
Analysis of Event-Driven Real-Time Systems with
Time Petri Nets
A Translation-Based Approach

Zonghua Gu and Kang G. Shin
RTCUEECS. University of Michigan. Ann Arbor. MI 48109 {zgu.kgshin}@eecs.umich.edu

Abstract: The growing complexity of modem real-time embedded systems makes it
imperative to apply formal analysis techniques at early stages of system
development. This paper considers formal modelling of event-driven real-time
systems with Time Petri Nets. and subsequent analysis via model-checking by a
simple. fully automatable translation into Timed Automata. The proposed
approach is applied to a small application scenario taken from Avionics Mission
Computing.

Keywords: real-time. embedded. Time Petri Net. Timed Automata, UPP AAL. model
checking. CORBA

1. INTRODUCTION

Real-time embedded systems are ubiquitous in modem society, many of
which perfonn safety-critical functions, and therefore, it is imperative to
have tools and techniques that can guarantee a high degree of system
correctness. In this paper, we consider application of Merlin and Farber's
Time Petri Net (TPN) [12] to model event-driven real-time systems, and
formally define a translation procedure from a TPN model into a
semantically equivalent Timed Automata [7] model in order to perfonn
model-checking on the TA model. This translation procedure also gives a
formal semantics for TPN in terms of T A, and clarifies a number of semantic
ambiguities in the original TPN definition. For example. we clearly define
the semantics of multiple-enabledness of a transition as freshly enabling a
transition after each firing, which is intuitively the behaviour of a task
serving multiple queued execution requests.

32 Zhonghua Gu and Kang G. Shin

As an example of our approach, we model and analyze an application
scenario taken from Avionics Mission Computing [8]. Using the model
checker UPP AAL, we were able to check the system timing properties such
as end-to-end latency. In case a system timing property is violated, UPPAAL
gives us an error trace leading to the violation state and allows us to gain
more insight into the cause of the violation.

This paper is structured as follows: Section 2 considers TPN modelling of
real-time scheduling. Section 3 describes a simple algorithm for mapping
TPN into T A. Section 4 considers modelling and analysis of an application
scenario taken from Avionics Mission Computing. Section 5 describes
related work, and the paper concludes with Section 6.

2. MODELLING OF REAL-TIME SCHEDULING
WITHTPN

r-----------,

! • -.l
I lO.o:J[perloci.perloci] I

I
I
i
I

p.J I ------....;_ __ ._-
Figure 1. A periodic timer in TPN.

Figure 1 shows the TPN model for a periodic timer, and Figure 2 shows a
TPN model for static priority, non-preemptive scheduling of two periodic
tasks. The inhibitor edge from Pll to T22 models the fact that Taskl has
priority over Task2: a non-empty Pll prevents T22 from firing.

Analysis of Event-Driven Real-Time Systems with Time Petri Nets 33

Periodic Ti mer
wi ttl period 1

Tll I Pil

Pe riodi c Ti me r TIl
wi ttl perlod2

I
I
I ,

\ ,

I?2l TI2 1?22 TIJ

Figure 2. Static priority, non-premptive scheduling oftwo periodic tasks. The blocks
marked Periodic Timer denote instantiations of the periodic timer model in Figure 1 with
periods periodl and period2, respectively. The top part of the figure represents high-priority
task Taskl, and the bottom part represents low-priority task Task2. BCET stands for best
case execution time and WCET stands for worst-case execution time.

3. MAPPING TPN INTO TA

We formally define a translation algorithm for mapping a TPN model into
a semantically equivalent TA model.
1. Declare a global urgent channel go. A transition with an urgent channel

as its synchronization label is an urgent transition, and has to be taken
whenever it is enabled without delay.

2. Create an automaton with a single location, and a transition with
synchronization label go! starting and ending at that location, as shown in
Figure 4.

3. For each TPN place pEP, declare an integer global variable with the

same name in the T A model.
4. Suppose a TPN transition t E T has an associated delay interval

[lb, ub] , a pre-set of k input places p:n , ••• , P , a post -set of m output

I out out d f' bib' f I p aces PI ' ... , Pm' an a set 0 n III Itor arcs rom paces

pth , ... , p!nh . Classify all the TPN transitions according to the number

34 Zhonghua Gu and Kang G. Shin

of its input, output and inhibitor places. For example, all transitions with
1 input place, 2 output places, and 1 inhibitor place are put into the same
class. For each transition class:

a) Define an automaton template with two locations disabled and
enabled, one local clock c, and k + m + n integer parameters named

in in out out inh inh
PI "",Pk ,PI , .. ·,Pm ,PI , .. ·,Pn .

b) Add an invariant condition c ub at the location enabled.
c) Add an edge from disabled to enabled with guard condition

pt ? B(p:n,t), ... ,p; ? B(p; ,t),p:nh == O, ... ,p:h == 0,
synchronization label go? and assignment label c := 0 .

d) Add k + n edges from enabled to disabled with guard condition
p:n < B(pt ,t) on edgel' ... , < B(p; ,t) on edgek,

inh 0 d inh 0 d d hr" PI > on e gek+l' ... Pn > on e gek+n, an sync omzation

label go? on every edge.
e) Add an edge from enabled to disabled with guard condition

in > B(In t) in > B(in t) inh -- 0 inh -- 0 > lb PI - PI' ,,,,,Pk - Pk' ,PI -- , .. ·,Pn -- ,C - ,
and assignment label

in . In B(In t) in . in B(in t) PI .= PI - PI' ,,,,,Pk'= Pk - Pk' ,
p;ut :=p;ut +F(p;ut,t), ... ,p:ut :=p:ut +F(p:ut,t)

5. In the system configuration section, instantiate one automaton template
for each TPN transition, with the appropriate global variables as parameters,
representing the input, output and inhibitor places of that transition.

Figure 3. A dummy automaton with an urgent transition go.

Analysis of Event-Driven Real-Time Systems with Time Petri Nets 35

(Iabell)

Figure 4. TA model of a TPN transition t with 1 input place in, 1 output place out, and
time bounds flb,ubI The process template has argument list (int in, out; const in_wgt,
oucwgt; const Ib, ub), and a local clock c. The transition labels are: (labell) is «(in >=
in_wgt; go? ;c;= 0); (label2) is (in < in_wgt; go?); (labe13) is (in >= in_wgt. c >= Ib; in ;=
in - in_wgt. out;= out + out_wgt).

Figure 4 shows the mapping for a TPN transition t with 1 input place in
and 1 output place out. The urgent channel go ensures that the automaton
changes its state from disabled to enabled as soon as in in _ wgt , that is,
the input place in contains in _ wgt or more tokens. The TPN transition's delay
interval [lb, ubJ is modelled by the state enabled in the TA model, which has
an invariant condition c ub , and a guard condition c lb on the lower
outgoing transition that represents transition firing. The resulting semantics
is that the automaton has to take the lower transition from enabled to
disabled if it has been staying in state enabled continuously for at least lb
time units, and at most ub time units. The automaton can also be disabled by
condition in < in _ wgt , meaning that some other conflicting transition has
been fired and removed one or more tokens from ('s input place in so that the
number of tokens is now less than in _wgt .

..., Tl:[30.50]

T.5:[10,30]

G

Figure 5. Simple TPN modeling concurency, competition and synchronization.

Figure 5 shows a simple TPN taken from [11]. In order to translate this
TPN model into a T A model, it is simply a matter of instantiating the TA
templates for TPN transitions with 1 inputll output, and 2 inputll output,

36 Zhonghua Gu and Kang G. Shin

which happen to be the only two types of transitions present, as shown
below:

int p1 := 1,p2 := 1,p3 := 0,p4
urgent chan go;
T1 := THn_10ut (p2, p4, 1, 1,
T2 : = THn_10ut (p1, pS, 1, 1,
T3 := THn_10ut (p1, p3, 1, 1,
T4 := THn_10ut (p3, pS, 1, 1,

TS := T2in_10ut(p4, pS, p6, 1,

System Dummy, T1, T2, T3, T4,

Pl=O.
I?2=Cl.
PJ=O.
P4 ::::::0.
P!i = O.

initial p6 = 1

:=O,pS :=

30, SO) ;
10, 70) ;
40, 90) ;
20, 40) ;

1, 1, 10,

TS;

O g9?
'. .

Figure 6. Observer automaton

0,p6 := 0;

30) ;

end

Figure 6 shows an observer automaton that records the time t it takes to
reach the goal state (0, 0, 0, 0, 0, 1) from the initial state (1, 1, 0, 0, 0, 0),
where the state vector denotes marking of the TPN (pI, p2, p3, p4, p5, p6).
Using the model checker UPPAAL we can prove that t falls in the time
interval [40, 140]. In order to verify that this is a tight bound, it is necessary
to perform three queries, due to UPPAAL's lack of parametric analysis [6]
capability:

1. A[] observer. goal imply observer.c 40 and Observer.c :::;; 140. This
is checked to be true.

2. A[] observer. goal imply observer.c This is checked to be false.
3. A[] observer. goal imply observer.c :::;; 139. This is checked to be false.

4. MODELLING AND ANALYSIS OF AN
APPLICATION SCENARIO FROM AVIONICS
MISSION COMPUTING

Software for Avionics Mission Computing [8] is the embedded software
onboard a military aircraft for controlling mission critical functions, such as,

Analysis of Event-Driven Real-Time Systems with Time Petri Nets 37

navigation, target tracking and identification, weapon firing, etc. The
software provided to us by Boeing as part of the DARPA MoBlES (Model
based Integration of Embedded Software) project is modelled with Unified
Modelling Language (UML) [3], and runs on a distributed hardware
platform on top of real-time CORBA TAO [4]. Its software architecture is
publish/subscribe, using Real-Time CORBA Event Service [5] as its
underlying communications substrate. Event publishers push events through
the event channel to event consumers, whose execution is triggered by the
arrival of events. The system runs at a number of different rates driven by
timer event publishers, such as 40Hz, 20Hz, 10Hz, 5Hz, and 1Hz.

8U

...

..•• I
3 . s.to.d.IQ

&.

/ OATA..AVAILABLE

Figure 7. UML Collaboration Diagram/or a multi-rate. mUlti-processor scenario.

Figure 7 describes an execution scenario that is multi-rate (1Hz and 5Hz)
and multi-processor. The 1Hz thread is initiated by the pilotControl
component, which calls SetData on the waypointProxy component. The
waypointProxy component, in tum, forwards the SetData call through the
network to the master component wayPoint on another processor. Upon its
wakeup, the waypoint component pushes a DAT A_AVAILABLE event

38 Zhonghua Gu and Kang G. Shin

through the network, updating waypointProxy with fresh data and notifying
fltPlanDisplay that fresh data is now available at the waypointProxy
component. Upon notification, fltPlanDisplay calls Get Data on
waypointProxy to get the new waypoint data.

The 5Hz thread is initiated by the sensorCoordinator component, which
pushes a DATA_AVAILABLE event through the network to the radar and
radarDisplay components. Upon its wakeup, radarDisplay calls Get Data on
radar to get fresh data.

SHzTimer

Figure 8. TPN model of the UML scenario in Figure 7.

wayl?oint
[30 50]

P2J radar
nO.lSl

The TPN model in Figure 8 is largely self-explanatory, with a few notable
points. The three groups of transitions and places, (T11, P13, TI2), (T13,
P 16, TI4), (1'21, P22, T22), model RT -CORBA infrastructure that processes
message transmission across the network. The place Network models the
non-preemptively scheduled network resource. The inhibitor arcs connecting
P 12 to T 11 and T 13 express priorities in network resource arbitration.

By translating the TPN model into T A, we are able to use UPPAAL to
check the following properties:
- The 5Hz thread has frame overrun. UPPAAL can give a diagnostic trace

that shows the execution scenario that leads to the error condition, which
is omitted due to space limitations.

Analysis of Event-Driven Real-Time Systems with Time Petri Nets 39

- The end-to-end latency of the 1Hz transaction lies within [275,525]ms.
UPPAAL can give execution scenarios for achieving the smallest and
largest response times of the 1Hz transaction.

5. RELATED WORK

Cortes [10] proposed a mapping algorithm from PRES+ model, which is
a variant of TPN with additional data handling capabilities, into HyTech [6]
models. Out mapping is simpler and more compositional because we take
advantage of UPPAAL's capability of having guard conditions on urgent
transitions, which is not present in Hytech. Cortes' mapping algorithm can
only deal with I-safe TPNs (where each place can contain at most one
token), while our algorithm can deal with non-I-safe TPNs (each place can
contain more than one token) and multiple-enabledness of transitions, which
are required to model task queuing and preemptive scheduling.

Wang [11] described a reachability analysis algorithm for TPN that
enables computation of end-to-end system timing properties. Our TPN-to
T A translation algorithm can perform verification of more complex system
properties in the form of temporal logic specifications, not just reachability.
Furthermore, tool support for the algorithms described in [11] is not
available.

6. CONCLUSIONS AND FUTURE WORK

In this paper we consider modelling of event-driven real-time systems
with Time Petri Nets, and subsequent analysis via model-checking by
defining a simple and fully-automatable mapping from TPN into Timed
Automata.

A common complaint against formal methods in industry is that they are
too hard to use for people without background in formal logic and
mathematics. Even though graphical formalisms, such as Petri-Nets and
Timed Automata, are generally easier to understand than text-based
formalisms, they are usually not broad-spectrum models that can be applied
throughout the system development life cycle. In order to use them, the
designer has to manually map the regular software model into one of the
analysis specific models, perform analysis, and then map the results back
into the regular model. It is not realistic to expect industry to accept this
pattern of usage in view of increasingly shorter time-to-market windows and
product life-cycles, except in safety-critical industries such as the avionics
and automotive industries. It also creates problems in maintaining

40 Zhonghua Gu and Kang G. Shin

consistency between multiple models of the same underlying system. In
order to achieve broader acceptance of formal methods, we plan to
investigate integration of formal analysis techniques with informal, widely
adopted techniques such as the Unified Modeling Language (UML) [3], by
using UML as the user-visible modeling formalism, and use the formal
techniques as back-end analysis engines that are largely invisible to the
designer. As shown in this paper, it is natural to mapping UML
Collaboration Diagrams into TPN models. We are also investigating adding
timing annotations to UML Activity Diagrams and mapping them into TPN
models.

REFERENCES

[1] lohan Bengtsson, Kim O. Larsen, Fredrik Larsson, Paul Pettersson, Wang Vi,
"UPPAAL - A Tool Suite for Automatic Verification of

Real-Time Systems", Proceedings of the 4th DIMACS Workshop
on Verification and Control of Hybrid Systems, 22-24 October,
1995. LNCS 1066.

[2] S.Yovine. "Kronos: A Verification Tool for Real-Time Systems",
Springer International Journal of Software Tools for
Technology Transfer, Vol. 1, Nber. 112, October 1997.

[3] http://www.omg.orgluml
[4] D. Schmidt, D. Levine, S. Mungee, ''The Design and Performance of Real-Time Object

Request Brokers", Computer Communications, Volume 21, No.4, April, 1998.
[5] D. Schmidt, D. Levine, T. Harrison, ''The Design and Performance of a Real-time

CORBA Object Event Service", Proceedings of OOPS LA, pp.434-763, 1997.
[6] T. Henzinger, P. Ho, H. Wong-Toi, "HYTECH: A Model Checker for Hybrid Systems"

Software Toolsfor Technology Transjer, special issue on timed and hybrid systems,
pp. 110-112, 1997.

[7] R. Alur, D.L. Dill, "A Theory of Timed Automata",
Theoretical Computer Science 126:183-235, 1994.

[8] D. Sharp, "Object-Oriented Real-Time Computing for Reusable Avionics Software",
Proceedings of Fourth International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 185-192,2001.

[9] H. StorrIe, "An Evaluation of High-End Tools for Petri-Nets",
Technical Report. University of Munich, June, 1998.

[10] L. Cortes, P. Eles, Z. Peng, "Verification of Embedded Systems Using a Petri Net Based
Representation." Proceedings of ISSS, 2000, pp. 149-155

[11] 1. Wang, Y. Deng, "Reachability Analysis of Real-Time Systems Using Time Petri
Nets'" IEEE Transactions on Systems. Man and Cybernetics, Vol. 30, No.5, October
2000.

[12] P. Merlin. D. Farber, "Recoverability of Communication Protocols - Implication of a
Theoretical Study." IEEE Transactions on Communications. Vol. COM-24,
pp.1036-1043, Sept. 1976.

