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Machine Control Systems
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Abstract—Reconfigurable software is highly desired for control functions, and algorithms, all running on a designated
automated machine tool control systems for low-cost products platform. Components may need to be added, removed, and
and short time to market. In this paper, we propose a software ya5a0ad to satisfy new product requirements during the soft-

architecture based on a combination of object-oriented models lif le. Th i latf | dtob
and executable formal specifications. In this architecture, the ware lite cycle. € execuuon platform may also need 1o be

machine control software is viewed as an integration of a set Upgraded, oftentimes with new computing and communication
of reusable software components, each modeled with a set ofhardware and software. This trend calls for reconfigurable
event-based external interfaces for functional definitions, a software that reuses existing software components to generate
control logic driver for execution of behavioral specifications, the control software for new hardware and applications very

and a set of service protocols for platform adaptation. The icklv. Thi il in t ble | t duct d |
behaviors of the entire software can be viewed as an integration quickly. IS will, In turn, enable low-Cost proauct develop-

of behaviors of components and their integration, and can be Ment at the manufacturing level and short time to market at the
specified in aControl Plan specification language, which is based enterprise level.

on Nested Finite State Machinesndependently of the component  However, the reconfigurability of software for current ma-
implementations. Separation of structural specification from chine control systems is very limited, although the concept of

behavioral specification enables the controller software structure t-b d soft int fi 28] h ready b
to be reconfigured independently of application, and software component-based software integration [28] has already been

behavior to be reconfigured independently of controller software adopted in controller software development. Specifically, the
structure. When the system needs reconfiguration due to changes following limitations in current control software development

in either application requirements or the execution platform, practices hinder the reconfigurability of software.

the software with our architecture can then be reconfigured by 1) Applicati ft . it d d imol ted
changing reusable components and their interactions in structure ) _pp Ica 'On. SO Ware IS Par iioned and Imp emep e
with proprietary information.For example, a device

for functional capability, and by changing the Control Plan

program for behavior. Both types of reconfiguration can be done driver for a machine tool without monitoring, and that
at the executable code level after the software is implemented. The with monitoring, are usually implemented with very
proposed architecture also supports reconfigurability to facilitate different interfaces, thus making it difficult to recon-

heterogeneous implementations and vendor-neutral products.

Our evaluation based on current software construction practices
for both laboratory machine tools and an industry machining
system has shown that the goals of higher reconfigurability and

figure software for controller without monitoring to one
with monitoring when such a function is required as
the application evolves. This difficulty is due mainly

lower development and maintenance costs are achieved with the

| _ to component implementations based on the traditional
control software constructed using the proposed architecture.

top-down system partitioning, which requires compo-
nents and their interactions to be fully specified before
their implementation. Components for reconfigurable
software cannot be implemented in this way, as external
interactions in different configurations are not always

known when a component is implemented.
S MORE ADVANCED and cheaper hardware becomes 2y control behaviors of the software are either built inside

time-to-market demands, software for today’s machine control 5t modularized and associated with the corresponding
systems must support agile system reconfiguration with dif-  software componentsExamples of the first case are
ferent combinations of hardware and software [6], [15], [17]. hard-coded system startup and shutdown procedures.

Software for machine control systems is usually designed and  goftware for a programmable logic controller (PLC)
implemented with a set of components, such as device drivers, requiring global shared information is an example for

the second case. The root cause of this problem is that
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3) Software implementation is specific to platform configu-
ration. Currently, software development for machine con-
trol systems requires full knowledge of the execution plat-
form configuration before the software is implemented.
The software components are implemented with configu- O D
ration information, such as the number of inputs—outputs
and their locations, the number and type of processors for O( iy o e o)
execution, communication channels, and protocols for in- O/
formation exchange. However, the original platform con-
figuration is very likely to change many times during A
the system’s lifetime or as the application requirements v
change, thus forcing the software components to be reim- ‘ (operati]:lga;f)(/’srgm/network)
plemented. It is also difficult to construct software using
existing components from different applications owing tgig_ 1
differences in their requirements from execution environ-

T mdedntsl. he af ioned | tion upon reconfiguration. The other contributions of this paper
0 address the aforementioned Issues, we propose a s@ity,je construction and evaluation of reconfigurable software

ware architecture especially for constructing reconfigurablfs, , yo| control system and showing/making tradeoffs between
software with reusable components. Our goal is to enaq 8xibi|ity and performance

reuse of implemented software components across differentl-he rest of this paper is organized as follows. Section Il

applications and different platform configurations, and begoqeries the architecture for construction of reconfigurable

havior reconfigurability at the executable code level. In th oftware, including component structure, composition model,

architecture, reusable software components are modeled wi @ structural reconfiguration. Section Il describes the NFSM

set of event-based external interfaces, a set of communicatjof o specifications irControl Plan and behavior recon-
ports, a control logic driver, and service protocols. Componenis,, aiion  Section IV presents our evaluation results based
can be structurally composed by linking their communicatiofh, «ntrol software construction for two laboratory machine

ports and then be mapped to a platform by customizing th%icljntrol systems and an industry manufacturing workcell. Sec-

service protocols. The control logic, calléethavior of €ach i\ summarizes the related work, and the paper concludes
component is modeled as Bested Finite-State Machlnewith Section VI

(NFSM), which is a formal model for behavior compositions.
Such control logic in the NFSM can then be specified in table
form and executed by the control logic driver inside each
component. Both system- and component-level behaviors cafReconfiguration of a machine control system can be ab-
be specified in &ontrol Planprogram, which is an executablestractly viewed as changes tapplication processand/or
specification used for both design-time analysis and run-ting@ysical configuration The former determines the control
execution. Since the behaviors and functions are separatedlgorithms, operations, and their sequences required to man-
our architecture, nonfunctional constraints such as timing artécture a product, while the latter defines the (machine tool
resource constraints can be analyzed at an early phase of deset computation) devices and their functionalities. Thus, we
opment, as system behaviors normally have more significalivide the software for machine control systems into two
effects on these constraints than system functionalities gparts: controller softwareand application specificationsas
platform configurations. shown in Fig. 1. The controller software consists of reusable
Our main contribution in this paper lies in separating corsoftware components corresponding to the physical machine
cerns in controller software development at the software archbnfiguration and defines only the functionality of the machine
tecture level, so that different aspects of controller software ceantrol system. The application specifications describe the
be configured/reconfigured independently and after implemeproduct process as well as the desired control logic of the
tation. In our architecture, structural and behavioral reconfigentroller software. In our architecture, the controller software
uration as well as platform reconfiguration are separated fram expressed as a composition of communicating software
each other and can be done independently of each other. Tdosnponents, and the application specifications are expressed as
enables experts in one area (e.g., control logic design) to wahie integrated behaviors in a Control Plan program. Such a soft-
independently on one aspect of a controller without having tgare structure breaks the dependency between the application
know the other areas (e.g., software modeling and hardwaiied the physical machine configuration and, therefore, higher
integration). The support for postimplementation reconfiguraeconfigurability can be achieved by supporting the same
tion reduces development costs as compared with those methgglslication specification executed on different controllers, and
being used in current software engineering practice that focussipporting the same controller software executing different
the preimplementation design phase and require reimplemerggplication specifications. The controller software needs to be
reconfigured only when the physical configuration changes,

IThese problems are known as “architecture mismatches” in software erﬁnd the appll_cauon speC|f|cat|ons need to be altered when the
neering [34]. product requirements change.

Application
(operations)

Application
(operations)

Reconfigurable software structure.

Il. SOFTWARE ARCHITECTURE
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Component through sending the corresponding events to the target compo-
External Event nents. Such relationships are constructed during design time and
)<—— Event Map Registration can be changed only at some predefined safe state (e.g., configu-
Port ration state) during run time. This makes our component model
Internal .
Event \ / different from commonly used models such as the common ob-

ject request broker architecture (CORBA), the distributed com-

ponent object model (DCOM), and Jini [27], which are usually
based on remote procedure calls and heavily depend on prede-

fined middleware services such as naming and lookup services.

Object Object

po—y— Therefore, the control software constructed with our component

protocol model consumes less computation resources and supports more
olatforn predictable execution, so it can be implemented on inexpensive
configuration hardware while preserving reconfigurability that is difficult to
Fig. 2. Reusable component structure. achieve with a fixed implementation. On the other hand, mid-
dleware services can be integrated in the system as components,
when necessary, by mapping the service invocations to a set of
events corresponding services.

Components are preimplemented software modules (or al-Communication Ports:Communication ports are used to
ready instantiated but customizable objects within an object-ocennect components for integration. They are physical inter-
ented model) and are used as building blocks to construct faees of a component, and are the only mechanism by which
controller software. A component defines the functionality afomponents interact with each other. Each communication port
a device or subsystem, which can be as simple as an I/O tas a set of attributes associated with it which define the type of
vice like a position sensor, or a control algorithm like proporcommunication port (send only, receive only, or both, buffered
tional-integral-derivative (PID) control, or as complex as a conor nonbuffered), message-exchange methods (shared, queued,
posed subsystem like coordinated axes. or immediate), the way of communication (synchronous or

The structure of a software componentincludes a set of eveasynchronous), message-delivery policies (first-in-first-out,
based external interfaces with registration and mapping mechpaority-based), and conflict-resolution policies (overwritten
nisms, communication ports, a control logic driver, and serviealD, OR). Proper values of these attributes can be selected
protocols, as shown in Fig. 2. during design time through analyses.

Event-Based External Interface€xternal interfaces are A pair of communication ports form a communication
designed to expose component functionalities to the extercalnnel. In this regard, the communication port is similar to
world, i.e., define operations that can be invoked from outsidiae one defined in Real-Time Object-Oriented Model (ROOM)
External interfaces in our architecture are represented as a s¢28f. However, our communication port is not only an abstract
acceptable global (external) events with designated parametersdel representation, but also it can be an implemented
Event-based interfaces enable operations to be scheduled medhanism in a final product to support reconfiguration, i.e.,
ordered adaptively in distributed and parallel environments aitdis designed for reuse and reconfigurationlence, a port
allow components to be integrated, at executable code levslnot implemented as some abstract class, but as a parame-
into the system. A customizable event-mapping mechanismtésized object, and different instantiations differ only in their
devised and added in each component to achieve the translafiarameters as described in [28]. Different protocol levels can
between global events and the component’s internal represefaimplemented by customizing the communication ports. For
tions. Such a mapping separates a component implementataample, the application-level protocol can be implemented
from its interfaces, thus making multiple implementationBy defining which event list is acceptable for a port, while the
of one operation possible. Since the mapping is internal,ubderlying infrastructure-level protocol can be implemented
can be customized without knowing interactions with othdsy customizing the attributes of the communication port. Each
components. A registration mechanism is also added to perusable component can have one or more communication
form run-time checking on the validity of received events. Aorts. The number of ports that a component needed in a
user can manage which operations are allowed to be calmhfiguration can be determined by the system integrator. Ports
by customizing the registered events. Only those operatiozen be customized with different service protocols to meet
invoked by authorized and acceptable events will be executédferent performance requirements. Multiple connections can
These customizations can be stored as predefined files imlgo share one communication port.
local system for run-time loading, or selected by a user whenControl Logic Driver: The control logic driver, also called
the system starts up. the finite-state machine (FSM) drivers designed to separate

In an integrated system, a set of components may interact witimction definitions from control logic specifications and to sup-
each other to obtain the desired services (e.g., data transformart control logic reconfiguration at executable code level. The
tion and control-command generation). The services that eawntrol logic driver can be viewed as an interface to access and
component provides are specified as acceptable external evemisdify the control logic inside a component, which is tradi-
and other components can invoke the desired functions otilgnally hard coded in the component implementation. Every

A. Component Structure
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component that executes some control logic should have such Level 0 component
a driver inside itself. The control logic of a component can then ﬁiﬁ@‘ (System software)
be fully specified as a state table [30] for execution. A control
logic driver will generate commands to invoke operations of the b O«—»O
controlled objects at run time according to its state table and re- )
ceived events. State tables can also be packed as data and passed p
to another component to reconfigure the receiver component’s —
behavior remotely. Level 1 covponent

The control logic driver of a component is a center piece to O‘—’O \4&1_4_” stem-level
enable postimplementation reconfiguration of component be-

Level 1 component O

havior. It invokes the control object functions based on current (System-lovel
component state and incoming events to communication ports,
yvhich are specified by state table _entries. Fungtion_calls are 55%'. 3. Hierarchical composition model.
ically bound to internal events at implementation time, and the
control logic driver invokes the control object functions by gen-
erating internal events for the corresponding control objects. fgranother. We model such components, cadethputational
each component, multiple state tables can be designed to spegfjponentswith the same structure as above, but without a
different desired behaviors in different system modes. Howevé@ntrol logic driver. Since computational components are usu-
0n|y one state table for a component can be active at a time.a"y used under the control of another component with control
Although the control logic driver introduces additional overlogic, they can be treated as a black box with input and output
head to the system as more steps a component has to go thrdl@j associated with some special events (e.g., IN_DATA and
to invoke an operation, such processing and related bindirfg¥ T_DATA) during component integration and analysis.
are statically configured before normal execution. Therefore,At run time, each component retrieves events from its com-
the overhead introduced by the control logic driver should tBUnication ports either upon some event arrival or periodically.
negligible to the application-level performance; it may be Sid[he acceptable events are then translated to internal events
nificant at low level due to frequent long jumps and pipelin@nd fed to the control logic driver. The control logic driver
flushes caused by the sequence of function calls to process sé@€rmines desired actions and output events and sends local
transitions. On the other hand, efforts and costs for softwaf@mmands to corresponding controlled objects. After receiving
reconfiguration when application requirements change, ové@mmands, the controlled objects in a component will perform
weigh performance for resource-rich systems such as PC-bagegne actions (one or a sequence of function calls) and generate
controllers. results. However, the controlled objects are not allowed to feed
Service Protocols:Service protocols define execution envi€vents back to control logic driver to prevent local cycles.
ronments or infrastructures of a component. They are designed
to make components adaptive to different platforms. In our @8- Composition Model and Structural Reconfiguration
chitecture, we assume that the underlying infrastructures prosyycturally, the controller software can be constructed by
y|de unified interfaces for different _types of services as dEf'”f?Htegrating a set of preimplemented components, each with the
in the portable operating system interface (POSIX) [10] andycture shown in Fig. 2. Interactions among the constituent
therefore, form a virtual machme for application-level COMPQsomponents can be defined as events to be exchanged via
nents ofgcontroller._ The service protocols are qsed to CQStom&%ignated communication ports. To facilitate software con-
such a virtual machine so that only those required services Wi ction, a set of components can be preferred to be composed
be integrated into the system. For example, a component ¢@llyne Jarge complex component during high-level integration.
specify its communication mechanism as a message quUeUgdt component model supports composability. Components
shared memory. Examples of service protocols include schedn pe organized hierarchically in our composition model to
uling policies, interprocess communication mechanisms, aggnnort reconfiguration with different component granularities.
network protocols. A high-level component may consist of a set of communicating
Service protocols are implemented as a set of attributes ofo@v-level components, as shown in Fig. 3, with a high-level
component. Selection of services is implemented by assigniégntrol logic driver, communication ports, and customizable
the desired values for the service attributes. Such selectigdrvice protocols. Such composition implies the hierarchical
is based on the mechanisms available on a given platfogshavior where the behaviors of inner (lower level) components
and performance (such as timing and resource) constraintsa@é part of the behavior of the component that contains them.
a system. The selected services will be bound to the correyvhile such a composition provides reusability and reconfig-
sponding function calls provided by the infrastructures eith@fability at multiple granularity levels, the overheads may in-
statically or during the software initialization. crease as the component hierarchy becomes deeper. Since the
There is also another type of component commonly usedfimctionality of a subsystem in a control system is relatively
controller software, which only handles computation withoudtatic, and reconfiguration only happens among a certain range
any control logic. The functionality of such a component can i levels, the overhead can be lowered by limiting the number
considered, for example, as transforming data from one fornudtgranularity levels during design and integration.
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The controller software constructed with such reusable costates at which the system is not subject to timing constraints,
ponents is highly reconfigurable. Reconfiguration of controlles.g., configuration or toolchange state.
software involves only structural changes, including component
additions and removals, component replacements, and systemlll. B EHAVIOR SPECIFICATION AND RECONFIGURATION

reorganizations. Component additions and removals are N€Che correctness of controller software not only depends on

essary when new devices, control functions, and control algge, sy cyre of the software (components and their interac-

rithms are introduced into the system. Such reconfiguration Cﬁlgns) but also on the behaviors of the software. While the

be dqng by adding or removing the correspondmg Componei{ﬁjcture composition of components defines the functional
and linking communication ports at a certain granularity level, o pijin of controller software, it is the behavior of the
For component additions, the modification of an existing syste@¢yyare that defines the dynamic properties of the system. In
is minimized if the new added components can use the COMMyl 5 chjtecture, the overall software behaviors can be viewed
n|cat|9n po.rts of other. e>.<|st|ng components. To enable thelr '35 an integration of behaviors of components. With the control
teraction with other existing components, the event mapping &gdic driver in each component, the behavior of a component
registration mechanisms of new added components may needi ne specified and verified separately before its integration
be customized. On the other hand, removal of a component g, the final system. Since control applications are normally
quires updating the set of acceptable events in components §i3k critical and safety critical, and require software behaviors
are used to communicate with the removed component. 5 e analyzed thoroughly before implementation, specification
When an existing device, control algorithm, or hardware/sofnd verification methods based on formal methods are highly
ware in the platform is replaced, the corresponding componedtsired. Modularized behaviors are also required to accomplish
may need to be replaced. Such replacement can be viewedbalsavior reconfiguration when the system is reconfigured
a component removal followed by a component addition. If thetructurally. To this end, we used NFSMs to model and verify
added component has the same configuration as the remotheslbehaviors of components and their integration, and devel-
one (for example, the number and type of communication portsped the Control Plan constructs for behavior specifications.
they can be easily switched in and out. Otherwise, the new cof®ur specification can be directly executed by the control logic
ponent and the components it communicates with need to drévers. Therefore, specification-based early-phase simulation
reconfigured. Event mapping and registration information mand evaluation become possible, and the errors introduced by
also need to be changed when a different component impleménplementing the specification in some programming language
tation is used. can be minimized. Moreover, such specifications are formally
Another type of common reconfiguration is callgistem verified. The model and specification of behavior also extend

reorganization which requires changes of components’ intef® Specification methods that are currently being used in
actions or their execution environments, but not the componefftdustry. such as IEC-1131, by modularizing and supporting
themselves. System reorganization usually occurs when {i¢-9ranularity specifications at component level. Different
relationships among subsystems change (e.g., forming a sys gmlementanons of the controller software can then be se-

with two coordinated axes and one independent axis as a sys g%ed to execute the same behavior specified in Control Plan

with three coordinate axes), or when platform configuratiowograms to satisfy nonfunctional constraints. Consequently,

changes (e.g., allocating an axis component to a separ%?@a\’ior reconfiguration can.be achieved. separately from the
processor communicating with the other two axes componeﬁf)sntrOI software implementation by changing the Control Plan

on another processor through Ethernet instead of the origirﬁ’&?grarﬂ23
three axes executing on a single processor communicatmg Behavior Specification
through shared variables). With our component structure and ) - o
composition model, reorganization of component relationships "€ behavior specifications of control software are divided
can be achieved by modifying the corresponding communidgto two d|510|nt_p_arts_: control logic specifications and operation
tion port linkages, and reorganization of platform configuratioR®duence specifications. _ .
can be achieved by customizing the service protocols of theCONtrol Logic SpecificationsDefine the static part of soft-
involved components. ware behavior or the control Io_g.lc of acomponent. Itis modelgd
Although dynamic structure reconfiguration of softwar&S @1 NFSM with a set of traditional “flat” FSMs organized hi-
is widely used in many general-purpose applications aﬁ\aarchlcally. We use the‘MeaIy machine [30] for each FSM in a
supported by many platforms, such as Windows dynamic itk SM- A NFSM at level, M;, can be defined as
libraries, DCOM interface query, and Jini lookup service, we
limit the online structure reconfiguration to be only param-
eter adjustments during normal execution, to minimize the . )
unpredictability introduced by these dynamic reconfiguratioWhere,S i IS a set of states of thh I-evel .FSM’I’L' ando; area
mechanisms. Structure reconfiguration other than parame?g} of inputs and outputs, respectivélyis a set of transitions,
adjustment, including addition, removal, replacement of soft-2The behavior reconfiguration associated with computational components is
ware components (e.g., device drivers and control a|gorithmﬁ}considered here, due to the fact that changes of computation behaviors imply

ing a different computation equation or algorithm, which is normally imple-

and system reorganization, has to be done statically eitiigieq as a different component. Reconfiguration can, therefore, be achieved

before the software is loaded for execution or in some speciglstructural reconfiguration.

M,j = <S7 Ih Oh T7 8,;0> (Ievelai FSM)
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ands;, is the initial state of\/;. A noninitial state ofA/; may FSM {label} location]

contain a set of FSMs at thet 1th level. StateTable-entry1
The NFSM behavior model corresponds to the hierarchical StateTable-entry2
composition model as described in Section II-B. Only FSMs of ENDFSM

top-level components in a composition are visible during be- .
havior configuration. A control logic change in a component OPEEs;IaOﬁZIn{_Iglbee'L}e[mﬁatnon}
only affects the FSMs that immediately connect to it in a com- operation-element2
position. e
e . ENDOPERATION
The FSM of a component can be fully specified in a table with

each entry defining a possible transition. The structure of each
entry is Fig. 4. Structure of a Control Plan program.

STATE, EVENT sput, ACTION_LIST, STATEext ration. A block can also be attached to an event as data to pass
around. Details can be found in [33].

where STATE is the current state of the system, EVENE Specifications in Other Modelstn a complex integrated
is an input event, ACTIONLIST specifies the actions to takemachine control system, different subsystems may deal with
or the functions to call, and STATE,; is the component state different processes and, therefore, require different models for
after the transition. STATE and EVEN..« together determine their behaviors. Behavior specifications in other models or
an entry in a state table uniquely, thus determining a unique &nguages can be converted to a Control Plan using transla-
of operations and a unique next state. For simplicity, we assuinés. Translators are the programs designed to convert different
there exists a state variable in each component. STATE in a staxedels and specifications in a system to Control Plan programs.
table only enumerates the possible values of the vartable. They are domain specific and specification language-depen-

Operation SpecificationsDefine the desired run-time inputdent, meaning that each translator can only convert programs in
sequence that will trigger a designated sequence of operatiardesignated specification language to Control Plan programs.
if there are no other conflicting commands from higher-priority herefore, several translators may be required in a system if
sources such as a human operator or an agent program for erifigte are multiple programs written in different specification
gency cases. An operation sequence is specified as a prefoguages.
grammed event sequence consisting of a list of rows, each offhe behavior specifications of controller software usually

which is in the format of have to be verified before execution for safety purposes. Some
tools and methods [1], [7] have been developed to check the
[WHEN state] [INPUT é;nput [PARAM parameter]] properties of an NFSM, such as liveness and deadlock. Since

OUTPUT €gutput [PARAM parameter] W€ foc_:us only on .the sqftware architepture, we assume the
behavior specifications given by the designer for execution are

where stateis the current states;,,.. is the received event, correct.
eoutput 1S the event to send out, ampérameteris the data at- ) ) )
tached to the corresponding event and is treated as a data cHemiBehavioral Reconfiguration
in the specification. Behavioral reconfigurations include changes in control logic
Although events used in an operation specification are n@nd operation sequence. A control logic reconfiguration is re-
mally global events for reasons of portability and reusabilitguired when a component needs to process inputs differently.
internal events of a component can be used in the componei&igch reconfiguration can be achieved by defining a different
operation specification when the operation specification is a@tate table. The control logic driver in each component enables
tached as a parameter to some global event for the componghé same component to execute different behaviors by loading
Specifications in Control Plan:A Control Plan specifies different state tables and operation-sequence specifications. An
software behaviors and consists @dgic definitions and operation sequence needs to be modified when the machine op-
operation specificationscorresponding to the control logiceration procedure changes (e.g., use the same machine to man-
specifications and operation sequence specifications, respaacture parts of another product). Such reconfiguration can be
tively. The structure of a control plan is shown in Fig. 4. achieved by defining a new operation sequence. Then, a Con-
A FSM-ENDFSM block specifies a state table while an ORrol Plan program with new specified state tables and operation
ERATION-ENDOPERATION block specifies a designed opersequences can be generated, stored in a local subsystem or else-
ation sequence for a component indicated by label. The locatiwhere remotely, and loaded into the system during the config-
is an option that indicates where the block will be executed. dration/reconfiguration phase at run time. Thus, new behaviors
block will be executed at the current local site by default if thean be achieved at executable code level without regenerating
location is not specified. configurations of controller software and implementations of
It is possible for a Control Plan to have multiple FSM andomponents.
OPERATION blocks for a component for run-time reconfigu- The behavior specifications can be classified further as device

: . . o dependent and device-independent behaviors. The device-inde-
3]t is easy to implement the state variable as some combination of a set of

local variables, while values of the state variable are logical combinations B?r_]dent behaviors depend only on the apphca_uon-lgvel _ContrOI
values of local variables. Events can be processed similarly. logic and can be reused for the same application with different
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Fig. 5. Evaluation testbed configuration.

devices. The device-dependent behaviors are specific for a de-
vice or a configuration, and can be reused for different applica-
tions with the same device.

Both structure composition and behavior integration of com-
ponents are required in a machine tool controller implementa-
tion. The integration of structure and behavior is done through
loading a Control Plan to the corresponding components, either
statically at integration phase or dynamically at run time. During
execution, the control logic driver of each active component will
invoke the local operations according to the FSM specified iy, 7. Axis Fsm.
Control Plan and the incoming events at their communication
ports. Although the structural configuration and reconfiguration
have to be done statically, the behavioral reconfiguration can be
done online upon request.

IV. EVALUATION

We evaluated the proposed architecture by reconfiguring an
existing machine tool control software for different applications
on our laboratory testbed, as shown in Fig. 5. The software
executes on two control computers (with their own processors
and memory) running the QNX real-time operating system.
Such configuration is based on analysis of system workload
and timing requirements of the control system. There is also a
PC with Pentium processor running Windows NT for humang. 8. AxisGroup FSM.
graphic interfaces and a SUN Workstation running SunOS for

offline control logic development and data analysis. Theggordination subsystem, as shown in Fig. 6. Some high-level
devices are connected through peer-to-peer Ethernet. The e¥glnponents used in the existing controller are as follows.
uation metrics include the number of component and behaviorl) AxisGroup: receives a process model from the user or
modifications needed to meet new requirements, the amount predefined control programs and coordinates the motion
of effort required to accomplish the reconfiguration, and the of the three axes by sending them the corresponding set-
run-time overheads introduced by the new architecture. Fewer points.

modifications and less effort indicate better reconfigurability, 2) Axis: receives setpoints from AxisGroup and sends out
while the run-time overheads indicate the efficiency of the the drive signal to the physical device according to the
software. Besides the laboratory prototypes, we also evaluated selected control algorithm (PID or FUZZY).

the archnecture in an industry setting by constructing a real 3) G-code Translatortranslates a G-code program into a
machine control system. Control Plan

The test application is a sequence of milling operations. The
system behaviors are specified as an overall machine-level FSM,
We have developed motion-control software for the controll&SMs for Axis and AxisGroup components, and a G-code pro-
of a three-axis milling machine [35], which dynamically coordigram for operation sequences, shown in Figs. 7-10.
nates the motion of three axes. We first reimplemented the softReconfiguration With Force Supervisory ContraDur first
ware using the proposed architecture. The new software stroeeonfiguration is adding a force supervisory control algorithm
ture includes control algorithms, physical device drivers, andrto the controller. This algorithm was developed by engineers

A. Software Reconfiguration for Machine Tool Controller
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Fig. 12. Software after reconfiguration with broken-tool detection.

Fig. 9. Machine-level FSM.

G-code program:
ol g01 x10 y10 20 £
120 gl 110 y10 25 £0.5

130 g1 £30 y10 25 £1
gl xd 0 o0 £5

Translated CP: Fig. 13. Machine-level FSM with broken-tool detection.
WEEY Auteod OVIOY startye BARM (0,0,0,10,10,0,1)

VEEY Iycle DOUT caplt  OMIOR starye AR (10,10,0,10,10,5,0.5 ,
VRN Iycle TIPR caplt  OVIOR startyc ARBH (10,10,5,30,10,5,1) otooConl
WERY Inycle TIPTR caplt  OUTOT startye ARBK (1,10,5,0,0,0,9)

. ‘ Tnstor
Fig. 10. G-code and control plan. AxisX | AisY || Spnde

MotionControlk
Traor Fig. 14. Software structure of the RMT motion controller.

communication port for commandsThe software structure
after this reconfiguration is shown in Fig. 12.
Alternatively, the broken-tool-detection component in-
Speisy troduces behavioral reconfiguration of control logic at the
Fig. 11. Software after reconfiguration with supervisory force control. ?;(\:/lf?lgg Isel’l\i)fll\/n-rlrr:l?::;ic;lsyii?e ?()éggﬁlggiﬂg :ggtn(’)l?gghnae\nls;/aell
specifications intact.
at The University of Michigan, Ann Arbor, to compute a new Reconfiguration for RMT MachineWe also developed soft-
feedrate to override the initial assigned feedrate based on tere to control the motion of Reconfigurable Machine Tool
forces sensed at run time, and is implemented as a compyRMT), which is a modularized and composable two-axis ma-
tional component. The reconfiguration was achieved by cushine built by engineers at The University of Michigan. The cur-
tomizing the motion-controller software with an additional potent RMT has neither coordinated motion nor monitoring. Due
to communicate with the force supervisory control componertt the similarity of physical devices and behaviors of RMT and
as shown in Fig. 11. Since the force supervisory control algB-obotool, we constructed software for the RMT controller by
rithm only does the computation, no behavior change is requinsgtonfiguring the Robotool control software. This is achieved
during this reconfiguration. by removing coordination- and monitoring-related components
Reconfiguration With Broken-Tool DetectiofThe broken- and adding a ne8pindlecomponentto control a discrete device
tool-detection algorithm is another one developed by mecham RMT that has only two positions. Fig. 14 shows the software
ical engineers to detect abnormal forces at run time, and sestdicture for the RMT controller.
a stop signal to the motion controller when such a force is ob-The behavior specifications for Axis components are the
served. A broken-tool-detection algorithm was developed sexame as those for Robotool. However, the machine-level

arately and implemented as another component. The structurqll

fi ti . hi d bv linkina th icati n our case, the broken-tool-detection component shares the same communi-
reconfiguration is achieved by linking the communication POgkion port with other agents that send commands to the motion controller. The

of the broken-tool-detection component to the motion controllesntrol software does not tell who sends each command.
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TABLE |
MODIFICATIONS NEEDED FOREACH RECONFIGURATION

# com- | # recon- | # behav- | # recon-
ponents figured ior figured

Original Robotool SW 52 6 -

SW w/ force supvr 53 3 6 0

SW w/ broken tool 54 2 6 1

SW for RMT 37 3 5 2
TABLE 1l

EFFORTSNEEDED FORRECONFIGURATIONS(IN HUMAN- MONTH)

Traditional | Proposed
approach | approach

SW w/ force supvr 22 0.6
SW w/ broken tool 2.0 0.8
SW for RMT 8 4

improved reusability and reconfigurability of integrated soft-
ware. The component structure separates the functionality defi-
nition from the behavior specification, so that a component can
be reused for different applications. Furthermore, the behavior
is separated from the component implementation and specified
in a NFSM-based Control Plan so that the system developer
who may not be familiar with the software can also do behav-
ioral reconfiguration and analysis on a daily basis. Separation of
device-independent behaviors from device-dependent ones fur-
ther enhanced the reusability of behaviors. As seen in the above
cases, the Axis behaviors can be reused when the component is
reused in a different application.

Table lillustrates the numbers of components and behavioral

Goode proga:—+ Tranglated O

g0 001 gt oo vl AR 1,000, specifications modified for each reconfiguratonOnly 3

gl HEE 17 T ol COPY extend among 37 (< 9%) components of Robotool software need to be
Wl FEN e T ol OO it modified to construct control software for RMT, while less than
L0 g T ol R vl AR (10,1000, 3 among 54 (< 6%) components need to be changed for the
gl K Y DT caplt (R et reconfiguration with force supervisory control and broken-tool
WL gt I oplt O i detection. On the other hand, the behavioral specifications
il 115 g 0l O el R (2144 required higher percentage modifications because a low-level

behavioral change can trigger a cascade of changes at higher
levels. However, since the behavior specifications and compo-
Fig. 17.  G-code program and control plan for RMT. nent functional specifications have been separated, the behavior
changes did not affect the integration of components and can
be done easily without requiring much of programming skills.
behavior needs to be reconfigured due to the new lower-levidle numbers in the table are also consistent with the fact that
behavior changes introduced by the Spindle component. A dignctions are more stable than the behaviors for applications
ferent G-code program is used for a new operation sequenceifothe same domain. The small number of components and
manufacturing four- or eight-cylinder engine blocks. All theseehaviors that need to be modified indicates reduction of
behavioral reconfigurations are accomplished by creating né@ftware complexity.
state tables and Control Plan programs, which are developed anéis illustrated in Table 1, it also took less effort to recon-
verified separately from the controller software construction Higure existing software for a new application. As compared

control engineers. Figs. 15-17 show these new behavioral spécthe traditionakd hocimplementations, reconfiguration took
ifications. only about one third of the effort for integrating force supervi-

sory control and broken-tool detection, and the time spent on
the RMT software construction was also reduced by 50%.
Although the proposed architecture demonstrated high re-

For all the reconfiguration cases examined, the machines &gn_flgu;ab[h;]y,_ we glbservehd somr(]a performance pena:ctleshas—
erated correctly and manufactured desired products after fifgiated with it. Table Il shows the computation time for the
necessary reconfigurations.

Our experiences in constructing these controllers’ softwar&rne components referred to in the table are those at levels above the Axis in
have shown that the proposed architecture provides significartly composition hierarchy.

B. Evaluation Results
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TABLE I
COMPUTATION TIME FOR SOFTWARE WITH DIFFERENT APPROACHES
(IN MILLISECONDS)

Traditional approach | Proposed approach

Robotool SW 2.1 3.0
RMT SW 1.3 1.5
Roll Former .
Entry Conveyor Fig. 19. Subsystem FSM.
] <—10
Scissors
Finished Roll Lift
Part i
Former Partin
Table / A NNPress Exit Press Empty Part Unlgad
Conveyor
* Press
All Actions
Allowed
l Press Entry owe
P ——. Conveyor

Al

* /k Destacker — .

|:I Transfer Fig. 20. Manual mode FSM.

Parts Stack

Fig. 18. Workcell configuration.
Over Stack

MotionController componerttcollected by a custom-designed
hardware componeny MEStopWatch cardvhich has a built-in
high-resolution timer (25 ns). The extra overhead in our ap-
proach can come from the event-processing mechanisms inside

the component, including authority checking, external event to Pickngup L_’/Gungupwnh\ //"'"A oveyr i
internal event mapping and control logic driver overhead (FSM ogetpet

| conveyor
AVAN W -
state table lookup and controlled object function invocation) and v

component communication mechanism. A further breakdown

analysis showed that the overhead introduced by communi€i 21. Automatic mode FSM.

tion dominates the overall overhead. This suggests that reducing

levels of hierarchy and increasing component granularity witbntrol applications in the manufacturing domain to support
yield more effecient code. The issues related to the tradeafésisability and reconfigurability. Most of these software engi-
between reconfigurability and run-time efficiency need furthereering techniques have been developed to aid system design,

investigation. and components are implemented thereafter. With these tech-
nigues, one can only achieve only design model reusability and
C. Results of Industry Applications reconfigurability. There are some architectures like CORBA,

To further evaluate the proposed architecture for real indust=OM, Java Bean, and Jini that support implementation reuse
applications, we collaborated with our local industry partnéd reconfiguration, but they heavily depend on middleware
to implement a stamping/roll-forming workcell, as shown i$€rVvices, which are not suitable for machine-level software con-
Fig. 18. The workcell was partitioned into three subsystems wigifuction due to their high system overhead and weak real-time
asetof FSMs, some of which are shown in Figs. 19-21. The pfslPport. Moreover, the nonreconfigurable behaviors of com-
liminary evaluation results showed that the proposed archit®@nents, which are normally hard coded, limit the reusability
ture had shortened the software development time by the facd®d reconfigurability with the presence of some improved
of two, reduced the software debugging time, and made the fRiddleware system (such as real-time CORBA), since the
tegration of diagnostic code far simpler. Details of system coRtachine control application requires behavior reconfiguration

figurations and evaluation results can be found in [26]. more frequently thfe\'n classical computer applications, such as
internet and scientific computation.

Agha et al. developed an architecture based on the Actor
_ ) ) ) model for real-time system design [3], [21]. In such an architec-

Component-based modeling, design, and integration [28}e, the software consists of a set of Actors that can be preim-
have been the subject of study for many years in the arg@mented code and communications among Actors. Each Actor
of software engineering, but only recently they are used ffgs 5 thread dedicated to it. However, the behaviors of these

6The MotionController component executes as an individual task with a dé_np_lememed Actors ?re not reconfigu_rable. Seﬁcal“_sed a
riod of 10 ms. similar Actor concept in ROOM by adding structure, hierarchy,

V. RELATED WORK
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and behaviors to make it more suitable for real-time control aprotocol mechanisms in the component structure and executable
plications [23]. All these models are developed mainly for déehavioral specifications in the Control Plan.
sign-phase abstractions and with a very limited considerationThe work presented here also extends our previous work on
of reconfigurability after implementation. Although many opewpen-architecture controllers and modularized real-time con-
architecture controller researchers [8], [15] dealt with the rérollers [5], [18], [24], [32], [33], [35].
configuration problem, reconfigurability is supported only at
the hardware level. For software reconfigurability, Stevedrt
al. developed an architecture @himerausing port-based ob-
jects to support dynamic reconfiguration [25]. Such an archi- In this paper, we presented a component-based architecture
tecture is not widely adopted since it is based on global sharffed constructing reconfigurable software for machine tool
memory which is not well supported in current distributed corgontrol systems. Such software reconfigurability will enable
trol systems. The Open System Architecture for Controls withadaptation to enterprise-level requirement changes and support
Automation Systems (OSACA) [20] was implemented an opdow-cost agile manufacturing. In this architecture, reconfig-
platform to support source-code level structural reconfiguratiomable software consists of communicating components that
Such reconfigurability is based on a set of OSACA communicare modeled with event-based external interfaces, a control
tion services and requires high programming skills to regenerétgic driver, communication ports, and service protocols. The
the code when reconfiguration is required. OSACA does not aalchitecture separates the component functionality from its
dress the application-level component modeling except for tbehavioral specifications and platform configuration. Behav-
interfaces, and does not support platform-independent comjsrs of software in NFSMs are specified in the Control Plan
nent behavioral reconfiguration and reuse. separately from the component and system implementations,
Since machine control systems are normally time criticaleused with components and loaded into the system at run time.
the behavior specification of a system needs to be formatructural and behavioral reconfigurations can be achieved by
verified. The formal methods used for machine control systeghanging the composition of components and modifying the
specification and verification include Concurrent Sequentig@ontrol Plan, respectively. Reconfiguration without structural
Protocol (CSP) [22], Colored PetriNet [9], StateChart [11khanges inside the existing components does not require
Net Condition Event Systems (NCES) [31], and ModeChagbde regeneration, thereby achieving executable code level
[14]. Although these formal methods can help in verifying theeconfigurability. Our evaluation on a machine tool motion
correctness of design and specification, they are not executaki@troller showed that such software is more flexible, reusable,
and errors can be introduced during the implementation ghqg reconfigurable.
these specifications. Moreover, when the specifications aregyr future work will focus on design-time analyses of timing
changed for a new application, the implemented behavifgq resource constraints. These constraints are aadiefiinc-
cannot be reconfigured with these formal methods. Othgénal constraints and are critically important to real-time con-
methods attempt to use programming languages to spegfyis. Usually, the timing constraints come from the require-
behaviors [12], [16], [19]. Such approaches suffer verificatioents of control processes, which are closely related to the
difficulties. Ardis et al. showed that the formal methods argystem behaviors. On the other hand, the resource constraints
programming languages of behavioral specifications [2]. TRpend on the software components used for control, which are
combine the strength of both, Tsang and Lai [29] proposggiated to the functionality of the system. Since our architec-
a specification method for soft real-time systems based Qf}e sypports the separation of functional definitions from be-

Time-Estelle that can be both executable and verifiable. Barngll i specifications, these nonfunctional constraints can be an-
etal.[4] proposed an executable specification method based 906 individually, hence solving cross-cutting issues. More-

Abstract State Machines (ASMs). Our approach is also basgh, since behaviors are specified in the Control Plan program,
on the concept of executable specifications, but executabllltytfﬁ]ing and scheduling analyses can be done at a higher level,

extensively supported by a well-defined component structure;alie - 4 of at the implementation object code level.
the executable code level.

Some standard efforts have also been made to support soft-
ware reconfigurability. POSIX.4 [10] defined a set of services ACKNOWLEDGMENT

and interfaces at the operating system level to support transthe athors would like to thank O. Storoshchuk of General

parent reconflguratlpn ofa plgtform. Smge different vendors IMaotors for the industry application results in Section IV-C.

plement these services and interfaces differently, true reconfig-

urability is not achieved. IEC 61 499 [13] (a follow-on version

of IEC 1131) defined a set of function blocks with their behav- REFERENCES
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