| Real-Time Systems, 23, 239-271, 2002
‘@ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Robust Adaptive Metrics for Deadline Assignment in
Distributed Hard Real-Time Systems

JAN JONSSON* janjo@ce.chalmers.se
Department of Computer Engineering, Chalmers University of Technology, SE-412 96 Géoteborg, Sweden

KANG G. SHIN kgshin@eecs.umich.edu
Real-Time Computing Laboratory, Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109-2122, USA

Abstract. Distributed real-time applications usually consist of several component tasks and must be completed
by its end-to-end (E-T-E) deadline. As long as the E-T-E deadline of an application is met, the strategy used for
dividing it up for component tasks does not affect the application itself. One would therefore like to ‘‘slice’’
each application E-T-E deadline and assign the slices to component tasks so as to maximize the schedulability of
the component tasks, and hence the application. Distribution of the E-T-E deadline over component tasks is a
difficult and important problem since there exists a circular dependency between deadline distribution and task
assignment. We propose a new deadline-distribution scheme which has two major improvements over the best
scheme known to date. It can distribute task deadlines prior to task assignment and relies on new adaptive
metrics that yield significantly better performance in the presence of high resource contention. The deadline-
distribution problem is formulated for distributed hard real-time systems with relaxed locality constraints, where
schedulability analysis must be performed at pre-run-time, and only a subset of the tasks are constrained by pre-
assignment to specific processors. Although it is applicable to any scheduling policy, the proposed deadline-
distribution scheme is evaluated for a non-preemptive, time-driven scheduling policy. Using extensive
simulations, we show that the proposed adaptive metrics deliver much better performance (in terms of success
ratio and maximum task lateness) than their non-adaptive counterparts. In particular, the simulation results
indicate that, for small systems, the adaptive metrics can improve the success ratio by as much as an order of
magnitude. Moreover, the new adaptive metrics are found to exhibit very robust performance over a large
variety of application and architecture scenarios.

Keywords: distribution of an end-to-end deadline, precedence constraints, relaxed locality, hard-real-time
systems, non-preemptive scheduling, multiprocessor systems

1. Introduction

A distributed real-time system usually executes a set of applications each of which
consists of the input, output and computational tasks that process input and intermediate
data. The component tasks of an application must be assigned to, and scheduled on, the
processors in the system using techniques such as clustering (Ramamritham, 1995), list
scheduling (Wang et al., 1992), or branch-and-bound strategies (Peng and Shin, 1989;
Hou and Shin, 1997). Task assignments are governed by locality constraints that are

* This work was done while Jan Jonsson was at the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA.

240 JONSSON AND SHIN

either strict (i.e., assignment of a task is known beforehand) or relaxed (i.e., there exist
more than one assignment alternative for each task).

A real-time application is constrained to start and complete its execution within a given
time span called the end-to-end deadline. The application has usually been decomposed
into a set of sequential and/or parallel component tasks, often for reusability and/or
parallelism/performance reasons. The E-T-E deadline must therefore be distributed over
the component tasks; that is, a local arrival time and a deadline must be assigned to each
component task for its scheduling.

Since the combined deadline-distribution and task-assignment problem is NP-hard, we
present a heuristic approach for a distributed hard real-time system under relaxed
locality constraints. Our approach is based on the slicing technique (Di Natale and
Stankovic, 1994) in which the E-T-E deadline for each sequence of tasks in the
application is decomposed into a set of non-overlapping task execution windows (each
defined by an arrival time and a deadline). The distinct feature of the slicing technique
is that it divides the overall problem into smaller problems which are solved locally
and then combined to obtain a global solution, thereby drastically reducing the
computational complexity.

In a distributed hard real-time system, task assignment and scheduling is usually
assumed to be performed off-line in order to guarantee a priori the schedulability of each
hard real-time task. The applications of interest in this paper are composed of sequential—
parallel tasks with individual arrival times and deadlines, and precedence constraints
specified. Our primary scheduling objective is to maximize the success ratio, or the ratio
of the number of successfully-scheduled task sets to the total number of task sets
considered.

The salient features of the proposed approach are demonstrated by using extensive
simulations with randomly-generated task sets and a multiprocessor system of varying
size. In particular, we evaluate the impact of variations in architecture and application
properties on the success ratio for a baseline deadline-driven task assignment scheme and
a non-preemptive, time-driven scheduling policy. The properties under investigation are
system size, laxity of E-T-E deadline, and task execution-time distribution.! These
properties are of significant interest because (1) schedulability may depend on how well
the inherent application parallelism can be exploited on the available processors; (2)
laxity directly controls the amount of extra time that will be available for distribution; and
(3) under a non-preemptive scheduling policy, schedulability is directly affected by the
distribution of task execution times.

The main contributions of this paper are as follows.

C1. The slicing technique is applied to distributed hard real-time systems with relaxed
locality constraints. This is in sharp contrast to existing deadline-distribution
techniques all of which are based on the knowledge of complete task assignment.
Specifically, we evaluate communication-cost estimation techniques suitable for
this type of systems, and find that the best approach for a distributed system is to
always assume for deadline distribution that there is no communication cost in
the system. This leaves the largest extra time to be distributed over component
tasks.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 241

C2. The proposed technique makes an order-of-magnitude improvement over, and
perform much better than, the original slicing technique in (Di Natale and
Stankovic, 1994) in terms of the success ratio. More specifically, we propose two
adaptive metrics for determining each task deadline. The first, called ADAPT-G,
has an O(n?) time-complexity for a system with n tasks, and accounts for average
application parallelism and system size. The second metric, called ADAPT-L, has
an O(n?) time-complexity and utilizes information on possible resource contention
for individual tasks in the application. An extensive simulation study has shown the
proposed metrics to outperform the non-adaptive counterparts over a wide range of
system configurations. In particular, for small systems, ADAPT-L is found to
outperform the non-adaptive metrics by as much as an order of magnitude.
Furthermore, ADAPT-L makes a 300% improvement in performance over
ADAPT-G.

The rest of the paper is organized as follows. Section 2 discusses the problem
background and related work. Section 3 presents the system models used. Section 4 states
the deadline-distribution problem and presents a basic algorithm to solve the problem.
Section 5 describes our experimental setup and Section 6 deals with the experimental
evaluation. Section 7 discusses complementary results and future work. Finally, Section 8
concludes the paper by summarizing the results obtained.

2. Background
2.1. Motivation

Many researchers have addressed the deadline-distribution problem (Di Natale and
Stankovic, 1994; Garey et al., 1981; Chetto et al., 1990; Kao and Garcia-Molina, 1993;
1994; Abdelzaher and Shin, 1995; Gutiérrez Garcia and Gonzalez Harbour, 1995; Bettati
and Liu, 1992; Saksena and Hong, 1996a,b), all under a common assumption that task
assignments are made and known a priori (i.e., strict locality constraints). In many real-
time systems, however, only a small percentage of tasks are governed by strict locality
constraints, typically imposed by their resource needs in physical proximity, like sensors
and actuators. The constraints on the remaining task assignments are not strict, meaning
that information on task execution times and intertask communication cost is not always
known a priori. For a homogeneous system and negligible intertask communication cost,
this poses little difficulty as all processors are interchangeable. For a heterogeneous
system, however, tasks may have different execution times on different processors, and
the deadline-distribution problem under relaxed locality constraints is much harder to
solve. Furthermore, task assignment requires knowledge of deadlines of individual tasks.
Deadline distribution using conventional techniques, on the other hand, can be possible
only if task assignments are completely known. Thus, there exists a circular dependency
between deadline distribution and task assignment, making the combined deadline-
distribution and task-assignment problem even harder to solve. The task-assignment

242 JONSSON AND SHIN

problem is, in general, NP-complete (Garey and Johnson, 1979), and good solutions to
this problem must, therefore, be found via sub-optimal heuristic algorithms.

Our solution is based on the slicing technique (Di Natale and Stankovic, 1994), the best
existing deadline-distribution method for distributed real-time systems. The distin-
guishing feature of this technique is that the E-T-E deadline for each application is
decomposed into a set of non-overlapping task execution windows called slices. Since
slices are non-overlapping, each task in the application will complete before its successor
task is released, thus providing the following important properties.

P1. Sequential tasks executing on two different processors can be scheduled
independently of each other. This is useful in heterogeneous systems where
different processors use different scheduling policies. It also allows for parallel
scheduling of sequential tasks, enhancing scheduling performance in those systems
equipped with on-line scheduling capabilities (Cheng et al., 1986).

P2. One can eliminate the release-time jitter of each task caused by precedence
constraints. As discussed in, for example Audsley et al. (1993) and Di Natale and
Stankovic (1995), uncontrolled release jitters can negatively affect the schedul-
ability of real-time applications. In addition, the stability of a computer-controlled
system may be affected by the release jitter.

2.2. Related Work

The slicing technique proposed in Di Natale and Stankovic (1994) assigns slices to tasks
using the critical-path concept. The strategy used for finding slices is to determine a
critical path in the task graph that minimizes the overall laxity of the path. Two basic
metrics, previously proposed in Kao and Garcia-Molina (1993, 1994), were used for
evaluating paths in the task graph: one assigns a task deadline based on its execution
time, and the other is based on the number of tasks in the critical path.

The slicing technique is optimal in the sense that it maximizes the minimum task laxity
in an application. However, the optimality applies only if task assignments and
communication costs are completely known a priori.

A traditionally used technique for deadline assignment is the one proposed by Garey
et al. (1981), and later by Chetto et al. (1990). This technique assigns the largest possible
execution window to each task while taking into account any precedence constraints and
E-T-E deadlines. Because this technique was originally designed for single-processor
systems, it lacks the important properties, P1 and P2, of the slicing technique that are
necessary for distributed real-time systems.

Kao and Garcia-Molina presented multiple strategies for distributing E-T-E deadlines
over sequential (Kao and Garcia-Molina, 1993) and sequential—parallel (Kao and Garcia-
Molina, 1994) tasks. They classify deadline-distribution strategies as being local or
global. The local strategies derive task deadlines from the E-T-E deadline based on task
set characteristics (similar to the slicing technique), while the global ones use simpler

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 243

functions of the global E-T-E deadline (such as the one in Garey et al. (1981) and Chetto
et al. (1990)). Both types of strategies are aimed at systems with complete a priori
knowledge of task—processor assignment.

Abdelzaher and Shin (1995) proposed a technique for integrated scheduling of tasks
and messages in a distributed real-time system. The technique is based on a branch-and-
bound algorithm that improves upon a given task assignment with local deadlines already
assigned, for deadline-based task and message priorities. Task execution windows have
adjustable positions in time, rather than static as in the slicing technique, which caters for
better exploitation of processors.

In Gutiérrez Garcia and Gonzalez Harbour (1995), Gutiérrez Garcia and Gonzalez
Harbour proposed an approach that derives deadlines for preemptive, deadline-monotonic
task scheduling. The strategy is based on a heuristic iterative approach that, given an
initial local deadline assignment (from which initial task priorities are derived), finds an
improved deadline assignment in reasonable time. For each iteration a new deadline
assignment is calculated based on a metric that measures by ‘“how much’’ schedulability
has failed. This approach assumes that the application consists of purely sequential tasks
and that task assignment is known beforehand.

Bettati and Liu (1992) presented an approach for scheduling of pre-allocated flow-shop
(sequential) tasks. Similar to a variant of the slicing technique, local deadlines are
assigned by distributing E-T-E deadlines evenly over tasks. After deadlines have been
assigned, tasks are scheduled non-preemptively using a deadline-based priority scheme.
In this method, the simplifying assumption is made that execution times are either
identical for all tasks or identical for all tasks assigned to the same processor.

Saksena and Hong (1996a,b) proposed a deadline-distribution approach for pre-
allocated tasks. The E-T-E deadline is expressed as a set of local deadline-assignment
constraints. Given a set of local deadline assignments, the technique calculates the largest
value of a scaling factor (which is applied to the task execution times) that still makes the
tasks schedulable under a preemptive task scheduling policy. The local deadline
assignment is then chosen to maximize the largest value of the scaling factor.

A flexible approach has been proposed by Tindell et al. (1992). Based on the simulated
annealing principle, the approach uses a combined assignment and scheduling algorithm
for systems with both relaxed and strict locality constraints. No explicit attempt is made
in this approach to solve the deadline-distribution problem; instead, it is assumed that the
deadline of a task is equal to its period (minus possible overhead to account for any
interprocessor communication overhead). The approach in Tindell et al. (1992) has been
successfully demonstrated for preemptive, deadline-monotonic task scheduling on a
distributed architecture.

The approach most comparable to ours is the simulated-annealing approach (Tindell
et al., 1992), in the sense that it, too, can handle any combination of relaxed and strict
locality constraints. This is in sharp contrast to the other approaches described above
where task assignment is assumed to be known in advance. However, the work in Tindell
et al. (1992) does not address the problem of deriving local task deadlines in a
precedence-constrained application, which is the focus of our work. On the other hand,
the simulated-annealing approach can be configured to optimize many different
objectives, not only schedulability or maximum task lateness, and can also be used to

244 JONSSON AND SHIN

find optimal solutions. Such flexibility is not sought in our approach, but it is instead
powerful in the sense that application parallelism can be accounted for during deadline
distribution so as to increase the likelihood of successfully scheduling the application.
This is not the case for the original slicing technique (Di Natale and Stankovic, 1994) or
for the approaches in Bettati and Liu, (1992) and Kao and Garcia-Molina (1993).
Moreover, our approach is not designed with a specific task scheduling policy in mind, as
is the case for the approaches in (Abdelzaher and Shin, 1995; Gutiérrez Garcia and
Gonzalez Harbour, 1995; Saksena and Hong, 1996b). This, naturally, makes our approach
more widely applicable.

3. System Model
3.1. Architecture Model

We consider a multiprocessor architecture with a set P={p,: 1 <g<m} of
schedulable computing resources (processors) and an interconnection network with a
number of communication resources (links). The processors are homogeneous in the
sense that they have identical hardware configurations in terms of processing speed,
instruction pipeline, and cache/primary memory resources. This means that each task
takes the same amount of time to execute on any processor.

The processors are interconnected via an arbitrary topology formed with dedicated as
well as shared links. Two tasks residing on the same processor communicate by accessing
shared memory and the communication cost is assumed to be negligible. The
communication cost between two tasks on different processors is expressed as the
product of the length of a message and a nominal communication delay. The nominal
delay is an upper-bounded and predictable worst-case communication delay that reflects
the scheduling strategy of the underlying interconnection network. Communication in the
network is assumed to take place concurrently (e.g., using a communication co-processor
(Rexford et al., 1996)) with task execution on the processors.

We will assume that the system maintains a global system time that is discrete (Kopetz,
1992) and measured in time units indexed by the natural numbers, e N. Without loss of
generality, we assume that task execution begins and ends at time unit boundaries, and
that application timing parameters are expressed as an integer multiple of time units. A
consistent view of system time is maintained in each processor by means of a system-
wide clock synchronization mechanism.

3.2. Task Model

We consider a real-time application that consists of a set T = {7, : 1 <i < n} of tasks.
Each task 7; € T is characterized by a 4-tuple (c;, ¢;, d;, T;), which we will refer to as the
static task parameters. The worst-case execution time ¢; is an upper bound on the
execution time of the task and includes various architecture overhead such as the cost for
cache memory misses, pipeline hazards, and context switches. It also includes the cost for

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 245

packetizing and depacketizing messages in case of communicating tasks. The phasing ¢,
is the earliest time at which the first invocation of the task will occur, measured relative to
some fixed origin of time. The relative deadline d, is the amount of time within which the
task must complete its execution.

The task period 7 is the time interval between two consecutive invocations of the task.
Let ¥ denote the k-th invocation of t;, k € Z". The dynamic behavior of ¥ is
characterized by the dynamic task parameters (af, DY), where the absolute arrival time
a¥ = ¢; + T;(k — 1) is the earliest time at which t¥ is allowed to start its execution, and
the absolute deadline D¥ = a* + d; is the latest time by which t¥ must complete its
execution. Whenever it is clear from the context what invocation is being referred to, we
will drop the invocation superscripts and write (a;, D;) for the dynamic parameters of t;.

Precedence constraints between tasks in a task set (typically to model independent
applications) are represented by an irreflexive partial order < over T. If task 7; cannot
begin its execution until task 7; has completed its execution, we write 7; < 7;. In this case
7; is said to be a predecessor of T; and, conversely, T; a successor of 7,. In addition,
whenever 7; < 7; and the condition —(3z; : (7; < 7;) A (1, < 7;)) holds, we write 7; <* 1;.
In this case, 7; is said to be an immediate predecessor of task T and T; an immediate
successor of 7;. A task which has no predecessors is called an input task, and a task which
has no successors is called an output task.

A task chain is defined as a task followed by a series of immediate successors. The
length of a task chain is the sum of the worst-case execution times of all tasks in the
chain. The static level SL(t;) for a task t; is the length of the longest task chain that starts
with 7; and ends with an output task. A path @ is a task chain that begins with an input
task and ends with an output task.

Data communication in the application (and between applications) can be embedded in
the precedence constraints between tasks, and can be implemented with general
communication primitives such as SEND-RECEIVE-REPLY and QUERY-RESPONSE
(Peng and Shin, 1989). Let m; be the size of a message, or the amount of data, transferred
between task t; and task 7;. The worst-case communication cost depends on various
factors, such as task assignment, message size, communication medium bandwidth,
message dispatching strategy, and nominal (contention-free) communication link delay.

The computational and communication demands of all tasks in T, and the precedence
constraints among them, are represented by a directed acyclic graph G = (N, A) called a
task graph. N is a set of nodes representing the tasks in T. A is a set of directed arcs
representing the precedence constraints between the tasks in T: if 7; <* 7; then (7;,7;) €A.
Each node in N is annotated with a non-negative weight representing the execution time
of the corresponding task. For those arcs in A that represent communication channels, a
non-negative weight is used for representing the message size.

3.3. Multiprocessor Scheduling
A non-preemptive,” time-driven multiprocessor schedule for a task set T and a
multiprocessor architecture P is the mapping of each task 7;€T to a start time s; and a
processor p(t;) € P. The task is then scheduled to run without preemption on processor

246 JONSSON AND SHIN

p(1;) in the time interval [s;, f;], with its finish time being f; = s; + ¢;. The time interval
[a;, D;], denoted by w;, is called the execution window of t,. For periodic tasks, the static
task parameters are assumed to satisfy d; < T, that is, the execution windows of two
consecutive invocations of the same task cannot overlap in time. Furthermore, the
execution time ¢; cannot exceed the size |w;| of any execution window. Note that we
assume the use of a static assignment, that is, all invocations of t; are executed on the
same processor p(T;).

The schedule is said to be valid if (i) the conditions s; > g; and f; < D; are satisfied for
each task 1;, and (ii) all precedence constraints defined by the partial order < over T are
observed. A task set is said to be feasible if there exists a valid schedule for the task set.
We say that a task set is schedulable by a scheduling algorithm if it produces a valid
schedule for the task set.

A task 1; is said to be ready at time ¢ if its immediate predecessors have finished their
execution. A task 1; is said to be released at time ¢ if (i) it is ready, (ii) @; < t, and (iii) the
task has received all necessary data from its immediate predecessors. A processor p, is
said to be available at time ¢ if it has executed all tasks assigned to, and scheduled on, that
processor.

In order to handle a periodic task system, we only need to analyze the task behavior
within a specific period, called the planning cycle, P, that repeats itself throughout the
life-time of the system. For a set of tasks with an identical arrival time, the planning cycle
can be found as follows. Without loss of generality, assume that Vt; : ¢; = 0. We then
choose P = [0,L), where L, the length of the planning cycle, is defined as the least
common multiple (LCM) of {T;:7; € T}. Within P, 7; will be invoked L/T; times. For a set
of tasks with arbitrary arrival times, we find the planning cycle as follows (Leung and
Merrill, 1980). Without loss of generality, one can assume that min{a;:7;€ T} = 0.
Furthermore, define ¢ = max{q; : 1;€T}. We then choose P = [0,a + 2L).

Note that a real-time application may consist of applications of different periods® that
exchange messages using the communication primitives mentioned in Section 3.2. Thus,
what is actually being scheduled are one or more invocations of each task within a
planning cycle.*

4. Deadline Distribution
4.1. Problem Statement

Given an E-T-E deadline D, and a corresponding input-output task pair (z, ,1,,), we
want to partition (distribute) D, into an arrival time @; and a relative deadline d; for task t;
in the task graph in such a way that the path constraint

> a,<D, (1)

7,€d

is satisfied for every path ® between 7, and 7,,.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 247

For a given path ® and its associated E-T-E deadline Dy, the surplus for the deadlines
of tasks in @ will be taken from the overall laxity Xg of @, defined as

X®:D®—ZC,‘ (2)

7,€D

4.2. Quality Assessment

A solution to the deadline-distribution problem cannot be accepted simply because it
satisfies the path constraint defined above. One also has to consider the practical issue of
schedulability: the relative deadline of a task must be derived in such a way that the task
is likely to be feasibly scheduled. If one deadline-distribution strategy can feasibly
schedule more task sets than another strategy, the first strategy is superior to the second
one. Therefore, our primary performance measure for a deadline distribution is the
success ratio. If a deadline-distribution strategy can aid in finding feasible schedules for x
of the considered y task sets, its success ratio is (x/y).

When E-T-E deadlines are loose enough to guarantee a near 100% success ratio, a
secondary performance measure should be used to assess the quality of different
deadline-distribution strategies. Two important measures that are often used for this
purpose are the minimum laxity and the maximum lateness taken over all tasks in the
system. The laxity X; = d; — c; is the maximum amount of time that the execution of task
7; can be delayed in its execution window without missing its absolute deadline. The
laxity is determined before the task is scheduled and, thus, suggests how much contention
for the processor the task can withstand. The lateness L; = f; — D; is the amount by which
task t; misses its deadline, that is, a non-positive quantity for a valid schedule. The
lateness is determined after scheduling the tasks, and, thus, indicates the quality of the
schedule. The maximum lateness refers to the lateness of only one task (the one with its
lateness closest to 0), and, thus, indicates ‘‘how far’’ the schedule is from infeasibility
and how much additional background workload the schedule can handle.

4.3. The Slicing Technique

We solve the deadline-distribution problem by significantly improving the slicing
technique in Di Natale and Stankovic (1994). The fundamental concept in the slicing
technique is a critical path in a task graph that attains the minimum/maximum value of a
performance measure under consideration. Correct identification of a critical path is
crucial for the quality of deadline distribution and system schedulability. In order to
assess the criticality of each path in the task graph, a critical-path metric is used.
When a critical path has been identified, the E-T-E deadline is distributed over the
tasks in the critical path. This is done by assigning slices, non-overlapping execution
windows, of the E-T-E deadline to each of the tasks in the critical path. The slices are
derived subject to the constraint that the arrival time of a task must be equal to the
absolute deadline of its immediate predecessor in the critical path. While the execution

248 JONSSON AND SHIN

windows of tasks in the same path cannot overlap, the execution windows of tasks in
different paths may overlap and thus are subject to contention for available processors.
Therefore, the size of each task slice must be derived in such a way that the task can be
scheduled to meet its timing constraint even in the presence of other, overlapping, task
slices. This can be achieved by assigning an ample laxity to each task.

For a system with complete a priori information on task—to—processor assignment and
interprocessor-communication cost, and moderate contention over resources, the best
critical path can easily be found as described in Di Natale and Stankovic (1994).
However, when the assignment is not entirely fixed or known—as is often the case—
finding the best critical path is no longer an easy task because it is not yet known what
pairs of tasks will suffer interprocessor-communication overhead or experience resource
contention. The deadline-distribution algorithm must, therefore, rely on the prediction of
the possibly-best critical path.

Our technique for making a good prediction of the critical path is based on the
following two observations. First, in systems where the degree of application parallelism
exceeds the number of processors available, we may assign longer slices to tasks with
longer execution times. The rationale behind this is that tasks with longer execution times
are likely to be most vulnerable in the case of heavy resource contention. Second, it
is a good strategy to assume—during deadline distribution—that there will be no
communication cost between tasks whose processor assignments are not known. The
intuition behind this is that many task assignment and scheduling algorithms tend to
cluster tasks that communicate heavily (Ramamritham, 1995). Furthermore, in many
distributed real-time applications (such as control systems), the intertask communication
volume is quite low (Raji, 1994), so the interprocessor communication cost is low relative
to task execution times. In Section 6.4, we will show that, even in the case of significant
communication cost, it is better to assume no communication cost, as this will yield the
largest amount of overall laxity to distribute over the application tasks.’

4.4. The Deadline-Distribution Algorithm

Figure 1 shows a pseudo-code form of the algorithm for distributing E-T-E deadlines over
the component tasks according to the slicing technique. The algorithm takes a task graph
as the input and produces an annotated task graph containing the information about task
arrival times and relative deadlines. The various steps of the algorithm are described
below in detail. In the algorithm, we assume that task slices are determined using a
critical-path metric R.

Initialize task set (Step 1): We assume that all input and output tasks have already
been assigned appropriate arrival times and E-T-E deadlines, respectively, according to
the temporal requirements of the application. All tasks in the task graph are then inserted
into a task set IT that represents all tasks not yet assigned arrival times and deadlines. The
time-complexity of this step is O(INI). This does not include the time for initializing data
structures used by the critical-path metric R.

Find a critical path (Step 3): The breadth-first traversal of the task graph determines a
critical path IT among all potential paths for the tasks in ®@. The critical path is identified

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 249

Algorithm SLICING:

initialize set IT with all tasks in the task graph;
while {II # 0} loop
find a critical path ® in IT that minimizes metric R;
distribute the E-T-E deadline of ® by assigning
arrival times and absolute deadlines to the tasks in &;
for {each task T in ®} loop
for {each immediate predecessor 7, of 7} loop
assign an absolute deadline to 7, that is equal to the arrival time of 7;
end loop;
for {each immediate successor 75 of 7} loop
10. assign an arrival time to 7, that is equal to the absolute deadline of 7;
11. end loop;
12. end loop;
13. remove all tasks in ® from II;
14. end loop;

N

©® N e

Figure 1. The deadline-distribution algorithm.

using the metric R. Ties among those paths with identical metric values are broken
arbitrarily. Critical-path metrics R suitable for our purpose will be discussed in Section
4.5. The time-complexity of a breadth-first traversal of the task graph is O(|N| + |A])
(Cormen et al., 1990). Therefore, for any acyclic task graph, the total time-complexity of
this step, taken over all iterations of the main loop, is O(|N|*). This does not include the
time for evaluating the critical-path metric R.

Distribute the E-T-E deadline (Step 4): The E-T-E deadline Dy, of the critical path ®
found in Step 3 is distributed over the tasks in ®@. The deadline distribution is subject to
the constraint that the arrival time of a task in @ must be equal to the absolute deadline of
its immediate predecessor in ®@. Thus, all tasks in the path will be assigned slices of the
E-T-E deadline. The total time-complexity of this step is O(|N]), since a task will only be
part of a critical path once (recall that the task graph G is an acyclic graph and, hence, no
loops exist in the graph).

Attach the remaining tasks (Steps 5-12): The tasks in ® now constitute a ‘‘spine’’ to
which the remaining tasks must attach, that is, adapt their arrival times and absolute
deadlines. Therefore, the arrival time of each task not in @ is set to the latest absolute
deadline of any immediate predecessor task in ®. Similarly, the absolute deadline of each
task not in @ is set to the earliest arrival time of any immediate successor task in ®@. The
total time-complexity of this step is O(|N| + |AJ), since a task will be part of a critical
path only once and the arcs connecting the task with its immediate predecessors and
successors will be traversed only once.

Remove critical-path tasks (Step 13): The tasks in @ are removed from II to mark
that they have been assigned arrival times and deadlines. The arrival times and deadlines
of those tasks not in @ now constitute new E-T-E deadlines in Il. The total time-
complexity of this step is O(|N]|).

250 JONSSON AND SHIN

Repeat until tasks are exhausted (Steps 2 and 14): The main loop in the algorithm is
repeated until no tasks are left in I1.

Adding up the time-complexities of the steps described above leads to the worst-case
time-complexity of O(n?), not counting the computational overhead associated with the
critical-path metric R. The impact of R on the practicality of the slicing technique will be
discussed in Section 7.2.

4.5. Critical-Path Metrics

The authors (Di Natale and Stankovic, 1994) used two metrics with the slicing technique.
The first metric, the normalized laxity ratio (NORM), is the ratio of the overall laxity to
the sum of the execution times of all tasks in a path ®. With this metric, laxity is assigned
in proportion to the task execution time. The metric value Rygry and the relative
deadline d; for each task t; are consequently defined as

Ryorm = (Dtb - Z Ci)/z Ci 3)

7,€D 7,€D
d; = ¢;(1 + Ryorm) (4)

The second metric in Di Natale and Stankovic (1994), the pure laxity ratio (PURE), is
the ratio of the overall laxity to the number of tasks ng, in a path @. With this metric, all
tasks in @ are assigned an equal share of laxity. The metric value Rpyrg and the relative
deadline d; for task t; are thus

Rpyre = (ch - Z Ci> /N 5)

17,€D
d; = ¢; + Rpygre (6)

In the simulations that follow, we will show that neither the NORM or PURE metric is
suitable for systems with relaxed locality constraints due to their lack of information on
contention over resources. To remedy this problem, we introduce two concepts to
improve the performance of the slicing technique: execution-time threshold and virtual
execution time. The execution-time threshold is a mechanism for guaranteeing only
certain tasks to be allotted extra laxities. By using the execution-time threshold to filter
out those tasks with large enough execution times, we can improve the performance when
task graph parallelism cannot be fully exploited. The purpose of a virtual execution time
is to make a task appear computationally more expensive than it actually is. By using
virtual execution times that are larger than the real execution times, the deadline-
distribution algorithm will allocate more laxity to those tasks for which the real execution
time is equal to, or larger than, the given execution time threshold.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 251

Based on these two concepts, we now introduce the threshold laxity ratio (THRES)
metric, which is similar to the PURE metric but with a virtual execution time ¢, as
opposed to the real execution time c. The virtual execution time for task t; is defined as

A ¢ if Ci <Cthres
‘= { Ci(l + kS) if ¢ > Cthres (7)

where ¢y, 15 the execution time threshold and kg is a surplus factor representing the
amount of laxity by which the real execution time should be increased for those tasks
whose execution times exceed Cyes-

As our simulation results will show later, it is very difficult to attain a consistently high
performance for THRES with a fixed value of kg. We therefore propose two
improvements of the threshold-based metric where the amount of assigned laxity is not
fixed, but will adapt itself to the degree of task graph parallelism that can be exploited.

The first of these adaptive metrics, which we call the globally-adaptive laxity ratio
(ADAPT-G), is similar to the THRES metric but with a different definition of the virtual
execution time:

A)G if C; <Cthres
= { Ci(l + kGé/m) if ¢ > Cthres (8)

where kg is the global adaptivity factor, ¢ is the average task graph parallelism, and m is
the number of processors in the system. The average task graph parallelism is defined
as the application workload divided by the length of the longest path in T:

foLmett (9)
~ max {SL(7;)}
7,eT
The second adaptive metric is the locally-adaptive laxity ratio (ADAPT-L) metric,
which is an improvement of ADAPT-G in the sense that ADAPT-L is able to identify the
available parallelism that affects only a certain task. For ADAPT-L, the virtual execution
time is defined as:

A o Ci 1f Ci < Cthres

= { Ci(l + kL|lPl|/m) if G 2 Cthres (10)
where k; is the local adaptivity factor, ‘P is the parallel set of 7;, and m is the number of
processors in the system. The parallel set WV, is the set of tasks that are potential
candidates for executing in parallel with t;, that is, those tasks that are neither
predecessors nor successors of t;.

ADAPT-L introduces the extra complexity to the deadline-distribution algorithm that a
parallel set must be calculated for each task. The parallel set ‘P, for task 7, can easily be
found by first constructing the transitive closure G* for the task graph G, and then in P,
include only those tasks that are neither reachable from t;, nor can reach t;. The transitive
closure G* can be constructed during the initialization phase (Step 1) of the deadline-
distribution algorithm and takes time O(n*) (Cormen et al., 1990).

252 JONSSON AND SHIN

4.6. An Application Case Study

Figure 2 illustrates the task graph of a small control application running on a single
processor. The application consists of five tasks: a Sensor Task 7, an Actuator Task 75,
and three Data Manipulation Tasks 1,, 73, and 7,. In the graph, each node is labeled with
the corresponding task identifier t; and execution time c;, and each arc represents a
message transmission between two tasks. Since all communication is performed on a
single-processor system, any communication cost can be ignored and, hence, the arcs are
treated as pure precedence constraints. For the Actuator Task, the absolute deadline,
Ds =21, is given in conjunction with the corresponding node. For the Sensor Task, an
arrival time, a; = 0, is given. Clearly, this application will experience significant resource
contention during scheduling, owing to the fact that tasks t,, 75, and 7, can potentially
execute in parallel while only one processing resource is available. The parallel sets, \V;,
of these tasks all have a size |¥;| = 2. The parallel sets of the other tasks, 7, and z5, are
empty and thus have a size |¥;| = 0. The mean task execution time of the application is
Crmean = 34

To demonstrate how the choice of deadline assignment is crucial for the example
application’s schedulability, we have applied the slicing technique using the PURE and
ADAPT-L metrics, representing the non-adaptive and adaptive metrics, respectively. For
ADAPT-L, we have used the parameter values ¢y = 1.0 * ¢y, and k; = 1.0. With this
execution-time threshold, only tasks 73 and 7, will have virtual execution times (i.e.
¢; = 12) that are different from the real execution times.

The results from applying the slicing technique to the example application are shown
in Table 1. The algorithm in Figure 1 takes three loop iterations to complete a deadline
assignment for the example application. In each iteration of the algorithm, the path with
the smallest value of R is chosen (indicated in bold). The execution windows,
w; = (a;,D;), resulting from the deadline assignment are also shown in the table. Here,
we can identify the importance of the choice of critical-path metric, R. With PURE, the
accumulated execution time (¢, 4+ ¢3 + ¢, = 11) of the parallel tasks is much larger than

Legend:

@ri

Figure 2. A simple control application.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 253

Table 1. Deadline assignment for the simple control application.

(a;,D;)
Metric Loop # Path R T T, T3 Ty 5
PURE 1 T =Ty = Ts 4.00
fotiots 367 (000,667 — (6.67,1433) — (14.33,21.00)
T > T T 3.67
2 % 467
7 367 (000,667 — (6.67,1433) (6.67, 1433) (1433, 21.00)
3 7 467 (0.00,6.67) (6.67,14.33) (6.67,14.33) (6.67,14.33) (1433, 21.00)
ADAPT-L 1 oot 400
fotots 100 (0.00,4.00) — (4.00,17.00) — (17.00, 21.00)
T =Ty Ts 1.00
2 7 10.00
2 100 (0.00,4.00) — (4.00,17.00) (4.00, 17.00) ~ (17.00, 21.00)
3 % 1000 (0.00, 400) (4.00, 17.00) (4.00, 17.00) (4.00, 17.00) (17.00, 21.00)
the size (|w;| = |(6.67,14.33)| = 7.67) of their common execution window. This means

that these tasks cannot all be scheduled to meet their deadlines on the single processor.
For ADAPT-L, on the other hand, the size (|w;| = |(4.00, 17.00)| = 13) of the common
execution window is large enough to allow for meeting all parallel tasks’ deadlines—
even for the case of a single processor.

Although the results from our case study suggest that the proposed adaptive metrics
can improve scheduling performance, it is still necessary to study their impact on a larger
application domain. Therefore, in the following sections, we show that both ADAPT-G
and ADAPT-L outperform the non-adaptive metrics with respect to the success ratio as
well as maximum task lateness. Furthermore, we show that the adaptive metrics also
exhibit a very robust behavior over a variety of parameter settings.

5. Experimental Setup

5.1. System Architecture

We have used an experimental platform based on a homogeneous multiprocessor
architecture with a shared bus. The system size ranges from two to eight processors. The
shared bus is time-multiplexed in such a way that the communication cost between two
processors is one time unit per transmitted data item.®

5.2. Workload

In all experiments, a set of 1024 task graphs were generated using a random task graph
generator. Each task graph contained between 40 and 60 tasks without any imposed task-

254 JONSSON AND SHIN

assignment restrictions (i.e. relaxed locality constraints). Task execution times were
chosen randomly assuming a uniform distribution with a mean execution time, ¢, .,,, of
20 time units. To mimic different application scenarios, task execution times were chosen
based on the execution-time distribution (ETD), the maximum percentage deviation
of a task’s execution time from the mean execution time, c.,,- Thus, for a given
ETD, the task execution times were chosen at random to be in the range
[€mean(1 = ETD), ¢ppean(1 + ETD)]. To evaluate the performance of the metrics under
variable tight timing constraints, an E-T-E deadline was chosen for each input—output
task pair based on the overall laxity ratio (OLR), the ratio of the E-T-E deadline to the
accumulated task graph workload. The precedence constraints in the task graph were also
randomly generated. The number of immediate successors/predecessors of each task was
chosen at random to be in the range of one to three, and the depth of the task graph was
chosen at random to be between eight and 12 levels. The number of data items in each
message passed between a pair of tasks was chosen in such a way that the
communication-to-computation cost ratio (CCR) of the average message communication
cost to the average task execution time corresponded to 0.1.

5.3. Task Assignment and Scheduling

We have used a baseline task assignment and scheduling strategy based on a list
scheduling version of the earliest-deadline-first (EDF) algorithm. For each scheduling
step, our EDF algorithm selected one task, among all ready tasks, that had the closest
absolute deadline. Then the selected task was scheduled on the available processor that
yielded the earliest start time, taking into account possible communication cost’ and the
arrival time constraints of the task. The set of ready tasks was updated with the immediate
successors of the scheduled task and the algorithm repeated until either all tasks were
successfully scheduled or a scheduling attempt failed. The complexity of this algorithm is
O(n* x m) for a system with n tasks and m processors.

5.4. Experimental Platform

All modeling and simulations in the experiments were performed within GAST (Jonsson,
1997, 1998), a flexible tool for evaluation of uniprocessor and multiprocessor scheduling
techniques. This environment allows us to perform experiments with parametrized
models of the application and the architecture on an arbitrary granularity.

6. Experimental Evaluation

We evaluated the performance of the metrics presented in Section 4.5 using the deadline-
distribution algorithm in Figure 1 and the experimental setup in Section 5. Unless
otherwise noted, all simulations were performed with ETD =25% and OLR =0.8. The
following default parameter values were used for the adaptive metrics during the

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 255

experiments: Cypres = 1.0 % Cpeans ks = 1.0, kg = 1.5, k;, = 0.2. In Section 6.6, these
values are shown to yield the most robust performance for a wide range of applications
and architectures.

In all the plots presented, every reported value is an average of the observed
performance measure, taken over the set of simulation runs for each parameter
combination. With the chosen number of simulation runs, a 99% confidence level was
obtained for a maximum error within 0.5% of the average values reported.

6.1. Effect of System Size on the Performance

Since one of the goals is to find metrics that perform well in the presence of heavy
processor contention, we would like to study how the slicing metrics will behave for
different system sizes. By varying the number of processors, we can identify the
capability of each metric in exploiting the available application parallelism on the
platform architecture. Intuitively, all metrics should perform worse for small system sizes
than for a larger system. For a small system where the application parallelism exceeds the
number of available processors, the contention between tasks over a few available
processors forces multiple tasks to be scheduled within overlapping execution windows
on the same processor. As the system size increases more parallelism in the task graph
can be exploited, decreasing the contention for processors. Consequently, the success
ratio will increase with increasing system size, until a point at which all generated task
graphs are successfully scheduled. This behavior is corroborated by the results plotted in
Figure 3 which show the success ratio as a function of system size assuming a fixed OLR.

Under a deadline-driven scheduling strategy, tasks with longer execution times will be
the most susceptible to processor contention as shorter tasks are more likely to have
shorter deadlines and thus will be scheduled earlier. So, longer tasks should be assigned
more laxity to compensate for this imbalance. Figure 3 shows how the PURE metric, with
its equal-share distribution strategy, exhibits the worst performance among all metrics.
For example, only 35% of all scheduling attempts succeed on a system with four
processors when PURE is used. The performance of the NORM metric is significantly
better, due mainly to its strategy to assign deadlines in proportion to task execution times.
This approach gives tasks with longer execution times more laxity and hence a better
chance to be scheduled feasibly. For the four-processor system, more than 65% of all
scheduling attempts succeed when NORM is used.

The threshold-based strategy of THRES is an alternative approach of assigning longer
deadlines to tasks with longer execution times. THRES exhibits comparable performance
to NORM for the assumed values of OLR and ETD. However, as we will demonstrate
later, the performance of THRES is not very robust under varying application properties.
For example, it performs better than NORM for smaller values of OLR but worse for
larger values of ETD.

The figure clearly illustrates that the non-adaptive metrics (PURE, NORM, and
THRES) do not perform well for small systems. For example, the fraction of successful
scheduling attempts does not exceed 30% for a system with three processors for any non-

256 JONSSON AND SHIN

[ETD=25%, OLR =0.8]
100 T e e
pe= =

80 / =
I
I
!
/

- / x
il 60 7 i x —
o !] o
= 7 E.
£ / Ll
b H o
g: r.3 s ‘.r
o ’
k2 40 / -1
=3 "y
= fy
v I

PURE ——
NORM =+~
THRES -B--
ADAPT-G -
ADAPT-L —&--

1 I 1 1
2 3 4 5 6 7 8
Number of processors

Figure 3. Success ratio as a function of system size.

adaptive metric. This poor performance can be explained by the fact that these metrics do
not account for the resource contention that occurs when the application parallelism
exceeds the number of available processors. Hence, many task deadlines will be too short
to be met. This shortcoming is partly remedied with the ADAPT-G metric. By assigning
task laxities based on the knowledge that application parallelism may not be fully
exploited on the system, a higher performance can be attained with ADAPT-G. As the
plots indicate, this extra intelligence of ADAPT-G gives a significant performance boost
for small systems. For example, more than 60% of all scheduling attempts succeed for the
three-processor system when ADAPT-G is used. Note that this is more than twice the
performance of the best non-adaptive metric.

The ADAPT-L metric exhibits the best performance in this experiment. For example,
the plots indicate that around 95% of all scheduling attempts succeed for the three-
processor system when ADAPT-L is used. This is a three-fold improvement as compared
to the non-adaptive metrics. For a two-processor system, the improvement is even more
stunning: the number of successful scheduling attempts is more than an order of
magnitude higher for ADAPT-L than for the non-adaptive metrics, and four times higher
than for the ADAPT-G metric. The superior performance associated with ADAPT-L can
be attributed to the detailed knowledge it possesses regarding the contention that
individual tasks will encounter. This is in sharp contrast to ADAPT-G, where the
potential contention of each task is derived using the same constant value, namely, the
average task graph parallelism. Recall, however, that the superior performance of
ADAPT-L comes at the price of a higher time-complexity.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 257

6.2. Effect of Overall Laxity Ratio on the Performance

Another goal with a deadline-distribution strategy is that it should use metrics that
perform well for the varying tightness of E-T-E deadline. In particular, by varying the
value of OLR when there is significant processor contention, we can identify the
capability of each metric to exploit the available surplus time and to distribute it wisely.
Figure 4 plots the success ratio as a function of OLR assuming a fixed system size. The
plots show some salient results for three processors.

Again, we see that the relative performance of the metrics is the same as in the
previous experiment. ADAPT-L still outperforms the other metrics by a significant
margin. For example, the performance gain over the non-adaptive metrics is nearly an
order of magnitude for tight deadlines. The ADAPT-G metric also performs consistently
better than the non-adaptive metrics. For tight deadlines, the plots indicate a three-fold
increase in performance for ADAPT-G over the non-adaptive metrics. Also in this
experiment, NORM and THRES exhibit comparable performance. However, one can
observe an interesting phenomenon from the plots. While, for OLR <0.9, THRES
performs slightly better than NORM, the reverse is true for OLR > 0.9. This effect
occurs because of the problem of finding a value of kg that gives THRES a consistently
good performance under varying application and architecture scenarios. This problem
will be discussed further in Section 6.6.

[ETD = 25%, 3 processors]

100 T T "Ig, T i
;3"’-
80 ,./' ><\ -
rd -
K4
ks
s
£ 60 s e
2 A 5
§ /'! A
“ ’ E’/'
o 4 x o
540 s i -
= . .
3 r

0.5 0.6 0.7 0.8 0.9 1.00

Overall laxity ratio

Figure 4. Success ratio as a function of overall laxity ratio.

258 JONSSON AND SHIN

6.3. Effect of Execution-Time Distribution on the Performance

So far, our adaptive metrics have been shown to outperform their non-adaptive
counterparts under all system sizes and all degrees of deadline tightness. In this
section, we will identify the robustness of each metric under different application
scenarios with varying execution-time distributions. Figure 5 plots the success ratio as
a function of ETD assuming a fixed system size and a fixed OLR. We show here the
results for OLR =0.8 and three processors while varying ETD from 0% to 100% in
steps of 25%.

The observed trends in this experiment are quite similar to the ones demonstrated in the
previous experiments, with one notable exception. As the plots clearly indicate, the
performance of the NORM metric is not as consistent as in the previous studies. Instead
of following the performance of THRES, the performance of NORM will increase past
THRES as ETD gets large. This behavior can be attributed to the proportional-share
distribution strategy of NORM. With an increasing proportion of short tasks, there will be
more tasks with shorter deadlines competing for the processors. NORM is able to
compensate long tasks with a larger amount of laxity to handle the contention. The
simpler strategy of THRES cannot handle this situation with the same degree of
flexibility.

Note that, when ETD = 0%, the PURE, NORM, THRES, and ADAPT-G metrics all
converge to the same success ratio (6%), because all tasks have identical execution times
¢;. It is easy to see that, with identical execution times, the deadline for each task 7; in a
critical path @ will be d; = Dq,/ng, regardless of the metric used. In the case of THRES

[3 processors, OLR = (0.8]

100 T A - - - I
[R T A
S
If
II
_/
80 / .
T — ey = =] -
f/ O . P
/; PP
€ ofF 7 i - -
2 7 ’ A7 @
g s i
by X o =
S 40 ¥o -
7] o
g’ PURE —%—
P NORM -
WE ST
ADAPT-L -&--—
1 1

0
0 25 50 75 100

Execution time distribution (%)

Figure 5. Success ratio as a function of execution time distribution.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 259

or ADAPT-G, the virtual execution times ¢; are also identical since, for ETD = 0%, the
original execution times of all tasks are equal to or higher than the execution time
threshold ¢y, and the surplus factors (kg and kg, respectively) are constant. In the case of
ADAPT-L, however, the virtual execution time of each task is defined by the size of its
parallel set and may thus differ between tasks.

Also, note the anomalous behavior of ADAPT-G and ADAPT-L as ETD exceeds 50%.
As we will show in Section 6.6, the performance of the adaptive metrics is most
susceptible to changes in ETD. For the chosen values of the adaptivity factors, k; and &; ,
the performance of both ADAPT-G and ADAPT-L drops slightly for applications with a
large distribution of execution times.

6.4. Effect of Communication-Cost Estimation Strategy on the Performance

Recall from Section 4.3 that an intuitive approach for communication-cost estimation
during deadline assignment in a distributed real-time system is to assume a negligible
communication cost between tasks, because (i) many task assignment and scheduling
algorithms tend to cluster tasks that communicate heavily, and (ii) in many distributed
real-time applications (such as control systems), the communication volume is quite low
and therefore any communication cost will be relatively low compared to the task
execution times.

In this section, we will show that, even when the conditions (i) or (ii) do not apply, it is
still beneficial to assume negligible communication cost. We will investigate three
radically different cost estimation strategies. For the Communication cost always
assumed (CCAA) strategy, communication channels are modeled as tasks and partake in
the deadline distribution with estimated message transmission times used in place of
execution times. For the Communication cost never assumed (CCNA) strategy,
communication cost is assumed to be zero and deadlines are never distributed over
communication channels. For the Communication cost randomly assumed (CCRA), the
communication cost estimation strategy is either CCNA or CCAA, depending on the
outcome from coin tossing.

Figure 6 plots the success ratio for ADAPT-L as a function of communication-cost
estimation strategy assuming a fixed system size. The plotted results are for three
processors, and the overall best performance is attained when the CCNA strategy is used.
This is because the maximum overall laxity will be available for distribution over the
tasks. When the task are subsequently scheduled, any interprocessor communication
between tasks will only consume laxity from the receiving task. For the other strategies,
precedence constraints in the task graph will consume laxity from the overall laxity pool
as these constraints will be modeled as communication tasks with an estimated non-zero
communication cost. Each such communication task will thus reduce the amount of laxity
available for the tasks in the same path as the communication task. The weakness of this
approach is clearly illustrated by the poor performance of the CCRA and CCAA
strategies.

260 JONSSON AND SHIN

[ETD = 25%, 3 processors]

100

30

60

40

Success ratio (%)

0 1 1 I I
0.5 0.6 0.7 0.8 0.9 1.0

Overall laxity ratio

Figure 6. Success ratio for ADAPT-L as a function of communication cost estimation strategy.
6.5. Performance Comparison Using a Secondary Performance Measure

In all studies so far, we have compared the metrics with respect to their contributions to
task schedulability. In situations when OLR is large enough, the success ratio will
approach 100% for all metrics. In this case, a secondary performance measure should be
used to assess the relative quality of the metrics. The maximum task lateness is used for
this purpose.

Figure 7 illustrates how the slicing technique behaves for a system with loose E-T-E
deadlines (OLR = 1.5). As can be seen in the plots, ADAPT-L clearly outperforms the
other metrics for all system sizes. ADAPT-G also performs very well, in particular for
small systems. This behavior can also be observed in Figure 8 where the maximum
lateness is plotted as a function of ETD. An interesting phenomenon for the NORM
metric can be observed in this plot. While the performance of NORM is comparable to
that of ADAPT-G for small variations of the task execution time, NORM performs poorly
for higher distributions. This behavior can be attributed to the proportional-share strategy
employed by NORM. As the proportion of short tasks increases past a certain threshold,
the maximum task lateness approaches zero.

6.6. Finding the Best Parameters for the Adaptive Metrics

An interesting question is how to find the best values of the execution time threshold ¢
and the factors kg, kg, and k; for a given system. As we will show, this is not an easy task

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT

[ETD=25%., OLR =1.5]

0 T T T T T
PURE o
NORM -+
-20 THRES -8-- 7
ADAPT-G ¥

Maximum lateness

—100

ADAPT-L —&--

-120
2 3 4 5 6 7 8
Number of processors
Figure 7. Maximum task lateness as a function of system size.
[3 processors, OLR =1.5]
0 T T T
PURE - |
NORM B
-201 THRES -~ 7]
ADAPT-G -~
APAPT-L —&-

-40

Maximum lateness
I
IoN
=
T

80

-

-120 1 '
0 25 50

Execution time distribution (%)

75 100

Figure 8. Maximum task lateness as a function of execution time distribution.

261

262 JONSSON AND SHIN

owing to the large number of application and architecture attributes that affect the
scheduling results.

Figure 9 illustrates how the performance of the THRES metric depends on the value of
the surplus factor k5. The plots show the behavior of THRES as kg is varied between 0.0
and 4.0 in steps of 0.5. Note that, for k¢ = 0.0, THRES reduces to PURE. For the default
configuration (ETD =25%, OLR =0.8), the best performance is attained for ky = 2.0.
When ETD is increased, the peak performance is attained at a lower value of kg. When
there is a larger portion of tasks with short execution times, a too high a value of kg will
assign superfluously large amounts of laxity to longer tasks, which will impede the
schedulability of shorter tasks. A similar phenomenon can be observed as E-T-E
deadlines are made tighter (smaller OLR). With less laxity to distribute for a fixed system
size, a smaller value of kg is preferred in order to allow shorter tasks to be scheduled.
When the system size is reduced, an interesting effect kicks in. As the number of
processors decreases and full exploitation of application parallelism is no longer possible,
it is important to assign extra laxity to larger tasks in order to handle processor
contention. Here, the best performance is attained for a higher value of kg. Because of the
counteracting effects that occur when deadlines are made tighter, on the one hand, and
system size is decreased, on the other hand, a “‘best’” value of kg is impossible to find for
systems which are inflicted with both of these limitations.

Figure 10 illustrates how the performance of the ADAPT-G metric depends on the
value of the global adaptivity factor k; when it is varied between 0.0 and 4.0 in steps of
0.5. Similar to THRES, a lower value of k; is required for maintained performance as
ETD is increased. Also, decreasing the OLR implies lowering k. Interesting enough,

[ETD =25%, OLR =0.8, 4 processors]

100 T T T T T T
PP i Default <—
/,f ETD = 99% -+
80 - *7 OLR=05-8-- _

3 procs e

Success ratio (%)

20 - B * :
x = a “‘\\
o R Mo
S Em o
] 1 I 1 [“=--h h H
0.0 0.5 1.0 1.5 20 25 30 35 4.0

Surplus factor kg

Figure 9. Success ratio for THRES as a function of surplus factor kg.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 263

[ETD =25%, OLR =(.8, 4 processors]

100 T T T T T
AT Default —
ETD = 99% -+~
80 - + OLR=05-8--

3 procs “¥ee

Success ratio (%)

20
| e 8. Sk
e ¢ e T
”r1—-" | 1 | 1 1 - E ------- g
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

Adaptivity factor kg

Figure 10. Success ratio for ADAPT-G as a function of global adaptivity factor k.

however, decreasing the system size does not require increasing kg, owing to the adaptive
nature of ADAPT-G (see Equation (8)). This means that there exist no conflicting effects
that limit the applicability of the metric, as is the case for THRES. A similar behavior for
ky can be observed in the plots for ADAPT-L in Figure 11. Here, k; is varied between 0.0
and 0.8 in steps of 0.1.

Figure 12 illustrates how the performance of ADAPT-L depends on the value of the
execution time threshold cy,.. In this figure, ¢y, is varied between 0.0 and 2.0 * ¢, in
steps of 0.25. Intuitively, the peak performance should be attained for ¢ close to ¢pean-
Too low values of ¢, Will assign laxities to all tasks and thereby drastically reduce the
positive effects of the metric. On the other hand, too high values of ¢y, will disable the
threshold effect and reduce the ADAPT-L metric to the PURE metric, resulting in
inferior performance. As can be seen in the plots, the peak performance is attained for
Cihres = Cmean fOr the assumed system. For the given ETD, the performance drops
drastically for ¢y, = 1.25 * ccaq because, at this point, nearly all tasks are below the
threshold. As ETD increases, one can expect that the drastic drop in performance occurs
at a higher value of ¢, because there will be a larger distribution of task execution
times. Again, the plots corroborate this conjecture.

6.7. Summary of the Experiments

In summary, the experiments reported in this section indicate that the proposed adaptive
metrics, ADAPT-G and ADAPT-L, outperform (in terms of success ratio and maximum

264 JONSSON AND SHIN

[ETD = 25%, OLR = 0.8, 4 processors]
¥ T T T
Default —6—
ETD =99% -+--
OLR=05-B-- |
3 procs ~¥-

Success ratio (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Adaptivity factor k;

Figure 11. Success ratio for ADAPT-L as a function of local adaptivity factor ;.

[ETD = 25%, OLR = (.8, 4 processors]

100 £ Y S T =+ T
80 - X
¥
S o0 f
2 E
@ Ny
5 w0 :
1] [~ ‘.
ZINN R T FR g----H
Default —
20 ETD=99% —+-- i
Eindion B, o,
3 procs . VIR
{) 1 1 1 1 1 M- ﬂ]
0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Execution time threshold ¢, . (w.rt. ¢ .00

Figure 12. Success ratio for ADAPT-L as a function of execution time threshold cye-

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 265

task lateness) their non-adaptive counterparts for varying system sizes and deadline
tightness. In fact, the increase in success ratio can be as high as an order of magnitude for
systems with heavy resource contention. Among the adaptive metrics, ADAPT-L is
shown to be consistently better than ADAPT-G.

7. Discussion
7.1. Complementary Results

In order to assess the robustness of the adaptive metrics for other parameter settings,
we have performed additional experiments. The results from these experiments can be
found in Jonsson (1999b), but we briefly summarize them here. We have evaluated the
ADAPT-G and ADAPT-L metrics on a heterogeneous processor architecture where a
task’s execution time may differ depending on which processor the task is assigned to.
That study showed that the performance gain (with respect to the success ratio) of the
adaptive metrics as compared to their non-adaptive counterparts is maintained when
heterogeneity is introduced in the system. We also evaluated the adaptive metrics for task
graphs with varying degrees of parallelism and with different probability distributions for
the task execution times. Here, we found that the slicing technique scales very well with
these parameters. Finally, we evaluated the adaptive metrics for different values of the
CCR. Here, too, did we find that the slicing technique scales well with different
parameter values. In addition, experiments involving higher values of CCR corroborate
the results presented in Section 6.4, namely, that the best strategy is to completely ignore
the interprocessor communication costs during deadline assignment.

We have also assessed the performance of the adaptive metrics on a more absolute
scale by investigating whether the generated task sets are difficult to schedule to begin
with. To this end, we used an optimal combined deadline-distribution and task-
assignment algorithm implemented by means of the parametrized branch-and-bound
(B&B) framework available in the GAST evaluation tool (Jonsson, 1998, 1999a). This
experiment revealed that the ADAPT-L metric in fact delivered a success ratio that was
no more than 10 percentage points® worse than that of the optimal B&B algorithm on the
average. This indicates that the ADAPT-L metric is so powerful that no further
improvements of the technique are needed. This also indicates that the performance of
other assignment and scheduling optimization techniques, such as simulated annealing
(Tindell et al., 1992), can be expected to perform only slightly better for similar types of
applications, but with an equal or higher time complexity.

7.2. Practicality Issues

For the practical applicability of the adaptive metrics (ADAPT-G, ADAPT-L), it is
important to find the values of the factors k; and k; for a given application. One must

266 JONSSON AND SHIN

note that there exists no overall best value of any factor. In Section 6.6, the values used in
our experiments were found to be the best for the generated random task graphs. We
believe that these values will also be useful for many other graphs for the following
reason. According to Equations (8) and (10), the adaptivity factors of ADAPT-G and
ADAPT-L are clearly sensitive to the actual application parallelism. However, as long as
the parallelism in the task graph deviates within reasonable bounds from the values
chosen in our experiments, the adaptive metrics will still outperform the non-adaptive
counterparts. Minor adjustments of the factors will probably be necessary for other
application task sets, but, as long as the slicing technique is not applied to strictly
sequential or massively parallel applications, robust factor values should not be too hard
to find.

The question of whether to use ADAPT-G or ADAPT-L depends, to a large extent, on
the nature of the target system. For example, in a system where the characteristics of all
tasks are known before the system is put in use, off-line scheduling is used. In this case,
the cost of the deadline-distribution algorithm is often not a major concern and hence the
ADAPT-L metric could be used. For a system with on-line scheduling, on the other hand,
tasks typically arrive dynamically and hence the scheduling complexity is a major source
of concern since the scheduling process should not consume too much time during run-
time task dispatching. In such a case, ADAPT-G may be a better choice owing to its
lower complexity.

The choice of metric will also be affected by the underlying task assignment and
scheduling strategy. If a greedy scheduling algorithm, typically with a computational
complexity of O(n?) or lower, is used, applying the ADAPT-G metric adds little to the
total complexity. Applying ADAPT-L in this situation could make the complexity
prohibitively high. However, if a backtracking or branch-and-bound algorithm is used,
the high complexity of these algorithms would make the ADAPT-L metric a viable
alternative as its O(n*) complexity should be negligible in comparison.

Finally, a comment of the complexity of the ADAPT-L metric. One problem with the
original definition of the parallel set '¥; in Equation (10) is that it may include tasks that
cannot possibly contend with t;, namely, those that have been assigned slices in a
previous iteration of the deadline-distribution algorithm. In order to more accurately
assess the potential resource contention for each task, we have, therefore, also evaluated
the effect of a parallel set ‘i’i that only includes tasks in the original parallel set '¥'; whose
execution windows may overlap with any feasible execution window of 7;. In this
context, two execution windows w; and w; are sajd to overlap if a; < Dj/\aj <D,.
Unfortunately, with the definition of the parallel set ¥; comes the drawback that it has to
be recalculated each time a new critical path is found. A recalculation of ‘i’i for all tasks
(given an already existing ‘i’i) can be done in time O(n?), so the total time-complexity of
the main loop of the deadline-distribution algorithm in Figure 1 would increase to O(n?).
When the slicing technique was used with the parallel set ‘i’i, only a small performance
increase (< 2%) was observed. Given the already high gain in performance, this small
additional increase in performance normally do not warrant the use of ‘i’i with its
significant contribution to the algorithm complexity. In line with the above discussion, the
choice of whether to use this improvement or not is again a function of the actual system
configuration.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 267

7.3. Future Work

The techniques presented here can be applied not only to computational resources such as
processors, but also to general resources including shared data structures and
communication links. Future work will therefore include evaluation of techniques that
can also include such general resource requirements. In particular, we would like to
further evaluate the strategy of modeling interprocessor communication as separate tasks
which contribute to the deadline distribution. Such an evaluation could indicate at what
interprocessor communication volumes it is more beneficial to use that modeling strategy
instead of the one advocated in this work where communication is not included in
deadline distribution.

In this work we have mainly studied randomly-generated task graphs. The results
attained from this study are therefore merely indicative, rather than evidential, of the
performance of the slicing technique with practical applications. To be able to make more
general statements on the merits of our proposed approach, we would like to evaluate the
slicing technique on a set of realistic benchmarks that encompass small comprehensible
applications as well as large applications.

8. Conclusions

Distribution of end-to-end deadlines over component tasks in a distributed real-time
application is an important, but difficult, problem to solve. It is particularly difficult for
those systems with relaxed locality constraints where a majority of tasks are not pre-
assigned to particular processors. Many solutions have been proposed for the problem,
but mostly for systems with strict locality constraints where task assignment is entirely
known beforehand.

In this paper we have presented two adaptive metrics for an existing deadline-
distribution algorithm. The first metric, ADAPT-G, accounts for average application
parallelism and system size so as to increase the likelihood of successfully finding a
feasible schedule. The time-complexity of the algorithm when using ADAPT-G is O(n?),
which is comparable to that of previously-proposed non-adaptive metrics. The second
metric, ADAPT-L, utilizes information about possible resource contention for individual
tasks in the application. The time complexity of the algorithm when using ADAPT-L is
O(n?). The results from an extensive simulation study show that the proposed metrics
outperform (in terms of success ratio and maximum task lateness) their non-adaptive
counterparts over a wide range of system configurations. In particular, we find that, for
small systems, ADAPT-L outperforms the non-adaptive metrics with as much as an order
of magnitude with respect to the success ratio. Furthermore, ADAPT-L outperforms the
ADAPT-G metric with a three-fold increase in performance. Overall, the new adaptive
metrics are found to exhibit very good performance over a large variety of application
and architecture scenarios.

268 JONSSON AND SHIN

Acknowledgments

The authors thank the anonymous referees for their comments which helped improve the
quality of this paper. This research was supported in part by a grant from the Volvo
Research Foundation and the Volvo Educational Foundation.

Notes

1. By “‘execution-time distribution’” we mean the variance in task execution time, taken over all tasks in the
application; not the variance of a single task’s execution time as are typically used in stochastic real-time task
models.

2. Although the slicing technique has been evaluated under a non-preemptive, time-driven scheduling policy, it
is not restricted to that policy as we showed by property P1 in Section 2.1.

3. We assume that all related tasks in one application have the same periods, which is reasonable.

4. Note that, through the introduction of the planning cycle, the periodicity assumption for the tasks has been
relaxed. This means that our system model can easily be extended to the case where tasks are not periodic.

5. It should be noted that many other real-time systems (e.g., multimedia or remote sensing systems) may
experience significant intertask communication. In these cases, it might be a better choice to model the
communication as separate tasks and include them into the distribution of the E-T-E deadline.

6. The conclusions drawn from the experiments are not dependent on a shared-bus topology or a constant per-
item communication cost. In fact, the results apply for any communication network as long as an upper-
bounded communication cost can be derived for each pair of communicating tasks. Hence, we can also use
networks such as CAN and Token Ring.

7. If the scheduling of network messages is performed in close cooperation with task scheduling (similar to the
techniques in (Abdelzaher and Shin, 1995; Tindell et al., 1992)), it is possible to use more accurate models of
the communication network. This would result in tighter, and less pessimistic, communication-cost estimates,
which of course would improve the performance of our proposed approach.

8. The maximum value of 10 percentage point was obtained for the worst-possible application constraints, for
example, very tight deadlines or a low number of processors. For more relaxed application constraints, the
ADAPT-L metric delivered performance that was comparable (within 3 percentage points) to that of the
optimal algorithm.

References

Abdelzaher, T. E, and Shin, K. G. 1995. Optimal combined task and message scheduling in distributed real-time
systems. In Proceedings of the IEEE Real-Time Systems Symposium. Pisa, Italy, pp. 162-171. An improved
version also appeared in /EEE Transactions on Parallel and Distributed Systems 10(11): 1179-1191.

Audsley, N., Burns, A., Richardson, M., Tindell, K., and Wellings, A. J. 1993. Applying new scheduling theory
to static priority pre-emptive scheduling. Software Engineering Journal 8(5): 284-292.

Bettati, R., and Liu, J. W.-S. 1992. End-to-end scheduling to meet deadlines in distributed systems. In
Proceedings of the IEEE International Conference on Distributed Computing Systems. Yokohama, Japan,
pp- 452-459.

Cheng, S., Stankovic, J. A., and Ramamritham, K. 1986. Dynamic scheduling of groups of tasks with
precedence constraints in distributed hard real-time systems. In Proceedings of the IEEE Real-Time Systems
Symposium. New Orleans, Louisiana, pp. 166—174.

Chetto, H., Silly, M., and Bouchentouf, T. 1990. Dynamic scheduling of real-time tasks under precedence
constraints. Real-Time Systems 2(3): 181-194.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. Cambridge, Massachusetts:
The MIT Press.

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 269

Di Natale, M., and Stankovic, J. A. 1994. Dynamic end-to-end guarantees in distributed real-time systems. In
Proceedings of the IEEE Real-Time Systems Symposium. San Juan, Puerto Rico, pp. 216-227.

Di Natale, M., and Stankovic, J. A. 1995. Applicability of simulated annealing methods to real-time scheduling
and jitter control. In Proceedings of the IEEE Real-Time Systems Symposium. Pisa, Italy, pp. 190-199.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. New York: Freeman.

Garey, M. R., Johnson, D. S., Simons, B. B., and Tarjan, R. E. 1981. Scheduling unit-time tasks with arbitrary
release times and deadlines. SIAM Journal on Computing 10(2): 256-269.

Gutiérrez Garcia, J. J., and Gonzélez Harbour, M. 1995. Optimized priority assignment for tasks and messages in
distributed hard real-time systems. In Proceedings of the IEEE Workshop on Parallel and Distributed Real-
Time Systems. Santa Barbara, California, pp. 124-132.

Hou, C.-J., and Shin, K. G. 1997. Allocation of periodic task modules with precedence and deadline constraints
in distributed real-time systems. IEEE Transactions on Computers 46(12): 1338—1356.

Jonsson, J. 1997. The impact of application and architecture properties on real-time multiprocessor scheduling.
Ph.D. thesis, School of Electrical and Computer Engineering, Chalmers University of Technology, Géteborg,
Sweden.

Jonsson, J. 1998. GAST: a flexible and extensible tool for evaluating multiprocessor assignment and scheduling
techniques. In Proceedings of the International Conference on Parallel Processing. Minneapolis, Minnesota,
pp. 441-450.

Jonsson, J. 1999a. Effective complexity reduction for optimal scheduling of distributed real-time applications.
In Proceedings of the IEEE International Conference on Distributed Computing Systems. Austin, Texas,
pp. 360-369.

Jonsson, J. 1999b. A robust adaptive metric for deadline assignment in heterogeneous distributed real-time
systems. In Proceedings of the IEEE International Parallel Processing Symposium. San Juan, Puerto Rico,
pp. 678-687.

Kao, B., and Garcia-Molina, H. 1993. Deadline assignment in a distributed soft real-time system. In Proceedings
of the IEEE International Conference on Distributed Computing Systems. Pittsburgh, Pennsylvania, pp. 428—
437.

Kao, B., and Garcia-Molina, H. 1994. Subtask deadline assignment for complex distributed soft real-time tasks.
In Proceedings of the IEEE International Conference on Distributed Computing Systems. Poznan, Poland,
pp- 172-181.

Kopetz, H. 1992. Sparse time versus dense time in distributed real-time systems. In Proceedings of the IEEE
International Conference on Distributed Computing Systems. Yokohama, Japan, pp. 460-467.

Leung, J. Y.-T., and Merrill, M. L. 1980. A note on preemptive scheduling of periodic, real-time tasks.
Information Processing Letters 11(3): 115-118.

Peng, D.-T., and Shin, K. G. 1989. Static allocation of periodic tasks with precedence constraints in distributed
real-time systems. In Proceedings of the IEEE International Conference on Distributed Computing Systems.
New Port Beach, California, pp. 190-198.

Raji, R. S. 1994. Smart networks for control. /[EEE Spectrum pp. 49-55.

Ramamritham, K. 1995. Allocation and scheduling of precedence-related periodic tasks. /[EEE Transactions on
Parallel and Distributed Systems 6(4): 412-420.

Rexford, J. L., Hall, J., and Shin, K. G. 1996. A router architecture for real-time point-to-point networks. In
Proceedings of the ACM International Symposium on Computer Architecture. Philadelphia, Pennsylvania,
pp. 237-246.

Saksena, M., and Hong, S. 1996a. An engineering approach to decomposing end-to-end delays on a distributed
real-time system. In Proceedings of the IEEE Workshop on Parallel and Distributed Real-Time Systems.
Honolulu, Hawaii, pp. 244-251.

Saksena, M., and Hong, S. 1996b. Resource conscious design of distributed real-time systems: an end-to-end
approach. In Proceedings of the IEEE International Conference on Engineering of Complex Computer
Systems. Montreal, Canada, pp. 306-313.

Tindell, K. W., Burns, A., and Wellings, A. J. 1992. Allocating hard real-time tasks: an NP-hard problem made
easy. Real-Time Systems 4(2): 145-165.

270 JONSSON AND SHIN

Wang, F, Ramamritham, K., and Stankovic, J. A. 1992. Bounds on the performance of heuristic algorithms for
multiprocessor scheduling of hard real-time tasks. In Proceedings of the IEEE Real-Time Systems Symposium.
Phoenix, Arizona, pp. 136-145.

Jan Jonsson received the M.S. degree in computer
science and engineering, the Lic.Tech. degree in
computer engineering and the Ph.D. degree in
computer engineering, all from Chalmers University
of Technology, Sweden, in 1992, 1995, and 1997,
respectively. He is currently an associate professor in
the Department of Computer Engineering at
Chalmers University of Technology. During fall/
winter 1996 he was a visiting researcher at the Real-
Time Computing Laboratory, The University of
Michigan, Ann Arbor, USA.

He has authored/co-authored numerous technical
papers within the field of real-time scheduling in
multiprocessor architectures, a dozen of which have
been presented at competitive, fully-reviewed inter-
national conferences and workshops. His research
interests are in the areas of parallel and distributed
real-time computing and multiprocessor computer
architecture. He is a member of the IEEE, IEEE
Computer Society, ACM, and ACM SIGARCH.

Kang G. Shin is Professor and Director of the Real-
Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor, Michigan.

He has supervised the completion of 40 Ph.D. theses,
and authored/co-authored over 600 technical papers
and numerous book chapters in the areas of distributed
real-time computing and control, computer net-
working, fault-tolerant computing, and intelligent
manufacturing. He has co-authored (jointly with
C. M. Krishna) a textbook Real-Time Systems,
McGraw Hill, 1997. In 1987, he received the Out-
standing IEEE Transactions on Automatic Control
Paper Award, and Research Excellence Award in 1989,
Outstanding Achievement Award in 1999, and Service
Excellence Award in 2000 from The University of
Michigan. In 1985, he founded the Real-Time Com-
puting Laboratory, where he and his colleagues are

ROBUST ADAPTIVE METRICS FOR DEADLINE ASSIGNMENT 271

investigating various issues related to real-time and
fault-tolerant computing.

His current research focuses on Quality of Service
(QoS) sensitive computing and networking with
emphasize on timeliness and dependability. He has
also been applying the basic research results to
telecommunication and multimedia systems, intelli-
gent transportation systems, embedded systems, and
manufacturing applications.

He received the B.S. degree in Electronics Engineer-
ing from Seoul National University, Seoul, Korea in
1970, and both the M.S. and Ph.D. degrees in Electrical
Engineering from Cornell University, Ithaca, New York
in 1976 and 1978, respectively. From 1978 to 1982 he
was on the faculty of Rensselaer Polytechnic Institute,
Troy, New York. He has held visiting positions at the
US Airforce Flight Dynamics Laboratory, AT&T Bell
Laboratories, Computer Science Division within the
Department of Electrical Engineering and Computer
Science at UC Berkeley, and International Computer
Science Institute, Berkeley, CA, IBM T. J. Watson
Research Center, and Software Engineering Institute at
Carnegie Mellon University. He also chaired the
Computer Science and Engineering Division, EECS
Department, The University of Michigan for three
years beginning January 1991.

He is an IEEE fellow and member of the Korean
Academy of Engineering, is the General Chair of the
2000 IEEE Real-Time Technlogy and Applications
Symposium, was the Program Chairman of the 1986
IEEE Real-Time Systems Symposium (RTSS), the
General Chairman of the 1987 RTSS, the Guest Editor
of the 1987 August special issue of IEEE Transactions
on Computers on Real-Time Systems, a Program Co-
Chair for the 1992 International Conference on Parallel
Processing, and served numerous technical program
committees. He also chaired the IEEE Technical
Committee on Real-Time Systems during 1991-93,
was a Distinguished Visitor of the Computer Society of
the IEEE, an Editor of IEEE Transactions on Parallel
and Distributed Computing, and an Area Editor of
International Journal of Time-Critical Computing
Systems and Computer Networks.

