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Abstract- We propose a simple and robust mechanism for de- 
tecting SYN flooding attacks. Instead of monitoring the ongoing 
traffic at the front end (like firewall or proxy) or a victim server 
itself, we detect the SYN flooding attacks at leaf routers that con- 
nect end hosts to the Internet. The simplicity of our detection 
mechanism lies in its statelessness and low computation overhead, 
which make the detection mechanism itself immune to flooding at- 
tacks. Our detection mechanism is based on the protocol behavior 
of TCP SYN-FIN (RST) pairs, and is an instance of the Seqnen- 
tial Change Point Detection [l]. To make the detection mecba- 
nism insensitive to site and access pattern, a non-parametric Cn- 
mnlative Sum (CUSUM) method [4] is applied, thus making the 
detection mechanism much more generally applicable and its de- 
ployment much easier. The efficacy of this detection mechanism is 
validated by trace-driven simulations. The evaluation results show 
that the detection mechanism has short detection latency and high 
detection accuracy. Moreover, due to its proximity to the flood- 
ing sources, our mechanism not only sets alarms upon detection of 
ongoing SYN flooding attacks, but also reveals the location of the 
flooding sources without resorting to expensive IP traceback. 

1. INTRODUCTION 

The recent attacks on popular web sites like Yahoo, eBay and 
E*Trade, and their consequent disruption of services have ex- 
posed the vulnerability of the Internet to Distributed Denial of 
Service (DDoS) attacks [ 121. It has been shown that more than 
90% of the DOS attacks use TCP [ 191. The TCP SYN flooding 
is the most commonly-used attack. It consists of a stream of 
spoofed TCP SYN packets directed to a listening TCP port of 
the victim. Not only the Web servers but also any system con- 
nected to the Internet providing TCP-based network services, 
such as FTP servers or Mail servers, are susceptible to the TCP 
SYN flooding attacks. 

The SYN flooding attacks exploit the TCP’s three-way hand- 
shake mechanism and its limitation in maintaining half-open 
connections. When a server receives a SYN request, it returns 
a SYN/ACK packet to the client. Until the SYN/ACK packet 
is acknowledged by the client, the connection remains in half- 
open state for a period of up to the TCP connection timeout, 
which is typically set to 7.5 seconds. The server has built in 
its system memory a backlog queue to maintain all half-open 
connections. Since this backlog queue is of finite size, once the 
backlog queue limit is reached, all connection requests will be 
dropped. 
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If a SYN request is spoofed, the victim server will never re- 
ceive the final ACK packet to complete the three-way hand- 
shake. Flooding spoofed SYN requests can easily exhaust the 
victim server’s backlog queue, causing all the incoming SYN 
requests to be dropped. The stateless and destination-based 
nature of Internet routing infrastructure cannot differentiate a 
legitimate SYN from a spoofed one, and TCP does not offer 
strong authentication on SYN packets. Therefore, under SYN 
flooding attacks, the victim server cannot single out, and re- 
spond only to, legitimate connection requests while ignoring 
the spoofed. 

To counter SYN flooding attacks, several defense mecha- 
nisms have been proposed, such as Syn cache [ 171, Syn cook- 
ies 131, SynDefender 161, Syn proxying 1201, and Synkill 1261. 
All of these defense mechanisms are installed at the firewall of 
the victim server or inside the victim server, thereby providing 
no hints about the sources of the SYN flooding. They have to 
rely on the expensive IP traceback 121, 1211, 12.51, 1281, 1291, 
[ 341 to locate the flooding sources. Because the defense line is 
at, or close to, the victim, the network resources are also wasted 
by transmitting the flooding packets. 

Moreover, these defense mechanisms are stateful, i.e., states 
are maintained for each TCP connection or state computation is 
required. Such a solution makes the defense mechanism itself 
vulnerable to SYN flooding attacks. Recent experiments have 
shown that a specialized firewall, which is designed to resist 
SYN floods, became futile under a flood of 14,000 packets per 
second [ 8 1. The stateful defense mechanisms also degrade the 
end-to-end TCP performance, e.g., incurring longer delays in 
setting up connections. In the absence of SYN flooding attacks, 
all the overheads introduced by the defense mechanism become 
superfluous. We, therefore, need a simple stateless mechanism 
to detect SYN flooding attacks, which is immune to the SYN 
flooding attacks. Also, it is preferred to detect an attack early 
near its source, so that one can easily trace the flooding source 
without resorting to expensive IP traceback. 

In this paper, we propose a simple and robust mechanism to 
detect SYN flooding attacks, which is complementary to the de- 
fense systems mentioned above. The simplicity of this flooding 
detection system (FDS) lies in its statelessness’ and low com- 
putation overhead. The FDS is, in some sense, a by-product of 
the router infrastructure that differentiates TCP control packets 
from data packets [ 33 1. Instead of monitoring the ongoing traf- 
fic at the front end (like firewall or proxy) or the victim server 

lIn a stricter sense, it is per-connection stateless, i.e., no per-connection state 
is kept. 
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itself, we detect SYN flooding attacks at leaf routers that con- 
nect end hosts to the Internet. The FDS can be deployed at 
the first-mile or last-mile leaf routers. The benefit of deploying 
the FDS at the first-mile leaf routers is their proximity to the 
flooding sources. If a SYN flooding attack is detected at the 
first-mile leaf router, information about the location of flooding 
sources is also captured. The flooding sources must be inside 
the subnet to which the leaf router is connected, hence saving 
most of the work required by IP traceback. We will discuss the 
placement of FDS in Section II-B. 

The key feature of FDS is to utilize the inherent TCP SYN- 
FIN pairs’ behavior for SYN flooding detection. The SYN/FIN 
packets delimit the beginning (SYN) and end (FIN) of each 
TCP connection. As shown in Figure 1 that is borrowed 
from [ 3 11, under the normal condition, one appearance of a 
SYN packet results in the eventual return of a FIN packet. Al- 
though we can distinguish SYNs from SYN/ACK packets, we 
have no means to discriminate active FINS from passive FINS 
since each end host behind a leaf router may be either a client 
or a server. Therefore, the SYN-FIN pairs refer to the pairs 
of (SYN, FIN) and (SYN/ACK, FIN). In this paper, the “SYN” 
packets are generalized to include the pure SYN and SYN/ACK 
packets. While the RST packet violates the SYN-FIN pair, for 
any RST that is generated to abort a TCP connection2, we can 
still get a SYN-RST pair. The impact of RST upon SYN flood- 
ing detection is discussed further in Section II-C. 

Fig. I. TCP states corresponding to normal connection establishment and 
teardown 

We rely on packet classification to differentiate the TCP 
SYN, FIN and RST packets at leaf routers. This packet clas- 
sification was originally motivated by the desire of providing 
service differentiation to IP flows. Large-scale packet classifi- 
cation mechanisms [ 141, [ 161, 1301 have been proposed, mak- 
ing it possible to distinguish TCP control packets at routers at 
a very high speed. At leaf routers, no state or state computa- 
tion is involved in our FDS. Only three new variables are intro- 
duced to measure the number of received SYN, FIN and RST 
packets at the inbound and outbound interface, respectively. We 
refer to the traffic flowing from the Internet to the Intranet as in- 
hound, and the traffic in the other direction as outbound. Based 

‘Those RSTs are mostly issued by clients. In its own best interest, a server 
rarely sends the RST packets to its clients once their TCP connection have been 
established. 

on this SYN-FIN (RST) pairs’ behavior, the dynamics of the 
difference between the number of SYN and FIN (RST) pack- 
ets can be modeled as a stationary, ergodic random process, 
and our FDS is an instance of the Sequential Change Point 
Detection [ 11. To make the FDS independent of sites and ac- 
cess patterns, the difference between the number of SYNs and 
FINS (RSTs) is normalized by an estimated average number of 
FINS (RSTs). The non-parametric Cumulative Sum (CUSUM) 
method 141 is applied, making the FDS much more generally 
applicable and its deployment much easier. 

The efficacy of our detection mechanism is validated by 
trace-driven simulations. The evaluation results show that our 
FDS has short detection time and high detection accuracy. 
Moreover, due to its close proximity to the flooding sources, 
our detection mechanism not only alarms on the ongoing SYN 
flooding attacks but also reveals the location of the flooding 
sources. 

The remainder of the paper is organized as follows. Section 
2 discusses the issues related to our detection system. Section 
3 describes the proposed detection algorithm based on the TCP 
SYN-FIN (RST) pair’s behavior. Section 4 validates and evalu- 
ates the performance of the FDS using trace-driven simulations. 
Section 5 discusses the related work. Finally, conclusions are 
drawn in Section 6. 

II. ISSUESRELATEDTOFLOODINGDETECTION 

Before describing the proposed flooding detection mecha- 
nism, we discuss the details of three closely-related issues: 
packet classification, placement of the FDS, and discrepancy 
between the number of SYNs and FINS. 

A. Packet Classification 
To identify TCP SYNs, FINS and RSTs, the TCP header 

needs to be accessed. This identification is performed at leaf 
routers, which are usually the trusted entities for the clients in 
the same intranet. A multi-layer IPSec protocol [ 3.5 1 has been 
proposed, which allows trusted routers to access the transport- 
layer information. Therefore, the network-level security of 
IPSec should not be an obstacle to the identification and count- 
ing of TCP SYNs, FINS and RSTs at leaf routers. A detailed de- 
scription of the packet-classification algorithm is given in Fig- 
ure 2. 

The first two steps in Figure 2 guarantee that the IP packet 
contains a TCP header. The IP packet that contains the TCP 
header must have a zero fragmentation offset. Although IP op- 
tions are included primarily for network testing or debugging, 
in order to accurately pinpoint the offset of TCP CODE BITS in 
an IP packet, the 4-bit header length field (measured in number 
of 32-bit words) in the IP header is read. This field is used to 
compute the offset of the 6-bit CODE BITS field of the TCP 
header in this IP packet as follows: 

IPoffSet = Hdr-lengthlP + TCPoffset. 

It indicates that the offset of CODE BITS in the IP packet equals 
the sum of the length of IP header and the offset of CODE 
BITS in its TCP header. The 6-bit CODE BITS field of the TCP 
header is then read to determine the type of the TCP segment. 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1531 IEEE INFOCOM 2002



Fig. 2. The flowchart of the packet classification at leaf’ routers 

B. Placement of Detection Mechanism 
As mentioned before, the FDS is installed at either the first- 

mile or the last-mile leaf router, or both. However, each leaf 
router can be both the first-mile and last-mile router, depending 
on the direction of traffic Ilows between the intranet and the 
Internet. For the packets going out of the intranet, the leaf router 
is their first-mile router. On the other hand, for the incoming 
packets into the intranet, the leaf router is their last-mile router. 
Thus, we deploy the FDS at both the inbound and outbound 
interfaces. The one installed at the outbound interface is the 
first-mile FDS, while the one installed at the inbound interface 
is the last-mile FDS. Figure 3 illustrates the installation of FDS 
at a leaf router. The two FDSs can coordinate with each other 
via shared memory, or IPC inside the router. 

The first-mile FDS of the leaf router plays the primary role 
in detecting a flooding attack, due mainly to its proximity to 
the sources of the flooding attack. However, the detection sen- 
sitivity may decline with the increase of the size of the attack 
group. In a large-scale DDoS attack, the flooding sources can 
be orchestrated so that individual flooding traffic can cause only 
an insignificant deviation from the normal traffic pattern. 

In contrast, the last-mile FDS can quickly detect the flooding 
attacks as all of the flooding traffic is aggregated at the last-mile 
router. Although it cannot provide any hint about the flooding 
sources, the defense system like SynDefender can be triggered 
to protect the victim, making the flooding attack harder to suc- 
ceed. To bring down the victim under protection, the Ilood- 
ing sources have to significantly increase their flooding rates, 
but this increased flooding traffic makes it easier to detect the 
flooding attack and its sources at the first-mile routers. 

However, the FDS is not recommended to be installed at core 
routers mainly because (1) it is close to neither flooding sources 
nor the victim; and (2) packets of the same flow could traverse 
different paths. 

As has been done with most of intrusion detection (ID) sys- 
tems, the FDS can be placed on the link that connects the in- 
tranet to the Internet by monitoring the bidirectional traffic on 
that link. However, besides the extra specialized equipment and 
manpower involved, during high peak (near saturation) Ilow 
rates almost no event of any kind would be logged by an ID 

system - they either have to drop packets at a very high rate 
or require a multi-CPU architecture in order to perform packet 
state analysis. As the link speed continues to grow, it will be 
more difficult for network flow monitors (that run on a typical 
PC) to pace with the network’s packet rate. 

Outbound Inler~ace 
Fu\r-mle FDS 

Intranet 

Fig. 3. The installation of FDS at a leaf’ router 

Our last concern is with the wide deployment of the FDS at 
leaf routers. As the FDS provides differentiation between TCP 
control segments and data segments, fine-grained service dif- 
ferentiation and isolation can be made on TCP flows. The end- 
to-end TCP performance is significantly improved as shown 
in [ 33 1, instead of being undermined. Installation of the FDS 
benefits not only victim servers but also the clients inside the 
intranet. It greatly provokes the interest of wide deployment 
of the FDS. Furthermore, the FDS is incrementally deployable 
and its implementation overhead is low. 

C. Discrepancy between SYNs and FINS 
Under a long-running normal condition, the TCP semantics 

requires a one-to-one match between SYNs and FINS. How- 
ever, in reality there is always a discrepancy between the num- 
ber of SYNs and FINS. Besides the small number of long-lived 
TCP sessions, the other major cause of this discrepancy lies in 
the occurrence of RST packets. A single RST packet can termi- 
nate a TCP session without generating any FIN packet, which 
violates the SYN-FIN pair behavior. RSTs are generated for 
two reasons: (1) one is passive, i.e., the RST is transmitted in 
response to the arrival of a packet that is destined to a closed 
port; (2) the other is active, i.e., the RST is initiated to abort a 
TCP connection. Each active RST is associated with the SYN 
from the same session, since both of them can be seen by the 
same FDS. However, a passive RST can not be associated with 
any SYN seen at the same FDS due to the fact that the pas- 
sive RST and its corresponding SYN must go through different 
FDSs. Furthermore, passive RSTs may even have nothing to do 
with SYNs. For instance, a late arrival of a data packet to the 
port that has been closed will lead to the transmission of a RST. 
We treat the passive RTSs as background noise. 

In summary, three types of SYN pairs are considered as the 
normal behavior of TCP: (SYN, FIN), (SYN/ACK, FIN) and 
(SYN, RST,,t&. Unfortunately, the FDS can not distinguish 
the active RSTs from the passive ones. There are two simple 
but extreme ways to resolve this thorny problem: one is to treat 
all RSTs as active and the other is to treat all RSTs as pas- 
sive. The first approach reduces the FDS detection sensitivity, 
while the second raises the FDS false alarm rate. To make a 
trade-off between detection sensitivity and false alarm rate, it 
is necessary to set an appropriate threshold to filter the most 
of the background noise. Based on our observation, under the 
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normal condition: (1) the SYNs and RSTs have a strong posi- 
tive correlation; (2) the difference between the number of SYNs 
and that of FINS is close to the number of RSTs. These imply 
that the passive RSTs are only a small percentage of the whole 
RSTs. So, we set the threshold to 75%, i.e., 3 out of 4 RSTs are 
treated as active. Moreover, for the following reason, the FDS 
can withstand the negative impact of the passive RSTs that are 
incorrectly classified as active RSTs: in CUSUM algorithm, the 
reset-to-zero for any negative differences between the number 
of SYNs and that of FINS (RSTs) eliminates the cumulative ef- 
fects, and thus the spike of background noise only degrades the 
detection sensitivity during one observation period. 

111. STATISTICAL ATTACK DETECTION 

Basically, the FDS belongs to the commonly-known 
network-based intrusion detection system: an intruder is de- 
tected if its behavior is noticeably different from that of a legit- 
imate user. Like most statistical anomaly detection systems, we 
compare the observed sequence with the profile in representing 
the user’s normal behavior, and detect any significant deviation 
from the normal behavior. However, unlike the traditional net- 
work intrusion detection system that passively monitors bidi- 
rectional traffic streams on network links, the FDS is installed 
at a leaf router and can be viewed as a component integrated 
into the leaf router. 

The burstiness of TCP connection request arrivals [ 101 makes 
the detection of attack signatures much harder, since the criti- 
cal characteristic of self-similar traffic is that there is no nat- 
ural length of a “burst”. It is also site- and time-dependent. 
However, the strong positive correlation between SYN and FIN 
(RST) offers a clear indication for SYN flooding. According to 
the specification of TCP/IP protocol 1241, [ 311, in normal op- 
eration, a FIN (RST) is paired with a SYN at the end of data 
transmission; but under SYN flooding attacks, this SYN-FIN 
(RST) pair’s behavior will be violated, deviating from the nor- 
mal operation. 

A. Data Sampling and Detectcon Mechanism 
We collect the number of SYN and FIN (RST) packets dur- 

ing every observation period to, which determines the detection 
resolution, at leaf routers. In order to relate the SYN and FIN 
(RST) packets of the same connection, the sampling time of 
FIN (RST) is td later than that of SYN, where td is so chosen 
that a significant portion of connections requested during the 
SYN sampling period end in the corresponding FIN (RST) sam- 
pling period. Recent Internet traffic measurements have shown 
that most of TCP connections last 12-19 seconds [ 321, so we 
set td to 10 seconds. To balance the detection resolution and 
the algorithm’s stability and accuracy, we set to to 20 seconds. 
Note, however, that both parameters are tunable and our algo- 
rithm is not very sensitive to this choice. 

Under the normal condition, the difference between the col- 
lected number of SYNs and FINS (RSTs) is very small, as com- 
pared to the total number of TCP connection requests. This ob- 
servation is true in spite of the fact that the total number of TCP 
connection requests may be bursty on a small time scale, and 

3See Eq. 3 m Sectmn III B 

slowly-varying on a large time scale. In other words, the cor- 
relation between the number of SYNs and FINS (RSTs) is not 
sensitive to the request arrival process. The results presented in 
Section IV-A clearly show that the consistent synchronization 
between SYNs and FINS (RSTs) is independent of the sample 
time, sites, and time-of-day. 

Under SYN flooding attacks, the flooding SYN traffic has 
significant regularity and semantics that can be filtered out. 
Recent experiments with SYN attacks on commercial plat- 
forms [ 8 1 show that the minimum flooding rate to overwhelm an 
unprotected server is 500 SYN packets per second. Even with 
a specialized firewall designed to resist against SYN hoods, a 
server can be disabled by a hood of 14,000 packets per sec- 
ond [ 81. To shut down the victim server for 10 minutes, for 
example, the group of attackers need to inject at least a total of 
300,000 SYN packets. During the same time period, however, 
the number of FINS (RSTs) remains largely unchanged. There- 
fore, there will be much more SYNs than FINS (RSTs) collected 
during the flooding period. The difference between the number 
of SYNs and FINS (RSTs) will dramatically increase, and re- 
main large during the whole flooding period, which typically 
lasts for several minutes. So, the occurrence of a large differ- 
ence between the number of SYNs and FINS (RSTs) in the order 
of minutes or tens of seconds indicates a SYN flooding attack. 
This will be used in our attack detection. 

There are other events that may cause the increase of the dif- 
ference between the number of SYN and FIN (RST) packets as 
follows. 

. There has been a steady increase of on-line users and, at 
the same time, most of them issue long-lived TCP ses- 
sions. Thus, the number of established long-lived TCP 
connections is constantly increasing. 

. Some well-known servers or the links connected to them 
are down. The SYN requests are retransmitted three times 
automatically before the request times out. 

All of these cases are considered as exceptional situations, and 
rarely occur as the difference between the number of SYNs and 
FINS (RSTs) becomes very large. 

B. The CUSUM Algouitlzm 
Let {a,, n = 0, 1, . .} be the number of SYNs minus that 

of the corresponding FINS (RSTs) collected within one sam- 
pling period. In general, the mean of {a,} is dependent on 
the size of the subset. It may also vary with time of the day or 
week, depending on the access pattern. To make our algorithm 
more general, we should alleviate these dependencies. Thus, 
{a,} is normalized by the average number F of FINS (RSTs) 
during the sampling period to. F can be estimated in real time 
and updated periodically. An example of recursive estimation 
and update of F is: 

F(n) = c@(n - 1) + (1 - a)FIN (RST)(n), (1) 

where n is the discrete time index and a is a constant lying 
strictly between 0 and 1 that represents the memory in the esti- 
mation. 

Define X, = &/F. The mean of X,, denoted as c, is much 
less than 1 and close to 0. {X,} is no longer dependent on the 
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network size or time-of-day. Its dynamics are solely the conse- 
quence of the TCP protocol specification. So, we can consider 
{X,} as a stationary random process. 

Our attack detection algorithm is based on the Sequential 
Change Point Detection [ 11. The objective of Change Point 
Detection is to determine if the observed time series is statisti- 
cally homogeneous, and if not, to find the point in time when 
the change happens. It has been studied extensively by statisti- 
cians. See [ 11 and [ 41 for a good survey. There have been var- 
ious tests for different problems. They can be largely divided 
into two categories: posterior and sequential. Posterior tests are 
done off-line where the whole data segment is collected first 
and then a decision of homogeneity or a change point is made 
based on the analysis of all the collected data. On the other 
hand, sequential tests are done on-line with the data presented 
sequentially and the decisions are made on the run. 

We adopt a sequential test for a quicker response when an 
attack occurs. It also saves memory and computation. One 
difficulty, however, is the modeling of {X,}. Recently, there 
has been considerable work on the modeling of the arrival pro- 
cess of TCP connection requests. It is reported in [ 101 that the 
statistics of TCP connection request arrivals have shown sig- 
nificant changes in the past few years, along with the Internet 
traffic itself: in early 90’s, the dominant TCP connections are 
FTP and Telnet sessions, and the arrival process is Poisson [ 5 1. 
However, after the Web became the predominant source of TCP 
connections, the arrival process displays heavy-tails in its inter- 
arrival times [ 23 1. The newly-emerging Persistent-HTTP also 
has an impact on the TCP arrival pattern [ 27 1. Furthermore, 
recent Internet traffic analyses have shown that the arrival pro- 
cess is not even stationary and dependent on the average arrival 
rate [ 71 (bursty, or long-range dependent at low rate, but ap- 
proximately Poisson at high rate) and time scale [ 13 ] (bursty on 
a small time scale, but Poisson on a large time scale). For such 
a dynamic and complicated entity like the Internet, it may not 
be possible to model the total number of TCP connections at 
all times by a simple parametric model. Therefore, we seek ro- 
bust tests which are not model-specific. Non-parametric meth- 
ods fit this requirement very well. In particular, we apply the 
non-parametric CUSUM (Cumulative Sum) method [ 41 to our 
attack detection. This method enjoys all the virtues of sequen- 
tial and non-parametric test, and the computation load is very 
light. When the time series is i.i.d. with a parametric model, 
CUSUM is asymptotically optimal for a wide range of Change 
Point Detection problems [ 11, [ 4 1. 

{X,} is assumed to satisfy the following two conditions. 
Cl: {X,} is $- mixing, meaning that the g(s) parameters, 

defined below, approach 0 as s t co: 

SUP 
P(Jw 

A t F’t ‘P(A)P(B) - I” (2) - 2’ B t Ft+r’ P(A)P(B) # 0 

where Fi is the a-algebra generated by 
{X,, X2,. . . , Xt} and &y+s is the a-algebra 
generated by {Xt+s, Xt+s+l,. . .}. q(s) is affected 
by the dependency among the {X,} samples: highly 
dependent {X,} has q(s) that decays slowly as 
s t 0. 

C2: The marginal distribution of {X,} satisfies the fol- 
lowing regularity condition: 3 > 0 such that 
E(dX-) < co. 

The details of these conditions can be found in [ 41. In prac- 
tice, they are very mild and easily satisfiable, even by long 
range dependent arrival processes. In general, E(X,) = c << 
1. We choose a parameter a that is the upper bound of c, i.e., 
a > c, and define 2, = X, - a so that it has a negative mean 
during normal operation. When an attack takes place, 2, will 
suddenly become large positive. Suppose, during an attack, the 
increase in the mean of 2, can be lower-bounded by h. Our 
change detection is based on the observation of h > c. 

Let 

YTI = (Yin-1 + &J+, (3) 

Yo = 0, 

where x+ is equal to x if x > 0 and 0 otherwise. The meaning 
of yn can also be understood as follows: if we define SI, = 
Cf=, xi, with So = 0 at the beginning, it is straightforward to 
show that 

i.e., the maximum continuous increment until time n. A large 
{yn} is a strong indication of an attack. Since Eq. (3) is recur- 
rent and much easier to compute than Eq. (4), we will use it in 
making detection decisions. 

Let dN (.) be the decision at time n: ‘0’ for normal operation 
(homogeneity) and ‘1’ for attack (a change occurs). Here N 
represents the flooding threshold: 

4d.d = 0 ifyn<N; 
1 ify,>N. 

In other words, dN (yin) = I(Y, > N), where I( .) is the indica- 
tor function. The effect of introducing a is to offset the possible 
positive mean in {X,} so that the test statistic yn will be reset 
to zero frequently and will not accumulate with time. 

In this algorithm, there are two design parameters involved: 
a, the upper bound in case of normal operation, and N, the 
flooding threshold. Let Pm(&) be the probability measure 
(expectations) of {X,} with the attack occurring at time m 
and P, (E,) be the counterparts of {xn} without any attack. 
There are two fundamental performance measures for the se- 
quential change point detection. 

1) False alarm time (the time without false alarm): the time 
duration with no false alarm reported when there is no 
attack. 

2) Detection time: the detection delay after the attack starts. 
One would want the second measure to be as short as possi- 

ble while keeping the first measure as long as possible. How- 
ever, they are conflicting goals and cannot be simultaneously 
achieved. Therefore, the design philosophy of a statistical 
change point detection is to minimize the detection time sub- 
ject to a certain false alarm tolerance. In order to compare the 
performance of different detection schemes, some criteria of 
false alarms must be specified, like average time between two 
consecutive false alarms, worst-case false alarm time, and so 
on. An algorithm is said to be optimal with respect to a certain 
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criterion if it minimizes the detection time for an attack among 
all the detection schemes subject to the false alarm constraint. 
The CUSUM rule has been shown to be asymptotically opti- 
mal with respect to the worst-case mean false alarm time in the 
change point detection problems involving a known parametric 
model and independent observations [ 11. 

Due to the lack of a complete model for {Xn}, it is diffi- 
cult to discuss optimality. The choice of CUSUM is based on 
its simplicity in computation and non-parametric implementa- 
tion, as well as its generally excellent performance. It has been 
shown in 141 that, with the choice of a and N, as N + co, we 
have 

sup 1 InP,(dN(n) = 1)1 = O(N), 
n 

which is equivalent to 

(6) 

P,{d~((n) = l} = cl exp &N). (7) 

In other words, the time between consecutive false alarms 
grows exponentially with N. cl and c2 are constants, depending 
on the marginal distribution and mixing coefficients of {X,}. 
The burstiness of the traffic is reflected by the mixing coeffi- 
cients $(s), and thus, does impact the detection performance. 
However, the constants cl and c2 only play a secondary role 
and can be ignored in practice. 

In order to study the detection time, let’s define 

TN = inf{n : dN(.) = I}, (8) 

PN = 
(TN - m)+ 

N ’ 

where PN represents the normalized detection time after a 
change occurs and m represents the starting time of the attack. 
In CUSUM, for any m > 1, if h is the actual increase in the 
mean of {Xn} during an attack, we have 

1 

where h - Ic - al is the mean of {Xn} when m > m (after an 
attack starts). However, since h is a bound rather than a true 
value, the above is a conservative estimation (upper bound) of 
the actual detection time. 

C. Parameter Specification 
To implement the CUSUM algorithm, we first need to spec- 

ify the two tunable parameters: a, the upper bound in case of 
normal operation, and h, the lower bound of the increase in case 
of an attack. The CUSUM algorithm requires E(X,) < 0 be- 
fore the change point and E(X,) > 0 after it, i.e., a > c and 
h > a. Based on the discussion in the previous section, to en- 
sure a long false alarm time and make it independent of network 
size and access pattern, we set h = 2a in our design. 

In monitoring the incoming traffic (the ‘last mile’), all the 
flooding SYN packets converge, and therefore, a large differ- 
ence in the number of SYN and FIN (RST) packets is easily 
observable with h > c. In this case, the detection is not sensi- 
tive to the choice of a. With a large safe margin, we can simply 
choose a = 1 and h = 2. In monitoring the outgoing traffic 
(the ‘first mile’), since the attack may be initiated from many 

TABLE1 
A SUMMAKY OFI‘HE’I’KACE FEA’I’UKES 

19:30, Wed Sept 27, 00 Uni-directional 
19:30, Wed Sept 27, 00 Uni-directional 

I I  

sites simultaneously, only part of the flooding SYN packets can 
be seen by each detector. To balance the detection sensitivity 
and false alarm time, we set a = 0.2 and h = 0.4. For the time 
being, we set the parameters to be independent of network size 
and access pattern. In practice, the network administrator of the 
involved edge router can incorporate site-specific information 
so that the algorithm can achieve higher detection performance. 

Based on a and h, the flooding threshold N can be specified 
as follows: (I) assume c = 0, and y can thus be obtained from 
Eq. (9); and (II) specify a target detection time (i.e., the product 
of y and N) such that the flooding threshold N is determined 
by Eq. (8). We choose ta as the designed detection time for 
the last mile, hence y = 1 and N = 1; we choose 3ta as the 
counterpart for the first mile, hence y = 5 and N = 0.6.4 

It is worth noting that our algorithm is to check the cumula- 
tive effect of an attack. So, it can detect attacks with the SYN 
flooding rate less than h at the expense of a longer response 
time. The actual lower limit of detection in terms of SYN flood- 
ing rate is a if c M 0. Furthermore, the detection capability is 
not sensitive to the flooding pattern: it can detect the attacks 
with both constant and bursty flooding rates. The effectiveness 
of this detection is evaluated by trace-driven simulations. 

IV. PERFORMANCEEVALUATION 
To evaluate and validate the FDS, we have conducted trace- 

driven simulation experiments. The trace data used in our study 
are collected at different times from three different sources. The 
first set was gathered at Digital’s primary Internet access point, 
which is an Ethernet DMZ network. Each trace in this set con- 
tains an hour’s worth of all wide-area traffic between DEC (now 
Campaq) Western Research Lab and the Internet. The second 
set was taken on March 13, 1997 on a 10 megabit Ethernet con- 
necting Harvard’s main campus to the Internet, which includes 
two half-hour traces. The third set was obtained by placing 
network monitors on the high-speed link (OC-12 622 Mpbs) 
that connects the University of North Carolina at Chapel Hill 
(UNC) campus network to the rest of the world. The trace was 
collected on September 27,200O. A summary of the traces used 
in our experiments is given in Table I. Note the UNC traces are 
uni-directional: UNC-in collects the traffic data from the Inter- 
net to UNC campus network and UNC-out collects the traffic 
data from UNC campus network to the Internet. 

A. Nomal Tmjfic Behavior 
The three sets of traces represent the normal traffic behav- 

iors at the exchange points between different intranets and the 

4N may not seem to be large but Eq. (9) can serve as an approximation. 
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(b) DEC-2 (c) Harvard- 1 
Fig. 4. The dynamics of SYN and FIN (RST) packets (part I) 

(b) Harvard (c) UNC 
Fig. 6. CUSUM test statistics under normal operation 

Internet at different times. We parse the traces and extract the 
TCP SYN, FIN and RST packets as the input to our leaf router 
simulator. The dynamics of SYN, FIN and RST packets at DEC 
site are illustrated in Figures 4 (a) and (b). The corresponding 
result from Harvard traces are illustrated in Figures 4 (c) and 5 
(a) and those from UNC-in and UNC-out are in Figure 5 (b) 
and (c). They clearly show consistent synchronization between 
SYN and FIN (RST) packets. The consistency indicates that the 
synchronization is an inherent traffic behavior and independent 
of time and sites. 

We have applied the proposed detection algorithm on all 
the available traces without adding attacks. The test statistics, 
{yn}, for all traces are plotted in Figure 6. The flooding thresh- 
olds are specified in Section III-C, i.e., N = 0.6 for the first 
mile and N = 1 for the last mile. For all the traces tested, yin’s 

are mostly zeros. The isolated bursts in yn are always much 
smaller than the threshold. So, no false alarms are reported. 

B. SYN Flooding Detection 
With the appearance of Trinoo, which only implements UDP 

packet flooding, many tools have been developed to create 
DDoS attacks. Most of them, such as Tribe Flood Network 
(TFN), TFN2K, Trinity, Plague and Shaft, generate TCP SYN 
flooding attacks [ 91. Although these DDoS attack tools employ 
different ways to coordinate the attacks with the goal of achiev- 
ing robust and covert DDoS attacks, their flooding behaviors 
are similar in that the SYN packets are continuously sent to the 
victim. 

The mechanism of DDoS attacks works as follows: the mas- 
ter sends control packets to the previously-compromised slaves, 
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(a) 3.5 SYNs per second 

6 

(b) 80 SYNs per second (c) 500 SYNs per second 
Fig. 7. SYN floodmg detectmn \en\ltlwty (a) and (b) at fir\t mde FDS; (c) at la\t mde FDS 

instructing them to target at a given victim. The slaves then 
generate and send high-volume streams of flooding messages 
to the victim, but with fake or randomized source addresses, so 
that the victim cannot locate the attackers. 

Normal traK~c Floodmg traK~c 

17 
Leaf Router 

Fig. 8. The trace-simulation flooding attack experiment 

In the SYN flooding detection experiments, the UNC 2000 
traces are used as the normal background traffic. Among them, 
UNC-in is used for inbound, i.e., last-mile monitoring, and 
UNC-out is for outbound, i.e., first-mile monitoring. The flood- 
ing traffic is mixed with the normal traffic, and the FDS at the 
leaf router is simulated, as shown in Figure 8. Because the 
non-parametric CUSUM method is used for detection of flood- 
ing attacks, the flooding traffic pattern or its transient behavior 
(bursty or not) does not affect the detection sensitivity. The de- 
tection sensitivity depends only on the total volume of flooding 
traffic. Therefore, without loss of generality, we assume that 
the flooding rate is constant. 

In DDoS attacks, the flooding traffic seen by the first-mile 
and the last-mile FDSs is quite different. The flooding traf- 
fic passing through the last-mile FDS is the aggregation of the 
flooding traffic from all distributed attackers, allowing a much 
easier detection. However, the flooding detection at the first- 
mile FDS is much more difficult. In a large-scale DDoS at- 
tack, the flooding sources can be so coordinated that the traffic 
from each flooding source is not significant. Assume that the 
minimum SYN flooding traffic to bring down a TCP server is 
V packets per second. Then, the flooding rate at the last-mile 
FDS is V, but the flooding rate seen by the first-mile FDS may 
be quite different. 

We assume the flooding traffic is evenly distributed among 
different flooding sources and there is only one flooding source 
inside each stub network. The flooding rate seen by the first- 

mile FDS, fi, equals the individual flooding rate inside the same 
stub network. Therefore, fi is determined by $, where A, 
is the total number of the stub networks that coniain flooding 
sources. This setting is intended to “hide” the attack from the 
first-mile FDS. That is, the less the flooding sources inside the 
stub network, the less flooding traffic seen by the first-mile FDS 
and the harder to detect the flooding attack. The flooding du- 
ration in all experiments is set to 10 minutes, a typical attack- 
ing duration observed in the Internet [ 191. The starting time of 
flooding attacks is randomly chosen between 1 and 5 minutes. 

We first examine the detection sensitivity at the last-mile 
FDS. To demonstrate the high sensitivity of last-mile FDS to 
SYN flooding, the flooding rate V is set to its minimum, 500 
SYNs per second. The simulation results are plotted in Figure 7 
(c), showing that the cumulative sum yn exceeds the flooding 
threshold “1” in a single observation period, i.e., the fastest re- 
sponse can be achieved. So, the last-mile FDS can detect the 
SYN flooding attack in 20 seconds. Once the flooding attack 
is detected, the protection system like SynDefender can be trig- 
gered to defend the victim from the flooding attack. To para- 
lyze the protection system at the victim, the attackers have to 
increase their flooding rate, and the first-mile FDS will then be 
more likely to detect and locate the flooding sources inside the 
stub network. 

To examine the detection sensitivity of the first-mile FDS, we 
vary the flooding rate fi seen by the first-mile FDS. Figures 7 
(a) and (b) plot the simulation results when fi is set to 35 and 
80 SYNs per second, respectively. The accumulative effects of 
SYN flooding are clearly shown in these figures. In the case 
of 80 SYNs per second, the first-mile FDS can detect the SYN 
flooding in 2 observation periods, i.e., 40 seconds. However, in 
the case of 35 SYNs per second, the first-mile FDS takes much 
longer (around 6 minutes) to exceed the flooding threshold of 
0.6, since the lower detection bound is about 35 SYNs per sec- 
ond in this simulation scenario. However, due to its proximity 
to the flooding sources, once the first-mile FDS detects the on- 
going flooding traffic, it can further locate the flooding source 
inside the stub network. In some sense, the detection time be- 
comes a secondary issue, because the revelation of the flooding 
sources is more important to the victim server. 

As the last-mile detection is much easier than the first mile, 
we only study the detection probability and detection time for 
the latter. The simulation results for different fi values are listed 
in Table II. The unit of detection time is the observation period 
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TABLE II 
DLIKIIONP~K~OKMANC~O~ IHLFIKSI MIL~FDS 

fi (SYNds) Detection Prob. Detection Time 
33 70% 24.36 
35 100% 17.25 
40 100% 9.2 
50 100% 4.75 
60 100% 3.0 
70 100% 2.4 
80 100% 1.8 
90 100% 1.2 
100 100% 1.0 

n 

to, which is set to 20 seconds. Clearly, larger flooding rates 
lead to faster and easier detection of attacks. Note that for the 
UNC-out trace, F M 3764 which is equivalent to 188 FINS 
(RSTs) per second. Theoretically, the lower detection bound of 
the flooding rate is a x 188 = 37.6, where a = 0.2, while our 
simulation results give the lower bound around 35. 

From the detectable flooding rate, we can specify the efficacy 
of our algorithm in detecting distributed flooding attacks at the 
first mile. To attack a protected server, the aggregate flooding 
rate V should be larger than 14,000. Using our lower detection 
bound, suppose fi = 35 SYNs per second, then A, can be as 
large as 400 stub networks. Although the attacker can simulta- 
neously initiate the flooding attack from numerous machines, it 
is much harder to launch the attack from the same large num- 
ber of subnets due to the access limit. Considering the size of 
the UNC stub network that has over 35,000 users [ 27 1, it clearly 
demonstrates the utility and power of our detection mechanism. 

If we implement this detection mechanism at a smaller sub- 
net, F will be smaller, so we can achieve more “sensitive” de- 
tection. We have conducted the simulation experiments based 
on the traces that are collected from the stub network of Uni- 
versity of Auckland at New Zealand on December 5,2000. Be- 
cause its detection lower bound is 5 SYNs per second, A, has 
to increase to 2,800 medium-size stub networks. In summary, 
our FDS not only achieves fast detection and high detection ac- 
curacy, but also can be easily implemented and broadly applied. 

V RELATED WORK 

All the effective solutions of countering SYN flooding at- 
tacks can be roughly classified into four categories: firewall- 
based, server-based, agent-based and router-based. As firewalls 
have been installed at almost all sites, several SYN flooding 
protection systems are available at these firewalls, such as Syn- 
Defender [ 61 and Syn proxying [ 201. The firewall before the 
protected server plays a key role in protection mechanisms, 
which acts on behalf of the server before the connection is ac- 
tually established. It intercepts the TCP traffic between clients 
and the server, and maintains state for each TCP connection. 
The drawbacks of this approach are delays on every packet for 
additional processing. 

Syn cache [ 171 and Syn cookies [ 31 belong to the server- 
based mechanism. Syn cache still maintains states for each 
SYN request, but the allocated state structure is much smaller. 

The Syn cache employs a global hash table to keep the incom- 
plete queued connections, instead of the per-socket linear list. 
The listen queue is split among hash buckets. In the Syn cookies 
mechanism, when the server received a SYN packet, it responds 
with a SYN/ACK packet with the ACK sequence number cal- 
culated from the source address, source port, source sequence, 
destination address, destination port and a secret seed. Then, 
the server releases all states. If an ACK comes from the client, 
the server can recalculate the ACK sequence number to deter- 
mine if it is a response to the previous SYN/ACK. If it is, the 
server can directly enter the “established” state and open the 
connection. So, the server removes the need to watch for half- 
open connections. The Syn cookies have been implemented as 
a standard part of Linux kernel. 

A software agent [ 261, called synkill, has been developed for 
mitigating the impact of SYN flooding attacks. Working in a 
local area network environment, synkill continuously monitors 
TCP three-way handshake messages. If a SYN packet is not 
acknowledged after a certain amount of time, synkill will inject 
a matching RST packet to free the resources occupied by the 
illegitimate half-open connection. Moreover, based on network 
observation and administratively given input, synkill classifies 
IP source addresses, with high probability, to be spoofed or gen- 
uine. 

A data-structure called MULTOPS [ 151 is a tree of nodes 
that keeps packet-rate statistics for subnets at different aggrega- 
tion levels. Based on the observation of a significant dispropor- 
tional difference between the traffic flowing into and out from 
the victim, routers use MULTOPS to detect ongoing bandwidth 
attacks. Ingress filtering [ 111, in which the internal router inter- 
face is configured to block packets that have source addresses 
from outside the internal network. This limits the ability to 
launch a SYN flooding attack from that network, since the at- 
tacker would only be able to generate packets with internal ad- 
dresses. 

Given the reachability constraints imposed by routing and 
network topology, route-based distributed packet filtering 
(DPF) [ 221 exploits routing information to determine if a packet 
arriving at the router is valid with respect to its inscribed 
source/destination addresses. The experimental results in [ 221 
show that a significant fraction of spoofed packets are filtered 
out, and the spoofed packets that escaped the filtering can be 
localized into 5 candidate sites which are easy to trace back. 

VI. FUTURE WORK 
The weakness of the SYN-FIN pairs scheme lies in its vul- 

nerability to simple counter-measures. Once the attacker is 
aware of the presence of such a detection system, it can para- 
lyze the SYN-FIN detection mechanism by flooding a mixture 
of SYNs and FINS (RSTs). Although we can argue that by dou- 
bling its flooding traffic, the attacker increases the possibility of 
being traced back, one may still wonder if there is a better way 
to overcome this shortcoming. 

Fortunately, there is an alternative that is not easy for the at- 
tacker to counter. In the normal TCP three-way handshake, an 
outbound SYN always induces an inbound SYN/ACK within 
a round-trip time. The key feature of this alternative is to uti- 
lize this SYN-SYN/ACK pair for SYN flooding detection, in- 
stead of the SYN-FIN pairs. Compared to the SYN-FIN pairs 
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scheme, this requires the coordination between the two FDSs. 
The first-mile FDS maintains the count of outgoing SYNs and 
the last-mile FDS keeps track of incoming SYN/ACK packets. 
At the end of each observation period, the count information 
must be exchanged between the two FDSs. Since SYN/ACK 
packets are generated by the other side (i.e., the victim of flood- 
ing attacks), it is harder for the flooding sources to evade the 
detection. 

Moreover, as compared to the SYN-FIN pair, the interval be- 
tween SYN and SYN/ACK is bounded by a RTT, instead of the 
duration of a TCP session that has a much larger variation. Note 
that the SYN-SYN/ACK pair detection scheme itself is not im- 
mune to counter-measures. If the spoofed source address is in 
the same stub network as a flooding source, it cannot detect the 
ongoing flooding attack. 

Recently, Multihomed ASS become necessary to improve 
availability, reliability and load-balancing. In such a case, 
the stub network is connected to the Internet by multiple leaf 
routers. However, as long as the packets that belong to the 
same TCP session go through the same leaf router, our detec- 
tion scheme still works. If the packets of the same TCP session 
go through different leaf routers, we need a loose synchroniza- 
tion mechanism between the FDSs in these leaf routers, which 
will be addressed in our future work. 

VII. CONCLUSION 
This paper presented a simple and robust SYN flooding de- 

tection mechanism to be installed at leaf routers. The detection 
utilizes the SYN-FIN pairs’ behavior that is invariant under the 
various arrival models and independent of sites and time-of- 
day. The distinguishing features of FDS include: (1) it is state- 
less and requires low computation overhead, making itself im- 
mune to SYN flooding attacks; (2) the non-parametric CUSUM 
method is employed, making the detection robust; (3) it is in- 
sensitive to site and access pattern; and (4) it does not under- 
mine the end-to-end TCP performance. The efficacy of FDS is 
evaluated and validated by trace-driven simulation. The simula- 
tion results show that the FDS achieves high detection accuracy 
and short detection time. Moreover, once the first-mile FDS 
detects the ongoing flooding traffic, information about the loca- 
tion of flooding sources is also revealed, thus saving most of IP 
traceback efforts. 
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