
Detecting SYN Flooding Attacks
Haining Wang Danlu Zhang Kang G. Shin

EECS Department, The University of Michigan
Ann Arbor, MI 48109-2122

{hxw, danlu, kgshin} @eecs.umich.edu

Abstract- We propose a simple and robust mechanism for de-
tecting SYN flooding attacks. Instead of monitoring the ongoing
traffic at the front end (like firewall or proxy) or a victim server
itself, we detect the SYN flooding attacks at leaf routers that con-
nect end hosts to the Internet. The simplicity of our detection
mechanism lies in its statelessness and low computation overhead,
which make the detection mechanism itself immune to flooding at-
tacks. Our detection mechanism is based on the protocol behavior
of TCP SYN-FIN (RST) pairs, and is an instance of the Seqnen-
tial Change Point Detection [l]. To make the detection mecba-
nism insensitive to site and access pattern, a non-parametric Cn-
mnlative Sum (CUSUM) method [4] is applied, thus making the
detection mechanism much more generally applicable and its de-
ployment much easier. The efficacy of this detection mechanism is
validated by trace-driven simulations. The evaluation results show
that the detection mechanism has short detection latency and high
detection accuracy. Moreover, due to its proximity to the flood-
ing sources, our mechanism not only sets alarms upon detection of
ongoing SYN flooding attacks, but also reveals the location of the
flooding sources without resorting to expensive IP traceback.

1. INTRODUCTION

The recent attacks on popular web sites like Yahoo, eBay and
E*Trade, and their consequent disruption of services have ex-
posed the vulnerability of the Internet to Distributed Denial of
Service (DDoS) attacks [121. It has been shown that more than
90% of the DOS attacks use TCP [191. The TCP SYN flooding
is the most commonly-used attack. It consists of a stream of
spoofed TCP SYN packets directed to a listening TCP port of
the victim. Not only the Web servers but also any system con-
nected to the Internet providing TCP-based network services,
such as FTP servers or Mail servers, are susceptible to the TCP
SYN flooding attacks.

The SYN flooding attacks exploit the TCP’s three-way hand-
shake mechanism and its limitation in maintaining half-open
connections. When a server receives a SYN request, it returns
a SYN/ACK packet to the client. Until the SYN/ACK packet
is acknowledged by the client, the connection remains in half-
open state for a period of up to the TCP connection timeout,
which is typically set to 7.5 seconds. The server has built in
its system memory a backlog queue to maintain all half-open
connections. Since this backlog queue is of finite size, once the
backlog queue limit is reached, all connection requests will be
dropped.

Hamng Wang and Kang G. Shm were supported m part by Sanxung Elec
tronu, Inc. and by the Office of Naval Ruearch under Grant No. NO0014 99
I 0465.

If a SYN request is spoofed, the victim server will never re-
ceive the final ACK packet to complete the three-way hand-
shake. Flooding spoofed SYN requests can easily exhaust the
victim server’s backlog queue, causing all the incoming SYN
requests to be dropped. The stateless and destination-based
nature of Internet routing infrastructure cannot differentiate a
legitimate SYN from a spoofed one, and TCP does not offer
strong authentication on SYN packets. Therefore, under SYN
flooding attacks, the victim server cannot single out, and re-
spond only to, legitimate connection requests while ignoring
the spoofed.

To counter SYN flooding attacks, several defense mecha-
nisms have been proposed, such as Syn cache [171, Syn cook-
ies 131, SynDefender 161, Syn proxying 1201, and Synkill 1261.
All of these defense mechanisms are installed at the firewall of
the victim server or inside the victim server, thereby providing
no hints about the sources of the SYN flooding. They have to
rely on the expensive IP traceback 121, 1211, 12.51, 1281, 1291,
[341 to locate the flooding sources. Because the defense line is
at, or close to, the victim, the network resources are also wasted
by transmitting the flooding packets.

Moreover, these defense mechanisms are stateful, i.e., states
are maintained for each TCP connection or state computation is
required. Such a solution makes the defense mechanism itself
vulnerable to SYN flooding attacks. Recent experiments have
shown that a specialized firewall, which is designed to resist
SYN floods, became futile under a flood of 14,000 packets per
second [8 1. The stateful defense mechanisms also degrade the
end-to-end TCP performance, e.g., incurring longer delays in
setting up connections. In the absence of SYN flooding attacks,
all the overheads introduced by the defense mechanism become
superfluous. We, therefore, need a simple stateless mechanism
to detect SYN flooding attacks, which is immune to the SYN
flooding attacks. Also, it is preferred to detect an attack early
near its source, so that one can easily trace the flooding source
without resorting to expensive IP traceback.

In this paper, we propose a simple and robust mechanism to
detect SYN flooding attacks, which is complementary to the de-
fense systems mentioned above. The simplicity of this flooding
detection system (FDS) lies in its statelessness’ and low com-
putation overhead. The FDS is, in some sense, a by-product of
the router infrastructure that differentiates TCP control packets
from data packets [33 1. Instead of monitoring the ongoing traf-
fic at the front end (like firewall or proxy) or the victim server

lIn a stricter sense, it is per-connection stateless, i.e., no per-connection state
is kept.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1530 IEEE INFOCOM 2002

itself, we detect SYN flooding attacks at leaf routers that con-
nect end hosts to the Internet. The FDS can be deployed at
the first-mile or last-mile leaf routers. The benefit of deploying
the FDS at the first-mile leaf routers is their proximity to the
flooding sources. If a SYN flooding attack is detected at the
first-mile leaf router, information about the location of flooding
sources is also captured. The flooding sources must be inside
the subnet to which the leaf router is connected, hence saving
most of the work required by IP traceback. We will discuss the
placement of FDS in Section II-B.

The key feature of FDS is to utilize the inherent TCP SYN-
FIN pairs’ behavior for SYN flooding detection. The SYN/FIN
packets delimit the beginning (SYN) and end (FIN) of each
TCP connection. As shown in Figure 1 that is borrowed
from [3 11, under the normal condition, one appearance of a
SYN packet results in the eventual return of a FIN packet. Al-
though we can distinguish SYNs from SYN/ACK packets, we
have no means to discriminate active FINS from passive FINS
since each end host behind a leaf router may be either a client
or a server. Therefore, the SYN-FIN pairs refer to the pairs
of (SYN, FIN) and (SYN/ACK, FIN). In this paper, the “SYN”
packets are generalized to include the pure SYN and SYN/ACK
packets. While the RST packet violates the SYN-FIN pair, for
any RST that is generated to abort a TCP connection2, we can
still get a SYN-RST pair. The impact of RST upon SYN flood-
ing detection is discussed further in Section II-C.

Fig. I. TCP states corresponding to normal connection establishment and
teardown

We rely on packet classification to differentiate the TCP
SYN, FIN and RST packets at leaf routers. This packet clas-
sification was originally motivated by the desire of providing
service differentiation to IP flows. Large-scale packet classifi-
cation mechanisms [141, [161, 1301 have been proposed, mak-
ing it possible to distinguish TCP control packets at routers at
a very high speed. At leaf routers, no state or state computa-
tion is involved in our FDS. Only three new variables are intro-
duced to measure the number of received SYN, FIN and RST
packets at the inbound and outbound interface, respectively. We
refer to the traffic flowing from the Internet to the Intranet as in-
hound, and the traffic in the other direction as outbound. Based

‘Those RSTs are mostly issued by clients. In its own best interest, a server
rarely sends the RST packets to its clients once their TCP connection have been
established.

on this SYN-FIN (RST) pairs’ behavior, the dynamics of the
difference between the number of SYN and FIN (RST) pack-
ets can be modeled as a stationary, ergodic random process,
and our FDS is an instance of the Sequential Change Point
Detection [11. To make the FDS independent of sites and ac-
cess patterns, the difference between the number of SYNs and
FINS (RSTs) is normalized by an estimated average number of
FINS (RSTs). The non-parametric Cumulative Sum (CUSUM)
method 141 is applied, making the FDS much more generally
applicable and its deployment much easier.

The efficacy of our detection mechanism is validated by
trace-driven simulations. The evaluation results show that our
FDS has short detection time and high detection accuracy.
Moreover, due to its close proximity to the flooding sources,
our detection mechanism not only alarms on the ongoing SYN
flooding attacks but also reveals the location of the flooding
sources.

The remainder of the paper is organized as follows. Section
2 discusses the issues related to our detection system. Section
3 describes the proposed detection algorithm based on the TCP
SYN-FIN (RST) pair’s behavior. Section 4 validates and evalu-
ates the performance of the FDS using trace-driven simulations.
Section 5 discusses the related work. Finally, conclusions are
drawn in Section 6.

II. ISSUESRELATEDTOFLOODINGDETECTION

Before describing the proposed flooding detection mecha-
nism, we discuss the details of three closely-related issues:
packet classification, placement of the FDS, and discrepancy
between the number of SYNs and FINS.

A. Packet Classification
To identify TCP SYNs, FINS and RSTs, the TCP header

needs to be accessed. This identification is performed at leaf
routers, which are usually the trusted entities for the clients in
the same intranet. A multi-layer IPSec protocol [3.5 1 has been
proposed, which allows trusted routers to access the transport-
layer information. Therefore, the network-level security of
IPSec should not be an obstacle to the identification and count-
ing of TCP SYNs, FINS and RSTs at leaf routers. A detailed de-
scription of the packet-classification algorithm is given in Fig-
ure 2.

The first two steps in Figure 2 guarantee that the IP packet
contains a TCP header. The IP packet that contains the TCP
header must have a zero fragmentation offset. Although IP op-
tions are included primarily for network testing or debugging,
in order to accurately pinpoint the offset of TCP CODE BITS in
an IP packet, the 4-bit header length field (measured in number
of 32-bit words) in the IP header is read. This field is used to
compute the offset of the 6-bit CODE BITS field of the TCP
header in this IP packet as follows:

IPoffSet = Hdr-lengthlP + TCPoffset.

It indicates that the offset of CODE BITS in the IP packet equals
the sum of the length of IP header and the offset of CODE
BITS in its TCP header. The 6-bit CODE BITS field of the TCP
header is then read to determine the type of the TCP segment.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1531 IEEE INFOCOM 2002

Fig. 2. The flowchart of the packet classification at leaf’ routers

B. Placement of Detection Mechanism
As mentioned before, the FDS is installed at either the first-

mile or the last-mile leaf router, or both. However, each leaf
router can be both the first-mile and last-mile router, depending
on the direction of traffic Ilows between the intranet and the
Internet. For the packets going out of the intranet, the leaf router
is their first-mile router. On the other hand, for the incoming
packets into the intranet, the leaf router is their last-mile router.
Thus, we deploy the FDS at both the inbound and outbound
interfaces. The one installed at the outbound interface is the
first-mile FDS, while the one installed at the inbound interface
is the last-mile FDS. Figure 3 illustrates the installation of FDS
at a leaf router. The two FDSs can coordinate with each other
via shared memory, or IPC inside the router.

The first-mile FDS of the leaf router plays the primary role
in detecting a flooding attack, due mainly to its proximity to
the sources of the flooding attack. However, the detection sen-
sitivity may decline with the increase of the size of the attack
group. In a large-scale DDoS attack, the flooding sources can
be orchestrated so that individual flooding traffic can cause only
an insignificant deviation from the normal traffic pattern.

In contrast, the last-mile FDS can quickly detect the flooding
attacks as all of the flooding traffic is aggregated at the last-mile
router. Although it cannot provide any hint about the flooding
sources, the defense system like SynDefender can be triggered
to protect the victim, making the flooding attack harder to suc-
ceed. To bring down the victim under protection, the Ilood-
ing sources have to significantly increase their flooding rates,
but this increased flooding traffic makes it easier to detect the
flooding attack and its sources at the first-mile routers.

However, the FDS is not recommended to be installed at core
routers mainly because (1) it is close to neither flooding sources
nor the victim; and (2) packets of the same flow could traverse
different paths.

As has been done with most of intrusion detection (ID) sys-
tems, the FDS can be placed on the link that connects the in-
tranet to the Internet by monitoring the bidirectional traffic on
that link. However, besides the extra specialized equipment and
manpower involved, during high peak (near saturation) Ilow
rates almost no event of any kind would be logged by an ID

system - they either have to drop packets at a very high rate
or require a multi-CPU architecture in order to perform packet
state analysis. As the link speed continues to grow, it will be
more difficult for network flow monitors (that run on a typical
PC) to pace with the network’s packet rate.

Outbound Inler~ace
Fu\r-mle FDS

Intranet

Fig. 3. The installation of FDS at a leaf’ router

Our last concern is with the wide deployment of the FDS at
leaf routers. As the FDS provides differentiation between TCP
control segments and data segments, fine-grained service dif-
ferentiation and isolation can be made on TCP flows. The end-
to-end TCP performance is significantly improved as shown
in [33 1, instead of being undermined. Installation of the FDS
benefits not only victim servers but also the clients inside the
intranet. It greatly provokes the interest of wide deployment
of the FDS. Furthermore, the FDS is incrementally deployable
and its implementation overhead is low.

C. Discrepancy between SYNs and FINS
Under a long-running normal condition, the TCP semantics

requires a one-to-one match between SYNs and FINS. How-
ever, in reality there is always a discrepancy between the num-
ber of SYNs and FINS. Besides the small number of long-lived
TCP sessions, the other major cause of this discrepancy lies in
the occurrence of RST packets. A single RST packet can termi-
nate a TCP session without generating any FIN packet, which
violates the SYN-FIN pair behavior. RSTs are generated for
two reasons: (1) one is passive, i.e., the RST is transmitted in
response to the arrival of a packet that is destined to a closed
port; (2) the other is active, i.e., the RST is initiated to abort a
TCP connection. Each active RST is associated with the SYN
from the same session, since both of them can be seen by the
same FDS. However, a passive RST can not be associated with
any SYN seen at the same FDS due to the fact that the pas-
sive RST and its corresponding SYN must go through different
FDSs. Furthermore, passive RSTs may even have nothing to do
with SYNs. For instance, a late arrival of a data packet to the
port that has been closed will lead to the transmission of a RST.
We treat the passive RTSs as background noise.

In summary, three types of SYN pairs are considered as the
normal behavior of TCP: (SYN, FIN), (SYN/ACK, FIN) and
(SYN, RST,,t&. Unfortunately, the FDS can not distinguish
the active RSTs from the passive ones. There are two simple
but extreme ways to resolve this thorny problem: one is to treat
all RSTs as active and the other is to treat all RSTs as pas-
sive. The first approach reduces the FDS detection sensitivity,
while the second raises the FDS false alarm rate. To make a
trade-off between detection sensitivity and false alarm rate, it
is necessary to set an appropriate threshold to filter the most
of the background noise. Based on our observation, under the

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1532 IEEE INFOCOM 2002

normal condition: (1) the SYNs and RSTs have a strong posi-
tive correlation; (2) the difference between the number of SYNs
and that of FINS is close to the number of RSTs. These imply
that the passive RSTs are only a small percentage of the whole
RSTs. So, we set the threshold to 75%, i.e., 3 out of 4 RSTs are
treated as active. Moreover, for the following reason, the FDS
can withstand the negative impact of the passive RSTs that are
incorrectly classified as active RSTs: in CUSUM algorithm, the
reset-to-zero for any negative differences between the number
of SYNs and that of FINS (RSTs) eliminates the cumulative ef-
fects, and thus the spike of background noise only degrades the
detection sensitivity during one observation period.

111. STATISTICAL ATTACK DETECTION

Basically, the FDS belongs to the commonly-known
network-based intrusion detection system: an intruder is de-
tected if its behavior is noticeably different from that of a legit-
imate user. Like most statistical anomaly detection systems, we
compare the observed sequence with the profile in representing
the user’s normal behavior, and detect any significant deviation
from the normal behavior. However, unlike the traditional net-
work intrusion detection system that passively monitors bidi-
rectional traffic streams on network links, the FDS is installed
at a leaf router and can be viewed as a component integrated
into the leaf router.

The burstiness of TCP connection request arrivals [101 makes
the detection of attack signatures much harder, since the criti-
cal characteristic of self-similar traffic is that there is no nat-
ural length of a “burst”. It is also site- and time-dependent.
However, the strong positive correlation between SYN and FIN
(RST) offers a clear indication for SYN flooding. According to
the specification of TCP/IP protocol 1241, [311, in normal op-
eration, a FIN (RST) is paired with a SYN at the end of data
transmission; but under SYN flooding attacks, this SYN-FIN
(RST) pair’s behavior will be violated, deviating from the nor-
mal operation.

A. Data Sampling and Detectcon Mechanism
We collect the number of SYN and FIN (RST) packets dur-

ing every observation period to, which determines the detection
resolution, at leaf routers. In order to relate the SYN and FIN
(RST) packets of the same connection, the sampling time of
FIN (RST) is td later than that of SYN, where td is so chosen
that a significant portion of connections requested during the
SYN sampling period end in the corresponding FIN (RST) sam-
pling period. Recent Internet traffic measurements have shown
that most of TCP connections last 12-19 seconds [321, so we
set td to 10 seconds. To balance the detection resolution and
the algorithm’s stability and accuracy, we set to to 20 seconds.
Note, however, that both parameters are tunable and our algo-
rithm is not very sensitive to this choice.

Under the normal condition, the difference between the col-
lected number of SYNs and FINS (RSTs) is very small, as com-
pared to the total number of TCP connection requests. This ob-
servation is true in spite of the fact that the total number of TCP
connection requests may be bursty on a small time scale, and

3See Eq. 3 m Sectmn III B

slowly-varying on a large time scale. In other words, the cor-
relation between the number of SYNs and FINS (RSTs) is not
sensitive to the request arrival process. The results presented in
Section IV-A clearly show that the consistent synchronization
between SYNs and FINS (RSTs) is independent of the sample
time, sites, and time-of-day.

Under SYN flooding attacks, the flooding SYN traffic has
significant regularity and semantics that can be filtered out.
Recent experiments with SYN attacks on commercial plat-
forms [8 1 show that the minimum flooding rate to overwhelm an
unprotected server is 500 SYN packets per second. Even with
a specialized firewall designed to resist against SYN hoods, a
server can be disabled by a hood of 14,000 packets per sec-
ond [81. To shut down the victim server for 10 minutes, for
example, the group of attackers need to inject at least a total of
300,000 SYN packets. During the same time period, however,
the number of FINS (RSTs) remains largely unchanged. There-
fore, there will be much more SYNs than FINS (RSTs) collected
during the flooding period. The difference between the number
of SYNs and FINS (RSTs) will dramatically increase, and re-
main large during the whole flooding period, which typically
lasts for several minutes. So, the occurrence of a large differ-
ence between the number of SYNs and FINS (RSTs) in the order
of minutes or tens of seconds indicates a SYN flooding attack.
This will be used in our attack detection.

There are other events that may cause the increase of the dif-
ference between the number of SYN and FIN (RST) packets as
follows.

. There has been a steady increase of on-line users and, at
the same time, most of them issue long-lived TCP ses-
sions. Thus, the number of established long-lived TCP
connections is constantly increasing.

. Some well-known servers or the links connected to them
are down. The SYN requests are retransmitted three times
automatically before the request times out.

All of these cases are considered as exceptional situations, and
rarely occur as the difference between the number of SYNs and
FINS (RSTs) becomes very large.

B. The CUSUM Algouitlzm
Let {a,, n = 0, 1, . .} be the number of SYNs minus that

of the corresponding FINS (RSTs) collected within one sam-
pling period. In general, the mean of {a,} is dependent on
the size of the subset. It may also vary with time of the day or
week, depending on the access pattern. To make our algorithm
more general, we should alleviate these dependencies. Thus,
{a,} is normalized by the average number F of FINS (RSTs)
during the sampling period to. F can be estimated in real time
and updated periodically. An example of recursive estimation
and update of F is:

F(n) = c@(n - 1) + (1 - a)FIN (RST)(n), (1)

where n is the discrete time index and a is a constant lying
strictly between 0 and 1 that represents the memory in the esti-
mation.

Define X, = &/F. The mean of X,, denoted as c, is much
less than 1 and close to 0. {X,} is no longer dependent on the

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1533 IEEE INFOCOM 2002

network size or time-of-day. Its dynamics are solely the conse-
quence of the TCP protocol specification. So, we can consider
{X,} as a stationary random process.

Our attack detection algorithm is based on the Sequential
Change Point Detection [11. The objective of Change Point
Detection is to determine if the observed time series is statisti-
cally homogeneous, and if not, to find the point in time when
the change happens. It has been studied extensively by statisti-
cians. See [11 and [41 for a good survey. There have been var-
ious tests for different problems. They can be largely divided
into two categories: posterior and sequential. Posterior tests are
done off-line where the whole data segment is collected first
and then a decision of homogeneity or a change point is made
based on the analysis of all the collected data. On the other
hand, sequential tests are done on-line with the data presented
sequentially and the decisions are made on the run.

We adopt a sequential test for a quicker response when an
attack occurs. It also saves memory and computation. One
difficulty, however, is the modeling of {X,}. Recently, there
has been considerable work on the modeling of the arrival pro-
cess of TCP connection requests. It is reported in [101 that the
statistics of TCP connection request arrivals have shown sig-
nificant changes in the past few years, along with the Internet
traffic itself: in early 90’s, the dominant TCP connections are
FTP and Telnet sessions, and the arrival process is Poisson [5 1.
However, after the Web became the predominant source of TCP
connections, the arrival process displays heavy-tails in its inter-
arrival times [23 1. The newly-emerging Persistent-HTTP also
has an impact on the TCP arrival pattern [27 1. Furthermore,
recent Internet traffic analyses have shown that the arrival pro-
cess is not even stationary and dependent on the average arrival
rate [71 (bursty, or long-range dependent at low rate, but ap-
proximately Poisson at high rate) and time scale [13] (bursty on
a small time scale, but Poisson on a large time scale). For such
a dynamic and complicated entity like the Internet, it may not
be possible to model the total number of TCP connections at
all times by a simple parametric model. Therefore, we seek ro-
bust tests which are not model-specific. Non-parametric meth-
ods fit this requirement very well. In particular, we apply the
non-parametric CUSUM (Cumulative Sum) method [41 to our
attack detection. This method enjoys all the virtues of sequen-
tial and non-parametric test, and the computation load is very
light. When the time series is i.i.d. with a parametric model,
CUSUM is asymptotically optimal for a wide range of Change
Point Detection problems [11, [4 1.

{X,} is assumed to satisfy the following two conditions.
Cl: {X,} is $- mixing, meaning that the g(s) parameters,

defined below, approach 0 as s t co:

SUP
P(Jw

A t F’t ‘P(A)P(B) - I” (2) - 2’ B t Ft+r’ P(A)P(B) # 0

where Fi is the a-algebra generated by
{X,, X2,. . . , Xt} and &y+s is the a-algebra
generated by {Xt+s, Xt+s+l,. . .}. q(s) is affected
by the dependency among the {X,} samples: highly
dependent {X,} has q(s) that decays slowly as
s t 0.

C2: The marginal distribution of {X,} satisfies the fol-
lowing regularity condition: 3 > 0 such that
E(dX-) < co.

The details of these conditions can be found in [41. In prac-
tice, they are very mild and easily satisfiable, even by long
range dependent arrival processes. In general, E(X,) = c <<
1. We choose a parameter a that is the upper bound of c, i.e.,
a > c, and define 2, = X, - a so that it has a negative mean
during normal operation. When an attack takes place, 2, will
suddenly become large positive. Suppose, during an attack, the
increase in the mean of 2, can be lower-bounded by h. Our
change detection is based on the observation of h > c.

Let

YTI = (Yin-1 + &J+, (3)

Yo = 0,

where x+ is equal to x if x > 0 and 0 otherwise. The meaning
of yn can also be understood as follows: if we define SI, =
Cf=, xi, with So = 0 at the beginning, it is straightforward to
show that

i.e., the maximum continuous increment until time n. A large
{yn} is a strong indication of an attack. Since Eq. (3) is recur-
rent and much easier to compute than Eq. (4), we will use it in
making detection decisions.

Let dN (.) be the decision at time n: ‘0’ for normal operation
(homogeneity) and ‘1’ for attack (a change occurs). Here N
represents the flooding threshold:

4d.d = 0 ifyn<N;
1 ify,>N.

In other words, dN (yin) = I(Y, > N), where I(.) is the indica-
tor function. The effect of introducing a is to offset the possible
positive mean in {X,} so that the test statistic yn will be reset
to zero frequently and will not accumulate with time.

In this algorithm, there are two design parameters involved:
a, the upper bound in case of normal operation, and N, the
flooding threshold. Let Pm(&) be the probability measure
(expectations) of {X,} with the attack occurring at time m
and P, (E,) be the counterparts of {xn} without any attack.
There are two fundamental performance measures for the se-
quential change point detection.

1) False alarm time (the time without false alarm): the time
duration with no false alarm reported when there is no
attack.

2) Detection time: the detection delay after the attack starts.
One would want the second measure to be as short as possi-

ble while keeping the first measure as long as possible. How-
ever, they are conflicting goals and cannot be simultaneously
achieved. Therefore, the design philosophy of a statistical
change point detection is to minimize the detection time sub-
ject to a certain false alarm tolerance. In order to compare the
performance of different detection schemes, some criteria of
false alarms must be specified, like average time between two
consecutive false alarms, worst-case false alarm time, and so
on. An algorithm is said to be optimal with respect to a certain

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1534 IEEE INFOCOM 2002

criterion if it minimizes the detection time for an attack among
all the detection schemes subject to the false alarm constraint.
The CUSUM rule has been shown to be asymptotically opti-
mal with respect to the worst-case mean false alarm time in the
change point detection problems involving a known parametric
model and independent observations [11.

Due to the lack of a complete model for {Xn}, it is diffi-
cult to discuss optimality. The choice of CUSUM is based on
its simplicity in computation and non-parametric implementa-
tion, as well as its generally excellent performance. It has been
shown in 141 that, with the choice of a and N, as N + co, we
have

sup 1 InP,(dN(n) = 1)1 = O(N),
n

which is equivalent to

(6)

P,{d~((n) = l} = cl exp &N). (7)

In other words, the time between consecutive false alarms
grows exponentially with N. cl and c2 are constants, depending
on the marginal distribution and mixing coefficients of {X,}.
The burstiness of the traffic is reflected by the mixing coeffi-
cients $(s), and thus, does impact the detection performance.
However, the constants cl and c2 only play a secondary role
and can be ignored in practice.

In order to study the detection time, let’s define

TN = inf{n : dN(.) = I}, (8)

PN =
(TN - m)+

N ’

where PN represents the normalized detection time after a
change occurs and m represents the starting time of the attack.
In CUSUM, for any m > 1, if h is the actual increase in the
mean of {Xn} during an attack, we have

1

where h - Ic - al is the mean of {Xn} when m > m (after an
attack starts). However, since h is a bound rather than a true
value, the above is a conservative estimation (upper bound) of
the actual detection time.

C. Parameter Specification
To implement the CUSUM algorithm, we first need to spec-

ify the two tunable parameters: a, the upper bound in case of
normal operation, and h, the lower bound of the increase in case
of an attack. The CUSUM algorithm requires E(X,) < 0 be-
fore the change point and E(X,) > 0 after it, i.e., a > c and
h > a. Based on the discussion in the previous section, to en-
sure a long false alarm time and make it independent of network
size and access pattern, we set h = 2a in our design.

In monitoring the incoming traffic (the ‘last mile’), all the
flooding SYN packets converge, and therefore, a large differ-
ence in the number of SYN and FIN (RST) packets is easily
observable with h > c. In this case, the detection is not sensi-
tive to the choice of a. With a large safe margin, we can simply
choose a = 1 and h = 2. In monitoring the outgoing traffic
(the ‘first mile’), since the attack may be initiated from many

TABLE1
A SUMMAKY OFI‘HE’I’KACE FEA’I’UKES

19:30, Wed Sept 27, 00 Uni-directional
19:30, Wed Sept 27, 00 Uni-directional

I I

sites simultaneously, only part of the flooding SYN packets can
be seen by each detector. To balance the detection sensitivity
and false alarm time, we set a = 0.2 and h = 0.4. For the time
being, we set the parameters to be independent of network size
and access pattern. In practice, the network administrator of the
involved edge router can incorporate site-specific information
so that the algorithm can achieve higher detection performance.

Based on a and h, the flooding threshold N can be specified
as follows: (I) assume c = 0, and y can thus be obtained from
Eq. (9); and (II) specify a target detection time (i.e., the product
of y and N) such that the flooding threshold N is determined
by Eq. (8). We choose ta as the designed detection time for
the last mile, hence y = 1 and N = 1; we choose 3ta as the
counterpart for the first mile, hence y = 5 and N = 0.6.4

It is worth noting that our algorithm is to check the cumula-
tive effect of an attack. So, it can detect attacks with the SYN
flooding rate less than h at the expense of a longer response
time. The actual lower limit of detection in terms of SYN flood-
ing rate is a if c M 0. Furthermore, the detection capability is
not sensitive to the flooding pattern: it can detect the attacks
with both constant and bursty flooding rates. The effectiveness
of this detection is evaluated by trace-driven simulations.

IV. PERFORMANCEEVALUATION
To evaluate and validate the FDS, we have conducted trace-

driven simulation experiments. The trace data used in our study
are collected at different times from three different sources. The
first set was gathered at Digital’s primary Internet access point,
which is an Ethernet DMZ network. Each trace in this set con-
tains an hour’s worth of all wide-area traffic between DEC (now
Campaq) Western Research Lab and the Internet. The second
set was taken on March 13, 1997 on a 10 megabit Ethernet con-
necting Harvard’s main campus to the Internet, which includes
two half-hour traces. The third set was obtained by placing
network monitors on the high-speed link (OC-12 622 Mpbs)
that connects the University of North Carolina at Chapel Hill
(UNC) campus network to the rest of the world. The trace was
collected on September 27,200O. A summary of the traces used
in our experiments is given in Table I. Note the UNC traces are
uni-directional: UNC-in collects the traffic data from the Inter-
net to UNC campus network and UNC-out collects the traffic
data from UNC campus network to the Internet.

A. Nomal Tmjfic Behavior
The three sets of traces represent the normal traffic behav-

iors at the exchange points between different intranets and the

4N may not seem to be large but Eq. (9) can serve as an approximation.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1535 IEEE INFOCOM 2002

(b) DEC-2 (c) Harvard- 1
Fig. 4. The dynamics of SYN and FIN (RST) packets (part I)

(b) Harvard (c) UNC
Fig. 6. CUSUM test statistics under normal operation

Internet at different times. We parse the traces and extract the
TCP SYN, FIN and RST packets as the input to our leaf router
simulator. The dynamics of SYN, FIN and RST packets at DEC
site are illustrated in Figures 4 (a) and (b). The corresponding
result from Harvard traces are illustrated in Figures 4 (c) and 5
(a) and those from UNC-in and UNC-out are in Figure 5 (b)
and (c). They clearly show consistent synchronization between
SYN and FIN (RST) packets. The consistency indicates that the
synchronization is an inherent traffic behavior and independent
of time and sites.

We have applied the proposed detection algorithm on all
the available traces without adding attacks. The test statistics,
{yn}, for all traces are plotted in Figure 6. The flooding thresh-
olds are specified in Section III-C, i.e., N = 0.6 for the first
mile and N = 1 for the last mile. For all the traces tested, yin’s

are mostly zeros. The isolated bursts in yn are always much
smaller than the threshold. So, no false alarms are reported.

B. SYN Flooding Detection
With the appearance of Trinoo, which only implements UDP

packet flooding, many tools have been developed to create
DDoS attacks. Most of them, such as Tribe Flood Network
(TFN), TFN2K, Trinity, Plague and Shaft, generate TCP SYN
flooding attacks [91. Although these DDoS attack tools employ
different ways to coordinate the attacks with the goal of achiev-
ing robust and covert DDoS attacks, their flooding behaviors
are similar in that the SYN packets are continuously sent to the
victim.

The mechanism of DDoS attacks works as follows: the mas-
ter sends control packets to the previously-compromised slaves,

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1536 IEEE INFOCOM 2002

i ‘\;;;:i 12 II 16

(a) 3.5 SYNs per second

6

(b) 80 SYNs per second (c) 500 SYNs per second
Fig. 7. SYN floodmg detectmn \en\ltlwty (a) and (b) at fir\t mde FDS; (c) at la\t mde FDS

instructing them to target at a given victim. The slaves then
generate and send high-volume streams of flooding messages
to the victim, but with fake or randomized source addresses, so
that the victim cannot locate the attackers.

Normal traK~c Floodmg traK~c

17
Leaf Router

Fig. 8. The trace-simulation flooding attack experiment

In the SYN flooding detection experiments, the UNC 2000
traces are used as the normal background traffic. Among them,
UNC-in is used for inbound, i.e., last-mile monitoring, and
UNC-out is for outbound, i.e., first-mile monitoring. The flood-
ing traffic is mixed with the normal traffic, and the FDS at the
leaf router is simulated, as shown in Figure 8. Because the
non-parametric CUSUM method is used for detection of flood-
ing attacks, the flooding traffic pattern or its transient behavior
(bursty or not) does not affect the detection sensitivity. The de-
tection sensitivity depends only on the total volume of flooding
traffic. Therefore, without loss of generality, we assume that
the flooding rate is constant.

In DDoS attacks, the flooding traffic seen by the first-mile
and the last-mile FDSs is quite different. The flooding traf-
fic passing through the last-mile FDS is the aggregation of the
flooding traffic from all distributed attackers, allowing a much
easier detection. However, the flooding detection at the first-
mile FDS is much more difficult. In a large-scale DDoS at-
tack, the flooding sources can be so coordinated that the traffic
from each flooding source is not significant. Assume that the
minimum SYN flooding traffic to bring down a TCP server is
V packets per second. Then, the flooding rate at the last-mile
FDS is V, but the flooding rate seen by the first-mile FDS may
be quite different.

We assume the flooding traffic is evenly distributed among
different flooding sources and there is only one flooding source
inside each stub network. The flooding rate seen by the first-

mile FDS, fi, equals the individual flooding rate inside the same
stub network. Therefore, fi is determined by $, where A,
is the total number of the stub networks that coniain flooding
sources. This setting is intended to “hide” the attack from the
first-mile FDS. That is, the less the flooding sources inside the
stub network, the less flooding traffic seen by the first-mile FDS
and the harder to detect the flooding attack. The flooding du-
ration in all experiments is set to 10 minutes, a typical attack-
ing duration observed in the Internet [191. The starting time of
flooding attacks is randomly chosen between 1 and 5 minutes.

We first examine the detection sensitivity at the last-mile
FDS. To demonstrate the high sensitivity of last-mile FDS to
SYN flooding, the flooding rate V is set to its minimum, 500
SYNs per second. The simulation results are plotted in Figure 7
(c), showing that the cumulative sum yn exceeds the flooding
threshold “1” in a single observation period, i.e., the fastest re-
sponse can be achieved. So, the last-mile FDS can detect the
SYN flooding attack in 20 seconds. Once the flooding attack
is detected, the protection system like SynDefender can be trig-
gered to defend the victim from the flooding attack. To para-
lyze the protection system at the victim, the attackers have to
increase their flooding rate, and the first-mile FDS will then be
more likely to detect and locate the flooding sources inside the
stub network.

To examine the detection sensitivity of the first-mile FDS, we
vary the flooding rate fi seen by the first-mile FDS. Figures 7
(a) and (b) plot the simulation results when fi is set to 35 and
80 SYNs per second, respectively. The accumulative effects of
SYN flooding are clearly shown in these figures. In the case
of 80 SYNs per second, the first-mile FDS can detect the SYN
flooding in 2 observation periods, i.e., 40 seconds. However, in
the case of 35 SYNs per second, the first-mile FDS takes much
longer (around 6 minutes) to exceed the flooding threshold of
0.6, since the lower detection bound is about 35 SYNs per sec-
ond in this simulation scenario. However, due to its proximity
to the flooding sources, once the first-mile FDS detects the on-
going flooding traffic, it can further locate the flooding source
inside the stub network. In some sense, the detection time be-
comes a secondary issue, because the revelation of the flooding
sources is more important to the victim server.

As the last-mile detection is much easier than the first mile,
we only study the detection probability and detection time for
the latter. The simulation results for different fi values are listed
in Table II. The unit of detection time is the observation period

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1537 IEEE INFOCOM 2002

TABLE II
DLIKIIONP~K~OKMANC~O~ IHLFIKSI MIL~FDS

fi (SYNds) Detection Prob. Detection Time
33 70% 24.36
35 100% 17.25
40 100% 9.2
50 100% 4.75
60 100% 3.0
70 100% 2.4
80 100% 1.8
90 100% 1.2
100 100% 1.0

n

to, which is set to 20 seconds. Clearly, larger flooding rates
lead to faster and easier detection of attacks. Note that for the
UNC-out trace, F M 3764 which is equivalent to 188 FINS
(RSTs) per second. Theoretically, the lower detection bound of
the flooding rate is a x 188 = 37.6, where a = 0.2, while our
simulation results give the lower bound around 35.

From the detectable flooding rate, we can specify the efficacy
of our algorithm in detecting distributed flooding attacks at the
first mile. To attack a protected server, the aggregate flooding
rate V should be larger than 14,000. Using our lower detection
bound, suppose fi = 35 SYNs per second, then A, can be as
large as 400 stub networks. Although the attacker can simulta-
neously initiate the flooding attack from numerous machines, it
is much harder to launch the attack from the same large num-
ber of subnets due to the access limit. Considering the size of
the UNC stub network that has over 35,000 users [27 1, it clearly
demonstrates the utility and power of our detection mechanism.

If we implement this detection mechanism at a smaller sub-
net, F will be smaller, so we can achieve more “sensitive” de-
tection. We have conducted the simulation experiments based
on the traces that are collected from the stub network of Uni-
versity of Auckland at New Zealand on December 5,2000. Be-
cause its detection lower bound is 5 SYNs per second, A, has
to increase to 2,800 medium-size stub networks. In summary,
our FDS not only achieves fast detection and high detection ac-
curacy, but also can be easily implemented and broadly applied.

V RELATED WORK

All the effective solutions of countering SYN flooding at-
tacks can be roughly classified into four categories: firewall-
based, server-based, agent-based and router-based. As firewalls
have been installed at almost all sites, several SYN flooding
protection systems are available at these firewalls, such as Syn-
Defender [61 and Syn proxying [201. The firewall before the
protected server plays a key role in protection mechanisms,
which acts on behalf of the server before the connection is ac-
tually established. It intercepts the TCP traffic between clients
and the server, and maintains state for each TCP connection.
The drawbacks of this approach are delays on every packet for
additional processing.

Syn cache [171 and Syn cookies [31 belong to the server-
based mechanism. Syn cache still maintains states for each
SYN request, but the allocated state structure is much smaller.

The Syn cache employs a global hash table to keep the incom-
plete queued connections, instead of the per-socket linear list.
The listen queue is split among hash buckets. In the Syn cookies
mechanism, when the server received a SYN packet, it responds
with a SYN/ACK packet with the ACK sequence number cal-
culated from the source address, source port, source sequence,
destination address, destination port and a secret seed. Then,
the server releases all states. If an ACK comes from the client,
the server can recalculate the ACK sequence number to deter-
mine if it is a response to the previous SYN/ACK. If it is, the
server can directly enter the “established” state and open the
connection. So, the server removes the need to watch for half-
open connections. The Syn cookies have been implemented as
a standard part of Linux kernel.

A software agent [261, called synkill, has been developed for
mitigating the impact of SYN flooding attacks. Working in a
local area network environment, synkill continuously monitors
TCP three-way handshake messages. If a SYN packet is not
acknowledged after a certain amount of time, synkill will inject
a matching RST packet to free the resources occupied by the
illegitimate half-open connection. Moreover, based on network
observation and administratively given input, synkill classifies
IP source addresses, with high probability, to be spoofed or gen-
uine.

A data-structure called MULTOPS [151 is a tree of nodes
that keeps packet-rate statistics for subnets at different aggrega-
tion levels. Based on the observation of a significant dispropor-
tional difference between the traffic flowing into and out from
the victim, routers use MULTOPS to detect ongoing bandwidth
attacks. Ingress filtering [111, in which the internal router inter-
face is configured to block packets that have source addresses
from outside the internal network. This limits the ability to
launch a SYN flooding attack from that network, since the at-
tacker would only be able to generate packets with internal ad-
dresses.

Given the reachability constraints imposed by routing and
network topology, route-based distributed packet filtering
(DPF) [221 exploits routing information to determine if a packet
arriving at the router is valid with respect to its inscribed
source/destination addresses. The experimental results in [221
show that a significant fraction of spoofed packets are filtered
out, and the spoofed packets that escaped the filtering can be
localized into 5 candidate sites which are easy to trace back.

VI. FUTURE WORK
The weakness of the SYN-FIN pairs scheme lies in its vul-

nerability to simple counter-measures. Once the attacker is
aware of the presence of such a detection system, it can para-
lyze the SYN-FIN detection mechanism by flooding a mixture
of SYNs and FINS (RSTs). Although we can argue that by dou-
bling its flooding traffic, the attacker increases the possibility of
being traced back, one may still wonder if there is a better way
to overcome this shortcoming.

Fortunately, there is an alternative that is not easy for the at-
tacker to counter. In the normal TCP three-way handshake, an
outbound SYN always induces an inbound SYN/ACK within
a round-trip time. The key feature of this alternative is to uti-
lize this SYN-SYN/ACK pair for SYN flooding detection, in-
stead of the SYN-FIN pairs. Compared to the SYN-FIN pairs

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1538 IEEE INFOCOM 2002

scheme, this requires the coordination between the two FDSs.
The first-mile FDS maintains the count of outgoing SYNs and
the last-mile FDS keeps track of incoming SYN/ACK packets.
At the end of each observation period, the count information
must be exchanged between the two FDSs. Since SYN/ACK
packets are generated by the other side (i.e., the victim of flood-
ing attacks), it is harder for the flooding sources to evade the
detection.

Moreover, as compared to the SYN-FIN pair, the interval be-
tween SYN and SYN/ACK is bounded by a RTT, instead of the
duration of a TCP session that has a much larger variation. Note
that the SYN-SYN/ACK pair detection scheme itself is not im-
mune to counter-measures. If the spoofed source address is in
the same stub network as a flooding source, it cannot detect the
ongoing flooding attack.

Recently, Multihomed ASS become necessary to improve
availability, reliability and load-balancing. In such a case,
the stub network is connected to the Internet by multiple leaf
routers. However, as long as the packets that belong to the
same TCP session go through the same leaf router, our detec-
tion scheme still works. If the packets of the same TCP session
go through different leaf routers, we need a loose synchroniza-
tion mechanism between the FDSs in these leaf routers, which
will be addressed in our future work.

VII. CONCLUSION
This paper presented a simple and robust SYN flooding de-

tection mechanism to be installed at leaf routers. The detection
utilizes the SYN-FIN pairs’ behavior that is invariant under the
various arrival models and independent of sites and time-of-
day. The distinguishing features of FDS include: (1) it is state-
less and requires low computation overhead, making itself im-
mune to SYN flooding attacks; (2) the non-parametric CUSUM
method is employed, making the detection robust; (3) it is in-
sensitive to site and access pattern; and (4) it does not under-
mine the end-to-end TCP performance. The efficacy of FDS is
evaluated and validated by trace-driven simulation. The simula-
tion results show that the FDS achieves high detection accuracy
and short detection time. Moreover, once the first-mile FDS
detects the ongoing flooding traffic, information about the loca-
tion of flooding sources is also revealed, thus saving most of IP
traceback efforts.

ACKNOWLEDGMENT
We would like to thank Dong Lin for Harvard traces and

Kevin Jeffay for UNC traces.

REFERENCES
I] M. Ba\\evdle and I. V. Nlkd’orov, Detection of Abrupt Chcqe~ : Theq

and Applicc~tion, Prentice Hall, 1993.
21 S. M. Bellovm, “ICMP Traceback Me\\age\“, Internet Drrrft: da@

helhin itrrrce OO.txt, March 2000.
31 D. J. Bermtan and Eric Schenk, “Lmux Kernel SYN Cookie\ Flrewall

Project”, http://www.bronre\oft.org/proJect\/xfw.
41 B.E. Brod\ky and B.S. Darkhov\ky, Nonp~uxrmetric Methods in Chcqe

point Prohlemy, Kluwer Academic Pubh\her\, 1993.
S] R. Cacceru, P. B. DanrIg, S. Jamm and D. J. Mltrel, “Character~~t~c~ of

wide area TCP/IP conver\atlon\“, Proceedings of ACM SIGCOMM’91,
September I99 I

61 Check Pomt Software Technologle\ Ltd. SlnDefender:
http://www.checkpomt.com/product\/firewalI I.

171 W. S. Cleveland, D. Lin and D. Sun, “IP packet generation: statistical
models for TCP start times based on connection-rate superposition”, Pro-
ceedings of ACM SIGMETRICS’2000, June 2000.

[X] T. Darmohray and R. Oliver, “Hot Spares for DOS attacks”, ;/o,gin, 25(7),
July 2000.

191 D. Dittrich, “Distributed Denial of Service (DDoS) Attacks/Tools Page”,
http://staf’f.wwashington.edu/dittrich/misc/ddos/.

[IO] A. Feldmann, “Characteristics of TCP Connection Arrivals”, ATT Tech-
nical Report, December 1998.

[I I] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial
of Service Attacks Which Employ IP Source Address Spoofing”, RFC
2267, January 1998.

1121 L. Garber, “Deni&of-Service Attack Rip the Internet”, Computer, April
2000.

1131 S. D. Gribble and E. A. Brewer, “System Design Issues for Internet Mid-
dleware Services: Deductions from a Large Client Trace”, Proceedings of
USENIX Synposium on Internet Technologies and Sytems’97, December
1997.

1141 P. Gupta and N. McKeown, “Packet Cla\\dicatlon on MultIpIe Field\“,
Proceedinny ofACM SIGCOMM’99, September 1999.

[IS] T. M. Gil &d h. Pole&r, “MULTOPS: ; data-structure for bandwidth at-
tack detection”, Proceedings of USENIX Security Symposium ‘2001, Au-
gust 2001.

1161 T.V. Lakshman and D. Stiliadis, “High Speed Policy-based Packet For-
warding Using Efficient Multi-dimensional Range Matching”, Proceed-
ing” of ACM SIGCOMM’98, September 1998.

1171 J. Lemon, “Resisting SYN Flooding DOS Attacks with a SYN Cache”,
Proceedings of USENIX BSDCon’2002, February, 2002.

[IX] S. McCreary and K. Claffy, “Trends in Wide Area IP Traffic Patterns
~ A View from Ames Internet Exchange”, Proceedings of ITC’2000,
September 2000.

1191 D. Moore, G. Voelker and S. Savage, “Inferring Internet Denial of Ser-
vice Activity”, Proceedings of USENIX Security Symposium ‘2001, Au-
gust 2001.

[20] Netscreen 100 Firewall Appliance, http://www.netscreen.com/.
1211 K. Park and H. Lee, “On the Effectiveness of Probabilistic Packet Mark-

ing for IP Traceback under Denial of Service Attack”, Proceedings of
IEEE INFOCOM 2001, March 200 I

1221 K. Park and H. Lee, “On the Effectiveness of Route-Based Packet Fil-
tering for Distributed DOS Attack Prevention in Power-Law Internets”,
Proceedin,qs ofACM SIGCOMM’2001, August 2001.

1231 V. Pax\on and”S. Floyd, “Wide Area Traffics The Fadure ofPol\\on Mod
ehne”, IEEE/ACM Trcmwction~ on Networkinn, Vol. 3, No. 3, June 19%

1241 J. P&tel, Transmission Control Protocol, Request for Comments 793,
DDN Network Information Center, SRI International, September 1981.

1251 S. Savage, D. Wetherall, A. Karlin and T. Anderson, “Practical Network
Support for IP Traceback”, Proceedings of ACM SIGCOMM’2000, Au-
gust 2000.

1261 c. L. Schuba, I. V. Kr\ul, M. G. Kuhn, E. H. Spafford, A. Sundaram and
D. Zambom, “Analv\l\ of a Demal of Service Attack on TCP”, Proceed
in,gs of IEEE Symp&ium on Security and Privacy, May 1997.

1271 F. D. Smith, F. H. Campos, K. Jeffay and D. Ott, “What TCP/IP Proto-
col Header Can Tell Us About the Web”, Proceedings of ACM SIGMET-
RICS ‘2001, June 200 I

[2X] D. Song and A. Perrig “Advanced and Authenticated Marking Schemes
for IP Traceback”, Proceedings of IEEE INFOCOM’2001, March 2001.

1291 A. C. Snoren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent and W. T. Strayer, “Hash-Based IP Traceback”, Proceedings of
ACM SIGCOMM’2001, August 2001.

[30] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, “Fast and Scalable
Layer Four Switching”, Proceedings of ACM SIGCOMM’98, September
1998.

1311 W. Stevens, TCP/IP Illustrrrted, Volume I. Addison-Wesley Publishing
Company, 1994.

1321 K. Thompson, G. J. Miller, and R. Wilder, “Wide-Area Internet Traffic
Patterns and Characteristics”. IEEE Network, Vol. I I, No. 6, Novem-
ber/December 1997.

1331 H. Wang and K. G. Shin, “Layer-4 Service Differentiation and Isolation”,
Technical Report, University of Michigan, June 2001.

1341 S. F. Wu, L. Zhang, D. Massey, and A. Mankin, “Intention-driven
ICMP tracebxk”, Internet Drrrft: draft-wu-itruwintention-00. txt, Febru-
ary 200 I.

1351 Y. Zhang and B. Singh, “A Multi-layer IPsec Protocol”, Proceedings of
9th USENIX Security Symposium, August 2000.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1539 IEEE INFOCOM 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

