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Abstract

Performance analyses for embedded software construc-
tion with existing components require knowledge of perfor-
mance characteristics of both application software and op-
erating system (OS) services, especially those services that
are critical for real-time applications. Since end users nor-
mally do not control the structure and implementation of OS
services, but have to use them to meet the system-level per-
formance constraints, it is essential and critical to charac-
terize the performance of OS services with measurements.
As such measurements are taken for performance analysis,
not for comparison, the measurement methods should be
different from those traditionally used for comparison. In
this paper, we present an end-to-end method for measur-
ing the performance of timing and scheduling services in
selected real-time OSs for the performance modeling and
analysis. The proposed method takes the factors of both
OS implementations and application configurations into ac-
count to obtain the measured performance close to what
applications will experience at runtime. The results have
shown that the performance characteristics of OS services
can be measured without instrumenting the kernel source
code, and hence, can be reused for the analysis of a family
of applications.

1 Introduction

Embedded SoftWare (ESW) has usually been imple-
mented as an integration of existing domain-specific control
algorithms and device drivers that interact with the exter-
nal physical world. Such ESW normally runs on resource-
limited hardware and is subject to stringent timing con-

�The work reported in this paper was supported in part by DARPA
under the US AFRL contract F30602-01-02-0527.

straints to meet the underlying control application require-
ments. Performance analysis is, therefore, essential and
critical during the design and integration of ESW to guar-
antee that the application timing constraints will be met at
runtime. As real-time operating systems (RTOSs) are ma-
turing, most ESW tends to use the existing RTOSs for run-
time resource management. An RTOS can be viewed as
a set of functional components, each of which provides a
service to the application. Most performance analysis tech-
niques require knowledge of the performance characteris-
tics of RTOS services and application-level performance
characteristics for design phase performance analysis. Al-
though RTOS vendors provide some product performance
characteristics such as throughput, interrupt latencies, and
context switch time, such information is usually insufficient
for ESW performance analysis. Therefore, it is common for
system designers to measure the RTOS performance to meet
their domain modeling and analysis requirements. Since
most RTOSs are released only as binaries, the measure-
ments are expected to be done without source code. Further-
more, the measurements should be made for each service
since “service” is a basic OS unit used in ESW integration.
A traditional measurement method meeting these require-
ments is benchmarking. However, benchmarks, in general,
only produce a single, statically configured workload on the
system. Thus, a different benchmark must be run for each
application configuration, resulting in costly duplication of
measurement effort.

In this paper, we present a new approach for measure-
ment and application of the performance characteristics
of RTOS services for design-time performance analysis of
ESW development and integration. Our method is based
on end-to-end measurements using a combination of mi-
crobenchmarks and synthetic workloads. End-to-end (e2e)
measurements obtain performance information as an ex-
ternal observer, and therefore, minimize the interference
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during measurements and provide the performance results
close to what the application will experience at runtime.
The e2e method can also uncover inter-service dependen-
cies and performance metrics without RTOS source code,
and can be applied to any system-level service like mid-
dleware and some subsystem services. Microbenchmarks
are an effective method for measuring individual and inde-
pendent OS-level services without instrumenting the kernel.
However, as are typically used, they exercise the system in
a limited way that is not necessarily representative of an ac-
tual application workload. We can derive more realistic per-
formance metrics by coupling the microbenchmarks with
representative, domain-specific synthetic workloads. Syn-
thetic workloads allow the measurements to be taken un-
der conditions close to the real applications with represen-
tative resource usage and interaction patterns. Through such
synthetic workloads, our measurements can cover most
frequently-used application configurations and interaction
patterns so that the results can be reused to analyze a family
of applications.

In this paper, we demonstrate this technique by measur-
ing the performance of two fundamental RTOS services:
timing and scheduling services. The measurements are
made on selected RTOSs while varying workloads so that
we may obtain the performance characteristics of these ser-
vices under different platform and application configura-
tions. Our measurement technique makes it possible to use
the evaluation results for performance analysis of ESW run-
ning on the same targets used for the measurement.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describes a hierarchical
performance model with reusable components, where the
performance measurements with the proposed method will
be used. Section 4 presents the measurement methodology
and the design of experiments for measuring timing and
scheduling services, including the measurement environ-
ments, measured parameters, measurement tools, and test
programs. Section 5 presents our measurement results and
the corresponding analysis of measured timing and schedul-
ing services. The paper concludes with Section 6.

2 Related Work

In recent years, many models have been proposed for
OS and integrated ESW performance analysis [1–3, 7]. All
these models suggested a modeling hierarchy with the OS
performance model as a separate layer between hardware
and the application, and required the measurement of OS
services for model construction and performance analy-
sis. There have also been numerous general techniques for
measuring the different aspects of computer systems [5, 9],
and bechmarks for OS-level measurements, such as Rheal-
stone [6], Hartstone [15], lmbench [10], and hbench-OS [3].

Although these techniques are useful in measuring the per-
formance of individual operations and determining perfor-
mance bottlenecks, the effects of application structures and
interactions — which may make significant performance
differences of ESW — are ignored. The information mea-
sured with these benchmarks is limited and inaccurate for
ESW performance analysis.

Measurements that include the effects of applications
can be made with a synthetic workload. Methods of gen-
erating synthetic workloads include Hartstone [15], a syn-
thetic workload specification language (SWSL) and gen-
erator [8], and DynBench [12]. All these techniques con-
sidered application properties, but the performance metrics
and frameworks were not defined for RTOS service mea-
surements. Some ad hoc methods have also been used for
performance measurements of OS services [4, 11, 13] with
domain-specific applications, although the measurements
were usually restricted to a specific configuration used for
the purpose of comparing different products.

Our measurement method focuses on how to obtain in-
formation on the performance of various RTOS services un-
der representative application configurations, that is neces-
sary for the analysis of ESW design and integration. This is
different from the measurements targeted for product com-
parisons in that (a) the measurements should be as non-
intrusive as possible, (b) the measured information should
be reusable for a family of applications, and (c) measure-
ments should encompass all possible configurations of the
service in which it can be used.

3 Performance Modeling and Construction
Methodology

Our goal is to support ESW analysis for design and in-
tegration by providing reusable performance data for RTOS
services. The performance measurement and performance
model construction for such analysis vary from one appli-
cation domain to another. The application domain of inter-
est is embedded controls, such as machine control, avionics
mission computing, and automotive vehicle control. In such
a domain, the ESW is modeled as a set of functional compo-
nents which interact with one another and also with the en-
vironment. In a component-based software architecture, the
components which comprise a system can be designed and
implemented in a modular manner so they may be reused
for a family of applications, as described in [14]. Construct-
ing ESW is then a process of integrating these components.
The performance model should, therefore, be constructed
based on the performance of individual components and
their interactions on a given platform. Performance analysis
at design time will be greatly improved if the performance
information for each component is included in the compo-
nent model, as shown in Figure 1.
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In this model, the performance of each behavior of a
component is modeled with two types of information: per-
formance requirements and performance characteristics.
These are used as input to the analysis process, and are re-
ferred to as performance parameters for the component. The
requirements normally come from higher-level application
constraints. Their primary use in the analysis process is to
determine if individual and overall system requirements are
met for a given software configuration. Requirements are
generally reusable for analyzing a given application in dif-
ferent execution environments. The requirements also help
determine the types of performance metrics which are asso-
ciated with the component’s behavior. These metrics form
the performance characteristics in our model. They may be
directly measured or computed from the measured informa-
tion. The characteristics depend on the implementation of
the behavior and its execution environment. They can be
reused to analyze different applications in the same envi-
ronment.

Requirements Requirements Requirements
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Figure 1. The component model with perfor-
mance information.
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Figure 2. Hierarchical, analytical performance
model.

As the ESW is constructed hierarchically by integrating
components, the performance information is immediately
available for performance model construction and analy-
sis. The performance model is constructed hierarchically,

reflecting realization layers [1], as shown in Figure 2. In
this paper, we treat all software components running on top
of an OS as applications, although a finer-grained model
with more layers representing other system software, such
as middleware, can be constructed in the same way.

The proposed e2e measurement methodology is used to
obtain the performance characteristics. The e2e measure-
ment is a runtime, sampling-based method, which records
the start and end times of an activity of interest. The per-
formance characteristics of a service are defined as a set
performance metrics for the measurements.

The experiments for measuring service performance in-
clude “representative” service requests and application con-
figurations. The measured values will be collected at the
application level. Since the existence of design patterns in
a given domain usually leads to a small number of likely
application configurations, synthetic workloads can be used
to generate such representative application configurations
with good coverage. To consider the effects of hardware
architecture, our measurement will be applied directly to
each combination of hardware and RTOS. Although the
measured results of service performance will be hardware-
specific, techniques [3, 10] exist to break the dependencies
further.

4 Design of Experiments to Measure Timing
and Scheduling Services

We view each service, like the timing service or the
scheduling service, as a component in the system software
layer in Figure 2 to design experiments for measurements.
This view would be more appropriate when a real-time
micro-kernel like EMERALDS [16] is used, where we re-
tain only required services while switching off the others.
Two basic RTOS services, timing and scheduling services,
are measured. Timing services include various clock and
timer management mechanisms implemented in an RTOS.
The performance information for such a service is criti-
cally important to time-based activities in ESW. Schedul-
ing services, on the other hand, are essential for software
execution. The performance of such a service plays a key
role in assessing the quality of the entire system. Timing
and scheduling services are the basic services required by
all embedded control applications and are supported in all
RTOSs. Our measurements of timing and scheduling ser-
vices should, therefore, reveal how these overheads and un-
predictability change with different system configurations
and application usages. When performance analysis needs
to be done, such measured information can then be used to
construct an accurate performance model based on the given
application usage and system configuration.

To achieve such a measurement goal, we define a set
of performance metrics for overhead and unpredictability
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which are reusable for the analysis of a family of applica-
tions. We then construct synthetic workloads to enumerate
representative ways of using timing and scheduling services
in ESW applications and measure the service performance
using microbenchmarks. The measurements were made on
a set of selected hardware and RTOSs to demonstrate the
general applicability of our measurement methods. Note
that the performance of different hardware and RTOSs is
not measured to compare and select targets. Instead, they
are measured for constructing performance analysis models
for a family of applications that will be executed on these
targets.

4.1 Measurement strategy

Measurement environment. We designed a set of exper-
iments for each different combination of hardware and op-
erating system to obtain the performance of RTOS services
directly. Table 1 lists the hardware we used in the measure-
ments.

The RTOSs we measured include QNX 4.24, OSEK-
Works 2.0 and RTLinux 3.0. We assume that the source
code of these kernels is not available for the measurement,
although the source code availability of RTLinux 3.0 helps
us understand the relationships among the OS services, and
can be used to verify our analysis results. The collected
data were temporarily stored in the main memory and later
dumped to an appropriate host for analysis after the services
used for storage were turned on at the end of each measure-
ment.

The versions of selected RTOSs that we had, could not
be run on all the hardware platforms. The configurations
used for measurements are given in Table 2.

Hardware QNX RTLinux OSEKWorks
P133 QNX-P133 RTL-P133 -
P166 QNX-P166 RTL-P166 -

MPC555 - - OSEK-MPC

Table 2. Testbed configuration for measure-
ments.

Performance metrics. It is important to choose the per-
formance metrics for a given OS service carefully. The
metrics are expected to be minimum in number, reusable
for a family of applications, and independently measurable.
A minimum set of metrics is desired to reduce the cost
of experimentation and data collection while still provid-
ing sufficient data for the analysis. Finding a minimum set
of performance metrics for a service requires understand-
ing of the analysis requirements, dependencies among the

OS services, and the relationships between different met-
rics. Reusability means that the metrics are measured once
and reused whenever the same environment is used, thus
eliminating duplicate measurements for the same environ-
ment for different applications with similar workloads and
interaction patterns. Finally, the independently-measurable
metrics simplify the experiments and data analysis and are
more flexible when they are used in a performance model.

For the timing service, we measured clock overhead and
interval jitter. The clock overhead is the CPU time used to
process each signal generated from the system clock. The
interval jitter is the variance in the length of time intervals.
Interval jitter affects when periodic operations actually oc-
cur and is thus a source of unpredictability in the system.
For the scheduling sevice, we measured the context switch
overhead. The context switch overhead is defined loosely
as in [3], which is the time taken from terminating a task to
starting execution of another ready task.

Measurement tools and analysis. We use sampling tools
to measure the specified performance metrics. To obtain
accurate timing values, our measurement tool samples the
processor clock cycles for each measurement. Most mod-
ern processors are equipped with some registers dedicated
to performance and timing measurements. We use the hard-
ware Time-Stamp Register (TSR) on the Pentium processor
and the Time-Base Register (TBR) on the MPC 555. Both
are 64-bit registers, initialized to 0 when the system powers
up and incremented by 1 upon every hardware clock tick at
the CPU speed.

For each experiment, 10,000 samples are collected dur-
ing the normal execution. In addition to computing the av-
erage and standard deviation of the measured parameters,
we also find the maximum and minimum values as perfor-
mance bounds for each measured parameter on a given plat-
form.

4.2 Experiment design

Experiments for timing service measurement: the met-
rics of timing services include clock overhead and interval
jitter. The clock overhead depends mainly on the clock res-
olution. It can be measured by executing a test program
under different resolutions. Specifically, given a program P
with execution time e, the overhead of each clock tick can
be computed using Eq. (1).

em = e+ I0 �o+ I1 �o+ I2 �o+ : : : (1)

where em is the measured execution time of P; e is the real
execution time of P; and o is the overhead of processing
each clock tick. Each term Ii � o represents the overhead of
processing the clock ticks during the time interval Ii�1 � o.
Ii is the coefficient of the i-th order overhead. Given the
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Hardware Processor type Processor speed (MHz) Memory size (MB) Cache size (KB) Bus speed (MHz)
Intel P133 Pentium 133 32 128 66
Intel P166 Pentium 166 32 128 66

ETAS MPC 555 40 2 - 20

Table 1. Hardware configurations for OS service measurements.

clock resolution r when the measurement is taken, Ii can be
calculated recursively as:

I0= be
r
c; I1= b I0 �o

r
c; I2= b I1 �o

r
c; : : : In= b In�1 �o

r
c; : : :

(2)
It can be seen from Eq. (2), Ii decreases exponentially.

Thus, given any e, there exists a positive integer n such that
for any N > n, IN = 0, as the overhead introduced by its pre-
vious term will eventually be less then r. In the OS service
measurements, the order of Ii seldom exceeds 2 as e is nor-
mally tens of milliseconds and the OS overheads are in the
order of microseconds. Therefore, the clock overhead can
be computed as follows:

em = e+ be
r
c �o+ b e

r c
r
�o2 (3)

em = e+ be
r
c �o; (4)

Eq. (3) is used when the clock resolution is fine (nor-
mally less than 0:5ms) and/or the execution time is long,
while Eq. (4) is used for the other cases. According to
Eq. (3) and (4), the clock overhead can be finally derived
using following equation:

o=

( p
4�r�be=rc�(em�e)+r2�be=rc�r�be=rc

2�be=rc for fine resolution
em�e
be=rc otherwise

(5)
The execution time e of P is necessary to compute clock

overhead o. We set the clock resolution much larger than
e to obtain a measurement e0 that is close to the real e, as
given in Eq. (6).

e0 = e; f or r � e (6)

In our experiment, the test program P is designed with an
execution time of 10ms. The resolutions used for the clock
overhead measurements range from 100µs to 100ms.1

Interval jitter is a product of both the clock resolution and
the application configuration. The timer resolutions used in
our experiments are selected to be 500 µs and 1 ms.2 The

1The resolution range is chosen based on the capacity test of a platform
and the usage in applications.

2These values are chosen to reflect the fact that the clock overhead in-
troduced by these values should be small but potentially has significant
impact on jitter.

workloads in our experiment are designed to produce dif-
ferent patterns of timer intervals and different numbers of
timers. Table 3 lists the values used in our jitter measure-
ments.

Factor values
clock resolution 500 µs, 1 ms
timer patterns harmonic, non-harmonic
task priority highest, medium, lowest

number of timers 1, 2, 5, 10, 15, 20

Table 3. Factors and values for interval jitter
measurements.

A set of test programs are designed to perform the jitter
measurements with the listed system attributes. Since only
one timer can be associated with a process/thread in all the
RTOSs studied, we need up to 20 tasks in the experiments.

Experiments for measuring the performance of schedul-
ing service: the metric for measuring the performance of
scheduling service is context switch overhead. The context
switch overhead depends on the scheduling algorithm, the
number of tasks in the ready queue, and the organization
of the ready queue (e.g., sorted or unsorted). The priority-
based preemptive scheduling algorithm is the one supported
by all current RTOSs and used most frequently in ESW.
So, our context switch overhead measurements are based on
this scheduling algorithm. The task set ranges from 2 to 20
tasks. The measurements are taken between two specially-
designed tasks in the task set. All other tasks, called in-
terference tasks, are introduced only to change the length of
the ready queue to learn the effect of the queue length on the
context switch overhead. The task set is checked manually
to be schedulable before taking the measurements. Table 4
shows these tasks and their attributes used for measuring the
scheduling service performance.

task id priority period (ms)
1 2 1
2 1 triggered by task 1

3-20 3 1

Table 4. Attributes of experiment tasks.
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The measurement with the given task set is designed as
follows: Task 1 runs periodically with 1 ms period, and will
trigger Task 2 upon its completion. The priority of Task 1
is lower than that of Task 2, but higher than all interference
tasks. The TSR and TBR values are logged at both the end
of Task 1 and the beginning of Task 2. Interference tasks run
with the same period as Task 1. Thus, every 1 ms, all tasks
but Task 2 are ready and will be moved to the ready queue.
Since Task 1 has the highest priority in the ready queue,
it executes first. After its completion, Task 2 is triggered
and will be in the ready queue. Similarly, Task 2 becomes
the highest priority task and will execute before any other
task. Thus, Tasks 3–20 only affect the ready queue length
during the measurement, and do not contribute any over-
head to the context switch time between Task 1 and Task 2.
The context switch overhead can then be obtained from the
difference between the pairs of sampled values of Task 1’s
completion and Task 2’s beginning. All interference tasks
are assigned the same priority since their priorities have no
effect on the measurements. Table 5 shows the number of
tasks used for each measurement to learn the effect of the
ready queue length.

test case 1 2 3 4 5
# of tasks 2 5 10 15 20
task in set f1, 2g f1, 2,

3-5g
f1, 2,
3-10g

f1, 2,
3-15g

f1, 2,
3-20g

Table 5. Task combinations for test cases.

5 Measurement Results

5.1 Results of clock overhead measurements

The clock overhead at each resolution was computed us-
ing Eqs. (5). In the clock overhead calculation, we used the
minimum execution time when the resolution is set to 100
ms as e0 for each case. The computed clock overhead for
all test cases are shown in Figures 3, 4 and 5.

The measurement results have shown that the clock over-
head tends to decrease in general as the duration between
clock ticks increases. This indicates that a fine-resolution
clock will consume more system resources and may cause a
schedulability problem, although such a clock may make
the system more responsive. The quantitative effects of
clock resolutions are OS-dependent. For QNX, the nor-
mal overhead is around 5 � 7µs, but the maximum can be
around 30µs. The RTLinux overhead is around 20µs with
the maximum at around 60µs. The overhead for OSEK-
Works is around 60µs except a higher overhead of 70µs is
experienced when the clock resolution is set to 0:1 ms. We
also experienced a system hang when the clock resolution
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Figure 3. Timing service overhead of QNX.
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Figure 4. Timing service overhead of Real-
Time Linux.

was set to smaller than 50µs for QNX-P133, QNX-P166,
70µs for RTLinux-P133 and RTLinux-P166, and 80µs for
OSEKWorks-MPC. The measured overhead for QNX and
RTLinux is much less than the values required to make the
system halt, while for OSEKWorks is very close. This indi-
cates that the minimum available clock resolution depends
on both OS implementation and hardware configuration.

Comparing the overheads of QNX and RTLinux on both
platforms with those of OSEKWorks-MPC, one can see that
the clock overhead of OSEKWorks was almost constant for
any given resolution, while the maximum overheads for
both QNX and RTLinux were significantly larger than the
average for any given resolution. The less variant overhead
for OSEKWorks may be due to the simple functionality
of OSEKWorks and the flat memory structure of MPC555.
Both help reduce unpredictability during execution.

5.2 Results of interval jitter measurements

We then measured the effects of clock resolution, the
number and pattern of timer intervals, and task priorities on
interval jitter. First, we are interested in how different clock
resolutions affect the jitter of different interval lengths. The
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measured results of interval jitter for QNX and RTLinux un-
der different clock resolutions are plotted in Figures 6 and
7. For OSEKWorks, we did not observe any jitter for the
examined clock resolutions.
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Figure 6. Interval jitter of QNX.

According to the measured results, the interval jitter var-
ied greatly from one OS to another. In QNX, the interval
jitter increased as the clock resolution became more coarse,
while the jitter for RTLinux showed almost no change with
different resolutions. The reason for this could be that QNX
uses a clock-based scheduler while RTLinux and OSEK-
Works use event-based schedulers. The lack of observed
jitter for all experiments with OSEKWorks may also be the
result of simple OS implementation and predictable hard-
ware architecture.

The results also show that the interval jitter is indepen-
dent of the interval length. This is different from the con-
ventional understanding that the interval should be some
relatively large multiples of the clock resolution to over-
come the jitter. The clock resolution had a distinct effect
on the magnitude of the interval jitter. As can be seen in
Figure 6, the jitter was always bounded by twice the clock
resolution. Figures 6 and 7 also indicate that using a faster
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Figure 7. Interval jitter of RTLinux.

processor did not reduce the interval jitter for an OS using
a clock-based scheduler, but reduced the jitter for the OS
using an event-based scheduler.

Next, we studied the effects of the number of timers and
interval patterns on jitter. The measurements also included
the jitter experienced by tasks with different priorities. Fig-
ures 8 and 9 plot the measurement results where the inter-
vals are harmonic and non-harmonic on QNX, respectively.
Figures 10 and 11 show the results of the same experiments
on RTLinux, while Figures 12 and 13 show the results of
OSEKWorks.
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Figure 8. Interval jitter for harmonic intervals
on QNX.

From these results, we first observed that the interval jit-
ter increases with the number of timers in the system for
all measured cases. Such dependencies should be an OS
property and independent of hardware. Both cases of the
same OS running on different hardware and different OSs
running on the same hardware showed the same tendency
of interval jitter changes. These results suggest that reduc-
ing the number of timers by combining tasks with the same
intervals would reduce the interval jitter and consequently
improve the system performance.

The interval jitter experienced by tasks with different pri-
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Figure 9. Interval jitter for non-harmonic inter-
vals on QNX.
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Figure 10. Interval jitter for harmonic intervals
on RTLinux.

orities were also significantly different. A higher-priority
task experienced a smaller jitter, while a lower-priority task
experienced a larger jitter in all our measurements. Such
observations are independent of the number of timers and
interval patterns. The larger jitter experienced by a lower-
priority task is likely the result of the cumulative effects of
kernel activities that have a lesser effect on higher-priority
tasks.

The interval patterns also had significant impact on in-
terval jitter, and the impact depended on the of OS struc-
ture [7] and the number of timers in the system. Among
the measured cases, jitter was almost the same for both har-
monic and non-harmonic intervals when there were a rel-
atively small number of timers (� 5). When the number
of timers became larger, the jitter with non-harmonic inter-
vals became larger for QNX, but showed the opposite for
RTLinux and OSEKWorks. This implies that the clock-
based OS implementation favors harmonic intervals, while
the event-based OS implementation favors non-harmonic
intervals.

1 2 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

number of timers

in
te

rv
al

 ji
tte

r (
m

s)

max,P133,prio=H
min,P133,prio=H
max,P133,prio=M
min,P133,prio=M
max,P133,prio=L
min,P133,prio=L
max,P166,prio=H
min,P166,prio=H
max,P166,prio=M
min,P166,prio=M
max,P166,prio=L
min,P166,prio=L

Figure 11. Interval jitter for non-harmonic in-
tervals on RTLinux.
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Figure 12. Interval jitter for harmonic intervals
on OSEKWorks.

5.3 Results of context switch measurement

The context switches were measured under the different
configurations as described in Section 4. To learn the rela-
tionship between clock resolution and context switch time,
we took measurements under different clock resolutions —
specifically, 0.5 ms and 1 ms — as the OS scheduler can be
either clock-based or event-based.

The measured context switch times of QNX, RTLinux,
and OSEKWorks are shown in Figures 14, 15, and 16, re-
spectively. For QNX, the average and minimum context
switch times were not sensitive to the number of tasks in
the ready queue, but the maximum context switch times in-
creased when the number of tasks in the ready queue in-
creased under a finer clock resolution. The difference be-
tween the system with 20 interference tasks and the sys-
tem without any interference task can be as high as 300%.
For RTLinux, both average and maximum context switch
time increased as the number of tasks in the ready queue
increased under any clock resolution, while the minimum
times remain the same. Both average and maximum con-

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02) 
0-7695-1739-0/02 $17.00 © 2002 IEEE 



1 2 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

number of timers

in
te

rv
al

 ji
tte

r (
m

s)

max,prio=H
min,prio=H
max,prio=M
min,prio=M
max,prio=L
min,prio=L

Figure 13. Interval jitter for non-harmonic in-
tervals on OSEKWorks.

text switch times of the system with 20 interference tasks
was twice as high as those for the system without any in-
terference tasks. The context switch time for OSEKWorks
showed little difference. These results imply that the con-
text switch time depends heavily on the the RTOS imple-
mentation, and at least, will not increase if the number of
tasks is reduced.
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Figure 14. Measured context switch time for
QNX.

We also observed that the clock resolution had a signif-
icant impact on context switch time. The context switch
time (average, maximum and minimum) with a small clock
resolution was higher than that with a larger resolution for
QNX, while it was the opposite for RTLinux and OSEK-
Works. This is because the context switch time of a clock-
based scheduler may be more sensitive to the clock over-
head, while the event-based scheduler may be more sensi-
tive to the resolution.

6 Conclusions and Future Work

Most existing performance measurement methods con-
sider either a fixed configuration with applications, or ig-
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Figure 15. Measured context switch time for
RTLinux.
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Figure 16. Measured context switch time for
OSEKWorks.

nore how applications will use these services. Our pro-
posed end-to-end measurement method is based on both
microbenchmarks and synthetic workloads. The measured
performance can therefore be stored with OS service com-
ponents, and can be reused in performance analyses of dif-
ferent applications along with reuse of the OS services and
their execution environments. We applied this method in
measuring the timing and scheduling services of selected
RTOSs, and presented several findings of the performance
dependencies among the measured services, the service per-
formance metrics and application configurations. Such in-
formation can be used in both timing analysis and schedu-
lability analysis of integrated ESW.

Our future work will focus on using the measured infor-
mation for performance analysis. We will apply the mea-
sured information to the analysis of both RTOSs and real
applications, and validate the analysis results by compar-
ing them with the simulation results. We will also inte-
grate our work with other benchmarking methods for low-
level OS services to construct the hierarchical performance
model and build such measurement methods and results in
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ESW design toolkits to support performance-aware system
design. The measurements of other system services such
as communications and synchronization using the proposed
method and their application to dynamic QoS management
and online performance-aware reconfiguration will also be
studied.
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