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Abstract—Reconfigurable software is highly desired for
automated machine tool control systems for low-cost products
and short time to market. In this paper, we propose a software
architecture based on a combination of object-oriented models
and executable formal specifications. In this architecture, the
machine control software is viewed as an integration of a set
of reusable software components, each modeled with a set of
event-based external interfaces for functional definitions, a
control logic driver for execution of behavioral specifications,
and a set of service protocols for platform adaptation. The
behaviors of the entire software can be viewed as an integration
of behaviors of components and their integration, and can be
specified in aControl Plan specification language, which is based
on Nested Finite State Machines, independently of the component
implementations. Separation of structural specification from
behavioral specification enables the controller software structure
to be reconfigured independently of application, and software
behavior to be reconfigured independently of controller software
structure. When the system needs reconfiguration due to changes
in either application requirements or the execution platform,
the software with our architecture can then be reconfigured by
changing reusable components and their interactions in structure
for functional capability, and by changing the Control Plan
program for behavior. Both types of reconfiguration can be done
at the executable code level after the software is implemented. The
proposed architecture also supports reconfigurability to facilitate
heterogeneous implementations and vendor-neutral products.
Our evaluation based on current software construction practices
for both laboratory machine tools and an industry machining
system has shown that the goals of higher reconfigurability and
lower development and maintenance costs are achieved with the
control software constructed using the proposed architecture.

Index Terms—Controller architecture, machine control systems,
reconfigurable software, software models.

I. INTRODUCTION

A S MORE ADVANCED and cheaper hardware becomes
available and applications get complicated with shorter

time-to-market demands, software for today’s machine control
systems must support agile system reconfiguration with dif-
ferent combinations of hardware and software [6], [15], [17].
Software for machine control systems is usually designed and
implemented with a set of components, such as device drivers,
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control functions, and algorithms, all running on a designated
platform. Components may need to be added, removed, and
replaced to satisfy new product requirements during the soft-
ware life cycle. The execution platform may also need to be
upgraded, oftentimes with new computing and communication
hardware and software. This trend calls for reconfigurable
software that reuses existing software components to generate
the control software for new hardware and applications very
quickly. This will, in turn, enable low-cost product develop-
ment at the manufacturing level and short time to market at the
enterprise level.

However, the reconfigurability of software for current ma-
chine control systems is very limited, although the concept of
component-based software integration [28] has already been
adopted in controller software development. Specifically, the
following limitations in current control software development
practices hinder the reconfigurability of software.

1) Application software is partitioned and implemented
with proprietary information.For example, a device
driver for a machine tool without monitoring, and that
with monitoring, are usually implemented with very
different interfaces, thus making it difficult to recon-
figure software for controller without monitoring to one
with monitoring when such a function is required as
the application evolves. This difficulty is due mainly
to component implementations based on the traditional
top-down system partitioning, which requires compo-
nents and their interactions to be fully specified before
their implementation. Components for reconfigurable
software cannot be implemented in this way, as external
interactions in different configurations are not always
known when a component is implemented.

2) Control behaviors of the software are either built inside
the implementation and hence, not customizable, or
not modularized and associated with the corresponding
software components.Examples of the first case are
hard-coded system startup and shutdown procedures.
Software for a programmable logic controller (PLC)
requiring global shared information is an example for
the second case. The root cause of this problem is that
the selection and implementation of control logic are
usually determined by the application requirements or
physical processes, while the selection and implemen-
tation of components are determined by the physical
machine setup. The architectural mechanisms in current
machine control software do not support separation of
development of component-level behaviors from that of
component-level functions.
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3) Software implementation is specific to platform configu-
ration.Currently, software development for machine con-
trol systems requires full knowledge of the execution plat-
form configuration before the software is implemented.
The software components are implemented with configu-
ration information, such as the number of inputs–outputs
and their locations, the number and type of processors for
execution, communication channels, and protocols for in-
formation exchange. However, the original platform con-
figuration is very likely to change many times during
the system’s lifetime or as the application requirements
change, thus forcing the software components to be reim-
plemented. It is also difficult to construct software using
existing components from different applications owing to
differences in their requirements from execution environ-
ments.1

To address the aforementioned issues, we propose a soft-
ware architecture especially for constructing reconfigurable
software with reusable components. Our goal is to enable
reuse of implemented software components across different
applications and different platform configurations, and be-
havior reconfigurability at the executable code level. In this
architecture, reusable software components are modeled with a
set of event-based external interfaces, a set of communication
ports, a control logic driver, and service protocols. Components
can be structurally composed by linking their communication
ports and then be mapped to a platform by customizing their
service protocols. The control logic, calledbehavior, of each
component is modeled as aNested Finite-State Machine
(NFSM), which is a formal model for behavior compositions.
Such control logic in the NFSM can then be specified in table
form and executed by the control logic driver inside each
component. Both system- and component-level behaviors can
be specified in aControl Planprogram, which is an executable
specification used for both design-time analysis and run-time
execution. Since the behaviors and functions are separated in
our architecture, nonfunctional constraints such as timing and
resource constraints can be analyzed at an early phase of devel-
opment, as system behaviors normally have more significant
effects on these constraints than system functionalities and
platform configurations.

Our main contribution in this paper lies in separating con-
cerns in controller software development at the software archi-
tecture level, so that different aspects of controller software can
be configured/reconfigured independently and after implemen-
tation. In our architecture, structural and behavioral reconfig-
uration as well as platform reconfiguration are separated from
each other and can be done independently of each other. This
enables experts in one area (e.g., control logic design) to work
independently on one aspect of a controller without having to
know the other areas (e.g., software modeling and hardware
integration). The support for postimplementation reconfigura-
tion reduces development costs as compared with those methods
being used in current software engineering practice that focus on
the preimplementation design phase and require reimplementa-

1These problems are known as “architecture mismatches” in software engi-
neering [34].

Fig. 1. Reconfigurable software structure.

tion upon reconfiguration. The other contributions of this paper
include construction and evaluation of reconfigurable software
for a real control system and showing/making tradeoffs between
flexibility and performance.

The rest of this paper is organized as follows. Section II
describes the architecture for construction of reconfigurable
software, including component structure, composition model,
and structural reconfiguration. Section III describes the NFSM
model, specifications inControl Plan, and behavior recon-
figuration. Section IV presents our evaluation results based
on control software construction for two laboratory machine
control systems and an industry manufacturing workcell. Sec-
tion V summarizes the related work, and the paper concludes
with Section VI.

II. SOFTWARE ARCHITECTURE

Reconfiguration of a machine control system can be ab-
stractly viewed as changes toapplication processand/or
physical configuration. The former determines the control
algorithms, operations, and their sequences required to man-
ufacture a product, while the latter defines the (machine tool
and computation) devices and their functionalities. Thus, we
divide the software for machine control systems into two
parts: controller softwareand application specifications, as
shown in Fig. 1. The controller software consists of reusable
software components corresponding to the physical machine
configuration and defines only the functionality of the machine
control system. The application specifications describe the
product process as well as the desired control logic of the
controller software. In our architecture, the controller software
is expressed as a composition of communicating software
components, and the application specifications are expressed as
the integrated behaviors in a Control Plan program. Such a soft-
ware structure breaks the dependency between the application
and the physical machine configuration and, therefore, higher
reconfigurability can be achieved by supporting the same
application specification executed on different controllers, and
supporting the same controller software executing different
application specifications. The controller software needs to be
reconfigured only when the physical configuration changes,
and the application specifications need to be altered when the
product requirements change.
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Fig. 2. Reusable component structure.

A. Component Structure

Components are preimplemented software modules (or al-
ready instantiated but customizable objects within an object-ori-
ented model) and are used as building blocks to construct the
controller software. A component defines the functionality of
a device or subsystem, which can be as simple as an I/O de-
vice like a position sensor, or a control algorithm like propor-
tional-integral-derivative (PID) control, or as complex as a com-
posed subsystem like coordinated axes.

The structure of a software component includes a set of event-
based external interfaces with registration and mapping mecha-
nisms, communication ports, a control logic driver, and service
protocols, as shown in Fig. 2.

Event-Based External Interfaces:External interfaces are
designed to expose component functionalities to the external
world, i.e., define operations that can be invoked from outside.
External interfaces in our architecture are represented as a set of
acceptable global (external) events with designated parameters.
Event-based interfaces enable operations to be scheduled and
ordered adaptively in distributed and parallel environments and
allow components to be integrated, at executable code level,
into the system. A customizable event-mapping mechanism is
devised and added in each component to achieve the translation
between global events and the component’s internal representa-
tions. Such a mapping separates a component implementation
from its interfaces, thus making multiple implementations
of one operation possible. Since the mapping is internal, it
can be customized without knowing interactions with other
components. A registration mechanism is also added to per-
form run-time checking on the validity of received events. A
user can manage which operations are allowed to be called
by customizing the registered events. Only those operations
invoked by authorized and acceptable events will be executed.
These customizations can be stored as predefined files in a
local system for run-time loading, or selected by a user when
the system starts up.

In an integrated system, a set of components may interact with
each other to obtain the desired services (e.g., data transforma-
tion and control-command generation). The services that each
component provides are specified as acceptable external events,
and other components can invoke the desired functions only

through sending the corresponding events to the target compo-
nents. Such relationships are constructed during design time and
can be changed only at some predefined safe state (e.g., configu-
ration state) during run time. This makes our component model
different from commonly used models such as the common ob-
ject request broker architecture (CORBA), the distributed com-
ponent object model (DCOM), and Jini [27], which are usually
based on remote procedure calls and heavily depend on prede-
fined middleware services such as naming and lookup services.
Therefore, the control software constructed with our component
model consumes less computation resources and supports more
predictable execution, so it can be implemented on inexpensive
hardware while preserving reconfigurability that is difficult to
achieve with a fixed implementation. On the other hand, mid-
dleware services can be integrated in the system as components,
when necessary, by mapping the service invocations to a set of
events corresponding services.

Communication Ports:Communication ports are used to
connect components for integration. They are physical inter-
faces of a component, and are the only mechanism by which
components interact with each other. Each communication port
has a set of attributes associated with it which define the type of
communication port (send only, receive only, or both, buffered
or nonbuffered), message-exchange methods (shared, queued,
or immediate), the way of communication (synchronous or
asynchronous), message-delivery policies (first-in-first-out,
priority-based), and conflict-resolution policies (overwritten
AND, OR). Proper values of these attributes can be selected
during design time through analyses.

A pair of communication ports form a communication
channel. In this regard, the communication port is similar to
the one defined in Real-Time Object-Oriented Model (ROOM)
[23]. However, our communication port is not only an abstract
model representation, but also it can be an implemented
mechanism in a final product to support reconfiguration, i.e.,
it is designed for reuse and reconfiguration. Hence, a port
is not implemented as some abstract class, but as a parame-
terized object, and different instantiations differ only in their
parameters as described in [28]. Different protocol levels can
be implemented by customizing the communication ports. For
example, the application-level protocol can be implemented
by defining which event list is acceptable for a port, while the
underlying infrastructure-level protocol can be implemented
by customizing the attributes of the communication port. Each
reusable component can have one or more communication
ports. The number of ports that a component needed in a
configuration can be determined by the system integrator. Ports
can be customized with different service protocols to meet
different performance requirements. Multiple connections can
also share one communication port.

Control Logic Driver: The control logic driver, also called
the finite-state machine (FSM) driver, is designed to separate
function definitions from control logic specifications and to sup-
port control logic reconfiguration at executable code level. The
control logic driver can be viewed as an interface to access and
modify the control logic inside a component, which is tradi-
tionally hard coded in the component implementation. Every
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component that executes some control logic should have such
a driver inside itself. The control logic of a component can then
be fully specified as a state table [30] for execution. A control
logic driver will generate commands to invoke operations of the
controlled objects at run time according to its state table and re-
ceived events. State tables can also be packed as data and passed
to another component to reconfigure the receiver component’s
behavior remotely.

The control logic driver of a component is a center piece to
enable postimplementation reconfiguration of component be-
havior. It invokes the control object functions based on current
component state and incoming events to communication ports,
which are specified by state table entries. Function calls are stat-
ically bound to internal events at implementation time, and the
control logic driver invokes the control object functions by gen-
erating internal events for the corresponding control objects. For
each component, multiple state tables can be designed to specify
different desired behaviors in different system modes. However,
only one state table for a component can be active at a time.

Although the control logic driver introduces additional over-
head to the system as more steps a component has to go through
to invoke an operation, such processing and related bindings
are statically configured before normal execution. Therefore,
the overhead introduced by the control logic driver should be
negligible to the application-level performance; it may be sig-
nificant at low level due to frequent long jumps and pipeline
flushes caused by the sequence of function calls to process state
transitions. On the other hand, efforts and costs for software
reconfiguration when application requirements change, over-
weigh performance for resource-rich systems such as PC-based
controllers.

Service Protocols:Service protocols define execution envi-
ronments or infrastructures of a component. They are designed
to make components adaptive to different platforms. In our ar-
chitecture, we assume that the underlying infrastructures pro-
vide unified interfaces for different types of services as defined
in the portable operating system interface (POSIX) [10] and,
therefore, form a virtual machine for application-level compo-
nents of a controller. The service protocols are used to customize
such a virtual machine so that only those required services will
be integrated into the system. For example, a component can
specify its communication mechanism as a message queue or
shared memory. Examples of service protocols include sched-
uling policies, interprocess communication mechanisms, and
network protocols.

Service protocols are implemented as a set of attributes of a
component. Selection of services is implemented by assigning
the desired values for the service attributes. Such selection
is based on the mechanisms available on a given platform
and performance (such as timing and resource) constraints of
a system. The selected services will be bound to the corre-
sponding function calls provided by the infrastructures either
statically or during the software initialization.

There is also another type of component commonly used in
controller software, which only handles computation without
any control logic. The functionality of such a component can be
considered, for example, as transforming data from one format

Fig. 3. Hierarchical composition model.

to another. We model such components, calledcomputational
components, with the same structure as above, but without a
control logic driver. Since computational components are usu-
ally used under the control of another component with control
logic, they can be treated as a black box with input and output
data associated with some special events (e.g., IN_DATA and
OUT_DATA) during component integration and analysis.

At run time, each component retrieves events from its com-
munication ports either upon some event arrival or periodically.
The acceptable events are then translated to internal events
and fed to the control logic driver. The control logic driver
determines desired actions and output events and sends local
commands to corresponding controlled objects. After receiving
commands, the controlled objects in a component will perform
some actions (one or a sequence of function calls) and generate
results. However, the controlled objects are not allowed to feed
events back to control logic driver to prevent local cycles.

B. Composition Model and Structural Reconfiguration

Structurally, the controller software can be constructed by
integrating a set of preimplemented components, each with the
structure shown in Fig. 2. Interactions among the constituent
components can be defined as events to be exchanged via
designated communication ports. To facilitate software con-
struction, a set of components can be preferred to be composed
as one large complex component during high-level integration.
Our component model supports composability. Components
can be organized hierarchically in our composition model to
support reconfiguration with different component granularities.
A high-level component may consist of a set of communicating
low-level components, as shown in Fig. 3, with a high-level
control logic driver, communication ports, and customizable
service protocols. Such composition implies the hierarchical
behavior where the behaviors of inner (lower level) components
are part of the behavior of the component that contains them.

While such a composition provides reusability and reconfig-
urability at multiple granularity levels, the overheads may in-
crease as the component hierarchy becomes deeper. Since the
functionality of a subsystem in a control system is relatively
static, and reconfiguration only happens among a certain range
of levels, the overhead can be lowered by limiting the number
of granularity levels during design and integration.
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The controller software constructed with such reusable com-
ponents is highly reconfigurable. Reconfiguration of controller
software involves only structural changes, including component
additions and removals, component replacements, and system
reorganizations. Component additions and removals are nec-
essary when new devices, control functions, and control algo-
rithms are introduced into the system. Such reconfiguration can
be done by adding or removing the corresponding components
and linking communication ports at a certain granularity level.
For component additions, the modification of an existing system
is minimized if the new added components can use the commu-
nication ports of other existing components. To enable their in-
teraction with other existing components, the event mapping and
registration mechanisms of new added components may need to
be customized. On the other hand, removal of a component re-
quires updating the set of acceptable events in components that
are used to communicate with the removed component.

When an existing device, control algorithm, or hardware/soft-
ware in the platform is replaced, the corresponding components
may need to be replaced. Such replacement can be viewed as
a component removal followed by a component addition. If the
added component has the same configuration as the removed
one (for example, the number and type of communication ports),
they can be easily switched in and out. Otherwise, the new com-
ponent and the components it communicates with need to be
reconfigured. Event mapping and registration information may
also need to be changed when a different component implemen-
tation is used.

Another type of common reconfiguration is calledsystem
reorganization, which requires changes of components’ inter-
actions or their execution environments, but not the components
themselves. System reorganization usually occurs when the
relationships among subsystems change (e.g., forming a system
with two coordinated axes and one independent axis as a system
with three coordinate axes), or when platform configuration
changes (e.g., allocating an axis component to a separate
processor communicating with the other two axes components
on another processor through Ethernet instead of the original
three axes executing on a single processor communicating
through shared variables). With our component structure and
composition model, reorganization of component relationships
can be achieved by modifying the corresponding communica-
tion port linkages, and reorganization of platform configuration
can be achieved by customizing the service protocols of the
involved components.

Although dynamic structure reconfiguration of software
is widely used in many general-purpose applications and
supported by many platforms, such as Windows dynamic link
libraries, DCOM interface query, and Jini lookup service, we
limit the online structure reconfiguration to be only param-
eter adjustments during normal execution, to minimize the
unpredictability introduced by these dynamic reconfiguration
mechanisms. Structure reconfiguration other than parameter
adjustment, including addition, removal, replacement of soft-
ware components (e.g., device drivers and control algorithms),
and system reorganization, has to be done statically either
before the software is loaded for execution or in some special

states at which the system is not subject to timing constraints,
e.g., configuration or toolchange state.

III. B EHAVIOR SPECIFICATION AND RECONFIGURATION

The correctness of controller software not only depends on
the structure of the software (components and their interac-
tions), but also on the behaviors of the software. While the
structure composition of components defines the functional
capability of controller software, it is the behavior of the
software that defines the dynamic properties of the system. In
our architecture, the overall software behaviors can be viewed
as an integration of behaviors of components. With the control
logic driver in each component, the behavior of a component
can be specified and verified separately before its integration
into the final system. Since control applications are normally
time critical and safety critical, and require software behaviors
to be analyzed thoroughly before implementation, specification
and verification methods based on formal methods are highly
desired. Modularized behaviors are also required to accomplish
behavior reconfiguration when the system is reconfigured
structurally. To this end, we used NFSMs to model and verify
the behaviors of components and their integration, and devel-
oped the Control Plan constructs for behavior specifications.
Our specification can be directly executed by the control logic
drivers. Therefore, specification-based early-phase simulation
and evaluation become possible, and the errors introduced by
implementing the specification in some programming language
can be minimized. Moreover, such specifications are formally
verified. The model and specification of behavior also extend
the specification methods that are currently being used in
industry, such as IEC-1131, by modularizing and supporting
fine-granularity specifications at component level. Different
implementations of the controller software can then be se-
lected to execute the same behavior specified in Control Plan
programs to satisfy nonfunctional constraints. Consequently,
behavior reconfiguration can be achieved separately from the
control software implementation by changing the Control Plan
program.2

A. Behavior Specification

The behavior specifications of control software are divided
into two disjoint parts: control logic specifications and operation
sequence specifications.

Control Logic Specifications:Define the static part of soft-
ware behavior or the control logic of a component. It is modeled
as an NFSM with a set of traditional “flat” FSMs organized hi-
erarchically. We use the Mealy machine [30] for each FSM in a
NFSM. A NFSM at level , , can be defined as

level- FSM

where is a set of states of theth level FSM, and are a
set of inputs and outputs, respectively,is a set of transitions,

2The behavior reconfiguration associated with computational components is
not considered here, due to the fact that changes of computation behaviors imply
using a different computation equation or algorithm, which is normally imple-
mented as a different component. Reconfiguration can, therefore, be achieved
by structural reconfiguration.
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and is the initial state of . A noninitial state of may
contain a set of FSMs at the th level.

The NFSM behavior model corresponds to the hierarchical
composition model as described in Section II-B. Only FSMs of
top-level components in a composition are visible during be-
havior configuration. A control logic change in a component
only affects the FSMs that immediately connect to it in a com-
position.

The FSM of a component can be fully specified in a table with
each entry defining a possible transition. The structure of each
entry is

STATE EVENT ACTION LIST STATE

where STATE is the current state of the system, EVENT
is an input event, ACTIONLIST specifies the actions to take
or the functions to call, and STATE is the component state
after the transition. STATE and EVENT together determine
an entry in a state table uniquely, thus determining a unique set
of operations and a unique next state. For simplicity, we assume
there exists a state variable in each component. STATE in a state
table only enumerates the possible values of the variable.3

Operation Specifications:Define the desired run-time input
sequence that will trigger a designated sequence of operations
if there are no other conflicting commands from higher-priority
sources such as a human operator or an agent program for emer-
gency cases. An operation sequence is specified as a prepro-
grammed event sequence consisting of a list of rows, each of
which is in the format of

WHEN INPUT PARAM

OUTPUT PARAM

wherestate is the current state, is the received event,
is the event to send out, andparameteris the data at-

tached to the corresponding event and is treated as a data chunk
in the specification.

Although events used in an operation specification are nor-
mally global events for reasons of portability and reusability,
internal events of a component can be used in the component’s
operation specification when the operation specification is at-
tached as a parameter to some global event for the component.

Specifications in Control Plan:A Control Plan specifies
software behaviors and consists oflogic definitions and
operation specifications, corresponding to the control logic
specifications and operation sequence specifications, respec-
tively. The structure of a control plan is shown in Fig. 4.

A FSM-ENDFSM block specifies a state table while an OP-
ERATION-ENDOPERATION block specifies a designed oper-
ation sequence for a component indicated by label. The location
is an option that indicates where the block will be executed. A
block will be executed at the current local site by default if the
location is not specified.

It is possible for a Control Plan to have multiple FSM and
OPERATION blocks for a component for run-time reconfigu-

3It is easy to implement the state variable as some combination of a set of
local variables, while values of the state variable are logical combinations of
values of local variables. Events can be processed similarly.

Fig. 4. Structure of a Control Plan program.

ration. A block can also be attached to an event as data to pass
around. Details can be found in [33].

Specifications in Other Models:In a complex integrated
machine control system, different subsystems may deal with
different processes and, therefore, require different models for
their behaviors. Behavior specifications in other models or
languages can be converted to a Control Plan using transla-
tors. Translators are the programs designed to convert different
models and specifications in a system to Control Plan programs.
They are domain specific and specification language-depen-
dent, meaning that each translator can only convert programs in
a designated specification language to Control Plan programs.
Therefore, several translators may be required in a system if
there are multiple programs written in different specification
languages.

The behavior specifications of controller software usually
have to be verified before execution for safety purposes. Some
tools and methods [1], [7] have been developed to check the
properties of an NFSM, such as liveness and deadlock. Since
we focus only on the software architecture, we assume the
behavior specifications given by the designer for execution are
correct.

B. Behavioral Reconfiguration

Behavioral reconfigurations include changes in control logic
and operation sequence. A control logic reconfiguration is re-
quired when a component needs to process inputs differently.
Such reconfiguration can be achieved by defining a different
state table. The control logic driver in each component enables
the same component to execute different behaviors by loading
different state tables and operation-sequence specifications. An
operation sequence needs to be modified when the machine op-
eration procedure changes (e.g., use the same machine to man-
ufacture parts of another product). Such reconfiguration can be
achieved by defining a new operation sequence. Then, a Con-
trol Plan program with new specified state tables and operation
sequences can be generated, stored in a local subsystem or else-
where remotely, and loaded into the system during the config-
uration/reconfiguration phase at run time. Thus, new behaviors
can be achieved at executable code level without regenerating
configurations of controller software and implementations of
components.

The behavior specifications can be classified further as device
dependent and device-independent behaviors. The device-inde-
pendent behaviors depend only on the application-level control
logic and can be reused for the same application with different
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Fig. 5. Evaluation testbed configuration.

devices. The device-dependent behaviors are specific for a de-
vice or a configuration, and can be reused for different applica-
tions with the same device.

Both structure composition and behavior integration of com-
ponents are required in a machine tool controller implementa-
tion. The integration of structure and behavior is done through
loading a Control Plan to the corresponding components, either
statically at integration phase or dynamically at run time. During
execution, the control logic driver of each active component will
invoke the local operations according to the FSM specified in
Control Plan and the incoming events at their communication
ports. Although the structural configuration and reconfiguration
have to be done statically, the behavioral reconfiguration can be
done online upon request.

IV. EVALUATION

We evaluated the proposed architecture by reconfiguring an
existing machine tool control software for different applications
on our laboratory testbed, as shown in Fig. 5. The software
executes on two control computers (with their own processors
and memory) running the QNX real-time operating system.
Such configuration is based on analysis of system workload
and timing requirements of the control system. There is also a
PC with Pentium processor running Windows NT for human
graphic interfaces and a SUN Workstation running SunOS for
offline control logic development and data analysis. These
devices are connected through peer-to-peer Ethernet. The eval-
uation metrics include the number of component and behavior
modifications needed to meet new requirements, the amount
of effort required to accomplish the reconfiguration, and the
run-time overheads introduced by the new architecture. Fewer
modifications and less effort indicate better reconfigurability,
while the run-time overheads indicate the efficiency of the
software. Besides the laboratory prototypes, we also evaluated
the architecture in an industry setting by constructing a real
machine control system.

A. Software Reconfiguration for Machine Tool Controller

We have developed motion-control software for the controller
of a three-axis milling machine [35], which dynamically coordi-
nates the motion of three axes. We first reimplemented the soft-
ware using the proposed architecture. The new software struc-
ture includes control algorithms, physical device drivers, and a

Fig. 6. Structure of the Robotool motion-control software.

Fig. 7. Axis FSM.

Fig. 8. AxisGroup FSM.

coordination subsystem, as shown in Fig. 6. Some high-level
components used in the existing controller are as follows.

1) AxisGroup: receives a process model from the user or
predefined control programs and coordinates the motion
of the three axes by sending them the corresponding set-
points.

2) Axis: receives setpoints from AxisGroup and sends out
the drive signal to the physical device according to the
selected control algorithm (PID or FUZZY).

3) G-code Translator:translates a G-code program into a
Control Plan.

The test application is a sequence of milling operations. The
system behaviors are specified as an overall machine-level FSM,
FSMs for Axis and AxisGroup components, and a G-code pro-
gram for operation sequences, shown in Figs. 7–10.

Reconfiguration With Force Supervisory Control:Our first
reconfiguration is adding a force supervisory control algorithm
into the controller. This algorithm was developed by engineers
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Fig. 9. Machine-level FSM.

Fig. 10. G-code and control plan.

Fig. 11. Software after reconfiguration with supervisory force control.

at The University of Michigan, Ann Arbor, to compute a new
feedrate to override the initial assigned feedrate based on the
forces sensed at run time, and is implemented as a computa-
tional component. The reconfiguration was achieved by cus-
tomizing the motion-controller software with an additional port
to communicate with the force supervisory control component,
as shown in Fig. 11. Since the force supervisory control algo-
rithm only does the computation, no behavior change is required
during this reconfiguration.

Reconfiguration With Broken-Tool Detection:The broken-
tool-detection algorithm is another one developed by mechan-
ical engineers to detect abnormal forces at run time, and send
a stop signal to the motion controller when such a force is ob-
served. A broken-tool-detection algorithm was developed sep-
arately and implemented as another component. The structural
reconfiguration is achieved by linking the communication port
of the broken-tool-detection component to the motion controller

Fig. 12. Software after reconfiguration with broken-tool detection.

Fig. 13. Machine-level FSM with broken-tool detection.

Fig. 14. Software structure of the RMT motion controller.

communication port for commands.4 The software structure
after this reconfiguration is shown in Fig. 12.

Alternatively, the broken-tool-detection component in-
troduces behavioral reconfiguration of control logic at the
machine level. This is achieved by changing the machine-level
FSM, as shown in Fig. 13, while keeping the rest of behavioral
specifications intact.

Reconfiguration for RMT Machine:We also developed soft-
ware to control the motion of Reconfigurable Machine Tool
(RMT), which is a modularized and composable two-axis ma-
chine built by engineers at The University of Michigan. The cur-
rent RMT has neither coordinated motion nor monitoring. Due
to the similarity of physical devices and behaviors of RMT and
Robotool, we constructed software for the RMT controller by
reconfiguring the Robotool control software. This is achieved
by removing coordination- and monitoring-related components
and adding a newSpindlecomponent to control a discrete device
on RMT that has only two positions. Fig. 14 shows the software
structure for the RMT controller.

The behavior specifications for Axis components are the
same as those for Robotool. However, the machine-level

4In our case, the broken-tool-detection component shares the same communi-
cation port with other agents that send commands to the motion controller. The
control software does not tell who sends each command.
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Fig. 15. FSM for the spindle component.

Fig. 16. The machine-level FSM for the RMT.

Fig. 17. G-code program and control plan for RMT.

behavior needs to be reconfigured due to the new lower-level
behavior changes introduced by the Spindle component. A dif-
ferent G-code program is used for a new operation sequence for
manufacturing four- or eight-cylinder engine blocks. All these
behavioral reconfigurations are accomplished by creating new
state tables and Control Plan programs, which are developed and
verified separately from the controller software construction by
control engineers. Figs. 15–17 show these new behavioral spec-
ifications.

B. Evaluation Results

For all the reconfiguration cases examined, the machines op-
erated correctly and manufactured desired products after the
necessary reconfigurations.

Our experiences in constructing these controllers’ software
have shown that the proposed architecture provides significantly

TABLE I
MODIFICATIONS NEEDED FOREACH RECONFIGURATION

TABLE II
EFFORTSNEEDED FORRECONFIGURATIONS(IN HUMAN- MONTH)

improved reusability and reconfigurability of integrated soft-
ware. The component structure separates the functionality defi-
nition from the behavior specification, so that a component can
be reused for different applications. Furthermore, the behavior
is separated from the component implementation and specified
in a NFSM-based Control Plan so that the system developer
who may not be familiar with the software can also do behav-
ioral reconfiguration and analysis on a daily basis. Separation of
device-independent behaviors from device-dependent ones fur-
ther enhanced the reusability of behaviors. As seen in the above
cases, the Axis behaviors can be reused when the component is
reused in a different application.

Table I illustrates the numbers of components and behavioral
specifications modified for each reconfiguration.5 Only 3
among 37 (< 9%) components of Robotool software need to be
modified to construct control software for RMT, while less than
3 among 54 (< 6%) components need to be changed for the
reconfiguration with force supervisory control and broken-tool
detection. On the other hand, the behavioral specifications
required higher percentage modifications because a low-level
behavioral change can trigger a cascade of changes at higher
levels. However, since the behavior specifications and compo-
nent functional specifications have been separated, the behavior
changes did not affect the integration of components and can
be done easily without requiring much of programming skills.
The numbers in the table are also consistent with the fact that
functions are more stable than the behaviors for applications
in the same domain. The small number of components and
behaviors that need to be modified indicates reduction of
software complexity.

As illustrated in Table II, it also took less effort to recon-
figure existing software for a new application. As compared
to the traditionalad hocimplementations, reconfiguration took
only about one third of the effort for integrating force supervi-
sory control and broken-tool detection, and the time spent on
the RMT software construction was also reduced by 50%.

Although the proposed architecture demonstrated high re-
configurability, we observed some performance penalties as-
sociated with it. Table III shows the computation time for the

5The components referred to in the table are those at levels above the Axis in
the composition hierarchy.
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TABLE III
COMPUTATION TIME FOR SOFTWARE WITH DIFFERENT APPROACHES

(IN MILLISECONDS)

Fig. 18. Workcell configuration.

MotionController component,6 collected by a custom-designed
hardware component,VMEStopWatch card, which has a built-in
high-resolution timer (25 ns). The extra overhead in our ap-
proach can come from the event-processing mechanisms inside
the component, including authority checking, external event to
internal event mapping and control logic driver overhead (FSM
state table lookup and controlled object function invocation) and
component communication mechanism. A further breakdown
analysis showed that the overhead introduced by communica-
tion dominates the overall overhead. This suggests that reducing
levels of hierarchy and increasing component granularity will
yield more effecient code. The issues related to the tradeoffs
between reconfigurability and run-time efficiency need further
investigation.

C. Results of Industry Applications

To further evaluate the proposed architecture for real industry
applications, we collaborated with our local industry partner
to implement a stamping/roll-forming workcell, as shown in
Fig. 18. The workcell was partitioned into three subsystems with
a set of FSMs, some of which are shown in Figs. 19–21. The pre-
liminary evaluation results showed that the proposed architec-
ture had shortened the software development time by the factor
of two, reduced the software debugging time, and made the in-
tegration of diagnostic code far simpler. Details of system con-
figurations and evaluation results can be found in [26].

V. RELATED WORK

Component-based modeling, design, and integration [28]
have been the subject of study for many years in the area
of software engineering, but only recently they are used for

6The MotionController component executes as an individual task with a pe-
riod of 10 ms.

Fig. 19. Subsystem FSM.

Fig. 20. Manual mode FSM.

Fig. 21. Automatic mode FSM.

control applications in the manufacturing domain to support
reusability and reconfigurability. Most of these software engi-
neering techniques have been developed to aid system design,
and components are implemented thereafter. With these tech-
niques, one can only achieve only design model reusability and
reconfigurability. There are some architectures like CORBA,
DCOM, Java Bean, and Jini that support implementation reuse
and reconfiguration, but they heavily depend on middleware
services, which are not suitable for machine-level software con-
struction due to their high system overhead and weak real-time
support. Moreover, the nonreconfigurable behaviors of com-
ponents, which are normally hard coded, limit the reusability
and reconfigurability with the presence of some improved
middleware system (such as real-time CORBA), since the
machine control application requires behavior reconfiguration
more frequently than classical computer applications, such as
internet and scientific computation.

Agha et al. developed an architecture based on the Actor
model for real-time system design [3], [21]. In such an architec-
ture, the software consists of a set of Actors that can be preim-
plemented code and communications among Actors. Each Actor
has a thread dedicated to it. However, the behaviors of these
implemented Actors are not reconfigurable. Selicet al.used a
similar Actor concept in ROOM by adding structure, hierarchy,
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and behaviors to make it more suitable for real-time control ap-
plications [23]. All these models are developed mainly for de-
sign-phase abstractions and with a very limited consideration
of reconfigurability after implementation. Although many open
architecture controller researchers [8], [15] dealt with the re-
configuration problem, reconfigurability is supported only at
the hardware level. For software reconfigurability, Stewartet
al. developed an architecture inChimerausing port-based ob-
jects to support dynamic reconfiguration [25]. Such an archi-
tecture is not widely adopted since it is based on global shared
memory which is not well supported in current distributed con-
trol systems. The Open System Architecture for Controls within
Automation Systems (OSACA) [20] was implemented an open
platform to support source-code level structural reconfiguration.
Such reconfigurability is based on a set of OSACA communica-
tion services and requires high programming skills to regenerate
the code when reconfiguration is required. OSACA does not ad-
dress the application-level component modeling except for the
interfaces, and does not support platform-independent compo-
nent behavioral reconfiguration and reuse.

Since machine control systems are normally time critical,
the behavior specification of a system needs to be formally
verified. The formal methods used for machine control system
specification and verification include Concurrent Sequential
Protocol (CSP) [22], Colored PetriNet [9], StateChart [11],
Net Condition Event Systems (NCES) [31], and ModeChart
[14]. Although these formal methods can help in verifying the
correctness of design and specification, they are not executable
and errors can be introduced during the implementation of
these specifications. Moreover, when the specifications are
changed for a new application, the implemented behaviors
cannot be reconfigured with these formal methods. Other
methods attempt to use programming languages to specify
behaviors [12], [16], [19]. Such approaches suffer verification
difficulties. Ardis et al. showed that the formal methods are
programming languages of behavioral specifications [2]. To
combine the strength of both, Tsang and Lai [29] proposed
a specification method for soft real-time systems based on
Time-Estelle that can be both executable and verifiable. Barnett
et al. [4] proposed an executable specification method based on
Abstract State Machines (ASMs). Our approach is also based
on the concept of executable specifications, but executability is
extensively supported by a well-defined component structure at
the executable code level.

Some standard efforts have also been made to support soft-
ware reconfigurability. POSIX.4 [10] defined a set of services
and interfaces at the operating system level to support trans-
parent reconfiguration of a platform. Since different vendors im-
plement these services and interfaces differently, true reconfig-
urability is not achieved. IEC 61 499 [13] (a follow-on version
of IEC 1131) defined a set of function blocks with their behav-
iors in FSM for software modeling and construction of electrical
control systems. The OMAC User Group developed standard in-
terfaces of reusable components for control and manufacturing
systems [17]. As one of research groups to prototype and eval-
uate OMAC solutions, we have developed a software architec-
ture compliant with these standards, but provided better recon-
figurability by introducing a control logic driver and the service

protocol mechanisms in the component structure and executable
behavioral specifications in the Control Plan.

The work presented here also extends our previous work on
open-architecture controllers and modularized real-time con-
trollers [5], [18], [24], [32], [33], [35].

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a component-based architecture
for constructing reconfigurable software for machine tool
control systems. Such software reconfigurability will enable
adaptation to enterprise-level requirement changes and support
low-cost agile manufacturing. In this architecture, reconfig-
urable software consists of communicating components that
are modeled with event-based external interfaces, a control
logic driver, communication ports, and service protocols. The
architecture separates the component functionality from its
behavioral specifications and platform configuration. Behav-
iors of software in NFSMs are specified in the Control Plan
separately from the component and system implementations,
reused with components and loaded into the system at run time.
Structural and behavioral reconfigurations can be achieved by
changing the composition of components and modifying the
Control Plan, respectively. Reconfiguration without structural
changes inside the existing components does not require
code regeneration, thereby achieving executable code level
reconfigurability. Our evaluation on a machine tool motion
controller showed that such software is more flexible, reusable,
and reconfigurable.

Our future work will focus on design-time analyses of timing
and resource constraints. These constraints are callednonfunc-
tional constraints and are critically important to real-time con-
trols. Usually, the timing constraints come from the require-
ments of control processes, which are closely related to the
system behaviors. On the other hand, the resource constraints
depend on the software components used for control, which are
related to the functionality of the system. Since our architec-
ture supports the separation of functional definitions from be-
havior specifications, these nonfunctional constraints can be an-
alyzed individually, hence solving cross-cutting issues. More-
over, since behaviors are specified in the Control Plan program,
timing and scheduling analyses can be done at a higher level,
instead of at the implementation object code level.
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