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Abstract—Proliferation of QoS-sensitive client-server Internet applications such

as high-quality audio, video-on-demand, e-commerce, and commercial web

hosting has generated an impetus to provide performance guarantees. These

applications require a guaranteed minimum amount of resources to operate

acceptably to the users, thus calling for QoS-provisioning mechanisms. One good

place to locate such mechanisms is in server communication subsystems. Server-

side communication subsystems manage an increasing number of connection

end-points, thus readily controlling important bottleneck resources. We propose,

implement, and evaluate a novel communication server architecture that

maximizes the aggregate utility of QoS-sensitive connections for a community of

clients even in the case of overload. A contribution of this architecture is that it

manages QoS from the user space and is transparent to the application. It does

not require modifications to the OS kernel, which improves portability and reduces

development cost. Results from an experimental evaluation on a microkernel

indicate that it achieves end-system overload protection and traffic prioritization,

improves insulation between independent clients, adapts to offered load, and

enhances aggregate service utility.

Index Terms—Internet servers, operating systems, QoS, resource management.
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1 INTRODUCTION

QOS-SENSITIVE resource management mechanisms on server end-
systems are motivated by the multitude of emerging Internet
applications, such as multimedia streaming and e-commerce,
which require predictable performance and contractual perfor-
mance guarantees. To address this issue, this paper describes a
novel communication server architecture for QoS-adaptive re-
source management which exports the abstraction of “QoS
contracts” between the server and clients. The architecture
augments current web and multimedia services with QoS enforce-
ment mechanisms, which achieve overload protection, ensure
performance isolation between independent connections or classes
of connections on the server end-system, implement connection
prioritization across multiple resources, and perform graceful QoS-
adaptation to dynamically changing load conditions.

QoS contract enforcement in our architecture lies transparently

beneath the application by exploiting dynamic shared libraries to

provide legacy applications with QoS extensions without modify-

ing application code. The libraries communicate with a separate

QoS-aware communication server process on top of an operating

system kernel that supports threads and fixed priority scheduling.

Our experiments demonstrate the usefulness and efficacy of the

architecture in terms of achievement of QoS guarantees. A key

contribution of the architecture is the transparent implementation
of QoS enforcement mechanisms in user space. We also implement
policies for QoS optimization that maximize utility under resource
constraints. The architecture is evaluated on a microkernel
operating system.

The rest of this paper is organized as follows: Section 2
elaborates on the notion of QoS used in this paper. It proposes a
flexible form of QoS contracts suitable for emerging QoS-sensitive
services. Section 3 describes our architecture for embedding QoS
provisioning into best-effort server platforms. Section 4 describes
utility-optimizing resource allocation policies. Section 5 presents
and evaluates mechanisms for transparently enforcing resource
allocation and achieve performance guarantees in the absence of
kernel support. Section 6 describes related work. Finally, the paper
concludes with Section 7.

2 THE QOS CONTRACT

In a QoS-aware service, QoS requirements must be specified to the
server’s communication subsystem. In our architecture, this
specification is expressed in a QoS contract. To express the
flexibility of adaptive applications, our QoS contract model
assumes that the service exports multiple QoS levels of different
quality and utility to the user. A QoS contract Ci with client i
contains 1) a desired QoS level, Ldesiredi , 2) the minimum QoS level
acceptable to that user Lmini � Ldesiredi , and 3) the utility (or charge
rate) Ri½k� for each QoS level Lk exported by the service in the
range ½Lmini ; Ldesiredi �. Note that the charge rate, Ri½k�, for the same
QoS level depends on the client, i. For example, the service may
support individual rates, corporate rates, promotional rates, and
frequent buyer rates. A QoS-violation penalty, Vi, may be defined
for failing to meet the requirements of the minimum level Lmini of
an established contract. It is useful to think of contracts as having
an extra QoS level, called the rejection level, with no resource
requirements (no service) and a “reward” of Ri½k� ¼ ÿVi. It
quantifies the penalty of disrupting service to the client (e.g.,
closing the connection in the middle of transmitting a movie). This
model was first proposed by the authors in [4].

The interpretation of QoS levels and the nature of clients who
sign the contract with the service depend on the application. In
applications such as video-on-demand, where clients request an
online movie transmission, QoS levels may represent frame rates
and average frame sizes. The contract is signed between the server
and the requesting user. In other applications, such as commercial
web hosting, QoS levels may specify the server capacity allocated
to a hosted site. The contract Ci is signed with the content provider
(i.e., the hosted web site’s owner). In both cases, it suffices to
specify a QoS level k of contract Ci with the following two
parameters:

. Aggregate Service Rate, �i½k�: expressed as Mi½k� units of
service per specified period Pi½k�, i.e., �i½k� ¼Mi½k�=Pi½k�.
The units of service are arbitrary, but all contracts with a
particular server must use the same unit. Examples of
service rate are: Mi½k� served URLs per period (e.g., in web
servers), Mi½k� served packets per period (e.g., in commu-
nication subsystems), or Mi½k� served frames per period
(e.g., in audio/video servers).

. Aggregate Data Bandwidth, Wi½k�: specifies the aggregate
bandwidth in bytes per second to be allocated for the
contract. Aggregate bandwidth is orthogonal to service
rate because the unit of service (such as a request, frame, or
packet) does not necessarily have a fixed number of bytes.

Aggregate service rate and data bandwidth are useful QoS
parameters because resource consumption at the end-system
can be approximated by two components: 1) a fixed average
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per-unit-of-service consumption (such as per-packet protocol-

processing cost) and 2) a data-size-dependent consumption (such

as data copying and transmission cost). This approximation

becomes increasingly valid with increased levels of aggregation.

We do not deal with jitter and end-to-end response-time

constraints since their satisfaction depends largely on network

support that cannot be guaranteed by the server end-system alone.

3 GENERAL ARCHITECTURE

Fig. 1 gives a high-level view of our architecture for performance-

assured services, showing important components and their

interactions. The shaded regions are the software components we

add to the existing infrastructure to provide QoS-contract

guarantees. In our model, customers desiring QoS provisioning

(e.g., the owners of a web site to be hosted by the service) will

subscribe to receive “guaranteed” service. Subscriptions are

processed via a subscription agent, which is a process or CGI

script separate from the server process, invoked on the server

machine. The agent creates QoS contracts with the machine’s

communication subsystem on behalf of the subscribed customer by

calling the QoS-sensitive API extensions exported by our commu-

nication subsystem. Contracts are admitted if enough resources

exist for their execution. Contract admission guarantees that the

customer will receive service at one of the acceptable QoS levels

specified in the contract or be paid the QoS violation penalty. The

server reserves the right to change the QoS level dynamically. A

utility-maximizing policy, invoked at contract admission time,

(re)computes the “right” QoS level for each contract given the

current resource availability and demand.
QoS levels are enforced by QoS control, which essentially

maintains the resource allocation necessary to meet QoS level

requirements. Since we are interested in portable QoS control

mechanisms, resource allocation is achieved without OS kernel

enforcement. Our approach is to rely on policing mechanisms to

ensure that actual resource consumption coincides with the logical

resource allocation. In services with long-lived flows and per-flow

contracts (e.g., video transmission), load is controlled most

efficiently via flow-control mechanisms that police the outbound

server connections to limit resource consumption, so it does not

exceed its allocation. In services with short-lived flows and

contracts defined on flow aggregates (e.g., web hosting), load is

controlled more efficiently by policing the inbound request rate via

admission control. Request admission control is not to be confused

with admission of new contracts into the system. While the latter

mechanism ensures that the machine is not overloaded as a whole,

the former ensures that each individual contract does not use more

resources than its allocated share.

4 UTILITY OPTIMIZATION

The key goal of our QoS architecture is to optimize global utility

across the community of clients. Such optimization is achieved by

proper resource allocation. The QoS optimization policy is

determined in a replaceable policy module. The module is a self-

contained function that accepts as input a data structure containing

the currently accepted contracts as well as any contracts

considered for admission. The output of the module is the

QoS level chosen for each contract. The module also uses the

output of the profiling subsystem to determine execution over-

heads, as will be described in Section 4.1. Quantification of these

overheads is essential for server capacity planning. The output of

the policy module (i.e., the selected QoS levels of each admitted

contract) is enforced by a separate mechanism that is independent

of how policy decisions were made. In the subsequent sections, we

describe the three main components of the architecture, namely,

the profiling subsystem, the policy module, and the enforcement

mechanism, respectively.

4.1 The Profiling Subsystem

The resource requirements imposed by each QoS contract must be

known before utility optimization can be made. In [2], we reported,

in the context of web servers, that the consumption of resource j on

the end-system due to processing of a unit of service (e.g., packet,

frame, or URL) is accurately approximated by aj þ bjx (where aj
and bj are constants that depend on the consumed resource and x

is the size of data served). Parameters aj, bj are determined by

profiling. In [1], we report on our experimentation with online

estimation of these parameters using resource monitoring and

regression analysis applied to CPU and network resources. Stable

and accurate parameters estimates are obtained. They need to be

reevaluated only when the platform is upgraded. The sensitivity of

these parameters to load variations is found small enough to make

it possible to use their worst-case values for admission control

without underutilizing the system.
Let each created contract Ci have multiple acceptable QoS levels

such that the requirements of QoS level k for resource j are given

by Uj
i ½k� and the utility of delivering this QoS level is Ri½k�.

Aggregating the capacity consumed by processing a sequence of

service units during some observation period, the resource

utilization required to meet the requirements of QoS level, k, of

contract Ci, is given by:

Uj
i ½k� ¼ ajMi½k�=Pi½k� þ bjWi½k�; ð4:1Þ

where Mi½k�=Pi½k� (¼ �i½k�) and Wi½k� are the service rate and

bandwidth parameters of the QoS level.

4.2 The Policy Module

In general, to achieve the best resource allocation, all resources

such as CPU, disk bandwidth, and communication bandwidth

must be considered. In practice, since our QoS guarantees have

throughput semantics, only the bottleneck resource consumption is

relevant. For example, if the bottleneck in some system is disk I/O,

system throughput will be determined by the maximum sustain-

able I/O rate; CPU consumption will be irrelevant. Below, we

describe an optimal single resource QoS-level assignment policy

and establish the near-optimality of a simple first-come first-served

QoS-level assignment. Both policies are implemented in our

architecture as replaceable policy modules.
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4.2.1 Optimal QoS-Level Assignment

Suppose there are n QoS contracts to be handled by the server. Let

contract Ci specify mi acceptable QoS levels with utility
Ri½1�; . . . ; Ri½mi�, respectively, and let the QoS-violation penalty
be Vi. Each QoS level k is now given by the resource utilization
requirements Ui½k� computed as described in Section 4.1 (we omit

the resource index here since we consider a single bottleneck
resource). We introduce an additional artificial QoS level for each
contract, called the rejection level, at which the client receives no

service. This level has no resource requirements (i.e., Ui½k� ¼ 0) and
incurs a negative utility equal to its QoS-violation penalty (i.e.,
Ri½k� ¼ ÿVi) for an established contract, and 0 for a contract being

considered for admission. To reduce the NP-complete optimiza-
tion problem to a polynomial-time problem, we consider a subclass
where Ui½k� can only take discrete values which are multiples of
some small constant �. This problem is solvable in polynomial time

with dynamic programming. The optimality of the solution follows
directly from the optimality of dynamic programming itself.
Dynamic programming produces an optimal solution to a problem

if it exhibits two properties; optimal substructure and recursion [8].
Such a formulation is described next.

Optimal substructure. This property means that if the optimal
path from A to B passes via C, then the subpath from C to B must
also be optimal. We construct a grid of subproblems that satisfy the
aforementioned property. Each subproblem Sði; UÞ is that of

selecting an optimal QoS level kl for the first i contracts, i.e., for
Cl 2 fC1; . . . ; Cig such that 1) their total utility

P
1�l�i Rl½kl� is

maximized and 2) the utilization does not exceed U . In the

following, we prove by contradiction that this formulation exhibits
optimal substructure.

Proof. In the optimal solution for Sði; UÞ, let the first j contracts

C1; . . . ; Cj (where j < i) consume Uj resources, and their total
utility be W . Assume by contradiction that, due to lack of optimal
substructure, W is not the optimal solution for Sðj; UjÞ. In this case,

by optimally reassigning QoS levels to the first j contracts, their
utility can be improved for the same utilization. Hence, the utility
of the entire set of i contracts is improved, which contradicts the

optimality of Sði; UÞ. This proves by contradiction that our
formulation exhibits optimal substructure.

For notational simplicity, we let Sði; UÞ also denote the resulting

aggregate service utility. Given n contracts, we need to solve the
problem Sðn; 100Þ of assigning optimal QoS levels to all the
n contracts, given the full (100 percent) server capacity.

Recursion. The following recursive relation holds true of the
subproblems defined above:

Sði; UÞ ¼ max
1�k�mi

fRi½k� þ Sðiÿ 1; U ÿ Ui½k�; . . . ; U ÿ Ui½k�Þg: ð4:2Þ

For the special case of i ¼ 1,

Sð1; UÞ ¼ max
1�k�m1

fR1½k�jU1½k� � Ug: ð4:3Þ

This recursive relation is the foundation of our dynamic program-

ming formulation. Since the utilization is discretized, there is only

a finite number, K ¼ ð100=�Þ, of possible utilization values in the

range ½0; 100�. Thus, there are a total of nK subproblems to be

solved. Solving all of these problems will take OðK
P

1�i�n miÞ,
which is equivalent to OðKnLavÞ, where Lav ¼ ð

P
1�i�n miÞ=n is the

average number of acceptable QoS-levels per contract. Since K is a

constant (albeit potentially large), the complexity of the algorithm

is OðnLavÞ, i.e., the algorithm is linear in the number of contracts.

The complete algorithm is given below.

Algorithm A

1 for i ¼ 1 to n

2 for U ¼ 0 to 100 in steps of �

3 compute Sði; UÞ from (4.2)

4 return Sðn; 100Þ
We shall use this algorithm as a basis for comparison with a
simpler QoS-maximizing heuristic to assess the quality of the
heuristic solution. This comparison gives insight into mechanisms
for QoS optimization for a particular application.

4.2.2 FCFS Assignment

While the above optimal algorithm executes in polynomial time, in
practice, it may be preferable to serve clients in a first-come first-
served manner such that, once a QoS level is chosen for a client, it
is not altered by subsequent arrivals. The policy eliminates
unwanted QoS fluctuations during the client’s session. It has
lower computational complexity and, therefore, lower practical
overhead. In this section, we prove analytically that this policy is
near-optimal. Assume that the server exports n QoS levels,
L1; . . . ; Ln, and has a single bottleneck resource. Assume that the
resource requirements of each QoS level are fixed and determined
only by the level itself (e.g., the resources needed for movie
transmission depend only on image quality and not the identity of
the recipient). Let the QoS level with the highest absolute reward
be denoted Lhi and the QoS level with the highest reward per unit
of consumed utilization be denoted by Llo. Let the consumed
bottleneck resource utilization U1

i ½k� be denoted by h and l for the
two QoS levels, respectively. Assume that contracts assign a
random uniformly distributed utility Ri½k� to each QoS level such
that the utility of level Llo ranges between Minlo and Maxlo and the
utility of level Lhi ranges between Minhi and Maxhi.

The optimal policy will always keep the clients with the largest
utility for the same resource consumption. Thus, the optimal policy
will achieve, at best, a utility of maxðMaxhi=h; Maxlo=lÞ per unit of
resources. Note that if there are enough enqueued clients to always
fully utilize the system, maxðMaxhi=h; Maxlo=lÞ ¼Maxlo=l. In
contrast, if the system is underloaded, current clients can be served
at their maximum QoS level and maxðMaxhi=h; Maxlo=lÞ ¼
Maxhi=h (since degrading the current clients will only reduce
their utility without letting more clients into the system).

The FCFS policy will reserve resources for arriving clients in
their arrival order until the processing capacity saturates. Since
utility is uniformly distributed, FCFS will achieve the expected
utility of ðMaxhi þMinhiÞ=2h per resource unit if it assigns QoS
level Lhi and ðMaxlo þMinloÞ=2l per resource unit if it assigns QoS
level Llo. In general, by assigning Lhi to new clients under low load
and assigning Llo under high load, FCFS allocation policy can
achieve an average utility of maxððMaxhi þMinhiÞ=2h; ðMaxlo þ
MinloÞ=2lÞ per unit of resource consumption. For the sake of
finding a lower bound on achieved utility, the above expression is
minimized by setting Minhi and Minlo to zero. In this case, the
FCFS achieves half of the optimal utility, which constitutes the
lower bound. FCFS is thus proven to be a near-optimal policy.

The difference between the optimal policy and FCFS decreases
when the QoS-violation penalty is taken into account. QoS
violation penalty is never incurred by FCFS since it never
reallocates resources assigned to already admitted clients. The
optimal policy can take resources away from initially accepted
clients and allocate them to more important ones at the cost of
paying the QoS violation penalty. Naturally, the larger the penalty,
the less beneficial such resource reassignment may be, and the
closer the optimal policy becomes to FCFS.

Fig. 2 depicts simulation results that compare FCFS allocation
and fair allocation to an optimal QoS maximizing resource
allocation policy. By fair, we mean the prevailing policy in
contemporary servers, where each client gets an equal share of
resources on the average. All contracts were assumed to have two
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QoS levels; Lhi, which requires 2 percent utilization per client, and

Llo, which requires 1 percent. Rewards are uniformly distributed in

their respective ranges. The figure plots average normalized utility,

defined as the aggregate utility achieved for the community of

clients by the given resource allocation policy normalized by that

of the optimal policy and averaged over 100 experiments. The

average normalized utility is plotted versus server load, expressed

in the number of accessing clients. Note that the maximum number

of clients supportable at QoS level Lhi is 50 and the maximum

number supportable at Llo is 100. Thus, the server is underutilized

when clients < 50, and overloaded when clients > 100. The FCFS

policy assigns the highest QoS level, Lhi, at low load. At high load,

it assigns the QoS level with the highest reward per unit of

resource consumption. Several curves are shown for the FCFS

policy which differ in the QoS violation penalty V of the

application, expressed as percentage of maximum reward.
The figure shows that FCFS is trivially optimal (by selecting

QoS level Lhi) when the server is underutilized. As load increases,

the performance of FCFS drops since assigning Lhi may waste

scarce resources. Eventually, as load increases, our FCFS policy

switches to assigning Llo to incoming clients, thus approaching the

optimal policy again. When it becomes impossible to serve all

clients, the optimal policy, unlike FCFS, can increase utility further

by replacing current less important clients by arriving more

important ones, assuming the QoS violation penalty is small. As

more clients access the server, the efficacy of such replacement

increases, thus increasing the optimal aggregate utility over that

achievable by FCFS. This explains the slight decline in the relative

performance of FCFS as the load increases beyond 100 clients in

Fig. 2. It also explains why FCFS is closer to the optimal when the

QoS violation penalty is higher. For critical applications (such as

e-commerce) where the QoS violation penalty is very high, FCFS

becomes optimal for a large range of load conditions.
The figure also shows that fair resource distribution quickly

approaches zero utility in a staircase fashion as the machine gets

overloaded, thus motivating QoS-sensitive resource allocation. A

drop in utility is seen with fair distribution when per-client

resource allocation decreases below the minimum requirements of

a particular QoS level.

5 QOS CONTROL

We describe our implementation of a multithreaded communica-

tion server with QoS extensions for expressing and enforcing

QoS contracts and their resource allocation. The communication
server has been implemented on the Open Group microkernel
Mk7.2. It exports a socket API to the application, with limited QoS
extensions for use by the subscription agent.

5.1 A User-Space QoS Enforcement Architecture

Fig. 3 depicts our QoS enforcement architecture. In order to
achieve per-contract QoS, we use a thread-per-contract model in
which each contract is allocated one outbound contract handler
thread for outgoing traffic and one inbound contract handler
thread for incoming traffic. The pool of all contract-handler threads
constitutes the server’s worker threads that process contracted
connections. For connections with no QoS contracts, a default
handler pair is used. This pair is created at server boot time and
assigned a lower priority than that of other handlers, all of which
are assigned the same priority in the kernel. A user-level scheduler
implemented in the communication server is responsible for
sequencing the contract-handler threads, thus decoupling their
QoS-specific scheduling policy from the generic fixed-priority
scheduling support in the kernel. Sequencing of contract-handler
threads is implemented by associating a semaphore with each.
Each thread calls the user-level scheduler after transmission of
each packet. The scheduler determines which thread to run next,
signals its semaphore, and blocks the caller on the caller’s
semaphore. If the network link is the bottleneck, a complementary
mechanism is needed to prioritize traffic transmission on the link.
For this purpose, outgoing packets are queued in a common heap
within the server sorted by handler priority and are dequeued in
priority order when the network device is not busy.

Contract handlers are implemented as quasi-periodic threads.
The abstraction of quasi-periodic threads is novel and is a
contribution of this work. A quasi-periodic thread Qi serving
contract Ci is a thread that can be executed periodically for a finite
duration, starting at an arbitrary point in time. It has a period and
budget (per resource) that can, in general, change dynamically,
depending on the current QoS level assigned to the contract (recall
from Section 2 that each QoS level k of contract Ci specifies a
period Pi½k�, a budget Mi½k�, expressed in units of service, and a
data bandwidth Wi½k�). Fig. 4a depicts an instance of executing a
quasi-periodic thread with a single resource budget.

For each quasi-periodic thread, Qi, the communication sub-
system scheduler maintains a thread data structure that associates
Qi with an underlying fixed-priority kernel thread Ti, an under-
lying kernel semaphore Si, a period Pi, a periodic budget vector Ei

(in which each element Ej
i gives the budget of the jth resource),
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and an eligibility flag Fi. The budget vector is replenished every
period Pi by a periodic timer event. The eligibility flag determines
whether periodic execution of the thread is enabled or disabled. It
can be set or reset by the API calls start quasiperiodic and
stop quasiperiodic, respectively.

Initially, the scheduler starts out with an empty set of quasi-
periodic threads. When a new client subscribes to the service and a
contract Ci is established by the subscription agent (e.g., a new on-
demand movie is requested), a fixed-priority kernel thread Ti is
created to serve the contract. The thread registers itself with the
communication subsystem scheduler, at which point a quasi-
periodic thread data structure Qi is created for it. Upon registration
with the scheduler, the thread Ti is blocked on its kernel
semaphore Si. Once the eligibility flag is set (e.g., by the first
frame of the transmitted video), the semaphore Si will be signaled
periodically with period Pi that is determined by the current QoS-
level of the contract. The thread will be allowed to execute within
each period only until one or more elements in its budget vector,
Ei, expire.

An event requesting service from the contract handler thread
will use the available API to start the quasi-periodic thread, which
turns on the eligibility flag. If the thread has no expired resource
budgets, it will be put in the ready queue of the communication
subsystem scheduler immediately. Otherwise, it will be put in the
ready queue when the budgets are replenished.

Since the communication subsystem scheduler does not have its
own threads, but rather “borrows threads from the kernel,” a
kernel thread registered with it may upset its scheduling if it
blocks on kernel semaphores. This is because, unless the blocking
thread notifies the user-level scheduler that it is about to block, the
scheduler does not know it and will not schedule another thread
for execution. Any semaphore operations of quasi-periodic
threads, therefore, have to use user-level semaphores. We
implemented our own semCreate, semWait, and semSignal

operations such that blocked threads are awakened in priority
order. The priority queue of the semaphore allows semaphore
operations to obey the QoS-level aware prioritization policy
implemented in the communication subsystem scheduler.

In the communication subsystem server, each writeðÞ socket call
wakes up an API thread, which queues up the message for

transmission by the corresponding contract handler. All traffic is
handled by the default contract until an explicit socketBindContract
call is made. The call binds a socket to a specified (nondefault) QoS
contract, essentially performing classification. From then on, all
communication via this socket will be deposited into that contract’s
message queue and processed by its corresponding contract-
handler thread. The contract handler is signaled when its message
queue becomes nonempty. It disables its own periodic execution
when it has drained the queue. Thus, quasi-periodic contract
handler threads of inactive contracts do not consume extra
resources. Fig. 4b presents the communication subsystem archi-
tecture integrating QoS mapping, admission control, QoS-level
selection, scheduling, contract-handler threads, traffic classifica-
tion, message queues, and the outgoing packet heap.

To enforce resource allocation, the communication subsystem
must ensure that the contract-handler thread for Ci gets the
utilization Uj

i ½ki� of each resource j, as computed by the QoS-level
selection algorithms described in this paper. This requirement is
viewed as a scheduling constraint. To meet this requirement, the
quasi-periodic contract-handler thread for Ci is set such that its
period Pi ¼ Pi½ki� and its budget elements Ej

i ¼ U
j
i ½ki�Pi½ki� during

that period. At the end of processing a unit of service (such as
transmitting a video frame or sending a URL), the server informs
the communication subsystem (via a special API call), which in
turn decrements each budget Ej

i by aj þ bjx; the resource
consumption attributed to the processed service unit (aj and bj
are the profiling parameters obtained from QoS mapping, as
described in Section 4.1).1 In a typical contract where QoS is
defined on aggregate flows, Ej

i will be sufficient to transmit
hundreds of packets or serve hundreds of URLs.

5.2 Evaluation of the OS Extensions

In order to evaluate the efficacy of the OS extensions in achieving
proper resource reservation and policing for QoS guarantees, we
conducted two sets of experiments. In the first, we used a best-
effort version of the multithreaded communication server. In the
second, we used a communication server fitted with the
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aforementioned QoS support. Fig. 5 compares the resulting

performance when three premium UDP flows of fixed bandwidth

1Mb, 2Mb, and 3Mb, respectively, are sent concurrently with a

best-effort UDP flow of gradually increasing bandwidth. Since, in

this section, we are interested in evaluating enforcement (rather

than utility optimization), only one QoS level was defined in each

contract. This nonflexible QoS specification imposes maximum

stress on the enforcement mechanism. The experiment was

conducted on a Pentium PC connected to a 10Mb Ethernet. Once

the aggregate outgoing flow saturates the Ethernet link, the best-

effort server is unable to guarantee bandwidth allocation for

premium flows. This effect is demonstrated in Fig. 5a by the

decline in premium flow bandwidth after the communication link

gets saturated. The QoS-enabled server, on the other hand, is able

to provide and preserve bandwidth guarantees to premium flows,

as shown in Fig. 5b. The best-effort flow occupies the remaining

bandwidth.
The primary mechanisms by which QoS-sensitive performance

is achieved are proper policing and protection of premium traffic

from nonguaranteed traffic. Fig. 6 demonstrates the testing of these

mechanisms. In this experiment, we established a QoS contract for

the guaranteed traffic class A. Two resources were considered by

profiling, namely, CPU consumption and communication band-

width utilization. Two application threads were created. One

sends “guaranteed” traffic through a socket bound to class A, and

the other sends “nonguaranteed” traffic. Except for the socket

used, the code of the two threads was identical. Each thread

implemented a busy loop sending outgoing traffic. Traffic of both

flows was policed to the limit shown by the dotted line in Fig. 6.

The figure plots the packet rate received by each client. As shown

in the figure, neither of the flows ever exceeds the policed limit,

which demonstrates the correctness of the policing mechanism.

Furthermore, when the network saturates at around 700pkts=s the

lower priority flow drops as the high priority flow continues to

increase, making the sum of the two flows constant and equal to

the maximum packet rate that saturates the network. This

demonstrates the correctness of flow prioritization. Policing and

prioritization coupled with proper QoS mapping and admission

control that keeps
P

i Ui½ki� < 100% ensure satisfaction of QoS

guarantees for contracted traffic.

5.3 Portability Considerations

In this section, we discuss some considerations in implementing

the QoS Contract abstraction on operating systems with no thread

support, such as classical Unix. Unlike the thread-based imple-

mentation where the processing of contracted communication
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Fig. 5. Enforcing QoS guarantees. (a) Best-effort server. (b) QoS-sensitive server.

Fig. 4. Communication subsystem architecture. (a) Quasi-periodic thread execution. (b) The communication server.



flows is triggered by its own thread scheduler, all processing in the

threadless implementation occurs either in the context of library
calls made naturally by the application, namely, the socket library

calls, or in the timer event. This approach introduces two new

challenges. First, socket library calls are invoked with the

granularity of request or frame processing, which is coarser than

the granularity at which the communication scheduler is invoked.
Second, we no longer have dedicated contract-handler threads

with preassigned utilization budgets to police server traffic since

our code executes directly in the context of application code.
Coarser granularity means that contracts’ rate and bandwidth

requirements are met when averaged on a larger time scale (e.g., 1

or 2 seconds). The lack of contract-handler threads is countered by

separating the notion of a budget from the notion of a thread. In

this implementation, periodically replenished per-contract budgets
are maintained in order to regulate resource consumption. These

budgets, however, are no longer associated with a particular

thread. Hence, the multithreaded communication server is

replaced with a shared memory segment that keeps track of

individual contract budgets. We enable an arbitrary application
process to charge “chunks” of its execution to an arbitrary

contract’s budget depending on the request being served. This is

done via a contractChargeBudgetðCi; xÞ call, which decrements (in

shared memory) the budget for each resource j of the contract by

aj þ bjx, as in the previous implementation. When a budget
expires, the call may be blocking or nonblocking (in which case, it

returns failure). Another call, contractCheckBudgetðCiÞ may be

used to determine if any resource budget of a contract has expired.

Below, we discuss how these calls may be used by different

applications to achieve QoS contract guarantees.

5.3.1 Per-Flow Contracts

In applications with per-flow contracts, such as video-on-demand
servers, QoS can be controlled by policing the outgoing flow (e.g.,

movie transmission). In such servers, the writeðÞ socket library call

may be instrumented to call the blocking version of

contractChargeBudgetðCi; frame sizeÞ upon each frame transmis-

sion. The call will block when some resource budget expires and
will unblock it when budgets are replenished. Thus, while the

communication subsystem in this case remains unaltered, the total

volume pumped through any given connection is bounded by the

contract.

5.3.2 Aggregate Flow Contracts

If server responses are short, contracts are more meaningfully

defined on flow aggregates as, for example, is the case with web

hosting applications. QoS control is best achieved by admission
control applied to incoming server traffic. Admission control is
achieved by instrumenting the server’s readðÞ socket library call to
invoke contractCheckBudgetðCiÞ as each request is read in. The
latter call returns an error if some budget of the particular contract
has expired, in which case, the instrumented code will discard this
request (for violation of the contracted rate). In addition, the
writeðÞ socket library call that sends the response to the client is
instrumented to call a nonblocking contractChargeBudgetðCi; xÞ
upon response transmission to maintain an accurate budget
balance. In both of the above contract types, a periodic timer
replenishes the budgets and signals any blocked processes to
resume. The contracted rates are therefore satisfied.

6 RELATED WORK

Recently, QoS provisioning for Web, multimedia, and soft real-
time applications has received considerable attention [6]. Since
QoS provisioning is closely related to proper resource allocation
and scheduling, many research efforts have focused on operating
system design. For example, lazy receiver processing [9] suggests
an efficient approach for structuring the communication subsys-
tem in an operating system kernel. Processor capacity reserves [14]
have been used in Mach as a new kernel abstraction to allocate
processing capacity for multimedia applications [12]. Flexible CPU
reservations were implemented in Rialto for efficient scheduling of
time-constrained independent activities [11]. Resource containers
[7] were proposed for server applications to decouple server
protection domains from resource principals from the operating
system’s perspective. QoS-guaranteed protocol stack implementa-
tions in the user space have been proposed in [10], [13]. Our
architecture differs in that it supports contracts with multiple QoS-
levels that can be dynamically recomputed. In addition, our
architecture does not require modifications to the operating system
kernel.

Our architecture uses the QoS contract model we suggested in
[4] in the context of a a QoS negotiation framework that attempts to
maximize system utility. This work was extended for communica-
tion-oriented applications in [5], which advocated a new archi-
tecture for OS communication subsystems. We also presented in
[3] a middleware solution for operating systems without kernel
thread support. In this paper, we focus explicitly on transparency,
describe for the first time our implementation of quasi-periodic
threads, and establish new results regarding near-optimality of
simple QoS level selection policies. Our communication architec-
ture introduces new programming abstractions that encourage a
QoS-sensitive application design methodology, yet does not
preclude reusing existing server code in new QoS-sensitive
contexts.

7 CONCLUSIONS

We proposed a new architecture and structuring methodology for
server-side communication subsystems which supports the concept
of QoS contracts. A QoS contract specifies acceptable QoS levels
along with their utility and a QoS-violation penalty. In our
architecture, QoS contracts are established transparently to the
application server by a separate entity called the subscription
manager, which makes it easier to retrofit the architecture into
legacy software. We addressed the problem of optimizing aggregate
user-perceived service utility on server end-systems and compared
the optimal policy with simple reservation-based solutions. An
implementation of utility-maximizing QoS management is pre-
sented, relying on proper resource allocation, budgeting, and
policing mechanisms within the common socket API. The abstrac-
tion of dedicated contract-handler threads, called quasi-periodic
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Fig. 6. Traffic prioritization.
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threads, was discussed. In summary, communication servers
which support QoS contracts are an important component of
future QoS-aware services. This paper proposed new foundations
for their design.
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Thinning Schemes for Call Admission Control
in Wireless Networks

Yuguang Fang, Senior Member, IEEE

Abstract—In this paper, we present new call admission control schemes, the

thinning schemes, which smoothly reduce the traffic admission rates. Performance

analysis is carried out and new analytical results are obtained. It demonstrates that

the thinning schemes can be used to derive many known call admission control

schemes.

Index Terms—Call admission control, Resource allocation, Wireless networks,

Multimedia, Blocking probability.

æ

1 INTRODUCTION

THE future telecommunications networks (such as the third
generation wireless networks) target providing integrated services,
such as the voice, data, and multimedia, via inexpensive low-
powered mobile computing devices over the wireless infrastruc-
tures ([1], [2]). The demand for multimedia services over the air
has been steadily increasing over the last few years, leading to the
design consideration of wireless Internet. Depending on the QoS
(Quality of Service) requirements for various service requests from
mobile users, different priorities may be assigned to various call
connections. For example, real-time services such as voice or
streaming videos may be assigned higher priority over non-real-
time services such as data; handoff call connections should be
given higher priority over new call connections in order to reduce
the call dropping probability; mission critical data should be
handled with higher priorities than some real-time data such as
voice; users who pay more for their services should be treated with
higher priorities over those who pay less. In order to support such
mixed service requests in these wireless networks with multiple
traffic types, efficient resource provisioning is a major issue ([2],
[3]). Call admission control (CAC) is such a provisioning strategy
to limit the number of call connections into the networks in order
to reduce the network congestion and call dropping probabilities.

Prioritized traffic systems consisting of new calls and handoff

calls in wireless networks have been intensively investigated in the

literature (see [4], [5] and references therein). An admitted call for a

mobile user may have to be handed off to another cell into which

the mobile user moves, hence the call may not be able to gain a

channel in the new cell due to the limited resource in wireless

networks, which will lead to the call dropping. Thus, new calls and

handoff calls have to be treated differently in terms of resource

allocation. Since users tend to be much more sensitive to call

dropping than to call blocking, handoff calls are normally assigned

higher priority over new calls. The guard channel scheme ([3]) has

been proposed to handle such systems: A proportion of the

channels assigned for a base station has been reserved for handoff

calls. This guard channel scheme can be generalized to handle the

multimedia networks with multiple classes of priority services. Li

et al. ([4]) have studied the guard channel scheme for wireless

networks with multiple traffic types, the multiple thresholding

scheme, in which different thresholds are used for each traffic type,
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