware/Software Codesign (CODES’2002, Colorado, USA), IEEE CS Press, May 2002,
151 – 156.

19. S. Tsasakou, N. S. Voros, M. Koziotis, D. Verkest, A. Prayati, and A. Birbas, “Hardware-
software co-design of embedded systems using CoWare’s N2C methodology for application
development,” In Proceedings of the 6th IEEE International Conference on Electronics,
Circuits and Systems (ICECS’1999, Pafos, Cyprus), IEEE CS Press, September 1999, Vol.
1, 59 – 62.

20. F. Wang and P.-A. Hsiung, “Efficient and User-Friendly Verification,” IEEE Transactions
on Computers, Vol. 51, No. 1, pp. 61-83, January 2002.

Software Platform for Embedded Software
Development

Win-Bin See1,4, Pao-Ann Hsiung2, Trong-Yen Lee3, and Sao-Jie Chen4

1Aerospace Industrial Development Company, Taichung, Taiwan, ROC
winbinsee@ms.aidc.com.tw

2National Chung Cheng University, Chiayi, Taiwan, ROC
3National Taipei University of Technology, Taipei, Taiwan, ROC

4National Taiwan University, Taipei, Taiwan, ROC

Abstract. The demands for new embedded system products that provide new

functionality and adopting new hardware are booming. Parallel development in

hardware and software is promising in reducing both the time and effort for the

design of embedded system. Mostly, the development of embedded system

application has been carried out on general purpose computing platform using

cross target development tools, includes cross compiler and linker etc. Personal

computers are used as cross development environment to host the embedded

system software development tool set. We propose a software platform

approach that promotes the role of PC based embedded software cross

development platform to support the embedded software development even

before the real hardware becomes available. Our approach is a tunable

embedded software development platform (TESDP) that facilitates more

extensive usage of the development platform. TESDP helps in decoupling the

hardware and software development while maintaining very close semantic

similarity for the function operates on both development and target platforms.

We demonstrate the feasibility of the TESDP approach with the development of

two embedded systems, a car-borne modular mobile data terminal (MMDT),

and an air-borne navigation support display (NSD) system. MMDT provides

data communication and global positioning capability for applications in the

domain of intelligent transportation system (ITS). NSD is an important

component in avionics systems that provides pilot with graphical flight

instrument information to support aircraft navigation.

1 Introduction

Following the advances in the design and fabrication techniques for semiconductor

devices, various micro-controllers and peripheral control chips are proliferating with

decreasing price and increasing performance. These technology advancements have

also enabled the development of inexpensive embedded systems that provide

dedicated and integrated services. Mobile phones, digital camera and personal digital

assistance (PDA) are examples of emerging embedded system applications. On the

other hands, these kinds of embedded systems are suffered from having short life

cycle time that have been caused by the changing appetite of customers and the

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 545−557, 2004.

© Springer-Verlag Berlin Heidelberg 2004

introduction of new products from competitors. Hence, embedded system providers

have to keep on developing new products based on new hardware components and

new user demands in functionality and interface improvement, the embedded software

will be the glue to all hardware components. To take advantage of cost reduction from

mass production, programmable micro-controllers are used in embedded system

design. Embedded system software drives the micro-controller and associated

hardware components to provide the system functionality required. Embedded system

software can program the same micro-controller and cooperate with proper peripheral

configuration for various applications per requirement specified. To cope with the

demanding requests for new embedded system products, the industry needs good

design methods and tools for embedded system software development.

In order to reduce the development time for the embedded system software,

various techniques could be taken, such as adopting software reuse technique, seeking

for the advancement in software synthesis and verification [1, 3, 4, 6, 7].

Embedded system software is usually developed on a hardware platform that is

different from the final target environment. Cross compilers are used in the software

development station to generate target code, and then downloaded into the RAM or

programmable ROM resides in embedded hardware platform for execution.

Accordingly, development methods that could enable the parallelism in software and

hardware development will also be helpful for embedded system development.

Object-Oriented programming is a paradigm that has been pledged to enable better

software re-use, object-oriented frameworks have been worked prominently in this

aspect [7, 13, 14]. In this article, we propose a software platform approach that

integrates the object-oriented paradigm to support the parallel development in

embedded software and hardware. Our approach is a tunable embedded software

development platform (TESDP) that facilitates extensive usage of the ordinary cross

development platform. TESDP helps in decoupling the hardware and software

development while maintaining very close semantic similarity for the function

operates on both development and target platforms. It also provides framework for

execution information collection to support the system verification and tuning.

This article is organized as follows. Section 2 gives a brief overview about

previous work in object-oriented software framework and tools that support

embedded software development. Section 3 describes the proposed embedded

software development method that based on a Tunable Embedded Software

Development Platform (TESDP). Section 4 illustrates the feasibility of this

development platform through the design and implementation of an embedded mobile

data terminal for intelligent transportation system application. Section 5 gives an

example in airborne embedded navigation display system application. Section 6

concludes the article and gives directions for future work.

2 Previous Work

Embedded system is a special purpose computer system that consists of controller

and peripheral devices. Most embedded system needs to response to some external

546 W.-B. See et al.

events with some timing constraints. To cope with proliferating demands in

embedded system development, various methodologies and tools are developed for

embedded real-time system development.

Object oriented frameworks [9] provide reusable domain specific software that can

be applied with minor modification. Two recently proposed frameworks, Object-

Oriented Real-Time System Framework (OORTSF) [13, 14] and RTFrame [5] are

providing reusable real-time system frameworks. VERTAF [7] integrates verification

capability into its framework.

Execution time information of functions in the embedded system provides base

data for system design, analysis and verification. Classical scheduling policies [10,

11] use execution time information for schedulability check. Cortes et al. [4]

introduce Petri Net based formal verification method that uses “transition delay”

associated with transition to represent the execution time of the function. In the timed

automata based formal verification method [7] for embedded system, mode predicates

represent the information about execution time of function. It is desirable to have

actual execution time collection mechanism as a baseline design for embedded system

development. We introduce several objects into a kernel that is based on OORTSF to

provide the actual execution time information collection.

Hardware development tool supports gate-level abstraction, this model would be

too detailed to be suitable for the development of embedded system. Some embedded

system development platform [16] provides higher level of abstractions include

microprocessor, cache, memory, DMA, etc. Some embedded system development

tools abstract the system into graph structure and use graph algorithm to explore the

properties required by system specification [1, 3, 7, 15]. The abstractions used in the

above tools are either too detailed or too high-level for the development of embedded

system that need to address software and hardware at the same time.

It is suggesting in providing a development platform to support the abstractions of

both the hardware and software that are manageable to the embedded system

application designer. We propose a Tunable Embedded Software Development

Platform (TESDP) that addresses this issue to support the parallel development of

embedded software and hardware.

3 Tunable Embedded Software Development Platform

Typical embedded system consists of programmable micro-controller, memory,

and peripherals. Embedded system reacts to its environment and needs to satisfy some

kind of execution sequence and timing constraints. Accordingly, most embedded

software is also real-time software. Embedded system exhibits its functionality

through its input/output interconnections, and peripherals with respect to the

environment. Software on micro-controller does the data computation and senses the

environment data to generate the system output. Embedded system synchronizes and

communicates with its environment via mechanisms such as hardware interrupts, port

based input/output and memory-mapped input/output.

547Software Platform for Embedded Software Development

SHF

Hook

:ESS monitoring support objects

Assertion

Guard

External

Device

ESS

Monitor

Timing

Guard

IP/IC

Simulator

IO/Device

Bridge

Simulated Hardware

Framework (SHF)

IO/Device

Simulator

Event

SimulatorEmbedded

System

Software

(ESS)

Internal

Behavior

Fig. 1. Tunable Embedded Software Development Platform (TESDP).

Since C/C++ programming language is a very popular programming language used

by most of the micro-controllers and the systems running under a Windows or a Unix

OS platform. Most of the micro-controller uses Windows and Unix OS platform as its

cross development platform. From the C/C++ programming point of view, target

platform and the cross development platform provide the same abstraction in using

the same high-level language. From system behavior point of view, the major

difference between target platform and the development platform will be the

differences in hardware interrupts, input/output port, the peripherals that exhibit

system functionality. After keen arrangement, we can make up an illusion of the

target embedded system that can execute the C/C++ programs of the target systems,

and exhibits the behavior of the peripherals of the target system on the development

platform. We call this embedded software development system as Tunable Embedded

Software Development Platform (TESDP). Figure 1 shows the software architecture

of TESDP, which consists of two major parts: Embedded System Software (ESS) and

Simulated Hardware Framework (SHF). The task scheduling and control of ESS is

based on the design of OORTSF [13, 14] to integrate the required application

548 W.-B. See et al.

functionality. TESDP further adapts an ESS from an original embedded system by

compiling and linking it to the SHF for execution on the development platform.

We add three object classes into the Embedded System Software (ESS) to support

verification data extraction and provide monitoring function of TESDP. We use

Timing Guard object to collect the execution time information of function. The

Assertion Guard object is used to provide run-time status information to the ESS

Monitor in SHF.

SHF Hook: This is an object-oriented class that supports the insertion and

replacement of the operations in ESS operations for SHF. SHF Hook

provides systematic and documented insertion of the mechanism to match

ESS into the environment of our TESDP platform.

Timing Guard: The execution time of a task depends on the speed of the

processor used. We introduce a timing guard object to gauge the elapsed time

of a function and to introduce the execution time offset as required for

different platforms. Using Timing Guard, a user can mitigate the timing gap

between TESDP and actual embedded system operation. Timing Guard

supports the extraction of actual execution time information for a function.

This information can be collected and refurbish to the system tuning process.

Assertion Guard: System properties have to be formulated for formal

verification[7]. Some programming paradigms focused on introducing pre-

condition/post-conditions and invariants into the to-be-verified software in a

structured manner[12]. System requirement compliance check can also be

built into the software. For example, we can present condition of interest and

its run-time verification using Assert Guard objects. Embedded system

operation does not have rich user interface with outside world as general-

purpose computer system does. Cooperating an Assertion Guard with the ESS

Monitor in SHF can provide report to the system developer.

We choose C/C++ language to write programs executed in both the target micro-

controller and development platform. To let the embedded software program executes

on the TESDP, we need to find out a layer of separation that can derive an efficient

SHF design. We categorized the hardware abstractions first and provide mechanisms

to support the hardware abstraction using combinations of the software and hardware

on the development platform and from the external devices connected to the TESDP

software development platform. The layer of separation we choose for the micro-

controller core and peripherals consists of three major abstractions described as

follows.

Internal behavior: It represents CPU interrupts, memory mapped I/O and

special internal Integrated Circuit (IC) and/or Intellectual Proprietary (IP)

components like programmable logic arrays. Event Simulator and IC/IP

Simulator are used to simulate the internal behavior of components.

IO/Device Bridge: It represents external communication interfaces like

RS232 and parallel port. IO/Device Bridge simulates those IO

549Software Platform for Embedded Software Development

interconnections. IO/Device Bridge uses physical interface to connect the

external devices.

IO/Device Simulator: It represents IO devices, such as LCM display and

keyboard/keypads. IO/Device Simulator simulates the IO/Device inside or

externally connected to the embedded system. There are approaches that can

simplify the design and implementation of IO/Device Simulator, such as: (a)

choosing standard application program interface (API) that is supported both

in cross development platform and target platform, and or (b) introducing a

hypothetical interface and implement application over this abstraction. For

example OpenGL API can be selected for graphical programming, if both

platforms support the OpenGL library.

ESS Monitor: It reads ESS execution status data from ESS Assert Guard

Object. ESS Monitor provides a means for the report of system and

application function execution status to the system developer. Execution

status information is very useful for system verification and tuning.

Using these abstraction techniques, the SHF can be tuned to adapt to the changes in

the target embedded configuration. SHF is an object-oriented software framework that

provides an execution support environment for the ESS. We use the Windows-2000

platform on a Personal Computer for this TESDP design and implementation. Table 1

shows the SHF classes, SHF implementation and associated example embedded

components. The object-oriented framework is a software reuse technique that

provides half-done software to facilitate the reuse in both design and code. The SHF

classes can be instantiated and composed to simulate the hardware configuration of an

embedded system. During the evolution, if the embedded system is adapted to new

hardware technology, the system developer can readjust the SHF according to the

changes

Table 1. Major SHF object-oriented classes.

SHF Class SHF

Implementation

Example Embedded

Component

Event Simulator Thread Scheduler Timer

IC/IP Simulator Software API Programmable Logic

Device

IO/Device

Bridge

Thread RS232 connection

IO/Device

Simulator

Thread LCM Display

Timing Guard Thread LCM Display

The main advantage of this approach is to provide a simulated hardware

environment associated with the stages of hardware architecture evolution in

embedded system development. Some of the modular device control and/or inter-

connections can be tested in the TESDP first, instead of building a total design to test

the target system. In our experience, this saves a lot of time, because the TESDP is

550 W.-B. See et al.

more stable and convenient in access. With confirmed protocol between controller

and the device interactions, most of the code can be execute directly after re-

compilation. Some of the devices are controlled via general interface, such as: RS232,

the mismatch between the two platforms has been harmonized by the baud rate setting

for the RS232 interface.

We are also aware of some mismatches between the embedded platform and the

TESDP approach. These mismatches are timing mismatch, compiler mismatch and

abstraction mismatch as follows. (1) Timing mismatch: Real-time system scheduling

is done based on the clock of a platform. Running TESDP on a general purpose

Personal Computer has the positive side of higher clock rate than on the target

embedded system. Yet it also introduces additional system overhead posed by the

underlying operating system. (2) Compiler mismatch: Specific compiler and linker

might have specific flaws inside. However, TESDP could have more matured

compiler than target micro-controller. Earlier ESS software development on TESDP

turns out to be an efficient approach. (3) Abstraction mismatch: It depends on the

availability of the hardware and software capability on the TESDP with respect to the

embedded system. TEDSP user adjusts the configuration of SHF for target embedded

system configuration, this also introduces deviation between them. However, the

standard interface mechanism, like RS232, eases the abstraction deviation between

SHF and the real target.

4 Application Example 1: Modular Mobile Data Terminal

Modular Mobile Data Terminal (MMDT), an embedded system to be installed in a

commercial or private car, provides various remote management/support

functionalities via the mobile data communication capability and global positioning

system (GPS) built into the MMDT. MMDT also provides to the car driver a user

interface that includes a large size LCM display module, a set of control buttons, and

optional PS2 keyboard. MMDT handles two types of data communication protocols,

MAP27 protocol stack software for trunking radio[8] and AT command interface

software for Global System for Mobile communications (GSM) module[2]. Figure 2

shows the hardware architecture of MMDT.

In Figure 2, PLD is a filed programmable logic device that has been programmed

with VHDL to handle the PS2 keyboard bit-level interrupts, pack the data bits into

bytes of data, and send it to Micro-controller with another byte-level interrupts and

associated memory-mapped data bytes for further processing. The keypad inputs are

also encoded by this PLD, which interrupts the Micro-controller to notify the

occurrences of the keypad depression with associated keypad code. The LCM module

is a display panel with back light control that is capable to display large traditional

Chinese font for easy reading by the car driver. However, the LCM module has

relatively low duty cycle as compared to the speed of Micro-controller, and it needs

polling based access to confirm the availability for updating further display data. The

551Software Platform for Embedded Software Development

LCM module display duty-cycle will also be a parameter that varies when the

replacement of LCM in different design becomes necessary.

RS-232 GSM

RS-232 TEDSP

Host

PLD Trunking

Radio

RS-232

RS-232

GPS

Keyboard

LCM Module

Keypad

Micro-

Controller

ROM
RAM

(battery-

backup)

Fig. 2. MMDT hardware architecture.

In this system, RS232 interfaces are used to connect external devices that include

GPS, Trunking Radio, GSM module and a remote host computer. Simulated

Hardware Framework (SHF) on TESDP uses actual RS232 interface to control

external hardware modules. We use Windows-2000 platform for this TESDP design

and implementation. Table 2 shows the SHF classes and objects instantiated for the

MMDT execution on our TESDP environment.

Table 2. MMDT components to SHF classes mapping.

Embedded

components
SHF object SHF class SHF

implement.

Scheduler

Timer

Timer

Thread

Event

Simulator
Timer Thread

Keypad Keypad

Thread

IP/IC

Simulator

Software API

PS2

Keyboard

Keyb Thread IP/IC

Simulator

Software API

GSM

connection

GSM Bridge IO/Device

Bridge

RS232

Thread

Trunking

Radio

connection

Trunking

Radio

Bridge

IO/Device

Bridge

RS232

Thread

GPS

connection

GPS Bridge IO/Device

Bridge

RS232

Thread

552 W.-B. See et al.

LCM module LCM

display

Simulator

IO/Device

Simulator

Software API

TEDSP

Host

Connection

Host

Computer

Bridge

IO/Devi

ce Bridge

RS232

Thread

MMDT embedded software consists of a baseline OORTSF [13, 14] framework as

its Real-Time Kernel to control application tasks. Figure 3 shows the embedded

software architecture of MMDT. The MAP27 Protocol Processing consists data link

layer processing MAP27 DL Layer, and network layer processing MAP27 Net Layer.

An external radio set is connected to the MMDT for Trunking Radio communication.

NavCruRpt does system navigation and cruise function based on the GPS data from

GPS Driver, it reports the current vehicle position data to control center through

mobile communication. GPS is a module built inside the MMDT box. Display Page

Control manages the page displayed on the LCM module through LCM Control.

Keypad selects the display menu page for user controls. Keyboard inputs data to the

data field on LCM display page. GSM Comm controls the external GSM

communication module using AT commands[2]. In Figure 3, the box with dashed-line

delineates the implementation boundary between ESS and SHF.

Keypad/

Keyboard

processing

RS232

Timing

Guard

Assertion

Guard
RS232

GSM

TESDP

HOST

Trunking

Radio

GPSGPS Driver

RS232

RS232
MAP27 Net Layer

MAP27 DL Layer

MAP27 Protocol

Processing

LCM Control

GSM Comm

Display Page

Control

NavCruRpt

Real-Time

Kernel

Fig. 3. MMDT software architecture.

During the development of MMDT, some hardware modules were added into the

system follows the evolution of system requirements. The GSM communication

module control has been integrated on the TESDP environment first and integrated

into the real target platform after the control and operation scenario confirmed. Many

of the devices are connected via RS232 interface and the SHF uses actual RS232 to

553Software Platform for Embedded Software Development

drive the devices on TESDP. Therefore, there are little differences in the operational

scenarios between actual embedded platform and TESDP, this further proves the

feasibility of our TESDP approach.

5 Application Example 2: Airborne Navigation Support

 Display System

Aircraft pilot reads navigation support information from flight instrument

indicators, such as attitude/direction indicator (ADI) and horizontal situation indicator

(HSI). The ADI and HSI indicate aircraft attitude and flight direction indication etc,

based on the data collected from various sensors onboard the aircraft. Traditionally,

the ADI and HSI are mechanical indicators. Recently, aero-industry is taking

advantage of electronic display devices like LCD display to provide a versatile and

redundant cockpit display. Using LCD display, various sensor and mission data can

be presented in forms of video, text, or graphical format to the pilot. Multiple LCD

based display systems collocated in cockpit to present multiple number of information

at the same time, and also enable the redundancy via pilot selectable information

swapping among displays.

Airborne display systems are evolving with the technology of display and control

hardware, starting from mono-display with proprietary hardware interface and

migrating towards color-display with open standard graphics control interface, like

OpenGL. In the development of a new airborne navigation support display (NSD)

system to support ADI, HSI display and mission data access functionalities, we faced

with the issue of parallel development in embedded display application software and

hardware. Even worse, the exact display interface will be left undefined in the early

stage of the project. The TESDP approach provides a good resolution to this situation.

A hypothetical display layer of software interface, (Hypo-Display), provides an

abstraction of display device to the application software. The Hypo-Display has been

implemented on the cross platform to support the development of application software

of upper layer. We chose the OpenGL library to developed the Hypo-Display. This

enable the earlier development of display application software on cross platform, and

reduce the possibility and the amount effort needed for the rework of software to

adapt towards the final hardware interface.

Table 3 shows the NDS components to SHF class mapping. Scheduler Timer

component is used to generate the task scheduling timer event. The Bezel keys

components handles the bezel buttons input by the pilot through buttons located

around the LCD display. The Avionics Bus component transports data coming from

various flight status sensors onboard. The LCD display component displays the text,

graphics and/or external video input, it has been implemented via Hypo-Display

object as described previously. A commercial off the shelf (COTS) PowerPC board

has been used for this NDS implementation, and TCP/IP network interconnection has

been used for TESDP host connection.

554 W.-B. See et al.

Table 3. NDS components to SHF classes mapping.

Embedded

components

SHF object SHF class SHF

implement.

Scheduler

Timer

Timer

Thread Event

Simulator

Timer

Thread

Bezel keys Keypad

Thread

IP/IC

Simulator

Software

API

Avionics Bus Avionics

Bus Thread

IO/Device

Bridge

Av_Bus

Thread

LCD display Hypo-

Display

object

IO/Device

Simulator

Software

API

TEDSP

Host

Connection

Host

Computer

Bridge

IO/Device

Bridge

TCP/IP

Thread

Using TESDP platform with the Hypo-Display object provides a stable software

development much earlier before the real embedded hardware become available. This

approach enable the parallel development in embedded system software and

hardware, and reduces the system time to market drastically.

6 Conclusion

The TESDP approach for embedded software development provides the possibility

of parallel development in embedded hardware and software. Using the proposed

development platform, the development of embedded system software can be de-

coupled from the hardware platform while maintaining very close semantic similarity

for the function operates on both platforms. This kind of development platform will

be very desirable for electronic industry that is seeking for the grasp of booming

embedded system market, such cell phone, digital camera, personal digital assistance

(PDA), etc. We have used this approach in an evolutionary development of embedded

Modular Mobile Data Terminal (MMDT) system for intelligent transportation system

applications. With comprehensive communication and user interface, this MMDT can

also be adapted to support other domain of application. With the support of TESDP

approach, the cost of future adaptation of MMDT could be reduced. This also provides

evidence for the value of TESDP approach in the development of other embedded

systems. In this article, an example application of TESDP in the area of airborne

embedded system, a navigation display system (NDS), has also been examined, and

we found that the TESDP approach enables the parallel development in hardware and

software. It drastically reduced the total system development cycle time of the NDS

system development.

555Software Platform for Embedded Software Development

In the case of MMDT, the TESDP approach supports the development of software

for embedded system that consists of micro-controller and peripheral integrated

circuits (ICs). From hardware aspect, some hardware component providers provide

their intellectual property (IP) cores of micro-controllers and peripherals in the form

of electronic files. System designer integrates various IP cores as required and turn

them into a System On a Chip (SOC). This SOC approach further provides embedded

system hardware with even more cost competitiveness. However, SOC needs

embedded software that executes on the micro-controller and elaborates the peripheral

to fulfill the system functionality. We believe that our approach can also be applied to

the SOC type of embedded system development.

We are working on the integration of more comprehensive software frameworks

and code synthesis capability [1, 3, 4, 6, 15] to support the development of different

types of embedded systems. We are also integrating software verification capability

into this development platform [7] and make it both tunable and verifiable

development environments for embedded system development environment.

References

[1] K. Altisen, G. Gobler, A. Pneuli, J. Sifakis, S. Tripakis, and S. Yovine, “A Framework for

Scheduler Synthesis,” In Proceedings of the Real-Time System Symposium (RTSS’99),

IEEE Computer Society Press, 1999.

[2] AT command set for GSM Mobile Equipment (ME) (GSM 07.07 version 4.4.1), Digital

cellular telecommunications system (Phase 2), European Telecommunications Standards

Institute, France, March 1999.

[3] F. Balarin and M. Chiodo. Software synthesis for complex reactive embedded systems. In

Proceedings of International Conference on Computer Design (ICCD’99), pp. 634 – 639.

IEEE CS Press, October 1999.

[4] L. A. Cortes, P. Eles, and Z.Peng, ”Formal Co-verification of Embedded Systems using

Model Checking,” In Proceedings of EUROMICRO, pp. 106-113, 2000.

[5] P. -A. Hsiung, “RTFrame: An object-oriented application framework for real-time

applications,” In Proceedings of the 27
th

International Conference on Technology of

Object-Oriented Languages and Systems (TOOLS’98), pp. 138-147, IEEE Computer

Society Press, September 1998.

[6] P. -A. Hsiung, “Formal synthesis and code generation of embedded real-time software,” In

International Symposium on Hard-ware/Software Codesign (CODES'01, Copenhagen,

Denmark), pp. 208 213. ACM Press, New York, USA, April 2001.

[7] P. -A. Hsiung, W.-B. See, T.-Y. Lee, J.-M Fu and S.-J. Chen, “Formal verification of

Embedded Real-Time Software in Component-Based Application Frameworks,” to appear

in The 8th Asia-Pacific Software Engineering Conference (APSEC 2001).

[8] Introduction to MAP27 protocol, Web Site: “http://www.condor-cci.com/trunking.new/

map27.htm”.

[9] R. E. Johnson, “Frameworks = (Components + Patterns),” In Communications of the

ACM, Vol. 40, No. 10, pp. 39-42, October 1997.

[10] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment," Journal of ACM, Vol. 20, No. 1, pp. 46-61,1973.

556 W.-B. See et al.

[11] J. -F. Lin, W. -B. See, and S.-J. Chen, "Performance Bounds on Scheduling Parallel Tasks

with Communication Cost," IEICE Trans. Information & Systems, Vol. E78-D, No. 3, pp.

263-268, March 1995.

[12] M. Lippert and C. V. Lopes, "A Study on Exception Detection and Handling Using

Aspect-Oriented Programming", In Proceedings of ICSE'2000, ACM Press.

[13] W. –B. See and S. -J. Chen, “High-level reuse in the design of an object-oriented real-time

system framework.” In Proceedings of the International Computer Symposium, pp. 363-

370, December 1996.

[14] W. –B. See and S. –J. Chen, “Object-oriented real-time system framework.” Domain-

Specific Application Frameworks, pages 327-338, Ed. M.E. Fayad and R.E. Johnson,

Wiley, 2000.

[15] M. Sgroi and L. Lavagno, “Synthesis of Embedded Software Using Free-Choice Petri

Nets,” In Proceedings of IEEE/ACM Design Automation Conference (DAC’99), ACM

Press, June 1999.

[16] F. Vahid and T. Givargis, “Platform Tuning for Embedded Systems Design,” IEEE

Computer, No. 34, Vol. 3, pp. 112-114, March 2001.

557Software Platform for Embedded Software Development

Towards Aspectual Component-Based Development of
Real-Time Systems�

Aleksandra Tešanović1, Dag Nyström2, Jörgen Hansson1, and Christer Norström2

1 Linköping University, Department of Computer Science, Linköping, Sweden
{alete,jorha}@ida.liu.se

2 Mälardalen University, Department of Computer Engineering, Västerås, Sweden
{dag.nystrom,christer.norstrom}@mdh.se

Abstract. Increasing complexity of real-time systems, and demands for enabling
their configurability and tailorability are strong motivations for applying new soft-
ware engineering principles, such as aspect-oriented and component-based devel-
opment. In this paper we introduce a novel concept of aspectual component-based
real-time system development. The concept is based on a design method that
assumes decomposition of real-time systems into components and aspects, and
provides a real-time component model that supports the notion of time and tem-
poral constraints, space and resource management constraints, and composability.
We anticipate that the successful applications of the proposed concept should
have a positive impact on real-time system development in enabling efficient con-
figuration of real-time systems, improved reusability and flexibility of real-time
software, and modularization of crosscutting concerns. We provide arguments for
this assumption by presenting an application of the proposed concept on the design
and development of a configurable embedded real-time database, called COMET.
Furthermore, using the COMET system as an example, we introduce a novel way
of handling concurrency in a real-time database system, where concurrency is
modeled as an aspect crosscutting the system.

1 Introduction

Real-time and embedded systems are being used widely in today’s modern society.
However, successful deployment of embedded and real-time systems depends on low
development costs, high degree of tailorability and quickness to market [1]. Thus, the
introduction of the component-based software development (CBSD) paradigm into real-
time and embedded systems development offers significant benefits, namely: (i) config-
uration of embedded and real-time software for a specific application using components
from the component library, thus reducing the system complexity as components can
be chosen to provide exactly the functionality needed by the system; (ii) rapid develop-
ment and deployment of real-time software as many software components, if properly
designed and verified, can be reused in different embedded and real-time applications;
and (iii) evolutionary design as components can be replaced or added to the system,

� This work is supported by ARTES, A network for Real-time and graduate education in Sweden,
and CENIIT, Center for Industrial Information Technology, under contract 01.07.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 558–577, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Towards Aspectual Component-Based Development of Real-Time Systems 559

which is appropriate for complex embedded real-time systems that require continuous
hardware and software upgrades.

However, there are aspects of real-time and embedded systems that cannot be en-
capsulated in a component with well-defined interfaces as they crosscut the structure
of the overall system, e.g., synchronization, memory optimization, power consumption,
and temporal attributes. Aspect-oriented software development (AOSD) has emerged as
a new principle for software development that provides an efficient way of modular-
izing crosscutting concerns in software systems. AOSD allows encapsulating system’s
crosscutting concerns in “modules”, called aspects. Applying AOSD in real-time and
embedded system development would reduce the complexity of the system design and
development, and provide means for a structured and efficient way of handling cross-
cutting concerns in a real-time software system.

Thus, the integration of the two disciplines, CBSD andAOSD, into real-time systems
development would enable: (i) efficient system configuration from the components in the
component library based on the system’s requirements, (ii) easy tailoring of components
and/or a system for a specific application by changing the behavior (code) of the com-
ponent by applying aspects, and (iii) enhanced flexibility of the real-time and embedded
software through the notion of system’s configurability and components’ tailorability.

However, to be able to successfully apply software engineering techniques such as
AOSD and CBSD in real-time systems, the following questions need to be answered.

– What is the appropriate design method that will allow integration of the two software
engineering techniques into real-time systems?

– What components and aspects are appropriate for the real-time and embedded en-
vironment?

– What component model can capture and adopt principles of the CBSD and AOSD
in a real-time and embedded environment?

In this paper we address these research questions, by proposing a novel concept of
aspectual component-based real-time system development (ACCORD). The concept is
founded on a design method that decomposes real-time systems into components and
aspects, and provides a real-time component model (RTCOM) that supports the notion
of time and temporal constraints, space and resource management constraints, and com-
posability. RTCOM is the component model addressing real-time software reusability
and composability by combining aspects and components. It is our experience so far that
applying the proposed concept has a positive impact on the real-time system develop-
ment in enabling efficient configuration of real-time systems, improved reusability and
flexibility of real-time software, and a structured way of handling crosscutting concerns.
We show that the ACCORD can be successfully applied in practice by describing the
way we have applied it in the design and development of a component-based embedded
real-time database system (COMET). In the COMET example we present a novel ap-
proach to modeling and implementing real-time policies, e.g., concurrency control and
scheduling, as aspects that crosscut the structure of a real-time system. Modularization
of real-time policies into aspects allows customization of real-time systems without
changing the code of the components.

The paper is organized as follows. In section 2 we present an outline ofACCORD and
its design method. We present RTCOM in section 3. In section 4 we show an application

560 A. Tešanović et al.

of ACCORD to the development of COMET. In the COMET example we describe a
new way of modeling real-time concurrency control policy as an aspect in a real-time
database system. Related work is discussed in section 5. The paper finishes (section 6)
with a summary containing the main conclusions and directions for our future research.

2 ACCORD Design Method

The growing need for enabling development of configurable real-time and embedded
systems that can be tailored for a specific application [1], and managing the complexity
of the requirements in the real-time system design, calls for an introduction of new
concepts and new software engineering paradigms into real-time system development.
Hence, we proposeACCORD. Through the notion of aspects and components,ACCORD
enables efficient application of the divide-and-conquer approach to complex system
development. To effectively apply ACCORD, we provide a design method with the
following constituents.

– A decomposition process with two sequential phases: (i) decomposition of the real-
time system into a set of components, and (ii) decomposition of the real-time system
into a set of aspects.

– Components, as software artifacts that implement a number of well-defined func-
tions, and where they have well-defined interfaces. Components use interfaces for
communication with the environment, i.e., other components.

– Aspects, as properties of a system affecting its performance or semantics, and cross-
cutting the system’s functionality [2].

– A real-time component model (RTCOM) that describes how a real-time component,
supporting aspects, should look like. RTCOM is specifically developed: (i) to enable
an efficient decomposition process, (ii) to support the notion of time and temporal
constraints, and (iii) to enable efficient analysis of components and the composed
system.

The design of a real-time system using ACCORD method is performed in three
phases. In the first phase, a real-time system is decomposed into a set of components.
Decomposition is guided by the need to have functionally exchangeable units that are
loosely coupled, but with strong cohesion. In the second phase, a real-time system is
decomposed into a set of aspects. Aspects crosscut components and the overall system.
This phase typically deals with non-functional requirements1 and crosscutting concerns
of a real-time system, e.g., resource management and temporal attributes. In the final
phase, components and aspects are implemented based on RTCOM. As non-functional
requirements are among the most important issues in real-time system development, we
first focus on the aspectual decomposition, and then discuss RTCOM.

2.1 Aspects in Real-Time Systems

We classify aspects in a real-time system as follows: (i) application aspects, (ii) run-time
aspects, and (iii) composition aspects.

1 Non-functional requirements are sometimes referred to as extra-functional requirements [3].

Towards Aspectual Component-Based Development of Real-Time Systems 561

Application aspects can change the internal behavior of components as they crosscut
the code of the components in the system. The application in this context refers to the
application towards which a real-time and embedded system should be configured, e.g.,
memory optimization aspect, synchronization aspect, security aspect, real-time property
aspect, and real-time policy aspect. Since optimizing memory usage is one of the key
issues in embedded systems and it crosscuts the real-time system’s structure, we view
memory optimization as an application aspect of a real-time system. Security is another
application aspect that influences system’s behavior and structure, e.g., the system must
be able to distinguish users with different security clearance. Synchronization, entangled
over the entire system, is encapsulated and represented by a synchronization aspect.
Memory optimization, synchronization, and security are commonly mentioned aspects
in AOSD [2]. Additionally, real-time properties and policies are viewed as application
aspects as they influence the overall structure of the system. Depending on the system’s
requirements, real-time properties and policies could be further refined, which we show in
the example of the COMET system (see section 4.3).Application aspects enable tailoring
of the components for a specific application, as they change code of the components.

Run-time aspects are critical as they refer to aspects of the monolithic real-time
system that need to be considered when integrating the system into the run-time envi-
ronment. Run-time aspects give information needed by the run-time system to ensure
that integrating a real-time system would not compromise timeliness, nor available mem-
ory consumption. Therefore, each component should have declared resource demands
in its resource demand aspect, and should have information of its temporal behavior,
contained in the temporal constraints aspect, e.g., worst-case execution time (WCET).
The temporal aspect enables a component to be mapped to a task (or a group of tasks)
with specific temporal requirements. Additionally, each component should contain in-
formation of the platform with which it is compatible, e.g., real-time operating system
supported, and other hardware related information. This information is contained in the
portability aspect. It is imperative that the information contained in the run-time aspect
is provided to ensure predictability of the composed system, ease the integration into
a run-time environment, and ensure portability to different hardware and/or software
platforms.

Composition aspects describe with which components a component can be combined
(compatibility aspect), the version of the component (version aspect), and possibilities
of extending the component with additional aspects (flexibility aspect).

Having separation of aspects in different categories eases reasoning about different
embedded and real-time related requirements, as well as the composition of the system
and its integration into a run-time environment. For example, the run-time system could
define what (run-time) aspects the real-time system should fulfill so that proper com-
ponents and application aspects could be chosen from the library, when composing a
monolithic system. This approach offers a significant flexibility, since additional aspect
types can be added to components, and therefore, to the monolithic real-time system,
further improving the integration with the run-time environment.

After aspects are identified, we recommend that a table is made with all the compo-
nents and all identified application aspects, in which the crosscutting effects to different
components are recorded (an example of one such table is given in section 4.3). As

562 A. Tešanović et al.

we show in the next section, this step is especially useful for the next phase of the de-
sign, where each component is modeled and designed to take into account identified
application aspects.

3 Real-Time Component Model (RTCOM)

In this section we present RTCOM, which allows easy and predictable weaving of as-
pects, i.e., integrating aspects into components, thus reflecting decomposition of the
system into components and aspects. RTCOM can be viewed as a component colored
with aspects, both inside (application aspects), and outside (run-time and composition
aspects). RTCOM is a language-independent component model, consisting of the fol-
lowing parts (see figure 1): (i) the functional part, (ii) the run-time system dependent
part, and (iii) the composition part.

Portability

Resource demand

Temporal constr.
WCET-O1

WCET-O2

Memory - O1

OS type

Memory - O2

Hardware type

Run-time
part

Compositio
n

part

Aspect/

component

fu
nctio

nal

compatib
ilit

y

Temporal

compatib
ility

Platfo
rm

compatib
ility

Resource

compatib
iltiy

Functional
part

Operation(O1)

Operation(O2)

Mechanism()

(policy)

(mechanisms)

Fig. 1. A real-time component model (RTCOM)

The functional part represents the actual code that implements the component function-
ality. RTCOM assumes the following for the functional part of the component.

– Each component provides a set of mechanisms, which are basic and fixed parts of the
component infrastructure. Mechanisms are fine granule methods or function calls.

– Each component provides a set of operations to other components and/or to the
system. Implementation of the operations determines the behavior of the component,
i.e., component policy. Operations are represented by coarse granule methods or
function calls. Operations are flexible parts of the component as their implementation
can change by applying different application aspects. Operations are implemented
using the underlying mechanisms, which are fixed parts of the component.

Towards Aspectual Component-Based Development of Real-Time Systems 563

In order to enable easy implementation of application aspects into a component, the
design of the functional part of the component is performed in the following manner.
First, the mechanisms, as basic blocks of the component, are implemented. Here, par-
ticular attention is given to identified application aspects, and the table reflecting the
crosscutting effects of application aspects to different components is used to determine
which application aspects are likely to use which component mechanisms. Next, the
operations of the component are implemented using component mechanisms. Note, the
implemented operations provide an initial component policy, i.e., basic and somewhat
generic component functionality. This initial policy we call a policy framework of the
component. The policy framework could be modified by applying different applica-
tion aspects, and as such it provides a way of tailoring a component by changing its
behavior, i.e., application aspects change the component policy. If all crosscutting ap-
plication aspects are considered when implementing operations and mechanisms, then
the framework is generic and highly flexible. However, if the system evolves such that
new application aspects (not considered when developing the policy framework) need
to be implemented into component code, then new mechanisms can be defined within
the application aspect.

The development process of the functional part of a component results in the compo-
nent that is colored with application aspects. Therefore, in the graphical view of RTCOM
in figure 1, application aspects are represented as vertical layers in the functional part of
the component, as they influence component behavior, i.e., change component policy.

The run-time system dependent part of RTCOM accounts for temporal behavior of the
functional part of the component code, not only without aspects but also when aspects are
weaved into the component. Hence, run-time aspects are part of the run-time dependent
part of RTCOM, and are represented as horizontal parallel layers to the functional part of
the component as they describe component behavior (see figure 1). In the run-time part of
the component, run-time aspects are expressed as attributes of operations, mechanisms,
and application aspects, as those are the elements of the component functional part, and
thereby influence the temporal behavior of the component.

The composition part refers both to the functional part and the run-time part of a com-
ponent, and is represented as the third dimension of the component model (see figure 1).
Given that there are different application aspects that can be weaved into the component,
composition aspects represented in the composition part of RTCOM should contain in-
formation about component compatibility with respect to different application aspects,
as well as with respect to different components.

For each component implemented based on RTCOM, the functional part of the
component is first implemented together with the application aspects, then the run-
time system dependent part and run-time aspects are implemented, followed by the
composition part and rules for composing different components and application aspects.

In the following sections we give a close-up of the application aspects and the run-
time aspects within the RTCOM, followed by interfaces supported by RTCOM.

564 A. Tešanović et al.

3.1 Application Aspects in RTCOM

Existing aspect languages can be used for implementation of application aspects, and
their integration into components. The weaving is done by the aspect weaver correspond-
ing to the aspect language [2]. All existing aspect languages, e.g., AspectJ [4], AspectC
[5], AspectC++ [6], are conceptually very similar to AspectJ, developed for Java.

Each application aspect declaration consists of advices and pointcuts. A pointcut
consists of one or more join points, and is described by a pointcut expression. A join
point in an aspect language refers to a method, a type (struct or union), or any other
point from which component code can be accessed. In RTCOM, the pointcut model is
restricted to the mechanisms and the operations in the component, and a type (struct).
This restriction is necessary for obtaining predictable aspect weaving, i.e., enabling the
temporal analysis2 of the resulting code. An advice is a declaration used to specify
the code that should run when the join points, specified by a pointcut expression, are
reached. Different kinds of advices can be declared, such as: (i) before advice, executed
before the join point, (ii) after advice, executed immediately after the join point, and (iii)
around advice, executed in place of the join point. In RTCOM, the advice model is also
restricted for the reasons of enabling temporal analysis of the code. Hence, the advices
are implemented using only the mechanisms of the components, and each advice can
change the behavior of the component (policy framework) by changing one or more
operations in the component.

3.2 Run-Time Aspects in RTCOM

We now illustrate how run-time aspects are represented and handled in RTCOM using
one of the most important run-time aspects as an example, i.e., WCET. One way of
enabling predictable aspect weaving is to ensure an efficient way of determining the
WCET of the operations and/or real-time system that have been modified by weaving of
aspects. WCET analysis of aspects, components, and the resulting aspect-oriented soft-
ware (when aspects are weaved into components) is based on symbolic WCET analysis
[7]. Applying symbolic WCET analysis to ACCORD implies the following: (i) WCETs
of the mechanisms are obtained by symbolic WCET analysis, (ii) the WCET of every
operation is determined based the WCETs of the mechanisms used for implementing
the operation, and the internal WCET of the function or the method that implements the
operation, i.e., manages the mechanisms, (iii) the WCET of every advice that changes
the implementation of the operation is based on the WCETs of the mechanisms used for
implementing the advice, and the internal WCET of the advice, i.e., code that manages
the mechanisms. Figure 2 shows the WCET specification for mechanisms in the com-
ponent, where for each mechanism the WCET is declared and assumed to be known.
Similarly, figure 3 shows the WCET specification of the component policy framework.
Each operation defining the policy of the component declares what mechanisms it uses,
and how many times it uses a specific mechanism. This declaration is used for computing
WCETs of the operations or the component (without aspects). Figure 4 shows the WCET

2 Temporal analysis refers both to static WCET analysis of the code and dynamic schedulability
analysis of the tasks.

Towards Aspectual Component-Based Development of Real-Time Systems 565

mechanisms{
mechanism{

name [nameOfMechanism];
wcet [value of wcet];
}

.........
}

Fig. 2. Specification of the WCET aspect of component mechanisms

operations{
operation{

name [nameOfOperation];
uses{

[Name of mechanism] [Number of times used];
}
intWcet [Value of internal operation wcet

(called mechanisms excluded)]
}
......

}

Fig. 3. Specification of the WCET aspect of a component policy framework

aspect{
advice{

name [nameOfAdvice];
type [typeOfAdvice:before, after, around];
changes{

name [nameOfOperation];
uses{

[NameOfMechanism] [Number of times used];
}

intWcet[Value of internal advice wcet
(called mechanisms excluded)]

}
}

......
}

Fig. 4. Specification of the WCET aspect of an application aspect

specification of an application aspect. For each advice type (before, around, after) that
modifies an operation, the operation it modifies is declared together with the mechanisms
used for the implementation of the advice, and the number of times the advice uses these
mechanisms. The resulting WCET of the component (or one operation within the com-
ponent), colored with application aspects, is computed using the algorithm presented in
[8]. The algorithm utilizes the knowledge of WCETs of all mechanisms involved, and

566 A. Tešanović et al.

WCETs of all aspects that change a specific operation. The detailed explanation of the
algorithm and the discussion on computing WCETs of components modified by aspects
can be found in [8].

3.3 RTCOM Example

We now give a brief and simple example of one component and one application as-
pect. The purpose of this simple example is to provide guidance through the process
of RTCOM implementation, and provide a clear understanding of RTCOM internals,
introduced so far (a more complex and detailed example of RTCOM using COMET is
discussed in section 4.4).

policy

listInsert()
listRemove()
listFindFirst()

createNode()
deleteNode()
getNextNode()
linkNode()
unlinkNode()

mechanisms

Fig. 5. The functional part of the linked list component

In this example, we consider a component implementing an ordinary linked list.
The mechanisms needed are the ones for the manipulation of nodes in the list, i.e.,
createNode, deleteNode, getNextNode, linkNode, unlinkNode (see figure 5). Op-
erations implementing the policy framework, e.g., listInsert, listR-
emove, listFindFirst, define the behavior of the component, and are implemented
using the underlying mechanisms. In this example, listInsert uses the mechanisms
createNode and linkNode to create and link a new node into the list in first-in-first-out
(FIFO) order. Hence, the policy framework is FIFO.

Assume that we want to change the policy of the component from FIFO to priority-
based ordering of the nodes. Then, this can be achieved by weaving an appropriate
application aspect. Figure 6 shows the listPriority application aspect, which con-
sists of one pointcut listInsertCall, identifying listInsert as a join point in
the component code (lines 2-3). When this join point is reached, the before advice
listInsertCall is executed. Hence, the application aspect listPriority intercepts
the operation (a method or a function call to) listInsert, and before the code in
listInsert is executed, the advice, using the component mechanisms (getNextNode),
determines the position of the node based on its priority (lines 5-14). As a consequence
of weaving an application aspect into the code of the component, the temporal behavior
of the resulting component, colored with aspects, changes. Hence, run-time aspects need

Towards Aspectual Component-Based Development of Real-Time Systems 567

aspect listPriority{
1:
2: pointcut listInsertCall(List_Operands * op)=
3: call("void listInsert(List_Operands*)")&&args(op);
4:
5: advice listInsertCall(op):
6: void before(List_Operands * op){
7: while
8: the node position is not determined
9: do
10: node = getNextNode(node);
11: /* determine position of op->node based
12: on its priority and the priority of the
13: node in the list*/
14: }
15: }

Fig. 6. The listPriority application aspect

operations(noOfElements){
operation{
name listInsert;
uses{
createNode 1;
linkNode 1;

}
intWcet 1ms;

}
operation{
name listRemove;
uses{
getNextNode noOfElements;
unlinkNode 1;
deleteNode 1;

}
intWcet 4ms;

}
....
}

mechanisms{
mechanism{
name createNode;
wcet 5ms;

}
mechanism{
name deleteNode;
wcet 4ms;

}
mechanism{
name getNextNode;
wcet 2ms;

}

....
}

Fig. 7. The WCET specification of the policy framework

to be defined for the policy framework (the component without application aspects) and
for the application aspects, so we can determine the run-time aspects of the component
colored with different application aspects.

Figure 7 presents the specification of the WCET aspect for the policy framework
of the liked list component. Each operation in the framework is named and its internal
WCET (intWcet), and the number of times it uses a particular mechanism, are declared
(see figure 7). The WCET specification for the application aspect listPriori-
ty that changes the policy framework is shown in figure 8. Temporal information of the
application aspect includes the internal WCET of an advice that modified the operation,
and the information of the mechanisms used by the advice, as well as the number of
times (upper bound) the advice has used a particular mechanism. Hence, the informa-

568 A. Tešanović et al.

aspect listPriority(noOfElements){
advice{
name listInsertCall;
type before;
changes{
name listInsert;

uses{
getNextNode noOfElements;

}
}
intWcet 4ms+0.4*noOfElements;

}
....
}

Fig. 8. The WCET specification of the listPriority application aspect

tion provided in the run-time part of the component enables temporal analysis of any
combinations of the component policy frameworks and application aspects.

3.4 RTCOM Interfaces

RTCOM supports three different types of interfaces (see figure 9): (i) functional interface,
(ii) configuration interface, and (iii) composition interface.

Functional interfaces of components are classified in two categories, namely pro-
vided functional interfaces, and required functional interfaces. Provided interfaces re-
flect a set of operations that a component provides to other components or to the system.
Required interfaces reflect a set of operations that a component requires from other
components. Having separation to provided and required interfaces eases component
exchange and addition of new components into the system.

The configuration interface is intended for the integration of a real-time system with
the run-time environment. This interface provides information of temporal behavior of
each component, and reflects the run-time aspect of the component. Combining multiple
components results in a system that also has the configuration interface, and enables the

RTCOM

Composition
interface

Provided
functional
interface

Configuration
interface

Required
functional
interface

Fig. 9. Interfaces supported by the RTCOM

Towards Aspectual Component-Based Development of Real-Time Systems 569

RTCOM

Real-Time System

System's configuration
interface

Composition
interface

Aspects
weaved into
component

System's
functional interface

System's
functional interface

Provided
functional
interface

Required
functional
interface

Configuration
interface

Fig. 10. Interfaces and their role in the composition process

designer to inspect the behavior of the system towards the run-time environment (see
figure 10).

Composition interfaces, which correspond to join points, are embedded into the
functional component part. The weaver identifies composition interfaces and uses them
for aspect weaving. Composition interfaces are ignored at component/system compile-
time if they are not needed, and are “activated” only when certain application aspects
are weaved into the system. Thus, the composition interface allows integration of the
component and aspectual part of the system. Aspect weaving can be performed either
on the component level, weaving application aspects into component functionality, or
on the system level, weaving application aspects into the monolithic system.

Explicit separation of software component interfaces into composition interfaces and
functional interfaces is introduced in [9].

4 COMET: A COMponent-Based Embedded Real-Time Database

This section shows how to apply the introduced concept of aspectual component-based
development on a design and development of a concrete real-time system by present-
ing the application of the design method to development of a configurable real-time
embedded database system, called COMET.

4.1 Background

The goal of the COMET project is to enable development of a configurable real-time
database for embedded systems, i.e., enable development of different database config-
urations for different embedded and real-time applications. The types of requirements
we are dealing with can best be illustrated on the example of one of the COMET tar-
geting application areas: control systems in the automotive industry. These systems are
typically hard real-time safety-critical systems consisting of several distributed nodes
implementing specific functionality. Although nodes depend on each other and collab-
orate to provide required behavior for the overall vehicle control system, each node can

570 A. Tešanović et al.

be viewed as a stand-alone real-time system, e.g., nodes can implement transmission,
engine, or instrumental functions. The size of the nodes can vary significantly, from
very small nodes to large nodes. Depending on the functionality of a node and the avail-
able memory, different database configurations are preferred. In safety-critical nodes
tasks are often non-preemptive and scheduled off-line, avoiding concurrency by allow-
ing only one task to be active at any given time. This, in turn, influences functionality of a
database in a given node with respect to concurrency control. Less critical nodes, having
preemptable tasks, would require concurrency control mechanisms. Furthermore, some
nodes require critical data to be logged, e.g., warning and errors, and require backups on
startup and shutdown, while other nodes only have RAM (main-memory), and do not
require non-volatile backup facilities from the database. Hence, in the narrow sense of
this application area, the goal was to enable development of different COMET configu-
rations to suit the needs of each node with respect to memory consumption, concurrency
control, recovery, different scheduling techniques, transaction and storage models.

In the following sections we show how we have reached our goal by applying AC-
CORD to the design and development of the COMET system.

4.2 COMET Components

Following the ACCORD design method presented in section 2 we have first performed
the decomposition of COMET into a set of components with well-defined functions and
interfaces. COMET has seven basic components (see figure 11): user interface com-
ponent, transaction scheduler component, locking component, indexing component, re-
covery and logging component, memory handling component, and transaction manager
component.

The user interface component (UIC) enables users to access data in the database,
and different applications often require different ways of accessing data in the system.

The transaction scheduler component (TSC) provides mechanisms for performing
scheduling of transactions coming into the system, based on the scheduling policy cho-
sen. COMET supports a variety of scheduling policies, e.g., EDF and RM [10]. Hard

USER INTERFACE

RECOVERY
& LOGGING

MEMORY HANDLING

DBMS

INDEXING

LOCKING

TRANSACTION
MANAGER

TRANSACTION
SCHEDULER

Fig. 11. COMET decomposition into a set of components

Towards Aspectual Component-Based Development of Real-Time Systems 571

COMET Aspects

Run-Time Composition Application

Security

Transaction
Compatibility

VersioningTemporal
Constraints

Resource demand

Memory
Optimization

Real-Time Scheduling

Flexibility
Portability

Concurrency Control

Synchronization

Fig. 12. Classification of aspects in an embedded real-time database system

real-time applications, such as real-time embedded systems controlling a vehicle, typi-
cally do not require sophisticated transaction scheduling and concurrency control, i.e.,
the system allows only one transaction to access the database at a time [11]. Therefore,
the TSC should be a flexible and exchangeable part of the database architecture.

The locking component (LC) deals with locking of data, and it provides mechanisms
for lock manipulation and maintains lock records in the database.

The indexing component (IC) deals with indexing of data. Indexing strategies could
vary depending on the real-time application with which the database should be integrated,
e.g., t-trees [12] and multi-versioning suitable for applications with a large number of
read-only transactions [13]. Additionally, it is possible to customize indexing strategy
depending on the number of transactions active in the system. For example, in vehicle
control applications, where only one transaction is active at a time, non-thread safe index-
ing is used, while in more complex applications appropriate aspects could be weaved
into the component to allow thread-safe processing of indexing strategy (this can be
achieved by weaving the synchronization aspect).

The recovery and logging component (RLC) is in charge of recovery and logging
of data in the database. As COMET stores data in main-memory, there is a need for
different recovery and logging techniques, depending on the type of the storage, e.g.,
non-volatile EEPROM or Flash.

The memory handling component (MHC) manages access to data in the physical
storage.

The transaction manager component (TMC) coordinates the activities of all compo-
nents in the system with respect to transaction execution. For example, the TMC manages
the execution of a transaction by requesting lock and unlock operations provided by the
LC, followed by requests to the operations, which are provided by the IC, for inserting
or updating data items.

4.3 COMET Aspects

Following ACCORD, after decomposing the system into a set of components with well-
defined interfaces, we decompose the system into a set of aspects. The decomposition of

572 A. Tešanović et al.

COMET into aspects is presented in figure 12, and it fully corresponds to the ACCORD
decomposition (given in section 2.1) in three types of aspects: run-time, composition, and
application aspects. However, as COMET is the real-time database system, refinement to
the application aspects is made to reflect both real-time and database issues. Hence, in the
COMET decomposition of application aspects, the real-time policy aspect is refined to
include real-time scheduling and concurrency control policy aspects, while the real-time
property aspect is replaced with the transaction model aspect, which is database-specific.
The crosscutting effects of the application aspects to COMET components are shown
in the table 1. As can be seen from the table, all identified application aspects crosscut
more than one component.

The application aspects could vary depending on the particular application of the
real-time system, thus particular attention should be made to identify the application
aspects for each real-time system.

4.4 COMET RTCOM

Components and aspects in COMET are implemented based on RTCOM (discussed
in section 3). Hence, the functional part of components is implemented first, together
with application aspects. We illustrate this process, its benefits and drawbacks, by the
example of one component (namely LC) and one application aspect (namely concurrency
control).

The LC performs the following functionality: assigns locks to requesting transac-
tions, and maintains a lock table, thus it records all locks obtained by transactions in the
system. As can be seen from the table 1, the LC is crosscut with several application as-
pects. The application aspect that influences the policy, i.e., changes the behavior of the
LC, is a concurrency control (CC) aspect, which defines the way lock conflicts should
be handled in the system. To enable tailorability of the LC, and reuse of code in the
largest possible extent, the LC is implemented with the policy framework in which lock
conflicts are ignored and locks are granted to all transactions. The policy framework can

Table 1. Crosscutting effects of different application aspects on the COMET components

Components

Application
aspects

Transaction

Real-time
scheduling

Concurrency
control
Memory

optimization

Synchronization

Security

U
IC

T
M

C

T
S

C

LC IC M
H

C

R
LC

X X X X X X

X X

X X X

X

X

X X

X X X X

X X

X

X

X

X

X

X

X

X

Towards Aspectual Component-Based Development of Real-Time Systems 573

be modified by weaving CC aspects that define other ways of handling lock conflicts.
As different CC policies in real-time database systems exist, the mechanisms in the LC
should be compatible with most of the existing CC algorithms.

The LC contains mechanisms such as (see left part of the figure 13): insertLock-
Record(), removeLockRecord(), etc., for maintaining the table of all locks held by
transactions in the system. The policy part consists of the operations performed on
lock records and transactions holding and/or requesting locks, e.g., getReadLock(),
getWriteLock(), releaseLock(). The operations in the LC are implemented using
underlying LC mechanisms. The mechanisms provided by the LC are used by the CC
aspects implementing the class of pessimistic (locking) protocols, e.g., HP-2PL [14] and
RWPCP [15]. However, as a large class of optimistic protocols is implemented using
locking mechanisms, the mechanisms provided by the LC can also be used by CC aspects
implementing optimistic protocols, e.g., OCC-TI [16] and OCC-APR [17].

The right part of the figure 13 represents the specification for the real-time CC aspect
(lines 1-30) that can be applied to a class of pessimistic locking CC protocols. We chose
to give more specific details for the HP-2PL protocol, as it is both commonly used in
main-memory database systems and a well-known pessimistic CC protocol.

The CC aspect has several pointcuts and advices that execute when the pointcut is
reached. As defined by the RTCOM pointcut model, the pointcuts refer to the operations:
getReadLockCall() and getWriteLockCall() (lines 10 and 12). The first pointcut
intercepts the call to the function getReadLock(), which grants a read lock to the
transaction and records it in the lock table. Similarly, the second pointcut intercepts

policy

mechanisms

aspect CCpolicy{
1: resolveConflict(LC_Operands * op){
2: /*apply specific CC policy to resolve
3: lock conflict*/
4: /* for HP-2PL */
5: for all lockHolders on op.dataItem
6: if lockRequester.priority>lockHolder.priority
7: then abort each lockHolder
8: else block locRequester
9: }
10: pointcut getReadLockCall(LC_Operands * op)=
11: call("void getReadLock(LC_Operands*)")&&args(op);
12: pointcut getReadWriteCall(LC_Operands * op)=
13: call("void getWriteLock(LC_Operands)")&&args(op);
14: advice getReadLockCall(op):
15: void before(LC_Operands * op){
16: if the write-lock is already held
17: then
18: /*there is a conflict which needs
19: to be resolved by applying CC policy */
20: resolveConflict(op);
21: }
22: advice getWriteLockCall(op):
23: void before(LC_Operands * op){
24: if write- or read-lock is already held
25: then
26: /*there is a conflict which needs
27: to be resolved by applying CC policy */
28: resolveConflict(op);
29: }
30: }

Locking Component (LC) Concurrency control aspect

operations{
operation{
name getRealLock;
uses{
insertLockRecord 1;
findLockRecord 1;

}
intWcet 1ms;

....
}
mechanisms{
mechanism{
name insertLockRecord;
wcet 5ms;

}
....
}

getReadLock()
getWriteLock()
releaseLock()
......

insertLockRecord()
removeLockRecord()
findLockRecord()
deallocLock()
insertLockHolder()
removeLockHolder()
....

changes

uses

Run-time part,
WCET aspect

Functional
part

Fig. 13. The locking component and the concurrency control aspect

574 A. Tešanović et al.

the call to the function that gives a write lock to the transaction and records it in the
lock table. Before granting a read or write lock, the advices in lines 14-21 and 22-29
check if there is a lock conflict. If conflict exists, the advices deal with it by calling
the local aspect function resolveConflict() (lines 1-9), where the resolution of the
conflict should be done by implementing a specific CC policy. The advices that check
for conflicts are implemented using the LC mechanisms to traverse the lock table and
the list of transactions holding locks.

So far we have shown that the CC aspect affects the policy of the LC, but the
CC aspect also crosscuts other components (see table 1). In the example of the CC
aspect implementing pessimistic HP-2PL protocol (see figure 13), the aspect uses the
information about transaction priority (lines 5-8), which is maintained by the TSC,
thus crosscutting the TSC. Optimistic protocols, e.g., OCC-TI, would require additional
pointcuts to be defined in the TMC, as the protocol (as compared to pessimistic protocols)
assumes execution of transactions in three phases: read, validate and write.

Additionally, depending on the CC policy implemented, the number of pointcuts
and advices varies. For example, some CC policies (like RWPCP, or optimistic policies)
require additional data structures to be initialized. In such cases, an additional pointcut
named initPolicy() could be added to the aspect that would intercept the call to
initialize the LC. A before advice initPolicy would then initialize all necessary data
structures in the CC aspect after data structures in the LC have been initialized.

The benefits of applying ACCORD to the development of COMET platform are the
following (in the context of the given example).

– Enabling clean separation of concurrency control as an aspect that crosscuts the LC,
which allows high code reusability as the same component mechanisms are used in
almost all CC aspects.

– Weaving of a CC aspect into the LC changes the policy of the component by changing
the component code, and provides an efficient way of tailoring the component and
the system to fit a specific requirement (in this case specific CC policy), leaving the
configuration of COMET unchanged.

– Having the LC functionality encapsulated into the component, and the CC encap-
sulated into an application aspect enables reconfiguring COMET to support non-
locking transaction execution (excluding the LC), if other completely non-locking
CC protocol is needed.

– Having a run-time part of the components and aspects enables analysis of the tem-
poral behavior of the resulting code (see the run-time part of the LC in the left of
the figure 13).

The drawback of applying ACCORD to real-time system development is an explosion in
possible combinations of components and aspects. This is common for all software sys-
tems using aspect and components, and extensive research has being done in identifying
and defining good composition rules for the components and aspects [18,19,9].

Towards Aspectual Component-Based Development of Real-Time Systems 575

5 Related Work

In this section we address the research in the area of component-based real-time and
database systems, and the real-time and database research projects that are using aspects
to separate concerns.

The focus in existing component-based real-time systems is enforcement of real-time
behavior. In these systems a component is usually mapped to a task, e.g., passive com-
ponent [1], binary component [20], and port-based object component [21]. Therefore,
analysis of real-time components in these solutions addresses the problem of temporal
scopes at a component level as task attributes [20,1,21]: WCET, release time, deadline.
ACCORD with its RTCOM model supports mapping of a component to a task, and takes
a broader view of the composition process by allowing real-time systems to be com-
posed out of tasks and components that are not necessarily mapped to a task. ACCORD,
in contrast to other approaches building real-time component-based systems [20,1,21],
enables support for multidimensional separation of concerns and allows integration of
aspects into the component code. VEST [1] also uses aspect-oriented paradigm, but
does not provide a component model that enables weaving of application aspects into
the component code, rather it focuses on composition aspects.

In area of database systems, the Aspect-Oriented Databases (AOD) initiative aims
at bringing the notion of separation of concerns to databases. The focus of this initia-
tive is on providing a non-real-time database with limited configurability using only
aspects (i.e., no components) [22]. To the best of our knowledge, KIDS [23] is the only
research project focusing on construction of a configurable database composed out of
components (database subsystems), e.g., object management and transaction manage-
ment. Commercial component-based databases introduce limited customization of the
database servers [24,25], by allowing components for managing non-standard data types,
data cartridges and DataBlade modules, to be plugged into a fully functional database
system. A somewhat different approach to componentization is Microsoft’s Universal
Data Access Architecture [26], where the components are data providers and they wrap
data sources enabling the translation of all local data formats from different data stores to
a common format. However, from a real-time point of view none of the component-based
database approaches discussed enforce real-time behavior and use aspects to separate
concerns in the system.

In contrast to traditional methods for design of real-time systems [27,28], which
focus primarily on the ways of decomposing the system into tasks and handling temporal
requirements, ACCORD design method focuses on the ways of decomposing a real-time
system into components and aspects to achieve better reusability and flexibility of real-
time software.

6 Summary

In recent years, one of the key research challenges in software engineering research com-
munity has been enabling configuration of systems and reuse of software by composing
systems using components from a component library. Our research focuses on applying
aspect-oriented and component-based software development to real-time system devel-
opment by introducing a novel concept of aspectual component-based real-time system

576 A. Tešanović et al.

development (ACCORD). In this paper we presented ACCORD and its elements, which
we have applied in the development of a real-time database system, called COMET. AC-
CORD introduces the following into real-time system development: (i) a design method,
which enables improved reuse and configurability of real-time and database systems by
combining basic ideas from component-based and aspect-oriented communities with
real-time concerns, thus bridging the gap between real-time systems, embedded sys-
tems, database systems, and software engineering, (ii) a real-time component model,
called RTCOM, which enables efficient development of configurable real-time systems,
and (iii) a new approach to modeling of real-time policies as aspects improving the
flexibility of real-time systems. In the COMET example we have shown that applying
ACCORD could have an impact on the real-time system development in providing effi-
cient configuration of real-time systems, improved reusability and flexibility of real-time
software, and modularization of crosscutting concerns.

Several research questions remain to be resolved, including:

– developing rules for checking compatibility of aspects and components,
– analyzing component and aspect behavior on different hardware and software plat-

forms in real-time environments to identify trade-offs in applying aspects and com-
ponents in a real-time setting,

– studying performance of the real-time system with different configurations of com-
ponents and aspects, and

– providing automated tool support for the proposed development process.

Currently we are focusing on enabling predictable aspect weaving and component com-
position, and providing tools for automatized temporal analysis of aspects, components,
and the resulting system.

References

1. Stankovic, J.: VEST: A toolset for constructing and analyzing component based operating
systems for embedded and real-time systems. Technical Report CS-2000-19, Department of
Computer Science, University of Virginia (2000)

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: Proceedings of the ECOOP. Volume 1241 of Lecture Notes
in Computer Science., Springer-Verlag (1997) 220–242

3. Crnkovic, I., Larsson, M., eds.: Building Reliable Component-Based Real-Time Systems.
Artech House Publishers (2002) ISBN 1-58053-327-2.

4. Xerox: The AspectJ programming guide (2002)
5. Coady,Y., Kiczales, G., Feeley, M., Smolyn, G.: Using AspectC to improve the modularity of

path-specific customization in operating system code. In: Proceedings of the Joint European
Software Engineering Conference (ESEC) and 9th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE-9). (2002)

6. Spinczyk, O., Gal, A., Schröder-Preikschat, W.: AspectC++: An aspect-oriented extension to
C++. In: Proceedings of the TOOLS Pacific 2002, Australian Computer Society (2002)

7. Bernat, G., Burns, A.: An approach to symbolic worst-case execution time analysis. In:
Proceedings of the 25th IFAC Workshop on Real-Time Programming, Palma, Spain (2000)

Towards Aspectual Component-Based Development of Real-Time Systems 577

8. Tešanović, A., Nyström, D., Hansson, J., Norström, C.: Integrating symbolic worst-case
execution time analysis into aspect-oriented system development. OOPSLA 2002 Workshop
on Tools for Aspect-Oriented Software Development (2002)

9. Aßmann, U.: Invasive Software Composition. Springer-Verlag, Universit t Karlsruhe (2002)
10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multipprogramming in hard real-time

traffic environment. Journal of the Association for Computing Machinery 20 (1973) 46–61
11. Nyström, D., Tešanović, A., Norström, C., Hansson, J.: Data management issues in vehi-

cle control systems: a case study. In: Proceedings of the 14th EUROMICRO International
Conference on Real-Time Systems, Vienna, Austria (2002) 249–256

12. Lu, H., Ng, Y., Tian, Z.: T-tree or b-tree: Main memory database index structure revisited.
11th Australasian Database Conference (2000)

13. Rastogi, R., Seshadri, S., Bohannon, P., Leinbaugh, D.W., Silberschatz, A., Sudarshan, S.:
Improving predictability of transaction execution times in real-time databases. Real-time
Systems 19 (2000) 283–302 Kluwer Academic Publishers.

14. Abbott, R.K., Garcia-Molina, H.: Scheduling real-time transactions: A performance evalua-
tion. ACM Transactions on Database Systems 17 (1992) 513–560

15. Sha, L., Rajkumar, R., Son, S.H., Chang, C.H.: A real-time locking protocol. IEEE Transac-
tions on Computers 40 (1991) 793–800

16. Lee, J., Son, S.H.: Using dynamic adjustment of serialization order for real-time database
systems. In: Proceedings of the 14th IEEE Real-Time Systems Symposium. (1993)

17. Datta, A., Son, S.H.: Is a bird in the hand worth more than two birds in the bush? Limita-
tions of priority cognizance in conflict resolution for firm real-time database systems. IEEE
Transactions on Computers 49 (2000) 482–502

18. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley (2000)
19. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,

Wallnau, K.: Technical concepts of component-based software engineering. Technical Report
CMU/SEI-2000-TR-008, Carnegie Mellon University (2000)

20. Isovic, D., Lindgren, M., Crnkovic, I.: System development with real-time components. In:
Proceedings of ECOOP Workshop - Pervasive Component-Based Systems, France (2000)

21. Stewart, D.S.: Designing software components for real-time applications. In: Proceedings of
Embedded System Conference, San Jose, CA (2000) Class 408, 428.

22. Rashid,A., Pulvermueller, E.: From object-oriented to aspect-oriented databases. In: Proceed-
ings of the DEXA 2000.Volume 1873 of Lecture Notes in Computer Science., Springer-Verlag
(2000) 125–134

23. Geppert,A., Scherrer, S., Dittrich, K.R.: KIDS: Construction of database management systems
based on reuse. Technical Report ifi-97.01, Department of Computer Science, University of
Zurich (1997)

24. Oracle: All your data: The Oracle extensibility architecture. Oracle Technical White Paper
(1999)

25. Informix: Developing DataBlade modules for Informix-Universal Server. Informix DataBlade
Technology (2001) Available at http://www.informix.com/datablades/.

26. (Papers, O.D.W.)
27. Gomaa, H.: Software development of real-time systems. Communications of the ACM 29

(1986) 657–668
28. Kopetz, H., Zainlinger, R., Fohler, G., Kantz, H., Puschner, P., Schütz, W.: The design of real-

time systems: from specification to implementation and verification. Software Engineering
Journal 6 (1991) 72–82

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 578–594, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Testing of Multi-tasking Real-Time Systems with
Critical Sections*

Anders Pettersson1 and Henrik Thane1

1 Mälardalen University, Mälardalen Real-Time Research Centre,
P.O. Box 883 SE-721 23 Västerås, Sweden

{anders.pettersson,henrik.thane}@mdh.se

Abstract. In this paper we address the problem of testing real-time software in
the functional domain. In order to achieve reproducible and deterministic test
results of an entire multitasking real-time system it is essential not to only con-
sider inputs and outputs, but also the order in which tasks communicate and
synchronize with each other. We present a deterministic white-box system-level
control-flow testing method for deterministic integration testing of real-time
system software. We specifically address fixed priority scheduled real-time
systems where synchronization is resolved using the Priority Ceiling Emulation
Protocol or offsets in time. The method includes a testing strategy where the
coverage criterion is defined by the number of paths in the system control flow.
The method also includes a reachability algorithm for deriving all possible
paths in terms of orderings of task starts, preemptions and completions of tasks
executing in a real-time system. The deterministic testing strategy allows test
methods for sequential programs to be applied, since each identified ordering
can be regarded as a sequential program.

1 Introduction

Testing software is challenging. A typical solitary program has a large state space and
a discontinuous behavior. The latter due to containers with limited resolution, e.g., 32
bit integers, quantization errors, and program flow selections. The implication is that
it is highly unreliable to make use of interpolation when testing programs. Conse-
quently, a large part of the state space must be explored in order to verify that inputs
produce correct outputs according to the specification. It is not surprising that a large
part of software development budgets is spent on maintenance. Elevating to the level
of real-time software testing, the challenge is even greater. Real-time software is
usually built on an aggregate of multiple concurrently executing programs, i.e., it is
multi-tasking. To begin with, this entails testing of multiple programs. What is worse
however, is the state space explosion that occurs due to the interactions between the

* This work is funded by the national Swedish Real-Time Systems research initiative ARTES

(www.artes.uu.se), supported by the Swedish Foundation for Strategic Research.

Testing of Multi-tasking Real-Time Systems with Critical Sections 579

tasks when they execute concurrently. These interactions are not limited to the func-
tional domain but are also a function of the timing and the ordering of the tasks’
execution in the system. The majority of current testing and debugging techniques
have been developed for solitary (non real-time) programs. These techniques are
not directly applicable to real-time systems, since they disregard issues of timing
and concurrency. This means that existing techniques for reproducible testing can-
not be used. Reproducibility is essential for regression testing and cyclic debug-
ging, where the same test cases are run repeatedly with the intention of verifying
modified program code or to track down errors. It is common that real-time soft-
ware has a non-reproducible behavior. This is due to the fact that giving the same
input and same internal state to a program is not sufficient. There are hidden vari-
ables that are ignored: Race conditions and ordering. An aspect of this is intrusive
observations caused e.g., by temporary additions of program code, which incur a
temporal probe-effect [6] by changing the race conditions in the system.

In theory it is possible to reproduce the behavior of a real-time system if we can
reproduce the exact trajectories of the inputs to the system with an exact timing.
For guaranteed determinism we would in addition need to control the frequency of
the temperature dependent real-time clock that generates the periodic timer tick,
which is the basis for all time driven scheduling decisions. The inputs, and state, of
the tasks dictates their individual control flow paths taken, which in turn dictates
the execution time of the tasks, which in the end dictates the preemption pattern for
strictly periodic systems. Trying to perform exhaustive black-box testing of indi-
vidual programs is in the general case infeasible, due to the large number of possi-
ble inputs. For example, two 32 bit inputs yields 264 possible input combinations,
not considering state, which for a test case every 10-12 seconds would take about
half a year to execute. For a typical multitasking real-time system the number of
possible input combinations is similarly bordering on the incomprehensible due to
all possible temporal and functional interactions between the tasks. However, just
as individual program’s control flow structure can be derived and used for white-
box testing (where the number of paths is usually significantly lower than the num-
ber of inputs), we can make use of the system level control flow for deterministic
white-box testing of the multitasking real-time system software. We will elaborate
on this issue in this paper.

Testing real-time systems controlling only the inputs have been attempted previ-
ously – mostly in the formal methods community were formal specifications mod-
els have been used for generating inputs to the system to test either the temporal
[4][11][16] or the functional [10] behavior. In comparison to other sub-fields
within the real-time systems research community the list of references dealing with
testing of real-time software is quite meager, rather famished in fact. One reference
that has inspired us is the work by Yang and Chung [23]. They define a system
level control-flow testing method for testing of concurrent Ada programs (not real-
time but concurrent). The system control flow is defined by all synchronization
sequences (rendezvous) in the system. When testing a concurrent Ada program the
executed synchronization sequence is defined as being part of the output. If a test
case is applied twice, and the same synchronization sequence is observed, then the

580 A. Pettersson and H. Thane

same behavior has been exercised – thus deterministic testing is achieved. How-
ever, it is not certain that the tests are reproducible, since there exist no explicit
control over the synchronization sequences. The number of paths executed divided
by the number of paths derived is used to define coverage. Similar work can be
found in Hwang et al. [8] where they also attempt deterministic replay [21] in order
to achieve reproducibility. Since Yang et al. and Hwang et al. only concentrate on
the rendezvous sequences they do not handle more intricate real-time operating
system issues like preemptions, interrupts or critical sections.

In this paper we extend the method for achieving deterministic testing of distrib-
uted real-time systems by Thane and Hansson [19][20]. They addressed task sets
with recurring release patterns, executing in a distributed system, where the sched-
uling on each node was handled by a fixed priority driven preemptive scheduler
supporting offsets. The method transforms the non-deterministic distributed real-
time systems testing problem into a set of deterministic sequential program testing
problems. Similarly to Yang’s work, but with the inclusion of preemption, inter-
rupts and communication delays, Thane and Hansson define the executed orderings
between tasks (derived from task-switch monitoring) to be part of the system’s
output. Thus, achieving determinism is an issue of correlating inputs, with outputs
and execution orderings (the system control-flow). Coverage is defined by the
number of unique system control-flow paths tested, and by the number of test cases
run per each path. The former criterion is derived from a system control-flow
analysis and the latter criterion is defined by the testing technique applied, e.g.,
statistical confidence in black-box testing.

In their system control-flow analysis method they assumed that all synchroniza-
tion was resolved offline, e.g., by an off-line scheduler, which assigns offsets and
priorities to all tasks in the distributed system. That is, on-line synchronization
mechanisms like semaphores are not allowed. All tasks in the system are also as-
sumed to receive all input immediately at their start, and to produce all output at
their termination. These limitations were quite severe, although the analysis proved
that even off-line scheduled systems could yield enormous numbers of different
scenarios, when subjected to preemption and jitter (execution time-, communica-
tion time-, and interrupt induced jitter), especially when the tested systems were of
multi-rate character.

In this paper we elaborate on the approach presented by Thane and Hansson in
[19][20] and expand the task model to also include critical sections, governed by
the Priority Ceiling Emulation Protocol (PCEP) [2], a.k.a. the immediate inheri-
tance protocol and immediate priority ceiling protocol. Since tasks may synchro-
nize/communicate via critical sections, we will also relax Thane’s and Hansson’s
input output assumption. Our extension is however only valid for the individual
nodes in the distributed real-time system, unless we assume a global PCEP, which
is quite complex to achieve [15]. The subsequent analysis in this paper is hence
focused on a single node. The results by Thane and Hansson [19][20] on how to
derive the global system control-flow can however successfully be applied if
global scheduling is relying on offsets between tasks on different nodes, but this is
outside the scope of this paper.

Testing of Multi-tasking Real-Time Systems with Critical Sections 581

x=x+3
x=x*5

Priority

t
Enter critical section (CS)

Exit CS
Enter CS

Exit CS

(a

Priority

t

Enter CS
Exit CS Enter CS

(b

Exit CS

x=x+3 x=x*5

x=2

x=2

A

B

A

B

Fig. 1. Two different execution orderings with different results, caused by race conditions in
accesses of a shared resource x.

The basic intuition behind deterministic testing can be illustrated as follows. Con-
sider Fig. 1, which depicts two execution scenarios of two tasks A, B, who share a
common resource x, which they do operations on. The resource, x, is protected by a
semaphore governed by the priority ceiling emulation protocol which raises the pri-
ority of the task that is granted the resource to the priority ceiling of the tasks using
the resource. In Fig. 1 scenario (a), task A enters the critical section before B and thus
accesses x before B – with end result of scenario (a), x=25. In Fig. 1 scenario (b), task
B enters the critical section before A and thus accesses x before A – with the end result
of scenario (b), x=13.

As we can see in Fig. 1, even though the same input is provided, x=2, the end re-
sult of the execution is dependent of the task execution ordering, i.e., the system level
control-flow path taken. However, if we run the same scenario with the same input,
the result will always be the same on repeated executions. That is, the multitasking
real-time system is deterministic if we consider both inputs and execution orderings.

1.1 Contribution

The contribution of this paper is a deterministic white-box system level integration
testing method that includes:
• A testing strategy for achieving a required level of coverage, with respect to the

number of paths in the system control-flow. The testing strategy also allows test
methods for sequential programs to be applied, since each identified ordering can
be regarded as a sequential program.

• A reachability technique for deriving the system level control-flow. The system
control-flow is defined by all possible orderings of task starts, preemptions and
completions for tasks executing in a system where synchronization is resolved us-
ing offsets or using PCEP.

The result in this paper substantially extends the applicability of the results by Thane
and Hansson [19][20], since we now can handle systems with on-line synchroniza-

582 A. Pettersson and H. Thane

tion, for which it is actually more likely that errors are caused by implementation
and synchronization problems. Also, PCEP has been adopted in industry standards,
like POSIX, ADA95, and OSEK, for its implementation simplicity [9][18].

The organization of the paper is as follows: Section 2 presents our deterministic
integration testing strategy. Section 3 introduces a method for deriving the system
control-flow when synchronization is resolved by the PCEP protocol or offsets.
Finally, in Section 4, we conclude.

2 The Deterministic Test Strategy

In our test strategy we define an executed system level control-flow path (SLCFP)
to be part of the system’s output.

By correlating inputs with outputs and executed SLCFPs deterministic test re-
sults are achieved. Coverage is defined by the number of unique SLCFPs tested,
and by the number of test-cases run per each path. The former criterion is based on
a system control-flow analysis, which we present in section 3. The latter criterion is
defined by the testing technique applied, e.g., statistical confidence in black-box
testing [3].

For the testing strategy to work we need in addition to the inputs and outputs,
means to extract the system control flow, usually in the form of task-switches and
access to semaphores: activation of task, entering critical section, leaving critical
section, preemption, and task completion. We thus expand on the work by Thane
and Hansson [19][20] to also include races to critical sections. This SLCFPs ex-
traction can be facilitated in a number of ways, ranging from intrusive software
instrumentation, and hooks into the real-time kernel, to special non-intrusive hard-
ware like In Circuit Emulators, with OS awareness. If the instrumentation is im-
plemented in software, it is necessary to eliminate the probe effect, usually by
leaving the instrumentation code in the deployed system. In our experience the
execution time overhead for software instrumentation of the SLCFPs is minimal,
typically below 0,1‰ of processor utilization.

Definition. The deterministic test procedure (as illustrated in Fig. 2) with no
knowledge of the number of possible SLCFPs is defined as:
1. Test the system using any sequential technique of choice, and monitor the 3-

tuple (input, output, SLCFP) for each test case. A test case includes all inputs to
the participating tasks that are part of the SLCFP during the interval [0,TMAX],
where TMAX typically is equal to the Least Common Multiple (LCM) of the tasks
period times.

2. Map the 3-tuple for the interval [0, TMAX] into a “bucket” for each unique SLCFP.
3. Repeat 1-2 until required coverage for the sequential testing technique applied is

reached for every bucket.

Testing of Multi-tasking Real-Time Systems with Critical Sections 583

 Process

Node Test
Oracle

Result
Database

Input

 Output

C
orrectness

Ordering

Required coverage

Execution ordering (6) (7) (9) (8) (10) (1) (2) (4) (3) (5)

No. Test cases

Fig. 2. A test rig with a set of system level control-flow buckets, and where the coverage for
each bucket is illustrated.

With the above defined testing procedure we can achieve deterministic testing,
with respect to failures that pertain to ordering, and its effect on the inputs and out-
puts via the systems legal interfaces. That is, the method is not deterministic with
respect to failures like transient bit-flips, or arbitrary memory corruption from e.g.,
non-reentrant code, unless we regarded every assembly write operation as a critical
section – which is unreasonable.

The above defined testing strategy is however not complete, since we do not know
when to stop testing. We do not know how many SLCFPs there exist. In the next
section we will present a technique for deriving all possible SLCFPs from which we
can calculate the maximum number of SLCFPs and thus derive a stopping criterion.
The stopping criterion can either be based on the system control flow for all tasks in
the system or for just a sub set of the tasks. If we during testing after a while notice
that certain paths have attained a low level of coverage (e.g., 0) then this can either be
attributed to a pessimism in the system control flow analysis (e.g., two tasks may not
execute their worst case execution time in the same execution scenario) such that too
many paths are derived, or that certain paths are simply rare during execution. In any
case deterministic replay technology [21] can be used for enforcing certain paths such
that the required coverage for these paths is attained. The application of deterministic
replay is however out of scope for this paper, and is something we will present in a
later publication.

3 System Control-Flow Analysis

In order to derive a stop criterion for the deterministic testing strategy we now define
the system level control-flow in terms of a System Level Control-Flow Graph
(SLCFG) and present an algorithm that generates SLCFGs, from which we can derive
all possible system level control-flow paths (SLCFP). We begin however, with a
definition of the system task model.

584 A. Pettersson and H. Thane

3.1 Task Model

The real-time system software consists of a set of concurrent tasks. Tasks communi-
cate by non-blocking message passing or shared memory. All synchronization, prece-
dence or mutual exclusion, is resolved either offline by assigning different release-
times/offsets and priorities, or during runtime by the use of semaphores which have
PCEP semantics. Further, we assume a task model that includes both preemptive
scheduling of off-line generated schedules [22] and fixed priority scheduling of
strictly periodic tasks [1][13].
• The system contains a set of jobs J, i.e. invocations of tasks, which are released in

a time interval [t, t+TMAX], where TMAX is typically equal to the LCM of the involved
tasks period times, and t is an idle point within the time interval [0, TMAX] where no
job is executing. The existence of such an idle point, t, simplifies the model such
that it prevents temporal interference between successive TMAX intervals. To sim-
plify the presentation we will henceforth assume an idle point at 0.

• Each job j∈J has a release time rj, worst case execution time (WCETj), best case
execution time (BCETj), a deadline Dj, and a unique base priority bpj. J represents
one instance of a recurring pattern of job executions with period TMAX, i.e., job j will
be released at time rj, rj+ TMAX, rj+ 2 TMAX, etc. Jobs may have identical release
times.

3.2 Synchronization Using PCEP

For PCEP we assume that:
• Each job j∈J has a current priority pi that may be different from the statically allo-

cated base priority, bpj, if the job is subject to priority promotion when granted a
resource.

• Each resource R, used by a set of jobs SR, has a statically computed priority ceiling
defined by the highest base priority in SR increased by one, i.e.,
pR= MAX (bpi | I ∈ SR) + 1. We assume that all jobs have unique priorities so we
need to increase pR by one to achieve a unique priority for the priority ceiling; jobs
that have higher priorities than pr are also adjusted to have unique priorities.

• Each job, j, that enters a critical section protecting a resource R is immediately
promoted to the statically allocated priority ceiling of the resource, if pR > pj then
pj = pR.

• Each job, j, that is executing and releases a resource R is demoted immediately to
the maximum of the base priority bpj, and the ceilings of the remaining resources
held by the job.

• Each critical section, k, has a worst case execution time (WCETk) and a best case
execution time (BCETk) and a release time interval [erk, lrk) ranging from the earli-
est release time to the latest release time.

Testing of Multi-tasking Real-Time Systems with Critical Sections 585

• All resources are claimed in the same order for all paths through the program in a
job.

3.3 The System Level Control-Flow Graph

In essence, to derive the system level control-flow graph, we perform a reachability
analysis by simulating the behavior of a real-time kernel conforming to our task
model during one [0,TMAX] period for the job set J.

The System Level Control-Flow Graph (SLCFG) is a finite tree for which the set
of possible paths from the root contains all possible execution scenarios.

We define a SLCFG as a pair <N, A>, where
• N is a set of nodes, each node being labeled with a job, the job’s current priority,

and a continuous time interval, i.e., for a job set J: N⊆ J ∪ {“_”} × P × I(TMAX),
where {“_”} is used to denote a node where no job is executing. P is the set of pri-
orities, and I(TMAX) is the set of continuous intervals in [0,TMAX].

• A is the set of edges (directed arcs; transitions) from one node to another node,
labeled with a continuous time interval, i.e., for a set of jobs J:A ⊆ N × I(TMAX) × N.

3.3.1 Basic Transitions
Intuitively, an edge corresponds to the transition (the task-switch) from one job to
another, or when a job enters or leaves a critical section. The edge is annotated with a
continuous interval of when the transition can take place, as illustrated in Fig. 3,
showing SLCFGs for simple jobs without critical sections.

A :pA B:pB

[a , b) [a’, b’) [α , β)

Fig. 3. Two transitions, one to job A and one from job A to job B.

The interval of possible start times)[ba ′′, for job B, in Fig. 3, is defined by:

AA BCETraa +=′),max(

AA WCETrbb +=′),max(

(1)

The max() functions are necessary because the calculated start times a and b can be
earlier than the scheduled release of the job A. In the SLCFG a node represents a job
annotated with a continuous interval of its possible execution time, [)βα , , as de-

picted in Fig. 4.

586 A. Pettersson and H. Thane

[α , β)

A:pA

[a, b)

Fig. 4. A job annotated with its possible execution, start time and current priority.

We define the interval of execution, [)βα , as the interval in which job A can be

preempted:

),max(Ara=α

AWCETrAb +=),max(β

(2)

Mark
critical sections

sa
sb

sc
sd

se

s8 s0

s1
s2

s3

s4
s5

s6
s7

 j

Priority

WCETi

Priority

Priority

WCETi

WCETi

Create a sub job
for every priority

change

Fig. 5. A job split into a set of sub jobs, in order of changes in effective priority. The sub jobs
s0, s4, and s8 represent the base priority job.

3.3.2 Critical Section Transitions

Critical sections will be introduced by transforming the job set, such that a job with
critical sections is split into a set of jobs corresponding to the different critical sec-
tions and executions in between. We assume that each job i∈J, which has a set of
critical sections CSi, is split into an ordered list of sub jobs, SJi, such that every time
there is a change in the job’s effective priority a new sub job is added (as illustrated in
Fig. 5). Each sub job si∈SJi of original job i have a release time interval [)ss lrer ,

ranging from its earliest release time to its latest release time. The release time inter-
val for a sub job si is given in terms of execution time run by the immediately pre-
ceding sub job, qi, before it enters the critical section represented by sub job si, rather
than in terms of the system clock tick. This means that all BCETs and WCETs for all
sub jobs are calculated such that they represent execution time before entering the
immediately succeeding critical section except the last sub job, which runs until ter-
mination.

Testing of Multi-tasking Real-Time Systems with Critical Sections 587

[a, b) [α, β) [a’, b’) [α’,β’) [a’’, b’’] [α’’,β’’)
qi:pq zi:pzsi:ps

Fig. 6. Three transitions, one to sub job q
i
, one demoting transition from sub job q

i
 to sub job s

i,

and one promoting transition from sub job s
i
 to sub job z

i.

The interval of possible start times []ba ′′, for the sub job si, as illustrated in Fig. 6,
is defined relative to its predecessor, qi, by:

qi BCETraa +=′),max(

qi WCETrbb +=′),max(

(3)

3

2

4

1

5

6

8

7

Fig. 7. The resulting execution order graphs for the job set in Table 1 and Table 2.

Table 1. A job set for a schedule with a LCM of
400 ms

Table 2. A job set for a schedule where
job B accesses a shared resource, and
when entering the critical section boost
its priority to 7. B is split into 3 sub
jobs.

588 A. Pettersson and H. Thane

The max() function in Equation 3 is needed since the sub job cannot be released
earlier than scheduled release of the original job i. The transition interval can repre-
sent a promoted priority, denoted []ba, , or demoted priority, denoted [)ba, .

A node represents a sub job in the same manner as a node represents a job, i.e., the
node is annotated with a continuous interval of its possible execution and a priority,
in this case the priority ceiling of the critical section.

We define the execution interval, [)βα ′′, for the sub job si:

),max(ira′=′α

si WCETrb +′=),max(β

(4)

That is, the interval, [)ba ′′, , specifies the interval in which sub job si with priority

ps can be preempted by a higher priority job.

3.3.3 Transition Rules

Below are rules for transitions to create a SLCFG, as exemplified and annotated in
Fig. 7. The first six rules correspond to the basic transitions, and the remaining rules
are rules for critical sections.
1. If the current job ji completes without preemption, and there are no higher priority

jobs that immediately succeeds ji, then add a transition, [)⎯⎯ →⎯ ′′ ii ba
ij

, , where

[)ii ba ′′, is the interval of possible finishing times of ji.

2. If the current job ji completes without preemption and a higher prioritized job jk

immediately succeeds ji, then add a transition
[)

k
rr

i jj kk ⎯⎯ →⎯ ,
, where rk is the re-

lease time of jk and []kk rr , represents the preemption. In addition, if there is a

lower prioritized job jl ready, or made ready during the execution interval of ji,

then add a transition
[)

l
ba

i jj ii ⎯⎯ →⎯ ′′ ,
, where [)ii ba ′′, is the interval of possible

finishing times of ji.
3. If the current job ji has a BCET such that it definitely is preempted by another job jk

then add a transition
[]

k
rr

i jj kk ⎯⎯ →⎯ ,
, where rk is the release time of jk and []kk rr ,

represents the preemption.
4. If the current job ji has a BCET and WCET such that it may either complete or be

preempted before any preempting job jk is released then add a transition
[]

k
rr

i jj kk⎯⎯ →⎯ , , where rk is the release time of jk and []kk rr , represents the pre-

emption. In addition, if the set of ready jobs is empty then add a transition
[)

k
ra

i jj ki ⎯⎯ →⎯ ′ , , where [)ki ra ,′ is the interval of completion times of ji.

5. If the current job ji has a BCET and WCET such that it may either complete or be
preempted before any preempting job jk is released then add a transition

Testing of Multi-tasking Real-Time Systems with Critical Sections 589

[]
k

rr
i jj kk⎯⎯ →⎯ , , where rk is the release time of jk and []kk rr , represents the pre-

emption. In addition, if there are lower prioritized jobs jl ready and ii αβ > holds

then add a transition [)
l

ba
i jj ii ⎯⎯ →⎯ ′′ , , where [)ii ba ′′, is the interval of start times of

jl and a transition [)
k

rr
i jj kk ⎯⎯ →⎯ , , where rk is the release time of jk and [)kk rr ,

represents the completion of ji immediately before jk.
6. If the current job ji is the last job scheduled in this branch of the tree then add a

transition [) _,⎯⎯ →⎯ ′′ ii ba
ij , where [)ii ba ′′, is the interval of finishing times of ji.

7. If the current sub job si succeeded by a higher priority sub job sj before the release
of any higher priority job jk. That is if ki rb <′ , and ikj ppp >> then add a tran-

sition []
j

ba
i ss ii ⎯⎯ →⎯ ′′ , , where []ii ba ′′ , is the interval of start times of sj.

8. If The current sub job si succeeded by a higher priority sub job sj before the release
of any higher priority job jk or is preempted by jk. That is, iki bra ′<<′ , and

ikj ppp >> then add a transition []
j

ra
i ss ki ⎯⎯ →⎯ ′ , , where []ki ra ,′ is the possible

start interval of sj. And a transition []
k

rr
i js kk⎯⎯ →⎯ , , where rk is the release time of

jk and []kk rr , represents the preemption.

9. If the current sub job si is succeeded by a lower priority sub job sj before the re-
lease of any higher priority job jk, that is kj ra <′ , then si is entered into the set of

ready jobs and then governed by rule 4 or rule 5, above.

3.4 The Algorithm

We will now define an algorithm for generating a System Level Control-Flow Graph
(SLCFG). Essentially, the algorithm simulates the behavior of a strictly periodic fixed
priority preemptive real-time kernel, complying with the previously defined task
model and SLCFG transition rules. The SLCFG for a set of jobs is generated by a call
to the algorithm SLCFG (NODE, RDYSET, [)ba, , [)SuSl,) given in appendix (List.

1), where NODE is a node that represents the root node of the SLCFG. RDYSET
represents the set of tasks that is ready to run and is initially the empty set. The inter-
val [)ba, is the release interval and is initially []0,0 , and [)SuSl, the considered

simulation interval, initialized to [0, TMAX]. The algorithm is a recursive function to
which the initial arguments are given, as defined above.

In the remainder of this section we will go through the details of the algorithm, the
references to line numbers corresponds to the line numbers in List. 1, List. 2 and
List. 3 in the appendix.

In the algorithm, line 1: we look ahead one job at a time, this is achieved by ex-
tracting the release time of the next job. To acquire the next release time that succeeds
the currently running job the simulation interval is searched until the next job is
found.

590 A. Pettersson and H. Thane

In lines 2-6 it is determined if the simulation has come to an end of a control-flow
path. This is done by determining the state of the set of jobs ready to execute, if the
ready queue is empty and there are no jobs in the simulation interval to put into the
ready queue then we have reached the end of a path. Line 6: Draw the end node of the
path that corresponds to rule 6.

If the simulation is in a state such that that it has not reached the end of a path,
line 7-46, we consider if the current job may be preempted, line 13-29, or is definitely
not preempted, line 30-46. Rule 1-2 will continue in the non-preemption case while
rule 3, rule 4 and rule 5 will continue in the preemption case.

In the preemption case, for rule 4 and rule 5 it must be determined if the current
job terminates before the release of a higher priority job, line 14. In those cases that
the current job terminates before the release of any higher priority job, it must also be
determined if there exists any succeeding lower priority job, line 20, or if any higher
priority job immediately succeeds the current job, line 23. Line 27-29 will be visited
for rule 3, rule 4 and rule 5 and represents the branch of the preemption of the current
job.

Lines 33-34 corresponds to the case when a critical section is entered and the pri-
ority is promoted, rule 7. For rule 8, when the current job may enter the critical sec-
tion before it is preempted there is two outgoing transitions from the current job and
are govern by lines 16-17 for the sub job that is entering the critical section and lines
27-29 for the preemption before entering the critical section.

3.5 The Stop Criterion

By enumerating the possible and unique paths in the system control flow we get a
measure of the number of system level control flow paths we need to test using the
deterministic testing strategy for full coverage. The stopping criterion can be scaled
such that it encompass a single task, multiple transactions or all tasks in the system.
The above analysis is however pessimistic in the sense that it does not take into ac-
count the correlation between actual input and the execution time of a task, this intro-
duces a pessimism such that in practice two tasks may never exhibit their worst case
(or best case) execution time during the same system level control flow path. We thus
run into the possibility of deriving too many paths that may never be executed in
practice.

4 Conclusions

In this paper we have present a method for deterministic integration testing of strictly
periodic fixed priority scheduled real-time systems where synchronization is either
resolved using on-line synchronization, complying with the Priority Ceiling Emula-
tion Protocol (PCEP) [2] (a.k.a., the immediate inheritance protocol), or offsets. The
paper extends the results by Thane and Hansson [19][20] with handling of online
synchronization. This substantially increases the applicability of the method, since it

Testing of Multi-tasking Real-Time Systems with Critical Sections 591

is more likely that errors are caused by synchronization and implementation prob-
lems.

Essentially the method is a structural white box testing method applied on the sys-
tem level rather than on the individual tasks. The method includes a testing strategy
where the coverage criterion is defined by the number of paths in the system control
flow. The method also includes a reachability algorithm for deriving all possible
paths in terms of orderings of task starts, preemptions and completions of tasks exe-
cuting in a real-time system. The deterministic testing strategy allows test methods for
sequential programs to be applied, since each identified ordering can be regarded as a
sequential program.

In the presented analysis and testing strategy, we consider task sets with recurring
release patterns, and accounted for the effects of variations in start and execution
times of the involved tasks, as well as the variations of the arrival and duration of the
critical sections.

For future work we plan to introduce deterministic replay technology [21] to test-
ing in order to enforce certain system level control flow paths.

References

1. Audsley N. C., Burns A., Davis R. I., Tindell K. W.: Fixed Priority Pre-emptive Schedul-
ing: A Historical Perspective. Real-Time Systems journal, Vol.8(2/3), March/May, Klu-
wer A.P., 1995.

2. Baker T.: Stack-based scheduling of real-time processes. Real-Time Systems Journal,
3(1):67-99, March, 1991.

3. Beizer B.: Software testing techniques. Van Nostrand Reinhold, 1990.
4. Cardell-Oliver R and Glover T.: A Practical and Complete Algorithm for Testing Real-

Time Systems. In 5th International Symposium on Formal Techniques in Real-Time and
Fault Tolerant Systems, pp. 251-261, September 1998.

5. El Shobaki M.: A Hardware and Software Monitor for High-Level System-on-Chip Veri-
fication. In Procc IEEE International Symposium on Quality Electronic Design. San Jose,
USA, March 2001.

6. Gait J.: A Probe Effect in Concurrent Programs. Software – Practice and Experience,
16(3):225-233, Mars, 1986.

7. Hamlet R. G.: Probable Correctness Theory. Information processing letters 25, pp. 17-25,
1987.

8. Hwang G.H, Tai K.C and Huang T.L.: Reachability Testing: An Approach to Testing
Concurrent Software. Int. Journal of Software Engineering and Knowledge Engineering,
vol. 5, no. 4, pp. 493-510, 1995.

9. ISO/IEC. ISO/IEC 8652L 1995 (E),: Information Technology – Programming Languages
– Ada, Febrary 1995.

10. Iversen T. K., Kristoffersen K. J.,.Larsen G. K., Laursen M., Madsen R. G., Mortensen S.
K., Pettersson P. And Thomasen C. B.: Model-Checking of Real-Time Control Programs.
In Proceedings of the 12th Euromicro Conference on Real-Time Systems (ECRTS’2000),
pp. 147-255. Stockholm, Sweden, June 19-21, 2000.

592 A. Pettersson and H. Thane

11. Khoumsi A.: A new method for testing real time systems. In Proceedings. 7th Interna-
tional Conference on Real-Time Computing Systems and Applications, pp. 441-450, De-
cember 2000.

12. Laprie J.C.: Dependability: Basic Concepts and Associated Terminology. Dependable
Computing and Fault-Tolerant Systems, vol. 5, Springer Verlag, 1992.

13. Lui C. L. and Layland J. W.: Scheduling Algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20(1), 1973.

14. McDowell C.E. and Hembold D.P.: Debugging concurrent programs. ACM Computing
Surveys, 21(4), pp. 593-622, December 1989.

15. Mueller F.: Priority inheritance and ceilings for distributed mutual exclusion. Proc. 20th
IEEE Real-Time Systems Symposium, pp. 340-349, Phoenix, Arizona, December 1999.

16. Nielsen B and Skou A.: Test Generation for Time Critical Systems: Tools and Case Study.
In 13th Euromicro Conference on Real-Time Systems, 2001, pp. 155 – 162, June 2001.

17. Rushby J.: Formal Specification and Verification for Critical systems: Tools, Achieve-
ments, and prospects. Advances in Ultra-Dependable Distributed Systems. IEEE Com-
puter Society Press. 1995. ISBN 0-8186-6287-5.

18. Technical Committee on Operating Systems and Application Environments of the IEEE.
Portable Operating System Interface (POSIX) – Part 1: System Application Program Inter-
face (API), 1996. ANSI/IEEE Std 1003.1, 1995 Edition, including 1003.1c:Amedment 2:
Threads Extension C Language.

19. Thane H. and Hansson H.: Testing distributed real-time systems. Journal of Microproces-
sors and Microsystems (24):463-478, Elsevier, 2001.

20. Thane H. and Hansson H.: Towards Systematic Testing of Distributed Real-Time Systems.
Proc. 20th IEEE Real-Time Systems Symposium, Phoenix, Arizona, December 1999.

21. Thane H. and Hansson H.: Using Deterministic Replay for Debugging of Distributed Real-
Time Systems. In proceedings of the 12th Euromicro Conference on Real-Time Systems
(ECRTS’00), Stockholm, June 2000.

22. Xu J. and Parnas D.: Scheduling processes with release times, deadlines, precedence, and
exclusion, relations. IEEE Trans. on Software Eng. 16(3):360-369, 1990.

23. Yang R-D and Chung C-G.: Path analysis testing of concurrent programs. Information and
software technology. vol. 34(1):425-432, Jan., 1992.

Appendix:

Listing of the System Control Flow algorithm.

Algorithm SL_CFG (NODE, RDYSET, [a, b), [Sl, Su))
{
1 From the simulation interval [Sl, Su), get the next release time t
2 If the set of jobs ready to execute is empty do
3 Add the job at time t to the queue of jobs ready to execute
4 if the set of jobs ready to execute not is empty do
5 SL-CFG (NODE, RDYSET, [a, b), [Sl, Su));

else
6 Draw the node that represents the end of a trajectory

else
7 Extract the highest prioritized job j from the ready queue

8 Calculate the execution window for job j, [,)
9 Calculate the start interval of the next job at time t, [a’, b’)
10 Draw the transition and the node of the current job, NODE->j

Testing of Multi-tasking Real-Time Systems with Critical Sections 593

11 Add all jobs that have lower priority than the jobs at time t to
the ready queue
12 if the job j is preempted by a job at time t then do

13-29 SL_CFG_preemption (j, RDYSET, [a, b), [,), [a’, b’) ,
[Sl, Su), t)

else

30-46 SL_CFG__nopreemption (j, RDYSET, [a, b), [,), [a’, b’
) , [Sl, Su), t)
}

List. 1. The listing of the main loop of the System control Flow algorithm.

Algorithm SL_CFG_preemption (j, RDYSET, [a, b), [,), [a’, b’) ,
[Sl, Su), t)
{
13 Extract the next critical section sj from job j
14 If job j completes before the release of a job at time t then do
15 if job j enter a critical section and the priority is promoted
then do
16 Add sub job sj to the queue of jobs ready to execute
17 SL_CFG (j , RDYSET, [a’, t] , [t, Su])

else
18 Add sub job sj to the queue of jobs ready to execute
19 SL_CFG (j , RDYSET, [a’, t), [t, Su])
20 if the set of jobs ready to execute not is empty do
21 Add the job at time t to the queue of jobs ready to execute
22 SL_CFG (j, RDYSET, [t, t), (t, Su])
23 else if there are jobs that immediately succeeds job j then do
24 Add the job at time t to the queue of jobs ready to execute
25 Add sub job sj to the queue of jobs ready to execute
26 SL_CFG (j, RDYSET, [t, t), (t, Su])
27 Add the job at time t to the queue of jobs ready to execute
28 Recalculate the execution time for job j
29 SL_CFG (j, RDYSET, [t, t], (t, Su])
}

List. 2. The listing of the System Control Flow algorithm, the part in which the job may or
may not be preempted.

Algorithm SL_CFG_nopreemption (j, RDYSET, [a, b), [,), [a’, b’),
[Sl, Su), t)
{
30 Extract the next critical section sj from job j
31 if this is the possible end of the simulation then do
32 Add sub job sj to the queue of jobs ready to execute
33 if job j enter a critical section and the priority is promoted
then do
34 SL_CFG (j, RDYSET, [a’, b’], [b’, Su])

else
35 SL_CFG (j, RDYSET, [a’, b’), [INF, INF])

else
36 if job j enter a critical section and the priority is promoted
then do
37 Add sub job sj to the queue of jobs ready to execute
38 SL_CFG (j, RDYSET, [a’, b’], [b’ , Su])
39 else if there exists a job that immediately succeeds job j then do
40 Add the job at time t to the queue of jobs ready to execute
41 Add sub job sj to the queue of jobs ready to execute
42 SL_CFG (j, RDYSET, [t, t), (t, Su])

594 A. Pettersson and H. Thane

43 if the job at time t immediately succeeds job j the do
44 SL_CFG (j, RDYSET, [a’, b’), [t, sr]);

else
45 Add sub job sj to the queue of jobs ready to execute
46 SL_CFG (j, RDYSET, [a’, b’), [t, sr]);
}

List. 3. The listing of the System Control Flow algorithm, the part in which the job completes
before the release of a higher prioritized job.

Symbolic Simulation of Real-Time Concurrent
Systems�

Farn Wang1, Geng-Dian Huang2, and Fang Yu2

1 Dept. of Electrical Engineering, National Taiwan University
farn@cc.ee.ntu.edu.tw

2 Institute of Information Science, Academia Sinica, Taiwan
{view,yuf}@iis.sinica.edu.tw

Abstract. We introduce the symbolic simulation function implemented
in our model-checker/simulator RED 4.0 for dense-time concurrent sys-
tems. By representing and manipulating state-spaces as logic predicates,
the technique of symbolic simulation can lead to high performance by
encompassing many, even densely many, traces in traditional simulation
into one symbolic trace. We discuss how we generate traces with various
policies, how we manipulate the state-predicate, and how we manage
the trace trees. Finally, we report experiment with our simulator in the
verification of the Bluetooth baseband protocol.

Keywords: Assertions, specification, state-based, event-driven, model-
checking, verification

1 Introduction

Traditional simulation [8, 14, 18] uses memory to record the variable values in a
state along a trace and makes it possible for engineers to visualize the behaviors
of the system design even before the hardware prototypes are put into reality. For
many decades, simulation has been the major tool for engineers to successfully
guarantee the quality of system designs in early cycles of system development.
But for the new system designs in the new century, e.g. System-on-a-Chip (SOC)
with tens of millions of gates, there will not be enough time and manpower to
run enough number of simulation traces of the system designs. The complexity
incurred by the system designs in the next few years simply overwhelms the
capability of traditional simulation technology.

On the other hand, model-checking technology [12,2] has promised to math-
ematically prove the correctness of system design. The development of model-
checking with symbolic manipulation techniques [11,5] has made the full verifica-
tion of many non-real-time industrial projects into reality. The symbolic manip-
ulation techniques do not record the exact values of variables explicitly. Instead,
� The work is partially supported by NSC, Taiwan, ROC under grants NSC 90-2213-

E-001-006, NSC 90-2213-E-001-035, and the by the Broadband network protocol
verification project of Institute of Applied Science & Engineering Research, Acade-
mia Sinica, 2001.

J. Chen and S. Hong (Eds.): RTCSA 2003, LNCS 2968, pp. 595–617, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

596 F. Wang, G.-D. Huang, and F. Yu

sets of states are succinctly represented and manipulated as logic constraints on
variable values. For example, we have procedure to compute the state-predicate
at the next-step from the current state-predicate. Such succinctness not only
saves the memory space in representation but also allows us to construct a huge
(or even dense) set of states in a few symbolic manipulation steps.

However, even with such powerful techniques of symbolic manipulation, the
verification task of real-time concurrent system still demands tremendous re-
sources beyond the reach of current technology. The reachable state-space rep-
resentations in TCTL model-checking [2] tasks usually demand complexity ex-
ponential to the input system description sizes. Usually, verification tasks blow
up the memory usage before finishing with answers.

In a sense, traditional simulation and model-checking represent two extremes
in the spectrum. Traditional simulation is efficient (you may only have to record
the current state) but the number of traces to cover full functionality of a sys-
tem is usually forbiddingly high. On the other hand, model-checking can achieve
functional completeness in verification but usually requires huge amount of sys-
tem resources. Thus it will be helpful and attractive if a technique that makes a
balance between the two extremes can be developed.

The technique of symbolic simulation represents such a balance [28]. The
technique was originally introduced and proved valuable for the verification of
integrated circuits. While traditional simulation runs along a trace of precise
state recordings, symbolic simulation runs along a trace of symbolic constraints,
representing a (convex or concave) space of ”current states.” In metaphor, tradi-
tional simulation is like a probe while the new symbolic simulation technique is
like a searchlight into the space and can monitor a set of state-traces at the same
time. With proper choice of the caliber of the searchlight, we have much better
chance to discover the imminent risk and potential threats in the immense sky.

We have implemented a symbolic simulator, for dense-time concurrent sys-
tems, with GUI (Graphical User-Interface), convenient facilities to generate and
manage the traces. The simulator is now part of RED 4.0, a model-checker/
simulator for real-time systems. In the development of the symbolic simulation
function, we encounter the following many challenges and opportunities.

What Is the Model We Adopt for Real-Time Concurrent Systems ?

In simulation, we construct a mathematical model for a system design (and the
environment) with computer programs and observe how the model behaves in
computer’s virtual world. The semantics of the model will determine how effi-
ciently we can approximate the system/environment interaction and how efficient
we can compute the traces.

Symbolic simulation has gained much success in the verification of VLSI cir-
cuits, which are usually synchronous. We plan to extend the success in the area
of real-time concurrent systems, like communication protocols, embedded soft-
wares, . . . , etc. For such systems, the assumption of the existence of a global
clock is inappropriate and the synchronous discrete-time model can lead to im-
precise simulation. In a real-world real-time concurrent system, each hardware

Symbolic Simulation of Real-Time Concurrent Systems 597

module may have its own clock. Even the new SOC can have multi-clocks in the
same chip. Based on all these consideration, we adopt the well-accepted timed
automata [3], with multiple dense-time clocks, as our system model.

The input language of RED 4.0 allows the description of a timed automaton
as a set of process automata communicating with each other through synchroniz-
ers (namely, input/output events through channels in [21]) and global variables.
Users may use binary synchronizers to construct legitimate global transitions (to
be explained in section 3) from process transitions. RED also allows users to
control the ”caliber of the searchlight” to better monitor a user-given goal (or
risk) condition along traces.

How Do We Construct and Manage Traces ?

The traces can be constructed randomly or with a policy. Random traces are
computed with random number generators without the bias of the designers and
verification engineers. Many people do not feel confident with a design until it
has been verified with random traces. On the other hand, directed traces are
constructed with built-in or user-given policies. Directed traces can help in guid-
ing the simulators to program lines which are suspicious of bugs or whose effects
need to be closely monitored. With directed traces, the simulators can more
efficiently construct the traces that are of interest to the verification engineers.

Symbolic simulation actually adds one more dimension to the issue of random
vs. directed traces. Since we can use complex logic constraints to represent a
space of states, from steps to steps, we are actually building traces of state-spaces,
instead of a single precise state. So it is more like (even densely) many traces
are constructed simultaneously. Symbolic simulation thus add the dimension of
”width” to a trace of state-spaces. In section 5, we shall discuss how to control
the width of traces with the many options supported by our simulator.

Organizations of the Paper

In the following sections, we first review some related work (section 2), de-
scribe our system models (section 3), and give a brief overview of what we have
achieved in our implementations (section 4). Then we delve into more details
of our achievements (sections 5, 6). Finally, we report our experiments with
our implementations and the Bluetooth baseband protocol (section 7). We were
able to verify that under some parameter-settings, the protocol guarantee that
one device will eventually discover the frequency of its peer device. The experi-
ment is also interesting since we have not heard of any similar result on the full
model-checking of the protocol.

2 Previous Work

Symbolic Trajectory Evaluation(STE) [28], or called symbolic simulation, is the
main alternative to symbolic model checking [5], in formal hardware verifica-
tion. STE can be considered a hybrid approach based on symbolic simulation

598 F. Wang, G.-D. Huang, and F. Yu

and model checking algorithms and can verify assertions, which express safety
properties.

STATEMATE [19] is a tool set with a heavy graphical orientation and power-
ful simulation capability. Users specify systems from three points of view: struc-
tural, functional, and behavioral. Three graphical languages, includes module-
charts, activity-charts, and state-charts, are supported for the three views. The
STATEMATE provides simulation control language(SCL) to enable user to pro-
gram the simulation. Breakpoints can also be incorporate into the programs in
SCL. It may cause the simulation to stop and take certain actions. Moreover,
the simulation trace is recorded in trace database, and can be inspected later.
The users may view a trace as a discrete animation of state-charts.

The MT-Sim [8] provides simulation platform for the Modechart toolset(MT)
[14], which is a collection of integrated tools for specifying and analyzing real-
time systems. MT-Sim is a flexible, extensible simulation environment. It sup-
ports user-defined viewers, full user participation via event injection, and asser-
tion checking which can invoke user-defined handlers upon assertion violation.

UPPAAL [26] is an integrated tool environment for modeling, validation
and verification of dense-time systems. It is composed of the system editor, the
simulator, and the verifier. The behavior of simulated systems can be observed
via the simulator, which can display the systems in many level of details. Besides,
the simulator can load diagnostic trace generated by the verifier for further
inspection. One technical difference between RED and UPPAAL is that RED
uses a BDD-like data-structure, called CRD (Clock-Restriction Diagram) [31,
32, 33, 34], for the representation of dense-time state-space while UPPAAL uses
the traditional DBM (Difference-Bounded Matrix) [15]. A CRD can represent
disjunction and conjunction while a DBM can only represent a conjunction.
With this advantage, CRD is more convenient and flexible in manipulating the
”width” of simulation traces. Also in previous experiments [31,32,34], CRD has
shown better performance than DBM w.r.t. several benchmarks of dense-time
concurrent systems.

In [18], IOA language and IOA toolset, based on IO automaton, are proposed
for designing and analyzing the distributed systems. The toolset can express
designs at different levels of abstraction, generate source code automatically,
simulate automata, and interface to existing theorem provers. The IOA simu-
lator solves the nondeterminism in IOA language by user-defined determinator
specification, random-number generator, and querying the user. IOA simulator
provides paired simulation to check the simulation relationship between two au-
tomata. It simulates an automaton normally and executes another automaton
according to user-defined step correspondence. It is useful in developing systems
using levels of abstraction.

3 Synchronized Concurrent Timed Automata

A timed automaton [3] is a finite-state automaton equipped with a finite set
of clocks that can hold nonnegative real-values. At any moment, the timed au-

Symbolic Simulation of Real-Time Concurrent Systems 599

!collision !collision

idle

busy collision
busy

idle

x:=0
!end
x<=5

!start ?start
?end

?start

busy

idle

x:=0
!end
x<=5

!start

1

2

4

5

7

8

3 6

?collision ?collision

10 9

Fig. 1. The model of bus-contending systems

tomaton can stay in only one mode (or control location). In its operation, one of
the global transitions can be triggered when the corresponding triggering condi-
tion is satisfied. Upon being triggered, the automaton instantaneously transits
from one mode to another and resets some clocks to zero. In between global
transitions, all clocks increase their readings at a uniform rate.

In our input language, users can describe the timed automaton as a synchro-
nized concurrent timed automaton (SCTA) [31,32,33]. Such an automaton is in
turn described as a set of process automata (PA). Users can declare local (to each
process) and global variables of type clock, integer, and pointer (to identifier of
processes). Boolean conditions on variables can be tested and variable values
can be assigned. Process automata can communicate with one another through
binary synchronizations. One of the earliest devices of such synchronizations are
the input-output symbol pairs through a channel, in process algebra [21]. Similar
synchronization devices have been used in the input languages to HyTech [4],
IO Automata [25], UPPAAL [9], Kronos [16], VERIFAST [37], SGM [22,35,36],
and RED [29,30,31,32,33].

In figure 1, we have drawn three process automata, in a bus-contending sys-
tems. Two process automata are for senders and one for the bus. The circles
represent modes while the arcs represent transitions, which may be labeled with
synchronization symbols (e.g., !begin, ?end, !collision, . . .), triggering con-
ditions (e.g., x ≤ 5), and assignments (e.g., x := 0;). Each transition (arc) in
the process automata is called a process transition. For convenience, we have la-
beled the process transitions with numbers. In the system, a sender process may
synchronize through channel begin with the bus to start sending signal on the
bus. While one sender is using the bus, the second sender may also synchronize
through channel begin to start placing message on the bus and corrupting the
bus contents. When this happen, the bus then signals bus collision to both of
the senders.

We adopt the standard interleaving semantics, i.e., at any instant, at most one
legitimate global transition (LG-transition) can happen in the SCTA. For formal
semantics of the systems, please check out appendix A. A process transition
may not represent an LG-transition and may not be executed by itself. Only

600 F. Wang, G.-D. Huang, and F. Yu

LG-transition can be executed. Symbols begin, end, and collision, on the
arcs, represent synchronization channels, which serve as glue to combine process
transitions into LG-transitions. An exclamation (question) mark followed by a
channel name means an output (input) event through the channel. For example,
!begin means a sending event through channel begin while ?begin means a
receiving event through the same channel. Any input event through a channel
must match, at the same instant, with a unique output event through the same
channel. Thus, a process transition with an output event must combine with
another process transition (by another process) with a corresponding input event
to become an LG-transition.

Thus the synchronizers in our input language are primarily used to help users
in decomposing their programs into modules and to help the simulators to glue
process transitions in constructing LG-transitions. For example, in figure 1, pro-
cess transitions 1 and 7 can combine to be an LG-transition. Also process tran-
sitions 3, 6, and 9 can make an LG-transition since two output events matches
two input events through channel collision.

In the following, we illustrate how to reason in one step of our simulator
engine to construct the state-predicate of the next-step. Intuitively, in one step,
the system will progress in time and then execute an LG-transition. For example,
we may have a current state-predicate

(p = 1 ∧ q = 2) ∨ (q = 4 ∧ 1 ≤ x < 3) (P)

and an LG-transition expressed as the following guarded command:

(p = 1 ∧ x > 5) −→ x := 0; p := 3; (X)

which means

”when (p = 1 ∧ x > 5) is true with x as a clock,
reset x to zero and assign 3 to p.”

In a step of the simulation engine, we first calculate the new state-predicate
obtained from states in (P) by letting time progress. This affects the constraint
on clock x and yields

(p = 1 ∧ q = 2) ∨ (q = 4 ∧ 1 ≤ x) (P’)

Then we apply the LG-transitions, selected by the users, to (P’) to obtain the
state-predicate representing states after the selected transitions. Suppose the
only selected LG-transition is (X). Then the state-predicate at the next-step is

p = 3 ∧ x = 0 ∧ (q = 2 ∨ q = 4)

Details can be found in [20].

Symbolic Simulation of Real-Time Concurrent Systems 601

Fig. 2. The GUI of RED 4.0

4 Overview of Our Simulator

We have incorporated the idea in this report in our verification tool, RED 4.0,
a TCTL model-checker/simulator [29, 30, 31, 32, 33]. The tool can be activated
with the following command in Unix environment:

$ red [options] InputFileName OutputFileName

The options are
• -Sp: symmetry reduction for pointer data-structure systems [38]
• -Sg: Symmetry reduction for zones [17,33],
• -c: Counter-example generation
• -s: Simulator mode with GUI

Without option -s, the tool serves as a high-performance TCTL model-checker
in backward analysis. When the simulation mode GUI is activated, we will see the
window like figure 2 popping up. The GUI window is partitioned into four frames
respectively of trace trees (on the upper-left corner), current state-predicates (on
the bottom), command buttons (in the middle), and candidate process transi-

602 F. Wang, G.-D. Huang, and F. Yu

tions (PT-frame, on the upper-right corner) to be selected and already been
selected.

Users can construct LG-transitions by selecting process transitions step-by-
step in the PT-frame. At each step, the PT-frame displays all process transitions
that can be fired at the current state-predicate in the upper-half of the PT-frame.
After the selection of a process transition , our simulator is intelligent enough to
eliminate those process transitions not synchronizable with those just-selected
ones from the display of PT-frame.

After the selection of many process transitions, the simulator steps forward
and computes the new current state-predicate at the next step with the LG-
transitions constructable from the selected process transitions. If there are many
process transitions waiting to be selected at the time the simulator steps forward,
all those process transitions will be selected. Since these process transitions may
belong to different LG-transitions, the new current state-predicate may repre-
sent the result of execution of more than one LG-transitions. This capability to
manipulate a state-space represented in a complex state-predicate in symbolic
steps is indeed the strength of symbolic simulation.

The architecture of our implementation is shown in figure 3. We explain
briefly its components in the following:

• RED symbolic simulation engine: This is actually the timed-transition next-
step state-predicate calculation routine in forward analysis. Symbolic algo-
rithm for this next-step state-predicate calculation routine is explained at
the end of last section and can also be found in [20].

• assertion monitoring: In the input language to the simulator, users can also
specify a goal predicate for the traces. This goal predicate can be a risk
condition, which the users want to make sure that it cannot happen. Or it can
be a liveness condition, which the users want to see that it can happen. After
each step of the simulation engine, our RED 4.0 will check if the intersection
of the goal predicate and the next-step state-predicate is nonempty. If it
is, the sequence of LG-transitions leading from the initial state to this goal
predicate can be displayed. Such a capability is indispensable in helping the
users debugging their system designs.

• trace computation: This component uses user-guidance, randomness, and var-
ious policies to select LG-transitions, in the generation of traces by repetitive
invoking the RED symbolic simulation engine. More details is given in sec-
tion 5.

• state manipulation: This includes facilities to inject faults, to either relax or
restrict the current state-space, and to set symbolic breakpoints.

• trace tree management: (See the frame at the upper-left corner.) This com-
ponent is for the maintenance of the trace tree structure and movement of
current state nodes in the tree. The simulator can step forward and back-
track according to the plain interaction. After a few times of these forward-
backward steps, a tree of traces is constructed and recorded in our simulator
to represent the whole history of the session. The node for the current state-
predicate is black while the others are white. Users can also click on nodes

Symbolic Simulation of Real-Time Concurrent Systems 603

 GUI

State
Manipulation

TCTL

Trace
Computation

Trace Tree
Management

Assertion
Monitoring

Model−checker

Description

Timed C/OVL

SCTA

RED Engine

RED Generator

Fig. 3. The architecture of RED model-checker/simulator

in the trace tree and jump to a specific current state-predicate. On the arcs,
we also label the set of pairs of processes and process transitions used in the
generation of the next state-predicate.

• GUI (graphical user-interface: A user-friendly window for easy access to the
power of formal verification.

• RED symbolic TCTL model-checker: The high performance backward anal-
ysis power of RED can be directedly activated to check if the system model
satisfies the assertion.

5 Trace Computations

As mentioned in the introduction, symbolic simulation adds one new dimension
of trace ”width” , which reflecting the number of fired LG-transitions in each
step in the construction of traces. With Red 4.0, users may choose from various

604 F. Wang, G.-D. Huang, and F. Yu

options to construct traces with appropriate randomness, special search policy,
and enough width. The options are:

• plain interaction: With selection of process transitions from the PT-frame
and previous/next step commands, users have total control on how to select
process transitions to make LG-transitions in the construction of the next-
step state predicates along the current trace.

• random steps: The simulator could also randomly choose an LG-transition in
each step. Users can command the autonomous execution of a given number
of random steps.

• game-based policy: We use the term ”game” here because we envision the
concurrent system operation as a game. Those processes, which we want
to verify, are treated as players while the other processes are treated as
opponents. In the game, the players try to win (maintain the specification
property) under the worst (i.e., minimal) assumption on their opponents.
A process is a player iff its local variables appear in the goal state-predicate.
Intuitively, the simulator constructs a trace segment with all possible re-
actions of the players in response to random behaviors of the opponents.
With this option, we can observe the behavior of players’ response to op-
ponents’ action. According to the well-observed discipline of modular pro-
gramming [27], the behavioral correctness of a functional module should be
based on minimal assumption on the environment. If we view the players
as the functional module and the opponents as the environment, then this
game-based policy makes a lot of sense.
It can be useful when we try to verify the design of the player processes. In
other words, at each step, the simulator is growing the trace with a width
enough for one process transition from each opponent and all firable process
transitions from players. Users can again command the autonomous execu-
tion of a few steps with this game-based policy.

• goal-oriented policy: This policy makes the simulator to generate fast traces
leading to the goal states. This can be useful in debugging the system designs,
when users have observed some abnormal states. The users can specify the
abnormal states as the goal assertions.
RED 4.0 achieves this by defining the heuristic distance estimation (HD-
estimation) from one state to the other (to be explained in the following).
Then process transitions which can the most significantly reduce the HD-
estimation from any states in the current state-predicate to any states in the
goal state-predicate will be selected in the hope of a short trace to the goal
states can be constructed.
The HD-estimation from one (global) state s to another s′ is defined as
follows. Suppose we have m processes and s(p) is the mode in process p’s
automaton in state s. Then HD-estimation from s to s′ is the sum, over all
processes p, of the shortest path distance from s(p) to s′(p) in the graph
(constructed with modes as nodes and process transitions as arcs) of process
p’s automaton. For each porcess p, the shortest path distance is gained from
the backward breath-first algorithm.

Symbolic Simulation of Real-Time Concurrent Systems 605

For VLSI, usually people adopt the estimation of Hemming distance, which
measures the number of bit-differences. But for dense-time concurrent sys-
tems, state-predicates are loaded with clock constraints and Hemming dis-
tance can be difficult to define in a meaningful way.

6 Manipulation of Current State-Predicate

Our simulator allows for the modification of the current state-predicate before
proceeding to the next-step. The following methods can be used to manipulate
the current state-predicate and affects the ”width” of traces.

• assign: The simulator allows users to assign a new value to a state-variable.
This can be used to change the behavior of the systems and insert faults.

• eliminate: By this method, users can eliminate all constraints w.r.t. a state-
variable. This is equivalent to broadening the width of the trace on the
dimension of the corresponding state-variable. We can observe the system
behavior with less assumption on state-variables.

• restrict: In opposition to elimination, users can type in a new predicate
and conjunct it with the current state-predicate. With this capability, we
can narrow the width of the trace and focus on the interesting behaviors.

• abstract: As in the paragraph of game-based policy in section 5, we view
the behavior of the target system as a game process and players, opponents
can be identified. According to this, the simulator provides three abstract
image functions to systematically abstract the current state-predicate. This
is also equivalent to systematically broadening the width of the trace. The
options for the abstract image functions are:
− Game-abstraction: The game abstract image function will eliminate the

state information of the opponents from its argument.
− Game-discrete-abstraction: This abstract image function will eliminate

all clock constraints for the opponents in the state-predicate.
− Game-magnitude-abstraction: A clock constraint like x − x′ ∼ c is called

a magnitude constraint iff either x or x′ is zero itself (i.e. the constraint
is either x ∼ c or −x′ ∼ c). This abstract image function will erase all
non-magnitude constraints of the opponents in the state-predicate.

Note that some of these methods can significantly simplify the representation
of the current state-predicate. This also implies that the time and space needed
to calculate the next-step state-predicates can be reduced. For example, we may
have clocks x1, x2 as local clocks of processes 1 and 2 respectively. After applying
the game-magnitude-abstraction image function to x1 ≥ 4 ∧ x2 ≥ 3 ∧ (x1 − x2 ≤
−2 ∨ x2 − x1 ≤ −1), we get x1 ≥ 4 ∧ x2 ≥ 3 and have changed a concave
state-space down to a convex state-space. This kind of transformation usually
can significantly reduce the time and space needed for the manipulations.

606 F. Wang, G.-D. Huang, and F. Yu

STANDBY state

INQUIRY SCAN state

A B A B...............

Train A repeats Ninquiry times
INQUIRY

INQUIRY SCAN

Fig. 4. Mode sequences of processes INQUIRY and INQUIRY SCAN in baseband
protocol

7 Experiments on Bluetooth Baseband Protocol

In the following, we first give a brief introduction to the Bluetooth baseband
protocol [23]. Then we present our model of baseband protocol in SCTA in
subsection 7.2. The model will be used in two ways:bug-inserted and bug-free.
We use two bug-inserted models in subsection 7.3 and 7.4 respectively, and show
how to quickly find the bugs with symbolic traces of Red 4.0. In subsections 7.3,
we also demonstrate how to generate traces to observe system behaviors step
by step. Finally, in subsection 7.5, we use the bug-free model to report the
performance in full verification of the Baseband protocol.

7.1 Bluetooth Baseband Protocol

Bluetooth is a specification for wireless communication protocols [23]. It operates
in the unlicensed Industrial-Scientific-Medical (ISM) band at 2.4 GHz. Since ISM
band is open to everyone, Bluetooth uses the frequency hopping spread spec-
trum (FHSS) and time-division duplex (TDD) scheme to cope with interferences.
Bluetooth divides the band into 79 radio frequencies and hops between these fre-
quencies. It is a critical issue for Bluetooth devices to discover the frequencies
of other Bluetooth devices since FHSS and TDD scheme are used.

A Bluetooth unit that wants to discover other Bluetooth units enters an
INQUIRY mode. A Bluetooth unit that allows itself to be discovered, regu-
larly enters the INQUIRY SCAN mode to listen to inquiry messages. Figure 4
shows the INQUIRY and INQUIRY SCAN procedures. All Bluetooth units in
INQUIRY and INQUIRY SCAN share the same hopping sequence, which is 32
hops in length. The Bluetooth unit in INQUIRY SCAN mode hops every 1.28
sec. Although a Bluetooth unit in INQUIRY mode also uses the same inquiry
hopping sequence, it does not know which frequencies do receivers listen to. In
order to solve this uncertainty, a Bluetooth unit in INQUIRY mode hops at rate
of 1600 hop/sec, and transmits two packets on two different frequencies and then
listens for response messages on corresponding frequency. Besides, the inquiry

Symbolic Simulation of Real-Time Concurrent Systems 607

hopping sequence is divided into train A and B of 16 frequencies and a single
train is repeated for Ninquiry (which is 256 in specification) times before a new
train is used. In an error-free environment, at least three train switches must
have taken place. Details can be found in [23];

7.2 The System Model

In this subsection, we will introduce our system model briefly. For more details,
the timed automata are shown in Appendix B. For convenience, we have labeled
the process transitions with numbers.

Every Bluetooth unit has a system clock. When the clock ticks, the Bluetooth
unit updates its internal timer and frequency. So in our model, there are two
clocks, tick clk scan and tick clk inq, for INQUIRY SCAN and INQUIRY
processes, respectively. Every time unit, the processes loop through the modes to
update the variables. For the INQUIRY SCAN procedure, there are two impor-
tant variables, inqscanTimer and mode scan. Variable inqscanTimer , which
is a timer updated in transitions 6 to 9, is used to determine when to enter
INQUIRY SCAN mode. Variable mode scan records the current mode of the
process performing the INQUIRY SCAN procedure, and its value may be IN-
QUIRY SCAN or STANDBY.

For the INQUIRY procedure, when the value of variable clkmod, in transi-
tions 13 to 16, is less than 2, the process transmits packets. Otherwise, it listens
for response messages. The process sends packets via synchronization channel
in transitions 19 and 20. If a packet is received successfully, it means that the
frequency, through which the packet is received, is discovered and the process
goes to SUCCESS mode. Otherwise, in transitions 21 to 24, variables id sent,
train sent, and train switch are changed. Variable id sent records the pack-
ets sent in current train; variable train sent records the number of repeat of
a single train; variable train switch represents how many train switches have
taken place. After three train switches, the process goes to TIMEOUT mode via
transition 25.

Our task is to verify whether two Bluetooth units in complementary modes
will hop to the same frequency before timeout, so that the INQUIRY and IN-
QUIRY SCAN procedures can go on. One can think of a printer equipped with
Bluetooth in INQUIRY SCAN mode. When a notebook equipped with Blue-
tooth has data to print, it will inquiry nearby printers. We anticipate that the
notebook can learn the existence of the printer with the Bluetooth protocols.

7.3 Using ”Width” of Simulation Traces for Advantage

In this subsection, a bug is inserted in the INQUIRY SCAN process in the
model. We demonstrate how to properly control the ”width” of symbolic traces
to quickly discover the bug, and manipulate the state-space predicate to pseudo-
correct the bug. In the end of the simulation, we use game-based policy to
automatically trace to our goal states.

608 F. Wang, G.-D. Huang, and F. Yu

Table 1. The step-by-step simulation

step 1 2 3 4 5 6 7 8
process transitions (I,13) (I,17) (IS,5) (IS,1) (IS,6) restrict assign game-based

policy
(I,20) (IS,2) (IS,7)

(IS,3) (IS,8)
(IS, 9)

I: process INQUIRY; IS: process INQUIRY SCAN; (p, x): process p executing
process transition x.

We use the step sequence shown in the second row of table 1 to experiment
with RED and the Baseband protocol.

A pair like (p, x) in the row means that process p executes transition x. When
several of these process transition execution pairs are stacked, it means that we
select all these process transitions to broaden the trace width of simulation.

In our scenario with notebook and printer, the printer regularly enters the
INQUIRY SCAN mode to listen to inquiry messages. The printer will peri-
odically execute in mode INQUIRY SCAN and mode STANDBY in sequence
(See the upper mode-sequence in figure 4). In the implementation of Baseband
protocol, the alternation between these two modes is controlled with counter
inqscanTimer , which increments at every clock tick. When inqscanTimer <
TwInqScan c (TwInqScan c is a macro constant defining the scan window size),
the printer stays in mode INQUIRY SCAN. At the time when inqscanTimer =
TwInqScan c, the printer changes to mode STANDBY. When counter
inqscanTimer increases to macro constant TinqScan c (the time span between
two consecutive inquiry scans), it is reset to zero. We want to make sure that an
INQUIRY SCAN process will periodically execute in the two modes of

inqscanTimer < TwInqScan c
∧ mode scan = INQUIRY SCAN

and

inqscanTimer ≥ TwInqScan c
∧ mode scan = STANDBY

in sequence. Thus a risk condition saying that this sequence is violated is the
following. ⎛

⎜⎜⎝
(

inqscanTimer < TwInqScan c
∧ mode scan
= INQUIRY SCAN

)

∨
(

inqscanTimer ≥ TwInqScan c
∧ mode scan
= STANDBY

)
⎞
⎟⎟⎠

When the notebook starts to inquiry, the printer may be in mode
INQUIRY SCAN or mode STANDBY. With traditional simulation [8, 14, 18],
a precise initial state, such as

Symbolic Simulation of Real-Time Concurrent Systems 609

inqscanTimer = 0 ∧ mode scan = INQUIRY SCAN

must be chosen to start the simulation. And the chosen initial state may either
never reach the risk states or have a long way to do it. But in RED 4.0, we
can start our simulation from the whole state-space represented by the following
state-predicate. ⎛

⎜⎜⎝
(

inqscanTimer < TwInqScan c
∧ mode scan = INQUIRY SCAN

)

∨
(

inqscanTimer ≥ TwInqScan c
∧ mode scan = STANDBY

)
⎞
⎟⎟⎠

By starting simulation with this big state-space, we are actually using a great
”width” of the symbolic trace and should have much better chance in detecting
bugs.

By executing the first five steps in the sequence of table 1, we simulate the
model step by step to observe if the system acts according to our expectation. At
the fifth step, we have four executable process transitions, including transitions
6, 7, 8, and 9 (see the arc labels in figures in figure 5 in appendix B) of process
INQUIRY SCAN. With RED 4.0, we can simulate all these possibilities in a
single step.

Now we want to demonstrate what we can do with the discovery of bugs. After
the fifth step, we reach a risk state. Inspecting the trace, we find a bug in tran-
sition 7 (see figure 5). According to Bluetooth specification [23], when counter
inqscanTimer increments from TwInqScan c-1 to TwInqScan c, process IN-
QUIRY SCAN should change from mode INQUIRY SCAN to mode STANDBY.
And transition 7 in figure 5 is supposed to model this mode change. The bug
is inserted by changing the triggering condition of process transition 7 from
inqscanTimer = TwInqScan c− 1 to inqscanTimer = TwInqScan c. It means
that the printer enters mode STANDBY one tick too late and the system reaches
the risk state of

inqscanTimer = TwInqScan c ∧ mode scan = INQUIRY SCAN

In order to pseudo-correct the bug, we want to test what will happen if the mode
change does happen in time. To do this what-if analysis, we first restrict our
attention to the state-predicate with inqscanTimer = equals TwInqScan c.
We do this by keying state-predicate inqscanTimer = equals TwInqScan c to
restrict the current state-predicate.

Now the new current state-predicate satisfies

inqscanTimer < TwInqScan c
∧ mode scan = INQUIRY SCAN

We want to see whether by correcting the bug of the late mode-change, we can
indeed get the correct behavior (i.e. both parties hop to the same frequency).
We change the value of mode scan from INQUIRY SCAN to STANDBY. Then
we use generate traces automatically and see if we can see any faulty behaviors
in the traces constructed with the game-based policy (i.e., all process transitions

610 F. Wang, G.-D. Huang, and F. Yu

for players (process INQUIRY SCAN) and random transitions for opponents
(process INQUIRY). In our experiment, RED 4.0 constructed a symbolic trace
leading to SUCCESS mode. This give users confidence that the both parties
indeed can hop to the same frequency.

7.4 Fast Debugging with Goal-Oriented Policy

Here we show how to find bugs in our Baseband model with our goal-oriented pol-
icy. The bug is inserted as follows. In transitions 19 and 20, variable id-sent is
now incremented when a packet is sent. However, this increment is redundant be-
cause variable id sent has already been incremented with variables train sent
and train switch together in transitions 21 to 24. This bug would make id sent
to be incremented by 2 for each packet sent, and causes the INQUIRY process
timeout quickly.

We generate directed traces with our goal-oriented policy. The simulator se-
lects transitions that minimize the HD-estimation to the goal state. For example,
transition 20 which leads to TIMEOUT mode would be taken rather than tran-
sition 19 that leads to SUCCESS mode, since our goal state is TIMEOUT mode
which means the existence of a bug. In our first trial, we generate a trace that
reaches the TIMEOUT mode, and fix the bug by observing the trace. It costs
RED 4.0 8.21 seconds on an Pentium 1.7G MHz desktop with 256 MB memory
to generate the directed trace. However, if we do full verification to generate a
counter-example trace, it costs RED 4.0 137.78 seconds.

With random traces, the time needed to find a bug depends on how fast the
random traces hit the bug. In our experiment, we generate a random traces,
but it does not reach the TIMEOUT mode. Then we have to generate a new
trace from the step that may lead to the TIMEOUT mode. Repeating this trial-
and-error iterations for six times, we finally reaches the TIMEOUT mode. Our
experiment shows that the goal-oriented policy is more efficient in debugging the
model as compared with random steps and full verification.

7.5 Full Verification

Finally, we have finished simulating and debugging our model, and gained con-
fidence in the correctness of our system. We can now proceed to the more ex-
pensive step of formal model-checking to see whether two Bluetooth units in
complementary modes will hop to the same frequency before timeout. RED 4.0
uses 197 seconds on an Pentium 1.7G MHz desktop with 256 MB memory to
check this model.

8 Conclusion

This paper has described RED 4.0, a symbolic simulator based on BDD-like
data-structure with GUI for dense-time concurrent systems. RED 4.0 can gen-
erate symbolic traces with various policy, and manipulate the state-predicate.

Symbolic Simulation of Real-Time Concurrent Systems 611

By properly control the width of symbolic traces, we have much better chances
in observing what we are interested. The usefulness of our techniques can be
justified by our report on experiment with the Bluetooth baseband protocol.

Future work may proceed in several directions. Firstly, we hope to derive
new HD-estimation functions used in the directed trace generation, and support
customized automatic trace generation policy. These would help users finding
bugs with fewer simulation traces. Secondly, the coverage estimation to gain
confidence is also an important issue in our future work. Finally, we plan to
make our GUI more friendly so that users can have easy access to the power of
formal verification.

References

1. Asaraain, Bozga, Kerbrat, Maler, Pnueli, Rasse. Data-Structures for the Verifica-
tion of Timed Automata. Proceedings, HART’97, LNCS 1201.

2. R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE
LICS, 1990.

3. R. Alur, D.L. Dill. Automata for modelling real-time systems. ICALP’ 1990, LNCS
443, Springer-Verlag, pp.322-335.

4. R. Alur, T.A. Henzinger, P.-H. Ho. Automatic Symbolic Verification of Embedded
Systems. in Proceedings of 1993 IEEE Real-Time System Symposium.

5. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model
Checking: 1020 States and Beyond, IEEE LICS, 1990.

6. M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems.
10th CAV, June/July 1998, LNCS 1427, Springer-Verlag.

7. Bening, L. and Foster, H., i. Principles of Verifiable RTL Design, a Functional Cod-
ing Style Supporting Verification Processes in Verilog,li 2nd ed., Kluwer Academic
Publishers, 2001.

8. M. Brockmeyer, C. Heitmeyer, F. Jahanian, B. Labaw. A Flexible, Extensible
Simulation Environment for Testing Real-Time, IEEE, 1997.

9. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool
Suite for Automatic Verification of Real-Time Systems. Hybrid Control System
Symposium, 1996, LNCS, Springer-Verlag.

10. G. Behrmann, K.G. Larsen, J. Pearson, C. Weise, Wang Yi. Efficient Timed Reach-
ability Analysis Using Clock Difference Diagrams. CAV’99, July, Trento, Italy,
LNCS 1633, Springer-Verlag.

11. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput., C-35(8), 1986.

12. E. Clarke, E.A. Emerson, Design and Synthesis of Synchronization Skeletons us-
ing Branching-Time Temporal Logic, in ”Proceedings, Workshop on Logic of Pro-
grams,” LNCS 131, Springer-Verlag.

13. E. Clarke, O. Grumberg, M. Minea, D. Peled. State-Space Reduction using Partial-
Ordering Techniques, STTT 2(3), 1999, pp.279-287.

14. P. Clements, C. Heitmeyer, G. Labaw, and A. Rose. MT: a toolset for specifying
and analyzing real-time systems. in IEEE Real-Time Systems Symposium, 1993.

15. D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. CAV’89, LNCS 407, Springer-Verlag.

16. C. Daws, A. Olivero, S. Tripakis, S. Yovine. The tool KRONOS. The 3rd Hybrid
Systems, 1996, LNCS 1066, Springer-Verlag.

612 F. Wang, G.-D. Huang, and F. Yu

17. E.A. Emerson, A.P. Sistla. Utilizing Symmetry when Model-Checking under Fair-
ness Assumptions: An Automata-Theoretic Approach. ACM TOPLAS, Vol. 19,
Nr. 4, July 1997, pp. 617-638.

18. S.J. Garland, N.A. Lynch. The IOA Language and Toolset: Support for Designing,
Analyzing, and Building Distributed Systems. Technical Report MIT/LCS/TR.

19. D. Harel et al., STATEMATE: A Working Environment for the Development of
Complex Reactive Systems. IEEE Trans. on Software Engineering, 16(4) (1990)
403-414.

20. T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for
Real-Time Systems, IEEE LICS 1992.

21. C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall, 1985.
22. P.-A. Hsiung, F. Wang. User-Friendly Verification. Proceedings of 1999

FORTE/PSTV, October, 1999, Beijing. Formal Methods for Protocol Engineering
and Distributed Systems, editors: J. Wu, S.T. Chanson, Q. Gao; Kluwer Academic
Publishers.

23. J. Haartsen. Bluetooth Baseband Specification, version 1.0.
http://www.bluetooth.com/

24. K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang. Efficient Verification of Real-
Time Systems: Compact Data-Structure and State-Space Reduction. IEEE RTSS,
1998.

25. N. Lynch, M.R. Tuttle. An introduction to Input/Output automata. CWI-
Quarterly, 2(3):219-246, September 1989. Centrum voor Wiskunde en Informatica,
Amsterdam, The Netherlands.

26. P. Pettersson, K.G. Larsen, UPPAAL2k. in Bulletin of the European Association
for Theoretical Computer Science, volume 70, pages 40-44, 2000.

27. R.S. Pressman. Software Engineering, A Practitioner’s Approach. McGraw-Hill,
1982.

28. C.-J.H. Seger, R.E. Brant Formal Verification by Symbolic Evaluation of Partially-
Ordered Trajectories. Formal Methods in System Designs, Vol. 6, No. 2, pp. 147-
189, Mar. 1995.

29. F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time
Software Systems. TACAS’2000, March, Berlin, Germany. in LNCS 1785, Springer-
Verlag.

30. F. Wang. Region Encoding Diagram for Fully Symbolic Verification of Real-Time
Systems. the 24th COMPSAC, Oct. 2000, Taipei, Taiwan, ROC, IEEE press.

31. F. Wang. RED: Model-checker for Timed Automata with Clock-Restriction Dia-
gram. Workshop on Real-Time Tools, Aug. 2001, Technical Report 2001-014, ISSN
1404-3203, Dept. of Information Technology, Uppsala University.

32. F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-
Restriction Diagram, to appear in Proceedings of FORTE, August 2001, Cheju
Island, Korea.

33. F. Wang. Symmetric Model-Checking of Concurrent Timed Automata with Clock-
Restriction Diagram. RTCSA’2002.

34. F. Wang. Efficient Verification of Timed Automata with BDD-like Data-Structures.
Technical Report, IIS, Academia Sinica, 2002.

35. F. Wang, P.-A. Hsiung. Automatic Verification on the Large. Proceedings of the
3rd IEEE HASE, November 1998.

36. F. Wang, P.-A. Hsiung. Efficient and User-Friendly Verification. IEEE Transactions
on Computers, Jan. 2002.

37. F. Wang, C.-T. Lo. Procedure-Level Verification of Real-Time Concurrent Systems.
International Journal of Time-Critical Computing Systems 16, 81-114 (1999).

Symbolic Simulation of Real-Time Concurrent Systems 613

38. F. Wang, K. Schmidt. Symmetric Symbolic Safety-Analysis of Concurrent Software
with Pointer Data Structures. IIS Technical Report, 2002, IIS, Academia Sinica,
Taipei, Taiwan, ROC.

39. S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Jour-
nal of Software Tools for Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

A Definition of SCTA

A SCTA (Synchronized Concurrent Timed Automaton is a set of finite-state
automata, called process automata, equipped with a finite set of clocks, which
can hold nonnegative real-values, and synchronization channels. At any mo-
ment, each process automata can stay in only one mode (or control location).
In its operation, one of the transitions can be triggered when the corresponding
triggering condition is satisfied. Upon being triggered, the automaton instanta-
neously transits from one mode to another and resets some clocks to zero. In
between transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set Q of modes and a set X of clocks, we use B(Q, X)
as the set of all Boolean combinations of inequalities of the forms mode = q and
x − x′ ∼ c, where mode is a special auxiliary variable, q ∈ Q, x, x′ ∈ X ∪ {0},
“∼” is one of ≤, <,=, >,≥, and c is an integer constant.

Definition 1. process automata A process automaton A is given as a tuple
〈X, E, Q, I, μ, T, λ, τ, π〉 with the following restrictions. X is the set of clocks. E
is the set of synchronization channels. Q is the set of modes. I ∈ B(Q, X) is the
initial condition on clocks. μ : Q �→ B(∅, X) defines the invariance condition of
each mode. T ⊆ Q × Q is the set of transitions. λ : (E × T) �→ Z defines the
message sent and received at each process transition. When λ(e, t) < 0, it means
that process transition t will receive |λ(e, t)| events through channel e. When
λ(e, t) > 0, it means that process transition t will send λ(e, t) events through
channel e. τ : T �→ B(∅, X) and π : T �→ 2X respectively defines the triggering
condition and the clock set to reset of each transition. �

Definition 2. SCTA (Synchronized Concurrent Timed Automata) An SCTA
of m processes is a tuple, 〈E, A1, A2, . . . , Am〉 where E is the set of synchroniza-
tion channels and for each 1 ≤ p ≤ m, Ap = 〈Xp, E, Qp, Ip, μp, Tp, λp, τp, πp〉 is
a process automaton for process p.

A valuation of a set is a mapping from the set to another set. Given an
η ∈ B(Q, X) and a valuation ν of X, we say ν satisfies η, in symbols ν |= η, iff
it is the case that when the variables in η are interpreted according to ν, η will
be evaluated true.

Definition 3. states Suppose we are given an SCTA S = 〈E, A1, A2, . . . , Am〉
such that for each 1 ≤ p ≤ m, Ap = 〈Xp, E, Qp, Ip, μp, Tp, λp, τp, πp〉. A state ν
of S is a valuation of

⋃
1≤p≤m(Xp ∪ {modep}) such that

• ν(modep) ∈ Qp is the mode of process i in ν; and
• for each x ∈

⋃
1≤1p≤m Xp, ν(x) ∈ R+ such that R+ is the set of nonnegative

real numbers and ν |=
∧

1≤p≤m μp(ν(modep)). �

614 F. Wang, G.-D. Huang, and F. Yu

For any t ∈ R+, ν + t is a state identical to ν except that for every clock x ∈ X,
ν(x)+ t = (ν + t)(x). Given X̄ ⊆ X, νX̄ is a new state identical to ν except that
for every x ∈ X̄, νX̄(x) = 0.

Now we have to define what a legitimate synchronization combination is in
order not to violate the widely accepted interleaving semantics. A transition plan
is a mapping from process indices p, 1 ≤ p ≤ m, to elements in Tp ∪ {⊥}, where
⊥ means no transition (i.e., a process does not participate in a synchronized
transition). The concept of transition plan represents which process transitions
are to be synchronized in the construction of an LG-transition.

A transition plan is synchronized iff each output event from a process is
received by exactly one unique corresponding process with a matching input event.
Formally speaking, in a synchronized transition plan Φ, for each channel e, the
number of output events must match with that of input events. Or in arithmetic,∑

1≤p≤m;Φ(p) �=⊥ λ(e, Φ(p)) = 0.
Two synchronized transitions will not be allowed to occur at the same instant

if we cannot build the synchronization between them. The restriction is formally
given in the following. Given a transition plan Φ, a synchronization plan ΨΦ

for Φ represents how the output events of each process are to be received by the
corresponding input events of peer processes. Formally speaking, ΨΦ is a mapping
from {1, . . . , m}2 ×E to N such that ΨΦ(p, p′, e) represents the number of event
e sent form process p to be received by process p′. A synchronization plan ΨΦ

is consistent iff for all p and e ∈ E such that 1 ≤ p ≤ m and Φ(p)
=⊥, the
following two conditions must be true.

•
∑

1≤p′≤m;Φ(p′) �=⊥ ΨΦ(p, p′, e) = λ(Φ(p));
•
∑

1≤p≤m;Φ(p) �=⊥ ΨΦ(p′, p, e) = −λ(Φ(p));
A synchronized and consistent transition plan Φ is atomic iff there exists a syn-
chronization plan ΨΦ such that for each two processes p, p′ such that Φ(p)
=⊥
and Φ(p′)
=⊥, the following transitivity condition must be true: there exists a se-
quence of p = p1, p2, . . . , pk = p′ such that for each 1 ≤ i < k, there is an ei ∈ E
such that either ΨΦ(pi, pi+1, ei) > 0 or ΨΦ(pi+1, pi, ei) > 0. The atomicity condi-
tion requires that each pair of meaningful process transitions in the synchroniza-
tion plan must be synchronized through a sequence of input-output event pairs.
A transition plan is called an IST-plan (Interleaving semantics Transition-plan)
iff it has an atomic synchronization plan.

Finally, a transition plan has a race condition iff two of its process transitions
have assignment to the same variables.

Definition 4. runs Suppose we are given an SCTA S = 〈E, A1, A2, . . . , Am〉
such that for each 1 ≤ p ≤ m, Ap = 〈Xp, E, Qp, Ip, μp, Tp, λp, τp, πp〉. A run is
an infinite sequence of state-time pair (ν0, t0)(ν1, t1) . . . (νk, tk) such that
ν0 |= I and t0t1 . . . tk is a monotonically increasing real-number (time)
divergent sequence, and for all k ≥ 0,

• for all t ∈ [0, tk+1 − tk], νk + t |=
∧

1≤p≤m μ(νk(modep)); and
• either

− νk(modep) = νk+1(modep) and νk + (tk+1 − tk) = νk+1; or
− there exists a race-free IST-plan Φ such that for all 1 ≤ p ≤ m,

Symbolic Simulation of Real-Time Concurrent Systems 615

∗ either νk(modep) = νk+1(modep) or (νk(modep), νk+1(modep)) ∈ Tp

and
∗ νk + (tk+1 − tk) |=

∧
1≤p≤m;Φ(p) �=⊥ τp(νk(modep), νk+1(modep)) and

∗ (νk + (tk+1 − tk))concat1≤p≤m;Φ(p) �=⊥πp(νk(modep), νk+1(modep)) =
νk+1. Here concat(γ1, . . . , γh) is the new sequence obtained by con-
catenating sequences γ1, . . . , γh in order. �

We can define the TCTL model-checking problem of timed automata as our
verification framework. Due to page-limit, we here adopt the safety-analysis prob-
lem as our verification framework for simplicity. A safety analysis problem in-
stance, SA(A, η) in notations, consists of a timed automata A and a safety state-
predicate η ∈ B(Q, X). A is safe w.r.t. to η, in symbols A |= η, iff for all runs
(ν0, t0)(ν1, t1) . . . (νk, tk) , for all k ≥ 0, and for all t ∈ [0, tk+1 − tk],
νk + t |= η, i.e., the safety requirement is guaranteed.

616 F. Wang, G.-D. Huang, and F. Yu

B Model of Bluetooth Baseband Protocol

success

 fre_scan=fre_base_scan;

may tick_clk_scan=0; phase_clk_scan=0; fre_base_scan++1;

 may tick_clk_scan=0; phase_clk_scan=0; fre_base_scan=0;

tick_clk_scan<=1
update_fre_base_scan or fre_scan!=fre_inq update_state_scan

tick_clk_scan==0

 when inqscanTimer_<TwInqScan_c−1 may inqscanTimer_++1;

2 3

5

679 8

4

1

 when ?signal_packet !signal_success mode_scan==INQUIRY_SCAN and fre_scan==fre_inq

 when ?signal_packet mode_scan!=INQUIRY_SCAN

 when tick_clk_scan==1 and phase_clk_scan!=PhaseChange_c may tick_clk_scan=0; phase_clk_scan++1;

 when tick_clk_scan==1 and phase_clk_scan==PhaseChange_c and fre_base_scan<Max_Fre

 when tick_clk_scan==1 and phase_clk_scan==PhaseChange_c and fre_base_scan==Max_Fre

 when inqscanTimer_==TinqScan_c may inqscanTimer_=0; mode_scan=INQUIRY_SCAN;

 when TwInqScan_c<inqscanTimer_+1 and inqscanTimer_<TinqScan_c may inqscanTimer_++1;

 when inqscanTimer_==TwInqScan_c−1 may inqscanTimer_++1; mode_scan=CONNECTED;

Fig. 5. INQUIRY SCAN

Symbolic Simulation of Real-Time Concurrent Systems 617

 m

ay
 id

_s
en

t=
0;

 tr
ai

n_
se

nt
+

+
1;

 w

he
n

id
_s

en
t=

=
ID

Se
nt

 a
nd

 tr
ai

n_
se

nt
<

T
ra

in
Se

nt

of
fs

et
=

T
R

A
IN

_B
;

m
ay

 id
_s

en
t=

0;
 tr

ai
n_

se
nt

=
0;

 tr
ai

n_
sw

itc
h+

+
1;

tr
ai

n_
sw

itc
h<

T
ra

in
Sw

itc
h

an
d

of
fs

et
=

=
T

R
A

IN
_A

w
he

n
id

_s
en

t=
=

ID
Se

nt
 a

nd
 tr

ai
n_

se
nt

=
=

T
ra

in
Se

nt
 a

nd

w
he

n
id

_s
en

t=
=

ID
Se

nt
 a

nd
 tr

ai
n_

se
nt

=
=

T
ra

in
Se

nt
 a

nd

of
fs

et
=

T
R

A
IN

_A
;

tr
ai

n_
sw

itc
h<

T
ra

in
Sw

itc
h

an
d

of
fs

et
=

=
T

R
A

IN
_B

m
ay

 id
_s

en
t=

0;
 tr

ai
n_

se
nt

=
0;

 tr
ai

n_
sw

itc
h+

+
1;

121110

 w
he

n
cl

km
od

=
=

2
m

ay
 c

lk
m

od
+

+
1;

 w
he

n
cl

km
od

=
=

3
m

ay
 c

lk
m

od
=

0;

 w
he

n
ph

as
e_

cl
k_

in
q=

=
Ph

as
eC

ha
ng

e_
c

an
d

fr
e_

ba
se

_i
nq

<
M

ax
_F

re
 m

ay
 p

ha
se

_c
lk

_i
nq

=
0;

 w
he

n
ph

as
e_

cl
k_

in
q!

=
Ph

as
eC

ha
ng

e_
c

m
ay

 p
ha

se
_c

lk
_i

nq
+

+
1;

m
ay

 p
ha

se
_c

lk
_i

nq
=

0;
w

he
n

ph
as

e_
cl

k_
in

q=
=

Ph
as

eC
ha

ng
e_

c
an

d
fr

e_
ba

se
_i

nq
=

=
M

ax
_F

re

13 14

Su
cc

es
sfr

e_
in

q=
fr

e_
ba

se
_i

nq
+

of
fs

et
+

id
_s

en
t;

w
he

n
fr

e_
in

q<
=

M
ax

_F
re

 m
ay

19

20

w
he

n
id

_s
en

t=
=

ID
Se

nt
 a

nd
 tr

ai
n_

se
nt

=
=

T
ra

in
Se

nt
an

d
tr

ai
n_

sw
itc

h=
=

T
ra

in
Sw

itc
h

 w
he

n
id

_s
en

t<
ID

Se
nt

 m
ay

 id
_s

en
t+

+
1;

up
da

te
_f

re
_b

as
e_

in
q

up
da

te
_c

lk
m

od
_i

nq

fr
e_

m
od

_i
nq

se
nd

_i
nq

ch
ec

k_
tim

eo
ut

_i
nq

15

16
 w

he
n

cl
km

od
=

=
1

m
ay

 c
lk

m
od

+
+

1;
fr

e_
in

q=
fr

e_
ba

se
_i

nq
+

of
fs

et
+

id
_s

en
t;

 w
he

n
cl

km
od

=
=

0
m

ay
 c

lk
m

od
+

+
1;

fr
e_

in
q=

fr
e_

ba
se

_i
nq

+
of

fs
et

+
id

_s
en

t;

17

18

fr
e_

in
q=

fr
e_

ba
se

_i
nq

+
of

fs
et

+
id

_s
en

t−
4;

w
he

n
fr

e_
in

q>
M

ax
_F

re
 m

ay

w
he

n
!s

ig
na

l_
pa

ck
et

 ?
si

gn
al

_s
uc

ce
ss

 tr
ue

m
ay

 id
_s

en
t+

+
1;

w
he

n
!s

ig
na

l_
pa

ck
et

 tr
ue

 m
ay

 id
_s

en
t+

+
1;

T
im

eo
ut

25

21

22

23

24

Fig. 6. INQUIRY

Author Index

Amirijoo, Mehdi 136
Andersson, Johan 513
Aoki, Soko 296
Aoyama, Tomonori 312

Bernat, Guillem 208, 466
Busquets, J.V. 328

Campoy, A. Mart́ı 328
Chang, Hsung-Pin 88
Chang, Li-Pin 409
Chang, Ray-I 88
Chang, Ruei-Chuan 88
Chen, Jing 244
Chen, Po-Yuan 499
Chen, Sao-Jie 545
Cheong, Infan Kuok 53
Cho, Min-gyu 158
Chou, Chih-Chieh 499

Doh, Yoonmee 371
Dong, DeCun 389

Guo, Yi-Heng 38

Hansson, Jörgen 136, 432, 558
Hong, Seongsoo 72
Hsieh, Jen-Wei 398
Hsiung, Pao-Ann 229, 529, 545
Hsueh, Chih-wen 176
Hu, Erik Yu-Shing 208
Huang, Geng-Dian 595
Huang, Guo-Chiuan 176
Huang, Tai-Yi 499
Hui, Calvin Kin-Cheung 351

Kim, Daeyoung 371
Kim, Taehyoun 1
Krishna, C.M. 371
Kuo, Tei-Wei 398, 409, 431
Kurahashi, Makoto 279

Lam, Kam-Yiu 389, 431
Lee, I-Hsiang 398
Lee, Trong-Yen 229, 529, 545
Lee, Yann-Hang 194, 371

Lembke, Martin 513
Leulseged, Amare 103
Lin, Cheng-Yi 229
Lin, Hsin-hung 176
Lindström, Jan 342
Liu, Deming 194
Liu, Jane W.S. 53
Liu, Pangfeng 38
Lo, Hsi-Wu 431

Matsumiya, Kenta 296
Minami, Masateru 312
Mok, Aloysius K. 18
Morikawa, Hiroyuki 312
Murase, Masana 296

Nakajima, Tatsuo 279
Neander, Jonas 513
Nemoto, Masahiro 279
Ng, Joseph Kee-Yin 351
Niklander, Tiina 342
Nissanke, Nimal 103
Norström, Christer 432, 513, 558
Nyström, Dag 432, 558

Ou, DongXiu 389

Park, Sangsoo 486
Perles, A. 328
Pettersson, Anders 578

Raatikainen, Kimmo 342
Ryu, Minsoo 72

Sáez, S. 328
See, Win-Bin 545
Sha, Lui 123
Shih, Chi-sheng 53
Shih, Wei-Kuan 88
Shin, Heonshik 1, 486
Shin, Kang G. 158
Son, Sang H. 136
Su, Feng-Shi 529
Su, Hui-Ming 244

Terrasa, Andrés 466

620 Author Index

Tešanović, Aleksandra 466, 558
Thane, Henrik 578
Tokuda, Hideyuki 296
Tokunaga, Eiji 279
Tsai, Mei-Chin 398

Wall, Anders 513
Wang, Da-Wei 38
Wang, Farn 254, 595
Wang, Weirong 18

Wei, Chung-You 398
Wellings, Andy 208
Wu, Chin-Hsien 409
Wu, I-Mu 529
Wu, Yian-Nien 398

Yu, Fang 254, 595

Zee, Andrej van der 279

	Frontmatter
	Scheduling
	Scheduling-Aware Real-Time Garbage Collection Using Dual Aperiodic Servers
	On the Composition of Real-Time Schedulers
	An Approximation Algorithm for Broadcast Scheduling in Heterogeneous Clusters
	Scheduling Jobs with Multiple Feasible Intervals
	Deterministic and Statistical Deadline Guarantees for a Mixed Set of Periodic and Aperiodic Tasks
	Real-Time Disk Scheduling with On-Disk Cache Conscious
	Probabilistic Analysis of Multi-processor Scheduling of Tasks with Uncertain Parameters
	Real-Time Virtual Machines for Avionics Software Porting and Development
	Algorithms for Managing QoS for Real-Time Data Services Using Imprecise Computation

	Networking and Communication
	On Soft Real-Time Guarantees on Ethernet
	BondingPlus: Real-Time Message Channel in Linux Ethernet Environment Using Regular Switching Hub
	An Efficient Switch Design for Scheduling Real-Time Multicast Traffic

	Embedded Systems/Environments
	XRTJ: An Extensible Distributed High-Integrity Real-Time Java Environment
	Quasi-Dynamic Scheduling for the Synthesis of Real-Time Embedded Software with Local and Global Deadlines
	Framework-Based Development of Embedded Real-Time Systems
	OVL Assertion-Checking of Embedded Software with Dense-Time Semantics

	Pervasive/Ubiquitous Computing
	System Support for Distributed Augmented Reality in Ubiquitous Computing Environments
	Zero-Stop Authentication: Sensor-Based Real-Time Authentication System
	An Interface-Based Naming System for Ubiquitous Internet Applications

	Systems and Architectures
	Schedulability Analysis in EDF Scheduler with Cache Memories
	Impact of Operating System on Real-Time Main-Memory Database System's Performance
	The Design of a QoS-Aware MPEG-4 Video System

	Resource Management
	Constrained Energy Allocation for Mixed Hard and Soft Real-Time Tasks
	An Energy-Efficient Route Maintenance Scheme for Ad Hoc Networking Systems
	Resource Reservation and Enforcement for Framebuffer-Based Devices

	File Systems and Databases
	An Efficient B-Tree Layer for Flash-Memory Storage Systems
	Multi-disk Scheduling for High-Performance RAID-0 Devices
	Database Pointers: A Predictable Way of Manipulating Hot Data in Hard Real-Time Systems

	Performance Analysis
	Extracting Temporal Properties from Real-Time Systems by Automatic Tracing Analysis
	Rigorous Modeling of Disk Performance for Real-Time Applications
	Bounding the Execution Times of DMA I/O Tasks on Hard-Real-Time Embedded Systems

	Tools and Development
	Introducing Temporal Analyzability Late in the Lifecycle of Complex Real-Time Systems
	RESS: Real-Time Embedded Software Synthesis and Prototyping Methodology
	Software Platform for Embedded Software Development
	Towards Aspectual Component-Based Development of Real-Time Systems
	Testing of Multi-Tasking Real-Time Systems with Critical Sections
	Symbolic Simulation of Real-Time Concurrent Systems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

