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Abstract—In order to stem the increasing packet loss rates
caused by an exponential increase in network traffic, theIETF has
been considering the deployment of active queue management
techniques such as RED [14]. While active queue management can
potentially reduce packet loss rates in the Internet, we show that
current techniques are ineffective in preventing high loss rates.
The inherent problem with these queue management algorithms
is that they use queue lengths as the indicator of the severity of
congestion. In light of this observation, a fundamentally different
active queue management algorithm, called BLUE, is proposed,
implemented, and evaluated. BLUE uses packet loss and link
idle events to manage congestion. Using both simulation and
controlled experiments, BLUE is shown to perform significantly
better than RED, both in terms of packet loss rates and buffer size
requirements in the network. As an extension to BLUE, a novel
technique based on Bloom filters [2] is described for enforcing
fairness among a large number of flows. In particular, we propose
and evaluate Stochastic Fair BLUE (SFB), a queue management
algorithm which can identify and rate-limit nonresponsive flows
using a very small amount of state information.

Index Terms—Congestion control, fair queue, networks, queue
management.

I. INTRODUCTION

I T IS important to avoid high packet loss rates in the
Internet. When a packet is dropped before it reaches its

destination, all of the resources it has consumed in transit are
wasted. In extreme cases, this situation can lead to congestion
collapse [19]. Improving the congestion control and queue
management algorithms in the Internet has been one of the
most active areas of research in the past few years. While
a number of proposed enhancements have made their way
into actual implementations, connections still experience high
packet loss rates. Loss rates are especially high during times
of heavy congestion, when a large number of connections
compete for scarce network bandwidth. Recent measurements
have shown that the growing demand for network bandwidth
has driven loss rates up across various links in the Internet [28].
In order to stem the increasing packet loss rates caused by an
exponential increase in network traffic, theIETF is considering
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the deployment of explicit congestion notification (ECN) [12],
[30], [31] along with active queue management techniques
such as RED (Random Early Detection) [3], [14]. While ECN
is necessary for eliminating packet loss in the Internet [9], we
show that RED, even when used in conjunction with ECN, is
ineffective in preventing packet loss.

The basic idea behind RED queue management is to detect
incipient congestionearlyand to convey congestion notification
to the end-hosts, allowing them to reduce their transmission
rates before queues in the network overflow and packets are
dropped. To do this, RED maintains an exponentially weighted
moving average of the queue length which it uses to detect
congestion. When the average queue length exceeds a minimum
threshold ( ), packets are randomly dropped or marked
with an ECN bit. When the average queue length exceeds a
maximum threshold, all packets are dropped or marked.

While RED is certainly an improvement over traditional
drop-tail queues, it has several shortcomings. One of the funda-
mental problems with RED and other active queue management
techniques is that they rely on queue length as an estimator of
congestion.1 While the presence of a persistent queue indicates
congestion, its length gives very little information as to the
severity of congestion, that is, the number of competing
connections sharing the link. In a busy period, a single source
transmitting at a rate greater than the bottleneck link capacity
can cause a queue to build up just as easily as a large number
of sources can. From well-known results in queuing theory, it
is only when packet interarrivals have a Poisson distribution
that queue lengths directly relate to the number of active
sources and thus the true level of congestion. Unfortunately,
packet interarrival times across network links are decidedly
non-Poisson. Packet interarrivals from individual sources are
driven by TCP dynamics and source interarrivals themselves
are heavy-tailed in nature [21], [29]. This makes placing queue
length at the heart of an active queue management scheme
dubious. Since the RED algorithm relies on queue lengths, it has
an inherent problem in determining the severity of congestion.
As a result, RED requires a wide range of parameters to operate
correctly under different congestion scenarios. While RED can
achieve an ideal operating point, it can only do so when it has a
sufficient amount of buffer spaceandis correctly parameterized
[6], [34].

In light of the above observation, we propose a fundamentally
different active queue management algorithm, called BLUE,
which uses packet loss and link utilization history to manage
congestion. BLUE maintains a single probability, which it uses
to mark (or drop) packets when they are queued. If the queue

1We note that at the time of initial publication [10], BLUE was the only active
queue management which did not use queue length. Subsequent algorithms [1],
[17], [20] have also shown the benefits of decoupling queue length from con-
gestion management.
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Fig. 1. RED example.

is continually dropping packets due to buffer overflow, BLUE

increments the marking probability, thus increasing the rate
at which it sends back congestion notification. Conversely, if
the queue becomes empty or if the link is idle, BLUE decreases
its marking probability. Using both simulation and experi-
mentation, we demonstrate the superiority of BLUE to RED in
reducing packet losses even when operating with a smaller
buffer. Using mechanisms based on BLUE, a novel mechanism
for effectively and scalably enforcing fairness among a large
number of flows is also proposed and evaluated.

The rest of the paper is organized as follows. Section II gives
a description of RED and shows why it is ineffective at managing
congestion. Section III describes BLUE and provides a detailed
analysis and evaluation of its performance based on simula-
tion as well as controlled experiments. Section IV describes and
evaluates Stochastic Fair BLUE (SFB), an algorithm based on
BLUE which scalably enforces fairness amongst a large number
of connections. Section V compares SFB to other approaches
which have been proposed to enforce fairness amongst connec-
tions. Finally, Section VI concludes with a discussion of future
work.

II. BACKGROUND

One of the biggest problems with TCP’s congestion control
algorithm over drop-tail queues is that sources reduce their
transmission rates only after detecting packet loss due to queue
overflow. Since a considerable amount of time may elapse
between the packet drop at the router and its detection at the
source, a large number of packets may be dropped as the
senders continue transmission at a rate that the network cannot

support. RED alleviates this problem by detecting incipient
congestionearly and delivering congestion notification to the
end-hosts, allowing them to reduce their transmission rates
before queue overflow occurs. In order to be effective, a RED

queue must be configured with a sufficient amount of buffer
space to accommodate an applied load greater than the link
capacity from the instant in time that congestion is detected
using the queue length trigger, to the instant in time that the
applied load decreases at the bottleneck link in response to
congestion notification. RED must also ensure that congestion
notification is given at a rate which sufficiently suppresses the
transmitting sources without underutilizing the link. Unfor-
tunately, when a large number of TCP sources are active, the
aggregate traffic generated is extremely bursty [8], [9]. Bursty
traffic often defeats the active queue management techniques
used by RED since queue lengths grow and shrink rapidly,
well before RED can react. Fig. 1 shows a simplified pictorial
example of how RED functions under this congestion scenario.

The congestion scenario presented in Fig. 1 occurs when
a large number of TCP sources are active and when a small
amount of buffer space is used at the bottleneck link. As the
figure shows, at , a sufficient change in aggregate TCP
load (due to TCP opening its congestion window) causes the
transmission rates of the TCP sources to exceed the capacity
of the bottleneck link. At , the mismatch between load
and capacity causes a queue to build up at the bottleneck.
At , the average queue length exceeds and the
congestion-control mechanisms are triggered. At this point,
congestion notification is sent back to the end hosts at a rate
dependent on the queue length and marking probability .
At , the TCP receivers either detect packet loss or observe
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Fig. 2. Ideal scenario.

packets with their ECN bits set. In response, duplicate acknowl-
edgment and/or TCP-based ECN signals are sent back to the
sources. At , the duplicate acknowledgment and/or ECN
signals make their way back to the sources to signal congestion.
At , the sources finally detect congestion and adjust their
transmission rates. Finally, at , a decrease in offered load
at the bottleneck link is observed. Note that it has taken from

until before the offered load becomes less than
the link’s capacity. Depending upon the aggressiveness of the
aggregate TCP sources [8], [9] and the amount of buffer space
available in the bottleneck link, a large amount of packet loss
and/or deterministic ECN marking may occur. Such behavior
leads to eventual underutilization of the bottleneck link.

One way to solve this problem is to use a large amount of
buffer space at the RED gateways. For example, it has been sug-
gested that, in order for RED to work well, an intermediate router
requires buffer space that amounts to twice the bandwidth–delay
product [34]. This approach, in fact, has been taken by an in-
creasingly large number of router vendors. Unfortunately, in
networks with large bandwidth–delay products, the use of large
amounts of buffer adds considerable end-to-end delay and delay
jitter. This severely impairs the ability to run interactive applica-
tions. In addition, the abundance of deployed routers which have
limited memory resources makes this solution undesirable.

Fig. 2 shows how an ideal queue management algorithm
works. In this figure, the congested gateway delivers congestion
notification at a rate which keeps the aggregate transmission
rates of the TCP sources at or just below the clearing rate.
While RED can achieve this ideal operating point, it can do so
only when it has a sufficiently large amount of buffer space and
is correctly parameterized.

III. B LUE

In order to remedy the shortcomings of RED, we propose,
implement, and evaluate a fundamentally different queue man-
agement algorithm called BLUE. Using both simulation and ex-
perimentation, we show that BLUE overcomes many of RED’s
shortcomings. RED has been designed with the objective to: 1)
minimize packet loss and queueing delay; 2) avoid global syn-
chronization of sources; 3) maintain high link utilization; and 4)
remove biases against bursty sources. This section shows how
BLUE either improves or matches RED’s performance in all of
these aspects. The results also show that BLUE converges to the
ideal operating point shown in Fig. 2 in almost all scenarios,
even when used with very small buffers.

Fig. 3. BLUE algorithm.

A. The Algorithm

The key idea behind BLUE is to perform queue management
based directly on packet loss and link utilization rather than on
the instantaneous or average queue lengths. This is in sharp con-
trast to all known active queue management schemes which use
some form of queue occupancy in their congestion management.
BLUE maintains a single probability, , which it uses to mark
(or drop) packets when they are enqueued. If the queue is contin-
ually dropping packets due to buffer overflow, BLUE increments

, thus increasing the rate at which it sends back congestion
notification. Conversely, if the queue becomes empty or if the
link is idle, BLUE decreases its marking probability. This effec-
tively allows BLUE to “learn” the correct rate it needs to send
back congestion notification. Fig. 3 shows the BLUE algorithm.
Note that the figure also shows a variation to the algorithm in
which the marking probability is updated when the queue length
exceeds a certain value. This modification allows room to be left
in the queue for transient bursts and allows the queue to control
queueing delay when the size of the queue being used is large.
Besides the marking probability, BLUE uses two other parame-
ters which control how quickly the marking probability changes
over time. The first isfreeze_time. This parameter determines
the minimum time interval between two successive updates of

. This allows the changes in the marking probability to take
effect before the value is updated again. While the experiments
in this paper fixfreeze_timeas a constant, this value should
be randomized in order to avoid global synchronization [13].
The other parameters used (and ) determine the amount by
which is incremented when the queue overflows or is decre-
mented when the link is idle. For the experiments in this paper,

is set significantly larger than . This is because link un-
derutilization can occur when congestion management is either
too conservative or too aggressive, but packet loss occurs only
when congestion management is too conservative. By weighting
heavily against packet loss, BLUE can quickly react to a sub-
stantial increase in traffic load. Note that there are a myriad of
ways in which can be managed. While the experiments in
this paper study a small range of parameter settings, experiments
with additional parameter settings and algorithm variations have
also been performed with the only difference being how quickly
the queue management algorithm adapts to the offered load. It is
relatively simple process to configure BLUE to meet the goals of
controlling congestion. The first parameter,freeze_time, should
be set based on the effective round-trip times of connections
multiplexed across the link in order to allow any changes in
the marking probability to reflect back on to the end sources
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Fig. 4. Network topology.

before additional changes are made. For long-delay paths such
as satellite links,freeze_timeshould be increased to match the
longer round-trip times. The second set of parametersand
are set to give the link the ability to effectively adapt to macro-
scopic changes in load across the link at the connection level.
For links where extremely large changes in load occur only on
the order of minutes, and should be set in conjunction with
freeze_timeto allow to range from 0 to 1 on the order of
minutes. This is in contrast to current queue length approaches
where the marking and dropping probabilities range from 0 to
1 on the order of milliseconds even under constant load. Over
typical links, usingfreeze_timevalues between 10 and 500 ms
and setting and so that they allow to range from 0 to
1 on the order of 5 to 30 s will allow the BLUE control algo-
rithm to operate effectively. Note that, while BLUE algorithm
itself is extremely simple, it provides a significant performance
improvement even when compared to a RED queue which has
been reasonably configured.

B. Packet Loss Rates Using RED and BLUE

In order to evaluate the performance of BLUE, a number of
simulation experiments were run usingns [23] over a small net-
work shown in Fig. 4. Using this network, Pareto on/off sources
with mean on-times of 2 s and mean off-times of 3 s were run
from one of the leftmost nodes (, , , , ) to one of the
rightmost nodes ( , , , , ). In addition, all sources
were enabled withECN support, were randomly started within
the first 1 s of simulation, and used 1 kB packets. Packet loss
statistics were then measured after 100 s of simulation for 100 s.
Loss statistics were also measured for RED using the same net-
work and under identical conditions. For the RED queue,
and were set to 20% and 80% of the queue size, respec-
tively. RED’s congestion notification mechanism was made as
aggressive as possible by setting to 1. For these experi-
ments, this is the ideal setting of since it minimizes both
the queueing delay and packet loss rates for RED[9]. Given these
settings, a range of RED configurations are studied which vary
the value of , the weight in the average queue length calcula-
tion for RED. It is interesting to note that, as gets smaller, the
impact of queue length on RED’s congestion management al-
gorithm gets smaller. For extremely small values of, RED’s

TABLE I
RED CONFIGURATIONS

TABLE II
BLUE CONFIGURATIONS

algorithm becomes decoupled from the queue length and thus
acts more like BLUE. Table I shows the configurations used for
RED; Table II shows the configurations used for BLUE. For the
BLUE experiments, and are set so that is an order of
magnitude larger than . Using these values, thefreeze_time
is then varied between 10 and 100 ms. Additional simulations
using a wider range of values were also performed and showed
similar results.

Fig. 5 shows the loss rates observed over different queue
sizes using both BLUE and RED with 1000 and 4000 connec-
tions present. In these experiments, the queue at the bottleneck
link between and is sized from 100 to 1000 kB. This
corresponds to queueing delays which range from 17.8 and
178 ms as shown in the figure. In all experiments, the link
remains over 99.9% utilized. As Fig. 5(a) shows, with 1000
connections, BLUE maintains zero loss rates over all queue
sizes even those which are below the bandwidth–delay product
of the network [34]. This is in contrast to RED which suffers
double-digit loss rates as the amount of buffer space decreases.
An interesting point in the RED loss graph shown in Fig. 5(a) is
that it shows a significant dip in loss rates at a buffering delay
of around 80 ms. This occurs because of a special operating
point of RED when the average queue length stays above
all the time. At several points during this particular experiment,
the buffering delay and offered load match up perfectly to
cause the average queue length to stay at or above . In
this operating region, the RED queue marks every packet, but
the offered load is aggressive enough to keep the queue full.
This essentially allows RED to behave at times like BLUE with
a marking probability of 1 and a queueing delay equivalent to

. This unique state of operation is immediately disrupted
by any changes in the load or round-trip times, however. When
the buffering delay is increased, the corresponding round-trip
times increase and cause the aggregate TCP behavior to be
less aggressive. Deterministic marking on this less aggressive
load causes fluctuations in queue length which can increase
packet loss rates since RED undermarks packets at times. When
the buffering delay is decreased, the corresponding round-trip
times decrease and cause the aggregate TCP behavior to be
more aggressive. As a result, packet loss is often accompanied
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(a)

(b)

Fig. 5. Packet loss rates of RED and BLUE. (a) 1000 sources. (b) 4000 sources.

with deterministic marking. When combined, this leads again
to fluctuations in queue length. At a load which is perfectly
selected, the average queue length of RED can remain at

and the queue can avoid packet loss and prevent queue
fluctuations by marking every packet. As Fig. 5(b) shows,
when the number of connections is increased to 4000, BLUE

still significantly outperforms RED. Even with an order of
magnitude more buffer space, RED still cannot match BLUE’s
loss rates using 17.8 ms of buffering at the bottleneck link. It
is interesting to note that BLUE’s marking probability remains
at 1 throughout the duration of all of these experiments. Thus,
even though every packet is being marked, the offered load can
still cause a significant amount of packet loss. The reason why
this is the case is that the TCP sources being used do not invoke
a retransmission timeout upon receiving an ECN signal with
a congestion window of 1. Section III-D shows how this can
significantly influence the performance of both RED and BLUE.

The most important consequence of using BLUE is that
congestion control can be performed with a minimal amount
of buffer space. This reduces the end-to-end delay over the
network, which in turn, improves the effectiveness of the
congestion control algorithm. In addition, smaller buffering
requirements allow more memory to be allocated to high-pri-
ority packets [5], [16] and frees up memory for other router
functions such as storing large routing tables. Finally, BLUE

(a)

(b)

Fig. 6. Queue length plots of (a) RED and (b) BLUE.

allows legacy routers to perform well even with limited memory
resources.

C. Understanding BLUE

To fully understand the difference between the RED and
BLUE algorithms, Fig. 6 compares their queue length plots
in an additional experiment using the configuration of
BLUE and the configuration of RED. In this experiment,
a workload of infinite sources is changed by increasing the
number of connections by 200 every 20 s. As Fig. 6(a) shows,
RED sustains continual packet loss throughout the experiment.
In addition, at lower loads, periods of packet loss are often
followed by periods of underutilization as deterministic packet
marking and dropping eventually causes too many sources to
reduce their transmission rates. In contrast, as Fig. 6(b) shows,
since BLUE manages its marking rate more intelligently, the
queue length plot is more stable. Congestion notification is
given at a rate which neither causes periods of sustained packet
loss nor periods of continual underutilization. Only when the
offered load rises to 800 connections, does BLUE sustain a
significant amount of packet loss.

Fig. 7 plots the average queue length ( ) and the marking
probability of RED throughout the exper-
iment. The average queue length of RED contributes directly
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(a)

(b)

Fig. 7. Marking behavior of RED. (a)Q . (b) p =(1� count� p )

to its marking probability since is a linear function of
. As

shown in Fig. 7(a), the average queue length of RED fluctuates
considerably as it follows the fluctuations of the instantaneous
queue length. Because of this, the marking probability of
RED, as shown in Fig. 7(b), fluctuates considerably as well.
In contrast, Fig. 8 shows the marking probability of BLUE. As
the figure shows, the marking probability converges to a value
that results in a rate of congestion notification which prevents
packet loss and keeps link utilization high throughout the ex-
periment. In fact, the only situation where BLUE cannot prevent
sustained packet loss is when every packet is being marked,
but the offered load still overwhelms the bottleneck link. As
described earlier, this occurs at 60 s when the number of
sources is increased to 800. The reason why packet loss still
occurs when every packet is ECN-marked is that for these sets
of experiments, the TCP implementation used does not invoke
an RTO when an ECN signal is received with a congestion
window of 1. This adversely affects the performance of both
RED and BLUE in this experiment. Note that the comparison
of marking probabilities between RED and BLUE gives some
insight as to how to make RED perform better. By placing a
low pass filter on the calculated marking probability of RED, it
may be possible for RED’s marking mechanism to behave in a
manner similar to BLUE’s.

Fig. 8. Marking behavior of BLUE (p ).

While low packet loss rates, low queueing delays, and high
link utilization are extremely important, the queue length and
marking probability plots allow us to explore the effectiveness
of RED and BLUE in preventing global synchronization and in
removing biases against bursty sources. RED attempts to avoid
global synchronization by randomizing its marking decision and
by spacing out its marking. Unfortunately, when aggregate TCP
load changes dramatically as it does when a large amount of con-
nections are present, it becomes impossible for RED to achieve
this goal. As Fig. 7(b) shows, the marking probability of RED

changes considerably over very short periods of time. Thus, RED

fails to mark packets evenly over time and hence cannot remove
synchronization among sources. As Fig. 8 shows, the marking
probability of BLUE remains steady. As a result, BLUE marks
packets randomly and evenly over time. Consequently, it does a
better job in avoiding global synchronization.

Another goal of RED is to eliminate biases against bursty
sources in the network. This is done by limiting the queue oc-
cupancy so that there is always room left in the queue to buffer
transient bursts. In addition, the marking function of RED takes
into account the last packet marking time in its calculations
in order to reduce the probability that consecutive packets be-
longing to the same burst are marked. Using a single marking
probability, BLUE achieves the same goal equally well. As the
queue length plot of BLUE shows (Fig. 6), the queue occupancy
remains below the actual capacity, thus allowing room for a
burst of packets. In addition, since the marking probability re-
mains smooth over large time scales, the probability that two
consecutive packets from a smoothly transmitting source are
marked is the same as with two consecutive packets from a
bursty source.

D. The Effect of ECN Timeouts

All of the previous experiments use TCP sources which sup-
port ECN, but do not perform a retransmission timeout upon re-
ceipt of an ECN signal with a congestion window of 1. This has
a significant, negative impact on the packet loss rates observed
for both RED and BLUE especially at high loads. Fig. 9 shows
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(a)

(b)

Fig. 9. Queue length plots of (a) RED and (b) BLUE with ECN timeouts.

the queue length plot of RED and BLUE using the same ex-
periments as in Section III-B, but with TCP sources enabled
with ECN timeouts. Fig. 9(a) shows that, by deterministically
marking packets at , RED oscillates between periods of
packet loss and periods of underutilization as described in Sec-
tion II. Note that this is in contrast to Fig. 6(a) where, without
ECN timeouts, TCP is aggressive enough to keep the queue
occupied when the load is sufficiently high. An interesting point
to make is that RED can effectively prevent packet loss by setting
its value sufficiently far below the size of the queue. In
this experiment, a small amount of loss occurs since determin-
istic ECN marking does not happen in time to prevent packet
loss. While the use of ECN timeouts allows RED to avoid packet
loss, the deterministic marking eventually causes underutiliza-
tion at the bottleneck link. Fig. 9(b) shows the queue length
plot of BLUE over the same experiment. In contrast to RED,
BLUE avoids deterministic marking and maintains a marking
probability that allows it to achieve high link utilization while
avoiding sustained packet loss over all workloads.

Fig. 10 shows the corresponding marking behavior of both
RED and BLUE in the experiment. As the figure shows, BLUE

maintains a steady marking rate which changes as the workload
is changed. On the other hand, RED’s calculated marking prob-
ability fluctuates from 0 to 1 throughout the experiment. When

(a)

(b)

Fig. 10. Marking behavior with ECN timeouts. (a)p =(1� count � p ) of
RED. (b) p of BLUE.

the queue is fully occupied, RED overmarks and drops packets
causing a subsequent period of underutilization as described in
Section II. Conversely, when the queue is empty, RED under-
marks packets causing a subsequent period of high packet loss
as the offered load increases well beyond the link’s capacity.

Fig. 11 shows how ECN timeouts impact the performance of
RED and BLUE. The figure shows the loss rates and link uti-
lization using the 1000- and 4000-connection experiments in
Section III-B. As the figure shows, BLUE maintains low packet
loss rates and high link utilization across all experiments. The
figure also shows that the use of ECN timeouts allows RED

to reduce the amount of packet loss in comparison to Fig. 5.
However, because RED often deterministically marks packets,
it suffers from poor link utilization unless correctly parameter-
ized. The figure shows that only an extremely small value of
(configuration ) allows RED to approach the performance of
BLUE. As described earlier, a small value effectively decou-
ples congestion management from the queue length calculation
making RED queue management behave more like BLUE.

E. Implementation

In order to evaluate BLUE in a more realistic setting, it has
been implemented in FreeBSD 2.2.7 using ALTQ [4]. In this



520 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 4, AUGUST 2002

(a) (b)

(c) (d)

Fig. 11. Performance of RED and BLUE with ECN timeouts. (a) Loss rates (1000 sources). (b) Link utilization (1000 sources). (c) Loss rates (4000 sources). (d)
Link utilization (4000 sources).

implementation, ECN uses two bits of the type-of-service (ToS)
field in the IP header [31]. When BLUE decides that a packet
must be dropped or marked, it examines one of the two bits to
determine if the flow is ECN-capable. If it is not ECN-capable,
the packet is simply dropped. If the flow is ECN-capable, the
other bit is set and used as a signal to the TCP receiver that
congestion has occurred. The TCP receiver, upon receiving this
signal, modifies the TCP header of the return acknowledgment
using a currently unused bit in the TCP flags field. Upon receipt
of a TCP segment with this bit set, the TCP sender invokes con-
gestion-control mechanisms as if it had detected a packet loss.

Using this implementation, several experiments were run on
the testbed shown in Fig. 12. Each network node and link is
labeled with the CPU model and link bandwidth, respectively.
Note that all links are shared Ethernet segments. Hence, the
acknowledgments on the reverse path collide and interfere with
data packets on the forward path. As the figure shows, FreeBSD-
based routers using either RED or BLUE queue management on
their outgoing interfaces are used to connect the Ethernet and
Fast Ethernet segments. In order to generate load on the system,
a variable number ofnetperf [26] sessions are run from the
IBM PC 360 and the Winbook XL to the IBM PC 365 and the
Thinkpad 770. The router queue on the congested Ethernet in-

Fig. 12. Experimental testbed.

terface of the Intellistation Zpro is sized at 50 kB which corre-
sponds to a queueing delay of about 40 ms. For the experiments
with RED, a configuration with a of 10 kB, a of
40 kB, a of 1, and a of 0.002 was used. For the exper-
iments with BLUE, a of 0.01, a of 0.001, and afreeze_time
of 50 ms was used. To ensure that the queue management mod-
ifications did not create a bottleneck in the router, the testbed
was reconfigured exclusively with Fast Ethernet segments and
a number of experiments between network endpoints were run
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(a)

(b)

Fig. 13. Queue management performance. (a) Throughput. (b) Percent packet
loss.

using the BLUE modifications on the intermediate routers. In all
of the experiments, the sustained throughput was always above
80 Mb/s.

Fig. 13(a) and (b) show the throughput and packet loss rates at
the bottleneck link across a range of workloads. The throughput
measures the rate at which packets are forwarded through the
congested interface while the packet loss rate measures the ratio
of the number of packets dropped at the queue and the total
number of packets received at the queue. In each experiment,
throughput and packet loss rates were measured over five 10-s
intervals and then averaged. Note that the TCP sources used in
the experiment do not implement ECN timeouts. As Fig. 13(a)
shows, both the BLUE queue and the optimally configured RED

queue maintain relatively high levels of throughput across all
loads. However, since RED periodically allows the link to be-
come underutilized, its throughput remains slightly below that
of BLUE. As Fig. 13(b) shows, RED sustains increasingly high
packet loss as the number of connections is increased. Since ag-
gregate TCP traffic becomes more aggressive as the number of
connections increases, it becomes difficult for RED to maintain
low loss rates. Fluctuations in queue lengths occur so abruptly
that the RED algorithm oscillates between periods of sustained
marking and packet loss to periods of minimal marking and link
underutilization. In contrast, BLUE maintains relatively small

packet loss rates across all loads. At higher loads, when packet
loss is observed, BLUE maintains a marking probability which
is approximately 1, causing it to mark every packet it forwards.

IV. STOCHASTIC FAIR BLUE

Up until recently, the Internet has mainly relied on the coop-
erative nature of TCP congestion control in order to limit packet
loss and fairly share network resources. Increasingly, however,
new applications are being deployed which do not use TCP con-
gestion control and are not responsive to the congestion signals
given by the network. Such applications are potentially dan-
gerous because they drive up the packet loss rates in the network
and can eventually cause congestion collapse [19], [28]. In order
to address the problem of nonresponsive flows, a lot of work has
been done to provide routers with mechanisms for protecting
against them [7], [22], [27]. The idea behind these approaches is
to detect nonresponsive flows and to limit their rates so that they
do not impact the performance of responsive flows. This section
describes and evaluatesStochastic FairBLUE (SFB), a novel
technique based on Bloom filters [2] for protecting TCP flows
against nonresponsive flows. Based on the BLUE algorithm. SFB
is highly scalable and enforces fairness using an extremely small
amount of state and a small amount of buffer space.

A. The Algorithm

Fig. 14 shows the basic SFB algorithm. SFB is a FIFO
queueing algorithm that identifies and rate-limits nonrespon-
sive flows based on accounting mechanisms similar to those
used with BLUE. SFB maintains accounting bins. The
bins are organized in levels with bins in each level. In
addition, SFB maintains () independent hash functions, each
associated with one level of the accounting bins. Each hash
function maps a flow, via its connection ID(Source address,
Destination address, Source port, Destination port, Protocol),
into one of the accounting bins in that level. The accounting
bins are used to keep track of queue occupancy statistics of
packets belonging to a particular bin. This is in contrast to
Stochastic Fair Queueing [24] (SFQ) where the hash function
maps flows into separate queues. Each bin in SFB keeps a
marking/dropping probability as in BLUE, which is updated
based on bin occupancy. As a packet arrives at the queue, it
is hashed into one of the bins in each of the levels. If
the number of packets mapped to a bin goes above a certain
threshold (i.e., the size of the bin), for the bin is increased.
If the number of packets drops to zero, is decreased.

The observation which drives SFB is that a nonresponsive
flow quickly drives to 1 in all of the bins it is hashed
into. Responsive flows may share one or two bins with nonre-
sponsive flows, however, unless the number of nonresponsive
flows is extremely large compared to the number of bins, a re-
sponsive flow is likely to be hashed into at least one bin that is
not polluted with nonresponsive flows and thus has a normal
value. The decision to mark a packet is based on, the min-
imum value of all bins to which the flow is mapped into. If

is 1, the packet is identified as belonging to a nonrespon-
sive flow and is then rate-limited. Note that this approach is akin
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Fig. 14. SFB algorithm.

to applying a Bloom filter on the incoming flows. In this case,
the dictionary of messages or words is learned on the fly and
consists of the IP headers of the nonresponsive flows which are
multiplexed across the link [2]. When a nonresponsive flow is
identified using these techniques, a number of options are avail-
able to limit the transmission rate of the flow. In this paper, flows
identified as being nonresponsive are simply limited to a fixed
amount of bandwidth. This policy is enforced by limiting the
rate of packet enqueues for flows with values of 1. Fig. 15
shows an example of how SFB works. As the figure shows, a
nonresponsive flow drives up the marking probabilities of all of
the bins it is mapped into. While the TCP flow shown in the
figure may map into the same bin as the nonresponsive flow at
a particular level, it maps into normal bins at other levels. Be-
cause of this, the minimum marking probability of the TCP flow
is below 1.0 and thus, it is not identified as being nonresponsive.
On the other hand, since the minimum marking probability of
the nonresponsive flow is 1.0, it is identified as being nonre-
sponsive and rate-limited.

Note that just as BLUE’s marking probability can be used in
SFB to provide protection against nonresponsive flows, it is also
possible to apply Adaptive RED’s parameter [9] to do the
same. In this case, a per-bin value is kept and updated
according to the behavior of flows which map into the bin. As
with RED, however, there are two problems which make this ap-
proach ineffective. The first is the fact that a large amount of
buffer space is required in order to get RED to perform well.
The second is that the performance of a RED-based scheme is
limited since even a moderate amount of congestion requires a

setting of 1. Thus, RED, used in this manner, has an ex-
tremely difficult time distinguishing between a nonresponsive
flow and moderate levels of congestion. In order to compare ap-
proaches, Stochastic Fair RED (SFRED) was also implemented
by applying the same techniques used forSFB to RED.

Fig. 15. Example ofSFB.

B. Evaluation

Usingns , the SFB algorithm was simulated in the same net-
work as in Fig. 4 with the transmission delay of all of the links
set to 10 ms. The SFB queue is configured with 200 kB of buffer
space and maintains two hash functions each mapping to 23
bins. The size of each bin is set to 13, approximately 50% more
than 1/23 of the available buffer space. Note that, by allocating
more than 1/23 of the buffer space to each bin, SFB effectively
“overbooks” the buffer in an attempt to improve statistical multi-
plexing. Notice that even with overbooking, the size of each bin
is quite small. Since BLUE performs extremely well under con-
strained memory resources, SFB can still effectively maximize
network efficiency. The queue is also configured to rate-limit
nonresponsive flows to 0.16 Mb/s.

In the experiments, 400 TCP sources and one nonresponsive,
constant rate source are run for 100 s from randomly selected
nodes in ( , , , , and ) to randomly selected nodes in
( , , , , and ). In one experiment, the nonresponsive
flow transmits at a rate of 2 Mb/s while in the other, it transmits
at a rate of 45 Mb/s. Table III shows the packet loss observed in
both experiments for SFB. As the table shows, for both exper-
iments, SFB performs extremely well. The nonresponsive flow
sees almost all of the packet loss as it is rate-limited to a fixed
amount of the link bandwidth. In addition, the table shows that
in both cases, a very small amount of packets from TCP flows
are lost. Table III also shows the performance of RED. In con-
trast to SFB, RED allows the nonresponsive flow to maintain
a throughput relatively close to its original sending rate. As a
result, the remaining TCP sources see a considerable amount
of packet loss which causes their performance to deteriorate.
SFRED, on the other hand, does slightly better at limiting the rate
of the nonresponsive flow, however, it cannot fully protect the
TCP sources from packet loss since it has a difficult time dis-
cerning nonresponsive flows from moderate levels of conges-
tion. Finally, the experiments were repeated using SFQ with an
equivalent number of bins (i.e., 46 distinct queues) and a buffer
more than twice the size (414 kB), making each queue equally
sized at 9 kB. For each bin in the SFQ, the RED algorithm was
applied with and values set at 2 and 8 kB, respec-
tively. As the table shows, SFQ with RED does an adequate job
of protecting TCP flows from the nonresponsive flow. However,
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TABLE III
SFB LOSSRATES IN Mb/s (ONE NONRESPONSIVEFLOW)

(a) (b)

(a) (b)

Fig. 16. Bandwidth of TCP flows (45 Mb/s nonresponsive flow). (a) SFB. (b) RED. (c) SFRED. (d) SFQ + RED.

in this case, partitioning the buffers into such small sizes causes
a significant amount of packet loss to occur due to RED’s in-
ability to operate properly with small buffers. Additional exper-
iments show that as the amount of buffer space is decreased even
further, the problem is exacerbated and the amount of packet
loss increases considerably.

To qualitatively examine the impact that the nonresponsive
flow has on TCP performance, Fig. 16(a) plots the throughput
of all 400 TCP flows using SFB when the nonresponsive
flow sends at a 45 Mb/s rate. As the figure shows, SFB
allows each TCP flow to maintain close to a fair share of the
bottleneck link’s bandwidth while the nonresponsive flow is
rate-limited to well below its transmission rate. In contrast,
Fig. 16(b) shows the same experiment using normal RED

queue management. The figure shows that the throughput of

all TCP flows suffers considerably as the nonresponsive flow
is allowed to grab a large fraction of the bottleneck link
bandwidth. Fig. 16(c) shows that whileSFREDdoes succeed in
rate-limiting the nonresponsive flow, it also manages to drop a
significant amount of packets from TCP flows. This is due to
the fact that the lack of buffer space and the ineffectiveness of

combine to causeSFREDto perform poorly as described
in Section IV-A. Finally, Fig. 16(d) shows that while SFQ with
RED can effectively rate-limit the nonresponsive flows, the
partitioning of buffer space causes the fairness between flows
to deteriorate as well. The large amount of packet loss induces
a large number of retransmission timeouts across a subset of
flows which causes significant amounts of unfairness [25].
Thus, through the course of the experiment, a few TCP flows
are able to grab a disproportionate amount of the bandwidth
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Fig. 17. Probability of misclassification using 900 bins.

while many of the flows receive significantly less than a fair
share of the bandwidth across the link. In addition to this,
SFQ with RED allows 1/46 of the 400 flows to be mapped
into the same queue as the nonresponsive flow. Flows that
are unlucky enough to map into this bin receive an extremely
small amount of the link bandwidth. SFB, in contrast, is able
to protect all of the TCP flows in this experiment.

C. Limitations of SFB

While it is clear that the basic SFB algorithm can protect TCP-
friendly flows from nonresponsive flows without maintaining
per-flow state, it is important to understand how it works and
its limitations. SFB effectively uses levels with bins
in each level to create virtual buckets. This allows SFB
to effectively identify a single nonresponsive flow in an
flow aggregate using amount of state. For example,
in the previous section, using two levels with 23 bins per
level effectively creates 529 buckets. Since there are only 400
flows in the experiment, SFB is able to accurately identify
and rate-limit a single nonresponsive flow without impacting
the performance of any of the individual TCP flows. As the
number of nonresponsive flows increases, the number of bins
which become “polluted” or have values of 1 increases.
Consequently, the probability that a responsive flow gets hashed
into bins which are all polluted, and thus becomes misclassified,
increases. Clearly, misclassification limits the ability of SFB
to protect well-behaved TCP flows.

Using simple probabilistic analysis, (1) gives a closed-form
expression of the probability that a well-behaved TCP flow gets
misclassified as being nonresponsive as a function of number of
levels ( ), the number of bins per level (), and the number of
nonresponsive/malicious flows (), respectively

(1)

In this expression, when is 1, SFB behaves much like SFQ.
The key difference is that SFB using one level is still a FIFO
queueing discipline with a shared buffer while SFQ has separate
per-bin queues and partitions the available buffer space amongst
them.

Fig. 18. Bandwidth of TCP flows using SFB with eight nonresponsive flows.

Using the result from (1), it is possible to optimize the perfor-
mance of SFB givena priori information about its operating en-
vironment. Suppose the number of simultaneously active nonre-
sponsive flows can be estimated () and the amount of memory
available for use in the SFB algorithm is fixed (). Then, by
minimizing the probability function in (1) with the additional
boundary condition that , SFB can be tuned for op-
timal performance. To demonstrate this, the probability for mis-
classification across a variety of settings is evaluated. Fig. 17
shows the probability of misclassifying a flow when the total
number of bins is fixed at 900. In this figure, the number of levels
used in SFB along with the number of nonresponsive flows are
varied. As the figures show, when the number of nonrespon-
sive flows is small compared to the number of bins, the use
of multiple levels keeps the probability of misclassification ex-
tremely low. However, as the number of nonresponsive flows in-
creases past half the number of bins present, the single level SFB
queue affords the smallest probability of misclassification. This
is due to the fact that when the bins are distributed across mul-
tiple levels, each nonresponsive flow pollutes a larger number
of bins. For example, using a single level SFB queue with 90
bins, a single nonresponsive flow pollutes only one bin. Using
a two-level SFB queue with each level containing 45 bins, the
number of effective bins is 45 45 (2025). However, a single
nonresponsive flow pollutes two bins (one per level). Thus, the
advantage gained by the two-level SFB queue is lost when ad-
ditional nonresponsive flows are added, as a larger fraction of
bins become polluted compared to the single-level situation.

In order to evaluate the performance degradation ofSFB as
the number of nonresponsive flows increases, Fig. 18 shows the
bandwidth plot of the 400 TCP flows when eight nonrespon-
sive flows are present. In these experiments, each nonresponsive
flow transmits at a rate of 5 Mb/s. As (1) predicts, in an SFB con-
figuration that contains two levels of 23 bins, 8.96% (36) of the
TCP flows are misclassified when eight nonresponsive flows are
present. When the number of nonresponsive flows approaches

, the performance of SFB deteriorates quickly as an increasing
number of bins at each level becomes polluted. In the case of
eight nonresponsive flows, approximately six bins or one-fourth
of the bins in each level are polluted. As the figure shows, the
number of misclassified flows matches the model quite closely.
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Note that even though a larger number of flows are misclassified
as the number of nonresponsive flows increases, the probability
of misclassification in a two-level SFB still remains below that
of SFQ or a single-level SFB. Using the same number of bins
(46), the equation predicts that SFQ and a single-level SFB mis-
classify 16.12% of the TCP flows (64) when eight nonrespon-
sive flows are present.

D. SFB With Moving Hash Functions

In this section, two basic problems with the SFB algorithm
are addressed. The first, as described above, is to mitigate the
effects of misclassification. The second is to be able to detect
when nonresponsive flows become responsive and to reclassify
them when they do.

The idea behind SFB with moving hash functions is to peri-
odically or randomly reset the bins and change the hash func-
tions. A nonresponsive flow will continually be identified and
rate-limited regardless of the hash function used. However, by
changing the hash function, responsive TCP flows that happen
to map into polluted bins will potentially be remapped into at
least one unpolluted bin. Note that this technique effectively cre-
ates virtual bins across time just as the multiple levels of bins in
the original algorithm creates virtual bins across space. In many
ways the effect of using moving hash functions is analogous to
channel hopping in CDMA [18], [33] systems. It essentially re-
duces the likelihood of a responsive connection being continu-
ally penalized due to erroneous assignment into polluted bins.

To show the effectiveness of this approach, the idea of moving
hash functions was applied to the experiment in Fig. 19(b). In
this experiment, 8 nonresponsive flows along with 400 respon-
sive flows share the bottleneck link. To protect against con-
tinual misclassification, the hash function is changed every 2 s.
Fig. 19(a) shows the bandwidth plot of the experiment. As the
figure shows, SFB performs fairly well. While flows are some-
times misclassified causing a degradation in performance, none
of the TCP-friendly flows are shut out due to misclassification.
This is in contrast to Fig. 18 where a significant number of TCP
flows receive very little bandwidth.

While the moving hash functions improve fairness across
flows in the experiment, it is interesting to note that every
time the hash function is changed and the bins are reset,
nonresponsive flows are temporarily placed on “parole.” That
is, nonresponsive flows are given the benefit of the doubt
and are no longer rate-limited. Only after these flows cause
sustained packet loss, are they identified and rate-limited again.
Unfortunately, this can potentially allow such flows to grab
much more than their fair share of bandwidth over time. For
example, as Fig. 19(a) shows, nonresponsive flows are allowed
to consume 3.85 Mb/s of the bottleneck link. One way to solve
this problem is to use two sets of bins. As one set of bins is
being used for queue management, a second set of bins using
the next set of hash functions can be warmed up. In this case,
any time a flow is classified as nonresponsive, it is hashed using
the second set of hash functions and the marking probabilities
of the corresponding bins in the warmup set are updated. When
the hash functions are switched, the bins which have been
warmed up are then used. Consequently, nonresponsive flows
are rate-limited right from the beginning. Fig. 19(b) shows the

(a)

(b)

Fig. 19. Bandwidth of TCP flows using modified SFB algorithms.(a) Moving
hash. (b) Double buffered moving hash.

performance of this approach. As the figure shows, the double
buffered moving hash effectively controls the bandwidth of
the nonresponsive flows and affords the TCP flows a very
high level of protection. Note that one of the advantages of the
moving hash function is that it can quickly react to nonrespon-
sive flows which become TCP-friendly. In this case, changing
the hash bins places the newly reformed flow out on parole for
good behavior. Only after the flow resumes transmitting at a
high rate is it again rate-limited. Additional experiments show
that this algorithm allows for quick adaptation to flow behavior
[11].

V. COMPARISONS TOOTHER APPROACHES

A. RED With a Penalty Box

The RED with penalty box approach takes advantage of
the fact that high-bandwidth flows see proportionally larger
amounts of packet loss. By keeping a finite log of recent
packet loss events, this algorithm identifies flows which are
nonresponsive based on the log [7]. Flows which are identified
as being nonresponsive are then rate-limited using a mechanism
such as class-based queueing [15]. While this approach may
be viable under certain circumstances, it is unclear how the



526 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 4, AUGUST 2002

algorithm performs in the face of a large number of nonre-
sponsive flows. Unless the packet loss log is large, a single
set of high bandwidth flows can potentially dominate the
loss log and allow other, nonresponsive flows to go through
without rate-limitation. In addition, flows which are classified
as nonresponsive remain in the “penalty box” even if they
subsequently become responsive to congestion. A periodic and
explicit check is thus required to move flows out of the penalty
box. Finally, the algorithm relies on a TCP-friendliness check
in order to determine whether or not a flow is nonresponsive.
Withouta priori knowledge of the round-trip time of every flow
being multiplexed across the link, it is difficult to accurately
determine whether or not a connection isTCP-friendly.

B. Stabilized RED

Stabilized RED is a another approach to detecting nonrespon-
sive flows [27]. In this case, the algorithm keeps a finite log
of recent flows it has seen. The idea behind this is that nonre-
sponsive flows will always appear in the log multiple times and
can be singled out for punishment. Unfortunately, for a large
number of flows, using the last flows can fail to catch non-
responsive flows. For instance, consider a single nonresponsive
flow sending at a constant rate of 0.5 Mb/s in an aggregate con-
sisting of 1000 flows over a bottleneck link of 100 Mb/s where
a fair share of bandwidth is 0.1 Mb/s. In order to ensure that the
nonresponsive flow even shows up in the lastflows seen,
needs to be at least 200 or 20% of the total number of flows. In
general, if there are a total of flows and a nonresponsive flow
is sending at times the fair share, needs to be at least
in order to catch the flow. TheSFBalgorithm, on the other hand,
has the property that the state scales with the number of nonre-
sponsive flows. To ensure detection of the nonresponsive flow
in the above situation, a static 103 SFB queue which keeps
state on 30 bins or 3% of the total number of flows is sufficient.
With the addition of mutating hash functions, an even smaller
SFB queue can be used.

C. FRED

Another proposal for using RED mechanisms to provide fair-
ness is Flow-RED (FRED) [22]. The idea behind FRED is to keep
state based on instantaneous queue occupancy of a given flow. If
a flow continually occupies a large amount of the queue’s buffer
space, it is detected and limited to a smaller amount of the buffer
space. While this scheme provides rough fairness in many situa-
tions, since the algorithm only keeps state for flows which have
packets queued at the bottleneck link, it requires a large buffer
space to work well. Without sufficient buffer space, it becomes
difficult for FRED to detect nonresponsive flows, as they may
not have enough packets continually queued to trigger the detec-
tion mechanism. In addition, nonresponsive flows are immedi-
ately re-classified as being responsive as soon as they clear their
packets from the congested queue. For small queue sizes, it is
quite easy to construct a transmission pattern which exploits this
property of FRED in order to circumvent its protection mecha-
nisms. Note that SFB does not directly rely on queue occupancy
statistics, but rather long-term packet loss and link utilization
behaviors. Because of this, SFB is better suited for protecting

TCP flows against nonresponsive flows using a minimal amount
of buffer space. Finally, as with the packet loss log approach,
FRED also has a problem when dealing with a large number of
nonresponsive flows. In this situation, the ability to distinguish
these flows from normal TCP flows deteriorates considerably
since the queue occupancy statistics used in the algorithm be-
come polluted. By not using packet loss as a means for iden-
tifying nonresponsive flows, FRED cannot make the distinction
between TCP flows multiplexed across a link versusnon-
responsive flows multiplexed across a link.

D. RED With Per-Flow Queueing

A RED-based, per-active flow approach has been proposed for
providing fairness between flows [32]. The idea behind this ap-
proach is to do per-flow accounting and queueing only for flows
which are active. The approach argues that, since keeping a large
number of states is feasible, per-flow queueing and accounting
is possible even in the core of the network. The drawbacks of
this approach is that it provides no savings in the amount of state
required. If flows are active, states must be kept to iso-
late the flows from each other. In addition, this approach does
not address the large amount of legacy hardware which exists in
the network. For such hardware, it may be infeasible to provide
per-flow queueing and accounting. BecauseSFB provides con-
siderable savings in the amount of state and buffers required, it
is a viable alternative for providing fairness efficiently.

E. Stochastic Fair Queueing

SFQ is similar to an SFB queue with only one level of bins.
The biggest difference is that, instead of having separate queues,
SFB uses the hash function for accounting purposes. Thus, SFB
has two fundamental advantages over SFQ. The first is that it can
make better use of its buffers. SFB gets some statistical multi-
plexing of buffer space as it is possible for the algorithm to over-
book buffer space to individual bins in order to keep the buffer
space fully-utilized. As described in Section IV-B, partitioning
the available buffer space adversely impacts the packet loss rates
and the fairness amongst TCP flows. The other key advantage is
that SFB is a FIFO queueing discipline. As a result, it is possible
to change the hash function on the fly without having to worry
about packet re-ordering caused by mapping flows into a dif-
ferent set of bins. Without additional tagging and book-keeping,
applying the moving hash functions to SFQ can cause signifi-
cant packet re-ordering.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated the inherent weakness of current active
queue management algorithms which use queue occupancy
in their algorithms. In order to address this problem, we
have designed and evaluated a fundamentally different queue
management algorithm called BLUE. BLUE uses the packet loss
and link utilization history of the congested queue, instead
of queue lengths to manage congestion. In addition to BLUE,
we have proposed and evaluated SFB, a novel algorithm for
scalably and accurately enforcing fairness amongst flows in
a large aggregate. Using SFB, nonresponsive flows can be
identified and rate-limited using a very small amount of state.
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