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Abstract— Feedback signaling plays a crucial role in flow control because
the traffic source relies on the signaling information to make correct and timely
flow-control decisions. However, it is difficult to design an efficient signaling
algorithm since each signaling message can tolerate neither error nor latency.
Multicast flow-control signaling imposes two additional challenges: scalabil-
ity and feedback synchronization. Previous research on multicast signaling has
mainly focused on the design and implementation of algorithms without an-
alyzing their delay performances. To remedy this deficiency, we developed
a binary-tree deterministic model [1] and an independent-marking statisti-
cal model [2] to study the delay performance of various multicast feedback-
synchronization signaling algorithms.

In this paper, we consider the general case in which the congestion markings
at different links are dependent. Including congestion-marking dependencies in
the analysis is usually much harder than that under the independence assump-
tion. However, the analysis without assuming independent markings can more
accurately capture statistical characteristics for many practical cases where the
congestion markings are not independent. Specifically, we develop a Markov
chain model defined by the link-marking state on each path in a multicast
tree. The Markov chain can not only characterize link-marking dependencies,
but also yield a tractable analytical model. We also develop a Markov-chain
dependency-degree model which can be used to quantify/evaluate all possible
Markov-chain dependency degrees without knowing a priori the dependency-
degree information. Using the Markov-chain and dependency-degree models,
we derive the general expressions for the probability distribution of each path
being the multicast-tree bottleneck. Also derived are the closed-form expres-
sions for the first and second moments of multicast signaling delays. The mod-
eling accuracy and analytical findings have been confirmed by simulations. The
proposed Markov chain is also shown to asymptotically reach an equilibrium,
and its limiting state distributions converge to the link-marking marginal prob-
abilities when the Markov chain is irreducible.

By applying these two models, we analyze and contrast the feedback-
delay scalability of two representative multicast signaling protocols: Soft-
Synchronization Protocol (SSP) [1], [3] and Hop-By-Hop (HBH) signaling al-
gorithms [4], [5], [6]. The proposed modeling techniques are generic, and thus
can be applied not only to the multicast signaling-delay analysis, but also to
other Markov-chain-based analyses abstracted from other applications.

Index Terms— Multicast flow control, feedback-synchronization signaling,
Soft-Synchronization Protocol (SSP), scalability, REM, RED, Markov chain.

I. INTRODUCTION

A flow-control algorithm consists of two basic components: rate
control and flow-control signaling. These two components are
conceptually separate from the flow-control theory’s standpoint,
but are often blended together in most flow-control algorithms.
Rate control adjusts the source rate to the variation of bandwidth
available in the network. Flow-control signaling conveys the con-
gestion and rate-control information between the source and net-
work/receivers. Consequently, this signaling is crucial to flow con-
trol because the source relies solely on the signaling information
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Research under Grant N00014-99-1-0465.

in making correct and timely flow-control decisions. However, de-
signing an efficient flow-control signaling protocol is difficult be-
cause the signaling messages, unlike data or audio/video traffic,
can tolerate neither error nor latency. A signaling message could
be useless or even harmful if it is not accurate or its delay is un-
bounded. The delivery of signaling traffic must therefore be timely
and reliable. For example, in ATM ABR service, flow-control sig-
naling relies on RM (Resource Management) cells, which convey
the rate-control and congestion information among the source rate-
controller, network switches, and the receiver.

Signaling for multicast flow control introduces two additional
problems: scalability and feedback-synchronization. These two
problems are closely interwoven in the signaling protocol for mul-
ticast flow control. First, simultaneous feedback arrivals from all
branches can cause feedback implosion [7] at the source as well as
at branch nodes, especially when the multicast tree is large. Hence,
it is important for each branch node to consolidate the congestion-
information feedbacks from its downstream paths and then for-
ward only the consolidated feedback to its upstream node. Second,
we need a feedback-synchronization signaling algorithm for each
branch node to consolidate feedbacks, because they may arrive at
significantly different times.

The first-generation feedback consolidation algorithms [4], [5],
[6] for multicast ABR flow control employ a simple Hop-By-Hop
(HBH) mechanism to deal with the feedback-implosion problem.
On receipt of one forward RM cell, each branch node sends only
one consolidated feedback RM cell upward by a single hop, ensur-
ing that at each node, the ratio of feedback RM cells to forward
RM cells is no larger than 1. To reduce the RM-cell roundtrip time
(RTT) and improve multicast signaling accuracy, the authors of [8],
[9] proposed a different feedback-synchronization algorithm by ac-
cumulating feedbacks from all branches of each branch node. The
authors of [10] proposed an algorithm to speed up the transient re-
sponse by sending fast congestion feedback without waiting for all
branches’ feedback during the transient phase.

In [1], [3], we proposed a feedback-synchronization signaling
algorithm, called the Soft-Synchronization Protocol (SSP), which
derives a single consolidated RM cell at each branch node from
feedback RM cells of different downstream branches that are not
necessarily responses to the same forward RM cell in each syn-
chronization cycle. The SSP is shown to not only scale well with
the multicast-tree topology, but also readily detect and remove non-
responsive branches.

All of the above-referenced work only focused on the design and
implementation of feedback-synchronization signaling algorithms,
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without addressing their delay performances. To remedy this defi-
ciency, we developed a binary-tree deterministic model [1] and an
independent-marking statistical model [2] to study the delay per-
formance of various multicast feedback-synchronization signaling
algorithms.

The independent-marking statistical model [2] builds on the
recently-proposed Random Early Marking (REM) [11], [12], [13],
[14], [15] and widely-cited Random Early Detection (RED) [16]
flow-control schemes.1 The REM and RED schemes — origi-
nally proposed for unicasts — can also be extended to multicast
environments. Moreover, unicast and multicast transmissions usu-
ally co-exist in a network. In RED or REM, each router marks a
packet’s ECN (Explicit Congestion Notification) bit with a proba-
bility that is exponential in REM, or proportional in RED, to the
average queue length at the output link.

The independent-marking statistical model is suitable for sig-
naling delay analysis for multicast flow control based on REM- or
RED-like schemes, where link-markings at different links/routers
are assumed to be independent. However, there are also cases
where link-markings are not independent. In such a case, the
independent-marking algorithm and analysis can only offer ap-
proximate results, and their performance and accuracy will be
affected by the “degree of dependency” between link-markings.
This paper addresses the general case of dependent link congestion
markings. Including dependence in the analysis usually is much
more difficult than that under the independent-marking assump-
tion. However, the analysis without the independence assumption
can capture more accurate delay statistical characteristics.

We develop a Markov chain model for the links at different lev-
els in a multicast tree, and model the dependency degree between
different link congestion markings by using a dependency-degree
factor. Using the proposed Markov chain and dependency-degree
models, we derive the probability distribution for a path to be the
multicast-tree bottleneck. We also derive the first and second mo-
ments of a multicast-tree RTT delay.

The benefits of our modeling and evaluation technique are two-
fold. First, the technique enables a direct quantitative compari-
son of feedback-synchronization delays between different multi-
cast signaling schemes. Second, the proposed modeling technique
establishes a general framework for evaluating the signaling delay
of various feedback-synchronization-based multicast flow-control
algorithms. Although our evaluation focuses on ATM ABR mul-
ticast flow control, the modeling techniques can be applied to any
feedback-synchronization-based multicast flow-control algorithm,
and to other Markov-chain-model-based analyses as well.

The paper is organized as follows. Section II overviews SSP
and Section III presents the proposed binary-tree model and the
deterministic signaling-delay analysis. In Section IV, we develop
the Markov-chain model and apply it to derive the multicast bottle-
neck probability distributions. Section V proposes the dependency-
degree model to measure and calculate the Markov-chain depen-
dency. In Section VI, we derive expressions for various statisti-
cal and dynamic characteristics of multicast signaling delays. Sec-
tion VII explores the asymptotical behavior of the derived Markov
chain and its dependency-degree models. Section VIII describes

1The analytical techniques developed in this paper are also applicable to cases
where a link’s random congestion state is caused by flow-control schemes other
than REM and RED.

00. On receipt of a feedback RM cell from i-th branch:
01. if (conn patt vec(i) 6= 1) f ! Only process connected branches
02. resp branch vec(i) := 1; ! Mark connected and responsive branch
03. MCI :=MCI _CI ; ! CI is randomly marked at this switch
04. MER := minfMER;ERg; ! ER information processing
05. if (conn patt vec � resp branch vec = 1) f ! soft synchronization
06. send RM cell (dir := back, ER :=MER,
07. CI :=MCI); ! Send fully-consolidated RM-cell upstream
08. no resp timer := Nnrt ; ! Reset non-responsive timer.
09. resp branch vec := 0); ! Reset responsive branch vector
10. MCI := 0; MER := ER;gg ! Reset RM-cell control variable.

Fig. 1. Pseudocode for switch feedback synchronization algorithm.

numerical evaluation results. The paper concludes with Section IX.

II. DESCRIPTION OF SSP

We briefly introduce SSP,2 the multicast feedback-synchroniza-
tion signaling algorithm [1], [3]. At the center of SSP is a pair
of connection-update vectors: (i) conn patt vec, the connection
pattern vector, where conn patt vec(i) = 0 (1) indicates the i-th
output port of the switch is (not) a downstream branch of the multi-
cast connection. Thus, conn patt vec(i) = 0 (1) implies that a data
copy should (not) be sent to the i-th downstream branch and a feed-
back RM cell is (not) expected from the i-th downstream branch;3

(ii) resp branch vec, the responsive branch vector is initialized to
0 and reset to 0 whenever a consolidated RM cell is sent upward
from the switch. resp branch vec(i) is set to 1 if a feedback RM
cell is received from the i-th downstream branch.

A simplified pseudocode (detailed in [1], [3]) of the switch RM-
cell processing algorithm is given in Fig. 1. On receipt of a re-
turned feedback RM-cell, the switch first marks its corresponding
bit in the resp branch vec and then conducts RM-cell consolida-
tion operations. If the modulo-2 addition (the soft-synchronization
operation), conn patt vec � resp branch vec equals 1, an all 1’s
vector, indicating all feedback RM cells are synchronized, then a
fully-consolidated feedback RM cell is generated and sent upward.
But, if the modulo-2 addition is not equal to 1, the switch needs
to await other feedback RM cells for synchronization. Notice that
since the synchronization algorithm allows feedback RM cells cor-
responding to different forward RM cells to be consolidated, the
feedback RM cells are “softly-synchronized” at branch nodes.

III. DETERMINISTIC PATH-DELAY ANALYSIS IN A

MULTICAST TREE

A. The Binary-Tree Model

To simplify the analysis of RM-cell RTT, we quantize the feed-
back delay by assuming each switch-hop to have an identical delay
(including processing and propagation delays). This assumption
can be readily relaxed because the difference in switch process-
ing delay and link-propagation delay of different switch-hops can
be translated into different numbers of switch-hops with the same
delay. We use the hop-delay, �h, which is the sum of the switch-
processing delay and link-propagation delay taken in each hop, as
the time unit in our delay analysis. To study the worst case and en-
able performance comparison, we only consider two types of mul-
ticast trees: balanced and unbalanced binary trees (see Fig. 2 for
the case of tree height m = 4). Since we are only concerned with

2We briefly overview SSP here for completeness, and it is detailed in [1], [3].
3Note that the negative logic is used for convenience of implementation.
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Fig. 2. Balanced and unbalanced binary multicast trees.

a path’s RM-cell RTT in the multicast tree which is determined by
its length, it suffices to consider binary trees only.

B. HBH and SSP Signaling Delay Properties for Each Path

Theorem 1: If an unbalanced4 tree of height m � 2, as shown
in Fig. 2, is flow-controlled by HBH with RM-cell update interval
� � 1 (�h), then the RM-cell RTT, denoted by �u(j;�), of the
j-th (counting from left to right) path, denoted by Pj, is given by:

�u(j;�) = 2 + j �(�); (1)

where �(�)
4
= maxf2;�g, 1 � � � �max = 2m,5 and 1 � j �

m � 1.

If the multicast tree is flow-controlled by SSP, then the following
claims hold:

Claim 1. The number of Pj’s feedback RM cells going through
initial state is determined by:

k�j
4
= max

k2f0;1;���g
fk j 2(m � j � 1)� k� � 0g; (2)

Claim 2. Pj’s RM-cell RTT in steady state is determined by:
�u(j;�) = �max � k�j�: (3)

where 1 � � � �max = 2m and 1 � j � m� 1.

Proof: The proof is provided in [1], [2].

IV. THE MARKOV-CHAIN MODEL FOR DEPENDENT

CONGESTION MARKINGS

In random-marking schemes like REM/RED, and any other
flow-control schemes, the marking/congestion state of a link is a
function of its queue length. However, the queue lengths of dif-
ferent links carrying the same flows are generally not independent
of each other. For instance, if a large (small) queue is built up
at a congested upstream link in a multicast tree, the downstream
links carrying the same flows are more likely to have large (small)
queues.

For multicast flow control with dependent marking probabilities,
we develop a Markov-chain model and a dependency-degree model
for measuring and evaluating the degree of the Markov-chain de-
pendency, in order to study the various statistical characteristics of
multicast feedback-synchronization signaling delay. The proposed
modeling techniques can not only be used to analyze the RTT de-
lay of multicast feedback-synchronization signaling, but are also
applicable to the general algorithm design/analysis for both multi-
cast and unicast flow control.
4The formulas for RM-cell RTT of the balanced-tree cases are available in [2].
5Theorem 1 still holds for � > �max = 2m, but � is typically a fraction of the

maximum RM-cell RTT �max = 2m.
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Fig. 3. Dependent random-marking unbalanced binary-tree model.

A. The Dependent Statistical Model

To analyze the multicast feedback-synchronization signaling de-
lay with dependent marking probabilities, we introduce the follow-
ing definition.

Definition 1: A dependent random-marking unbalanced binary
tree of height m consists of a set, L, of links which satisfy the
following four conditions:

C1. All links in L are labeled as shown in Fig. 3(a) for m<1
(e.g., m = 4) and Fig. 3(b) form!1, respectively, such that

L 4
=

�fL1; L02; L2; L03; L3; � � � ; L0m; Lmg; if m <1;
fL1; L02; L2; L03; L3; � � � ; L1; L1g; if m!1;

(4)

which contains m paths, P1; P2; � � � ; Pm, as shown in Fig. 3.
Denote each path by its component links as:(

Pk
4
= fL1; L2; � � � ; Lk; L0k+1g; if 1 � k � m � 1;

Pm
4
= fL1; L2; � � � ; Lmg; if k = m;

(5)

We define Pm as the main-stream path which takes only right-
branch links at all branch nodes, and define each Pk, for 1 �
k � m�1, as a branch-stream path which consists of k right-
branch links and one left-branch link at the last branch node
(see Fig. 3). Links Li and L0i, 8i � 2, are at the same level of
the multicast tree.

C2. The marking state of link Li (L0i) (i = 1; 2; � � �) is repre-
sented by a random variable Xi (X0

i) which takes value in
f0; 1g such that (see Fig. 3)

PrfXi = xig =
�
pi; for xi = 1;
1� pi; for xi = 0;

(6)

Pr fX0
i = x0ig =

�
p0i; for x0i = 1;
1� p0i; for x0i = 0;

(7)

where pi (p0i) is the marking probability for Li (L0i) and is
determined by

pi=

8<:
1� ��qi ; if REM is used;�

qi �minth

maxth �minth

�
pmax; if RED is used;

(8)

p0i=

8<:1� ��q
0

i ; if REM is used;�
q0i �minth

maxth �minth

�
pmax; if RED is used;

(9)
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where 0 < pi; p
0
i < 1; qi (q0i) is the average queue size at

Li (L0i),  > 0 is the step size, � > 1 for REM; pmax is
the maximum marking probability,maxth (minth) is the high
(low) queue threshold for RED;

C3. The congestion marking states of all links at different
multicast-tree levels are dependent and satisfy the following
properties:

Pr fXi = xi j Xi�1 = xi�1; X
0
i�1 = x0i�1;

Xi�2 = xi�2; X
0
i�2 = x0i�2; � � � ; X1 = x1g

= Pr fXi = xi j Xi�1 = xi�1g; (10)

Pr fX0
i = x0i j Xi�1 = xi�1; X

0
i�1 = x0i�1;

Xi�2 = xi�2; X
0
i�2 = x0i�2; � � � ; X1 = x1g

= Pr fX0
i = x0i j Xi�1 = xi�1g (11)

C4. The congestion marking states within the same level are
also dependent and satisfy the following properties:

Pr fXi = xi j X0
i = x0i; Xi�1 = xi�1; X

0
i�1 = x0i�1;

Xi�2 = xi�2; X
0
i�2 = x0i�2; � � � ; X1 = x1g

= Pr fXi = xi j Xi�1 = xi�1g; (12)

Pr fX0
i = x0i j Xi = xi; Xi�1 = xi�1; X

0
i�1 = x0i�1;

Xi�2 = xi�2; X
0
i�2 = x0i�2; � � � ; X1 = x1g

= Pr fX0
i = x0i j Xi�1 = xi�1g: (13)

where 2 � i � m.

Remarks on Definition 1 (C3 and C4): We only consider the
upstream and same-level dependence of link marking states as de-
scribed by Eqs. (10), (11), (12), and (13), because the multicast-tree
signaling delay analysis to be developed below need not consider
the downstream dependence. The congestion information on the
links above the immediate-next upstream link or on the link at the
same level (see C4) is all concentrated into, and carried over by,
the given congestion information on the immediate-next upstream
link. Conditions C3 and C4 are reasonable because one link’s con-
gestion state depends most on its immediate upstream link’s con-
gestion state. The upstream’s influence on a downstream link’s
congestion state propagates through its immediate upstream link
which carries same flows, and thus, as long as the immediate up-
stream link’s congestion state is given, the probability distribution
at the downstream link is independent of the congestion state at
links which are located above the immediate upstream link or at
the same level as indicated by condition C4 in Eqs. (12) and (13).

B. Probability Distribution of the Multicast-Tree Bottleneck Path

To ensure reliable data transmission, the multicast ABR service
needs to adjust the source rate to the minimum available bandwidth
share on the most congested path that is currently sensed (through
feedback) by the source [3]. Clearly, based on the OR rule (see
the multicast signaling algorithms given in Fig. 1, and the detailed
versions in [1], [3]), among all existing bottleneck paths in a multi-
cast tree, the shortest bottleneck path dominates the source’s flow-
control decisions and the RTT of flow-control feedback loop. To
explicitly model this feature, we introduce the following definition.

Definition 2: Among all concurrent bottleneck paths sensed by
the source in a multicast tree, the bottleneck path of the minimum

length is called the dominant bottleneck path (also called multicast-
tree bottleneck path), and its RM-cell RTT is called the multicast-
tree bottleneck RM-cell RTT or simply multicast-tree RTT.

Based on Definitions 1 and 2, the following proposition lays a
foundation for deriving the distribution of the dominant bottleneck
path.

Proposition 1: The sequence of random marking states fX1;

X2; � � � ; Xm�1; Xmg (for the tree height m <1 and m!1) in
Definition 1 defines a 2-state discrete-indexed Markov chain over
the links on the main-stream path Pm = fL1; L2; � � � ; Lmg, and
the sequence of marking states fX1; X2; � � � ; Xk; X

0
k+1g in Defi-

nition 1 on each branch-stream path Pk=fL1; L2; � � � ; Lk; L0k+1g,
for k = 1; 2; � � �;m � 1, also define a 2-state discrete-indexed
(finite-sequence) Markov chain.

Proof: The proof follows from Definition 1.

Remarks on Proposition 1: Unlike the traditional definition of
Markov chain/process where the random-variable sequence index
set is time, we define the Markov chain for every path (including
the main- and branch-stream paths) which is indexed by the (dis-
crete) link sequence number associated with that path.

Since the mathematical properties/treatments and random mark-
ing definitions for both the Markov chain defined over the main-
stream path Pm and the Markov chain defined over the branch-
stream paths Pk (k = 1; 2; � � � ;m � 1) are the same, except that
the last link’s marking state differs in labeling by a “ 0 ” symbol
(see Proposition 1), we will henceforth use fXig to represent the
Markov chain defined over both the main- and branch-stream paths,
and explicitly specify it wherever necessary.

Applying Proposition 1, the following theorem derives the prob-
ability distributions of the dominant-bottleneck path.

Theorem 2: If a dependent-marking multicast tree of height m
as defined in Definition 1 is flow-controlled under SSP or HBH,
then the following claims hold:

Claim 1. Ifm!1, then there exists one and only one dominant
bottleneck path, and the probability distribution, denoted by
 d(Pk;1), that Pk becomes the dominant bottleneck path, is
determined by

 d(Pk;1) =8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

1� PrfX1 = 0gPr fX0
2 = 0 j X1 = 0g; if k = 1;

Pr fX1 = 0gPrfX0
k = 0 j Xk�1 = 0g

�
�

Pr fXk = 1 j Xk�1 = 0g
+Pr fXk = 0 j Xk�1 = 0g
�PrfX0

k+1 = 1 j Xk = 0)

�
�
k�2Y
i=1

�
Pr fXi+1 = 0 j Xi = 0g

�PrfX0
i+1 = 0 j Xi = 0g

�
; if k � 2;

(14)

And,  d(Pk;1) given in Eq. (14) satisfies:

lim
m!1

mX
k=1

 d(Pk;1) = 1; (15)
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Claim 2. If m < 1, then there exists at most one dominant
bottleneck path, and the probability distribution,  d(Pk;m),
that Pk becomes the dominant bottleneck path, is given by

 d(Pk;m) =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1� PrfX1 = 0gPr fX0
2 = 0 j X1 = 0g; if k = 1;

Pr fX1 = 0gPrfX0
k = 0 j Xk�1 = 0g

�
�

Pr fXk = 1 j Xk�1 = 0g
+Pr fXk = 0 j Xk�1 = 0g
�Pr fX0

k+1 = 1 j Xk = 0)

�
�
k�2Y
i=1

�
Pr fXi+1 = 0 j Xi = 0g

�Pr fX0
i+1 = 0 j Xi = 0g

�
; if k � 2;

Pr fX1 = 0gPrfXm = 1 j Xm�1 = 0g
�PrfX0

m = 0 j Xm�1 = 0g

�
m�2Y
i=1

�
Pr fXi+1 = 0 j Xi = 0g

�PrfX0
i+1 = 0 j Xi = 0g

�
; if k = m;

(16)

Proof: The proof is detailed in [17].

Remarks on Theorem 2: We observe that by Eq. (14),
limk!1 d(Pk;1) = 0. This is expected, since a longer bot-
tleneck path is always dominated by a co-existing shorter bottle-
neck path, if any. Thus, when k ! 1 as m ! 1, P1 is al-
ways dominated by a shorter bottleneck path for 0 < pi; p

0
i < 1,

i = 1; 2; � � � ;1. That is,  d(P1;1) = 0. In addition, no-
tice that by Eq. (15) we have

P1
k=1 d(Pk;1) = 1, which also

makes sense because as the unbalanced-tree’s height m !1 and
0 < pi; p

0
i < 1, there always exists (with probability 1) one and

only one dominant bottleneck path in a multicast tree. On the other
hand, for the case of m < 1, by Eqs. (16) and (15) we havePm

k=1 d(Pk;m) � 1, implying the possibility that there is no
dominant bottleneck path in the multicast tree of height m < 1.
This is also expected because 0 < pi; p

0
i < 1.

V. MARKOV-CHAIN DEPENDENCY-DEGREE MODELING

To use Eqs. (14) and (16), we need to derive explicit expres-
sions for Pr fXi = xi jXi�1 = xi�1g and Pr fX0

i = x0i jXi�1 =
xi�1g used in the Eqs. (14) and (16). However, it is difficult to
know/compute the accurate dependency between two random vari-
ables. To solve this problem, we propose to use a real-valued
dependency-degree factor � 2 [0; 1] to quantify all possible de-
grees of dependency between the random variables in the Markov
chain’s one-step transition probabilities. Using this dependency-
degree factor, one can evaluate any possible degree of dependency
ranging from independent to perfectly dependent, without know-
ing a priori the dependency degree of two random variables.

In general, two dependent random events can affect each other
either positively or negatively. For instance, if occurrence of one
event is likely to trigger another event, then they are said to be pos-
itively dependent. On the other hand, if occurrence of one event

makes another event unlikely to occur, then they are said to be
negatively dependent. As we discussed earlier, an upstream link’s
congestion (non-congestion) state will make the downstream links
carrying the same flows more likely (unlikely) to be congested. So,
the positive dependence can more accurately characterize the de-
pendence behavior of link markings. To quantitatively describe
this feature, we introduce the following definition:

Definition 3: Two dependent link marking states Xi and Xi+1

are said to be positively (negatively) dependent if Pr fXi+1=x j
Xi = xg> Pr fXi+1= x j Xi = xg ( Pr fXi+1 =x j Xi= xg<
Pr fXi+1=x j Xi=xg ), where x 2 f0; 1g.

Based on Definition 3, Theorem 3 models the dependency-
degree between two random variables. Notice that Theorem 3 gives
the results only for the case of PrfXi+1 = xi+1 j Xi = xig and
Pr fXi = 1g = pi, and it also holds for the case of Pr fX0

i+1 =
x0i+1 j Xi = xig and Pr fX0

i = 1g = p0i with the similar results
that we omitted.

Theorem 3: Consider the Markov chain fXig defined on link
marking states on every path (for both main-stream and branch-
stream) in the multicast tree specified by Definition 1. If Markov
chain fXig is positively dependent, and the link marking probabil-
ity is equal to Pr fXi = 1g = pi, then the following claims hold:

Claim 1. The conditional distribution Pr fXi+1 = xi+1 j Xi =
xig, with xi; xi+1 2 f0; 1g, is upper- and lower-bounded by

1�pi+1 � PrfXi+1=0 jXi=0g�

8><>:
1; if pi�pi+1;

1�pi+1
1�pi ; if pi<pi+1;

(17)

pi+1 � Pr fXi+1=1 jXi=0g�

8><>:
0; if pi�pi+1;

pi+1�pi
1�pi ; if pi<pi+1;

(18)

1�pi+1 � PrfXi+1=0 jXi=1g�

8><>:
pi�pi+1

pi
; if pi�pi+1;

0; if pi<pi+1;

(19)

pi+1 � Pr fXi+1=1 jXi=1g�

8><>:
pi+1

pi
; if pi�pi+1;

1; if pi<pi+1;

(20)

Claim 2. 9�i(�0i) 2 [0; 1] such that all possible dependency-
degrees betweenXi andXi+1 (X0

i+1) can be measured by the
real-valued dependency-degree factor �i (�0i), and 6�

�i = 0 iff Xi and Xi+1 are independent;
�i = 1 iff Xi and Xi+1 are perfectly dependent;

(21)

and�
�0i = 0 iff Xi and X0

i+1 are independent;
�0i = 1 iff Xi and X0

i+1 are perfectly dependent;
(22)

Claim 3. The conditional distributionsPr fXi+1 = xi+1 j Xi =
xig, with xi; xi+1 2 f0; 1g, are determined by

Pr fXi+1 = 0 j Xi = 0g =
6Examples of the perfectly dependent events discussed below include that two

events are identical or one event is a sub-event of the other, see [17] for details.
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8<:
1�(1��i) pi+1; if pi�pi+1;

(1��i)(1�pi+1) + �i

�
1�pi+1
1�pi

�
; if pi<pi+1;

(23)

Pr fXi+1 = 1 j Xi = 0g =8<:
(1��i) pi+1; if pi�pi+1;

(1��i) pi+1 + �i

�
pi+1�pi
1�pi

�
; if pi<pi+1;

(24)

Pr fXi+1 = 0 j Xi = 1g =8<:(1��i)(1�pi+1)+�i
�
pi�pi+1

pi

�
; if pi�pi+1;

(1��i)(1�pi+1); if pi<pi+1;
(25)

Pr fXi+1 = 1 j Xi = 1g =8<:(1��i)pi+1 + �i

�
pi+1

pi

�
; if pi�pi+1;

pi+1 + �i(1�pi+1); if pi<pi+1;
(26)

where i = 1; 2; � � �, and �i is defined in Claim 2.
Proof: The proof is available in [17].

Remarks on Theorem 3: Claim 1 finds the upper and lower
bounds of all 4 possible 2-state Markov chain one-step transition
probabilities as functions of the marginal link-marking probabil-
ities pi and pi+1 given by networks. Claim 2 ensures the exis-
tence of a real-valued dependence-degree factor �i 2 [0; 1]. It also
proves the completeness of the dependency-degree factor model-
ing by mapping all possible degrees of dependency onto the real-
valued point set [0; 1]. Claim 3 derives expressions for all 4 possi-
ble 2-state Markov chain one-step transition probabilities.

Applying Theorem 3 and Eqs. (23) and (24) to Theorem 2, we
obtain the general-case (heterogeneous) expressions for calculating
the multicast bottleneck path probability distributions, which are
summarized in the following corollary.

Corollary 1: Let a dependent-marking multicast tree of height
m as defined in Definition 1 be flow-controlled under SSP or
HBH. If the one-step transition probability of the Markov chain
fXig defined over every path (including the main- and branch-

stream paths) is specified by the dependency-factor vector ~�
4
=

(�1; �
0
1; �2; �

0
2; �3; �

0
3; � � �) which is derived in Theorem 3, and

further, denote the link marking probability vector by ~p
4
=

(p1; p01; p2; p
0
2; p3; p

0
3; � � �), then the following claims hold.

Claim 1. If m!1, then there exists one and only one domi-
nant bottleneck path, and the probability distribution, denoted
by  d(Pk; ~�; ~p;1), that Pk becomes the dominant bottleneck
path, is determined by

 d(Pk; ~�; ~p;1) =8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

1� (1 � p1) [1� (1� �01)p
0
2] ; if k = 1;

(1� p1)
�
1� (1� �0k�1)p

0
k

� �
(1� �k�1)pk

+ [1� (1� �k�1)pk] (1� �0k)p
0
k+1

�
�
k�2Y
i=1

�
[1� (1 � �i)pi+1]

� �1� (1� �0i)p
0
i+1

��
; if k � 2;

(27)

and,  d(Pk;1) given in Eq. (27) satisfies:

lim
m!1

mX
k=1

 d(Pk; ~�; ~p;1) = 1; (28)

Claim 2. If m < 1, then there exists at most one dominant
bottleneck path, and the probability distribution, denoted by
 d(Pk; ~�; ~p;m), that Pk becomes the dominant bottleneck
path, is determined by

 d(Pk; ~�; ~p;m) =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1� (1� p1) [1� (1� �01)p
0
2] ; if k = 1;

(1� p1)
�
1� (1� �0k�1)p

0
k

� �
(1� �k�1)pk

+ [1� (1� �k�1)pk] (1� �0k)p
0
k+1

�
�
k�2Y
i=1

�
[1� (1� �i)pi+1]

� �1� (1� �0i)p
0
i+1

��
; if k � 2;

(1� p1)(1 � �m�1)pm
�
1� (1� �0m�1)p

0
m

�
�
m�2Y
i=1

�
[1� (1� �i)pi+1]

� �1� (1� �0i)p
0
i+1

��
; if k = m;

(29)

Proof: The proof follows by plugging Eqs. (23) through (26)
of Theorem 3 into Eqs. (14), (15) and (16) of Theorem 2.

Remarks on Corollary 1: We can use Eqs. (27) and (29), and
tune up the dependence-degree factor ~� to see how the system per-
forms with different dependency degrees. More importantly, the
completeness of the dependency-degree factor model derived in
Theorem 3 guarantees that the actual unknown degree of depen-
dency imposed by the practical problems can always be covered
by tuning � in the interval [0,1]. Moreover, Eqs. (27) and (29)
provide very general probability distribution expressions since one
can arbitrarily select ~� and ~p for different links to handle the het-
erogeneity. Eqs. (27) and (29) reduce to the probability distribution
expressions of  (Pk;m) derived for the multicast signaling delay
analysis under independent random-marking [2] by letting ~� = ~0
(independent), verifying the correctness of Eqs. (27) and (29).

VI. STATISTICAL AND DYNAMIC PROPERTIES OF MULTICAST

SIGNALING DELAYS UNDER DEPENDENT MARKINGS

Using the probability distribution derived in Corollary 1 and
Eqs. (1) and (3) of �u(j;�) derived in Theorem 1, the following
theorem derives the probability distributions, their dynamic prop-
erties, and the means and variances of multicast signaling delays
under SSP and HBH for the homogeneous case and m<1.

Theorem 4: Let a dependent-marking multicast tree of heightm
as defined in Definition 1 be flow-controlled under SSP and HBH,
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respectively, with the RM-cell interval �. If m < 1, 0 < pi =
p0i = p < 1 and 0 � �i = �0i = � � 1, 8i (the homogeneous
case),7 then the following claims hold:

Claim 1. The probability distribution that Pk becomes the dom-
inant bottleneck path, denoted by  d(Pk; �; p;m), is deter-
mined by

 d(Pk; �; p;m) =8>>><>>>:
1� (1� p) [1� (1� �)p] ; if k = 1;

(1� �)(1� p)p [2� (1� �)p]

� [1� (1� �)p]2k�3 ; if k � 2;

(1� �)(1� p)p [1� (1� �)p]2m�3 ; if k = m;

(30)

Claim 2. For each path Pk and a given �,  d(Pk; �; p;m) at-
tains the unique maximum at

p�
4
= arg max

0<p<1
 d(Pk; �; p;m)

=

(
1; if k = 1;
m�(m�1)��

p
(m�(m�1)�)2�(1��)(2m�1)

(1��)(2m�1) ; if k = m;
(31)

and for 2 � k � (m � 1), p� is non-negative and no larger
than 1 real-valued root of the following cubic equation:

2k(1� �)2p3 + (1� �) [(2k � 1)�� 6k] p2

�2 [(2k � 1)�� 2k � 1] p� 2 = 0: (32)

Claim 3. For each pathPk and a given p, d(Pk; �; p;m) attains
the unique maximum at

��
4
= arg max

0<�<1
 d(Pk; �; p;m)

=

8>>>>>>><>>>>>>>:

p � 1

p
+

1

p

r
1� 2

2k � 1
; if 2 � k � m� 1 and

k�
�
1

2
+

1

p(2� p)

�
;

1� 1

2(m� 1)p
; if k = m and k �

�
1 +

1

2p

�
;

(33)

Claim 4. If Markov chain dependency-factor � = �0 > 0 for a
given �0, it shifts the probability distribution of multicast-tree
bottleneck path from shorter paths to longer ones. If the tree
height m satisfies:

m �

266666
log

r
1

1� �0

log
1� (1� �0)p

1� p

+ 2:5

377777 ; (34)

then there exists the unique “dependency-balanced path” Pek
such that 2 � ek � m� 1 and(
 d(Pk; �; p;m) j�=0 �  d(Pk; �; p;m) j�=�0; if k � ek;
 d(Pk; �; p;m) j�=0 <  d(Pk; �; p;m) j�=�0; if k > ek;

(35)

7The analytical results derived from the homogeneouscase can be easily extended
to the heterogeneous case where pi and �i are different 8i.

where  d(Pk; �; p;m) is given by Eq. (30), and the

“dependency-balanced path number” ek is determined by

ek =

666664 log
r

2� p

(1� �0)[2� (1� �0)p]

log
1� (1 � �0)p

1� p

+ 1:5

777775 ; (36)

Claim 5. The means of multicast-tree bottleneck RM-cell RTT,
denoted by �SSP (�;m) and �HBH (�;m) for the SSP and
HBH schemes, respectively, are determined by:

�SSP (�;m) =
�
p+ (1��)(p� p2)

��
2m�

�
2(m�2)

�

�
�

�
+2m(1�p) [1� (1� �)p]

�
1 + [1� (1� �)p]2(m�2)

� [(1� �)p� 1]

�
� (1� �)(1� p)p [2� (1� �)p]�

�
m�1X
k=2

��
2(m � k � 1)

�

�
[1� (1� �)p]2k�3

�
; (37)

�HBH (�;m) =
(1� p)�(�)

(1 � �)p [2� (1� �)p]

�
2 [1� (1��)p ]

� [1� (1� �)p]3 �m [1� (1� �)p]2m�3 + (m�1)

� [1� (1� �)p]2m�1
�
+ (1� p) [1� (1� �)p]2m�3

�
�
(1� �)p [2 + (m � 1)�(�)]� 2

�
+ (2 + �(�))

� �p+ (1��)(p � p2)
�
+ 2(1�p) [1� (1��)p]3 ; (38)

where �(�) is defined in Theorem 1.

Claim 6. The variances of multicast-tree bottleneck RM-cell
RTT, denoted by �2SSP (�;m) and �2HBH (�;m) for the SSP
and HBH schemes, respectively, are determined by:

�2SSP (�;m) = 4m2 + 4m2(1� p) [1� (1� �)p]2m�3

� [(1� �)p� 1]� (1� �)(1� p)p [2� (1� �)p]

�
(
4m�

m�1X
k=2

��
2(m � k � 1)

�

�
(1� (1��)p)2k�3)

�

��2
m�1X
k=2

��
2(m� k � 1)

�

�2
(1� (1��)p)2k�3)

�)

+p

�
1 + (1��)(1� p)

��
�2

�
2(m � 2)

�

�2
� 4m�

�
�
2(m� 2)

�

��
� �2SSP (�;m); (39)

�2HBH (�;m) = [1 + (1� �)(1� p)] (2 + �(�))2+(1��)
�(1� p)p [1� (1� �)p]2m�3 [2 + (m � 1)�(�)]2

+4(1� p) [1� (1� �)p]
n
1� [1� (1� �)p]2(m�2)

o
+
4�(�)(1 � p) [1� (1� �)p]

(1� �)p [2� (1 � �)p]

(
2� [1� (1� �)p]

2
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Fig. 4. Markov-chain model for dependent link-marking multicast flow control.

�m [1� (1� �)p]
2(m�2)

+ [1� (1� �)p]
2(m�1)

�(m� 1)

)
+

�2(�)

(1��)2 [2�(1��)p]2 [p2�(1��)p3]

�
(
1 + [1� (1� �)p]2 � [2� (1� �)p]3 [(1� �)p]3

�m2 [1� (1 � �)p]
2(m�1)

+ (2m2 � 2m � 1)

� [(1� �)p� 1 ]2m + (2m �m2 � 1)

� [1� (1� �)p]2(m+1)

)
� �2HBH (�;m); (40)

where �(�) is defined in Theorem 1, and �SSP (�;m) and
�HBH (�;m) are given by Eqs. (37) and (38), respectively.

Proof: The proof is given in [17].

Remarks on Theorem 4: Claim 1 derives formulas for multicast-
tree bottleneck path distributions as a function of path length k,
link-marking marginal probability p and dependency-degree fac-
tor �, and tree height m. Claim 2 examines the dynamic behavior
of  d(Pk; �; p;m) as p varies and observes that  d(Pk; �; p;m)
attains the unique maximum at p� given by Eqs. (31) and (32),
representing the link-marking probability that makes Pk the most
likely multicast-tree bottleneck path. Claim 3 studies the behav-
ior of  d(Pk; �; p;m) from the viewpoint of � and indicates that
 d(Pk; �; p;m) can be either monotonic or non-monotonic, de-
pending on the given k and p values. As long as k and p satisfy
the condition specified in Eq. (33),  d(Pk; �; p;m) achieves the
maximum at �� given by Eq. (33).

Claim 4 reveals the fact that the Markov-chain dependency (� >
0) reduces the probabilities for shorter paths to be the bottle-
neck path while increasing the probabilities for longer paths to
be the bottleneck path. This probability shift is also shown to
be balanced at the unique path, Pek where  d(Pek; �; p;m) j�=0=
 d(Pek; �; p;m) j�=�0, if the tree is high enough (see Eq. (34)).
This claim also derives the condition for the existence of Pek and

the equation to compute the dependency-balanced path number ek
as a function of Markov-chain dependency-factor � and the link-
marking probability p. Claim 5 and Claim 6 show that the means
and variances for SSP and HBH are the functions of �, p, �, and
m. In addition, Eqs. (30), (31), (32) (37), (38), (39), and (40) all
reduce to the analytical results derived for the multicast signaling
delay analysis under independent random-marking [2] by letting
� = 0, confirming the correctness of the dependency-degree mod-
eling and the associated equations.

VII. ASYMPTOTICAL ANALYSIS OF LINK-MARKING

MARKOV CHAINS

We now investigate the long-term behavior of the link-marking
Markov chains based on the proposed dependency-degree factor

modeling technique when m is large.

Theorem 5: Consider the Markov chain fXig defined by the
link-marking states on both main-stream and branch-stream paths
in the multicast tree specified by Definition 1. If (i) the dependency
degree of fXig is specified by the dependency-degree factor vec-
tor ~� = (�1; �

0
1; �2; �

0
2; �3; �

0
3; � � �) derived in Theorem 3; and (ii)

the link-marking probability vector ~p = (p1; p
0
1; p2; p

0
2; p3; p

0
3; � � �)

defined in Definition 1 and ~� satisfy 0 < pi = p0i = p < 1 and
0 � �i = �0i = � � 1, 8i, respectively, such that fXig becomes a
homogeneous Markov chain, then the following claims hold:

Claim 1. The n-step transition probability matrix, denoted by
P (n), of the homogeneous Markov chain fXig is determined
by:

P (n) 4=
n
p
(n)
jk

o
=

"
1� (1� �n)p (1� �n)p

(1� �n)(1�p) �n(1�p) + p

#
(41)

where j; k 2 f0; 1g, n 2 f1; 2; � � �g, and the case of P (n) with
n = 1 is shown in Fig. 4.

Claim 2. If � 2 [0; 1], then both link-marking states are ergodic,
with

lim sup
n!1

p
(n)
ii = lim

n!1
p
(n)
ii > 0; lim

n!1

nX
r=1

p
(r)
ii =1; (42)

where i 2 f0; 1g, and

lim
n!1

p
(n)
ii =

8<:Pr fXk= ig = 1� p; if i = 0, � 2 [0; 1);
Pr fXk= ig = p; if i = 1, � 2 [0; 1);
1; if i 2 f0; 1g, � = 1;

(43)

where k 2 f1; 2; � � �g;

Claim 3. If � 2 [0; 1), then the Markov chain fXig is ergodic
and its limiting probabilities converge to the unique equilib-
rium state probabilities which are independent of both the ini-
tial state probabilities and dependency-degree �. The Markov
chain’s limiting probabilities, denoted by �i, i 2 f0; 1g, con-
verge to the marginal link-marking probabilities as follows:

~�
4
=
�
�0 �1

�
=
�
(1� p) p

�
(44)

i.e., �0 = PrfXi = 0g = (1�p) and �1 = Pr fXi = 1g = p;

Claim 4. If the Markov chain fXig is “perfectly dependent”,
i.e., � = 1, then fXig also converges to an equilibrium state,
but the equilibrium state probabilities are not unique and are
equal to the initial state probabilities. If the initial state prob-
abilities are Pr fXi = 0g = 1� p and Pr fXi = 1g = p (as in
this paper addressed case), then �0 = 1 � p and �1 = p still
hold.

Proof: The proof is presented in [17].

Remarks on Theorem 5: Claim 1 fully specifies the long-term be-
havior of the Markov chain and determines the distribution of a bot-
tleneck path in the homogeneous case. Claim 2 classifies the link-
marking states as the dependency-factor � varies. It also shows that
the Markov-chain state recurring probabilities converge asymptot-
ically to the marginal link-marking probabilities (see Eq. (43)), if
the Marking chain is not “perfectly” dependent (� = 1).
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Fig. 5. Impact of path length k, link-marking probability p, and dependency-degree� on multicast-tree bottleneck path probability distribution  d(Pk; �; p;m).

Claim 3 ensures that our dependency-degree modeling con-
verges asymptotically, and the long-term behavior of the result-
ing Markov chain is stable. Also, the ergodicity of the Markov
chain enables us to evaluate its various statistics (ensemble aver-
age) through the sample averages in simulations or implementa-
tions. Moreover, this claim shows that the limiting probabilities
converge to the marginal link-marking probabilities. This is also
expected, because �0 and �1 represent the long-term proportion of
Markov chain remaining at state 0 and 1, respectively, and is con-
sistent with the definitions of Pr fXi = 0g and Pr fXi = 1g, which
verifies the validity of our dependency-degree modeling. Claim 4
says that when � = 1, i.e., the link-marking states are perfectly de-
pendent, the steady state distribution still exists, but is not unique,
depending on the initial state probabilities. This is expected be-
cause when � = 1, the Markov chain fXig has two isolated classes
(see Fig. 4). So it is not irreducible, and thus is no longer ergodic.

VIII. NUMERICAL EVALUATIONS

Based on the analytical results derived in the previous sections,
the various multicast signaling delay properties are evaluated nu-
merically as follows.

A. Multicast-Tree Bottleneck Path Distribution d(Pk; �; p;m)

Fig. 5(a) plots  d(Pk; �; p;m) vs. path length k while varying
the dependency-degree factor �.  d(Pk; �; p;m) is found to be
a strictly monotonic decreasing function of k for both the inde-
pendent (� = 0) and dependent (� > 0) cases. This is expected
because the longer the bottleneck path, the more likely it will be
dominated by shorter paths, as described in Definition 2.

Compared to the independent-marking case (�= 0), the mark-
ing dependency is found to reduce the probability for shorter paths
(with k � 4) to be the multicast-tree bottleneck path while increas-
ing the probability for longer paths (with k > 5). This verifies the
Claim 4 of Theorem 4, and the dependency-balanced path number:ek is found to be around 4 and 5. Fig. 5(a) also shows that the larger
�, the more this probability shifts from the shorter to longer paths.
This is because the larger the link-marking dependence, the larger
the probability that all links stay in the same congestion state.

On the other hand, Theorems 2 and 4 state that for Pk to be
the multicast bottleneck, all links on shorter paths Pk0 (k0 < k)
must be un-congested and Pk’s last two links Lk or L0k+1 must
be congested. Thus,  d(Pk; �; p;m) is contributed by two events,

fXk = 1 [X0
k+1 = 1g and fTk�1

i=1 (Xi = 0; X0
i+1 = 0)g, which

must occur at the same time. But, link-marking dependence re-

duces the probability contribution from fXk = 1 [ X0
k+1 = 1g

while increasing that from fTk�1
i=1 (Xi = 0; X 0

i+1 = 0)g. Then for
� > 0 the decaying rate of  d(Pk; �; p;m) as k increases is slower
than that for the case of � = 0. Compared to the case of � = 0,
when k is small (k � 4), the decrease of probability contribution
from fXk = 1 [X0

k+1 = 1g due to � > 0 cannot be compensated

for by the increase in that from fTk�1
i=1 (Xi = 0; X0

i+1 = 0)g. So,
 d(Pk; �; p;m) j�>0 <  d(Pk; �; p;m) j�=0 for small k (k � 4).
When k is large (k > 5), the gain in probability contribution from
fTk�1

i=1 (Xi = 0; X 0
i+1 = 0)g is larger than the drop in that from

fXk = 1 [X0
k+1 = 1g due to � > 0. Thus  d(Pk; �; p;m) j�>0

>  d(Pk; �; p;m) j�=0 for large k (k > 5). When k becomes very
large, both  d(Pk; �; p;m) j�>0 and  d(Pk; �; p;m) j�=0 con-
verges to zero. So,  d(Pk; �; p;m) j�>0=  d(Pk; �; p;m) j�=0
as k !1, which is confirmed by Fig. 5(a).

But, no matter how  d(Pk; �; p;m) shifts as � changes, the nor-
malization condition given by Eq. (28) is always satisfied, which
is verified by the fact that the area under each plot for any given �
always sums to 1 as shown in Fig. 5(a).

Fig. 5(b) shows that  d(Pk; �; p;m) is inversely proportional
to path length k, verifying the above observations. Fig. 5(b) also
shows that there exists a unique maximum  �d(Pk; �; p

�;m) for
any given k, verifying Claim 2 of Theorem 4. Fig. 5(c) indicates
that for any given �, the larger the path length k, the smaller
 d(Pk; �; p;m). Fig. 5(c) also indicates that  d(Pk; �; p;m) is
not a monotonic function of �, but there can be a unique maxi-
mum  �d(Pk; �

�; p;m) as long as the given path length k and p
satisfy the condition given in Eq. (33). As k gets larger, �� in-
creases. These also validate Claim 3 of Theorem 4. Fig. 6(a) shows
a more complete dynamic-behavior picture of  d(Pk; �; p;m) as a
function of two independent variables (�; p). Fig. 6(a) shows that
 d(Pk; �; p;m) always has the maximum along the p-axis as �
varies from 0 to 1. In contrast,  d(Pk; �; p;m) can have the max-
imum along the �-axis only for a certain range of p values which
satisfy the condition given in Eq. (33) in Theorem 4 for a given k.

B. Delay Statistics for HBH and SSP Schemes under the Depen-
dent Markings

Fig. 6(b) plots the means, �SSP (�;m) and �HBH (�;m) cal-
culated by Eqs. (37) and (38) against m for different �’s. We
observe that the link-marking dependency (�) has direct impact
on the average multicast signaling delays. This impact gets more
pronounced when the HBH scheme is used or the multicast tree’s
height increases, see Fig. 6(b). Consequently, the approximation
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Fig. 6. Impact of dependency-degree factor�, link-marking probability p, and multicast-tree heightm on multicast-tree bottleneck path probability  d(Pk; �; p;m) and

multicast signaling delay means and standard deviations. SSP is found to be more scalable with tree height than HBH in terms of signaling delay means and variations.

error in the multicast signaling delay analysis/calculation, which is
caused by assuming “independent link-marking” while the actual
congestion markings are dependent, is not negligible. This quan-
titatively justifies the necessity of the marking-dependency analy-
sis for multicast signaling-delay performance evaluations, such as
the Markov-chain and dependency-degree models developed in this
paper. Fig. 6(b) also shows that for longer paths (m > 20), the
larger �, the larger the means while for shorter paths (m < 12),
the larger � the smaller the means, verifying that the multicast-tree
bottleneck path probabilities shift from shorter to longer paths as �
increases. Moreover, �HBH (�;m) is found to be much larger, and
increase much faster with m, than �SSP (�;m) (see Fig. 6(b)).

Using Eqs. (39) and (40), Fig. 6(c) plots the standard devia-
tions �SSP (�;m) and �HBH (�;m) against m while varying �.
Like the average multicast signaling delays, similar trends in terms
of effects of marking dependency and scalability are observed to
hold for the multicast signaling delay variations (see Fig. 6(c)).
Fig. 6(c) also shows that longer (m�10) paths’ variances increase
as � increases, while shorter (m< 8) paths’ variances decrease as
� increases, also verifying that multicast-tree bottleneck probabili-
ties shift from shorter to longer paths as � increases.

IX. CONCLUSION

We proposed statistical modeling approaches to the delay anal-
ysis of multicast feedback-synchronization signaling algorithms.
Specifically, we developed a Markov-chain model to accurately
characterize the multicast signaling delay when the congestion
markings at different links are dependent. Using this model, we
derived general expressions for the probability distributions of in-
dividual paths to be the multicast bottleneck. The derived Markov
chain is also shown to have an equilibrium, and have its limiting
state distributions converging to the link-marking marginal proba-
bilities when the Markov chain is irreducible.

We also introduced a dependency-degree model to quantify and
evaluate the dependency between different link congestion mark-
ings. Using this model, we derived equations for all one-step
transition probabilities as functions of the marginal link-marking
probabilities and the dependency-degree factors. The developed
Markov-chain and dependency-degree models are generic and can
be used not only for multicast signaling delay analysis, but for other
Markov-chain-based analyses as well.

Using these two models, we derived the first and second
moments of the multicast signaling delays for both HBH and
SSP when link-markings are dependent. The numerical evalua-

tions/analyses justified the necessity of the marking-dependency
modeling/analysis, and also revealed that the marking-dependency
tends to shift the bottleneck from shorter to longer paths, which is
consistent with the definition of the positive link-marking depen-
dency imposed by the nature of multicast signaling. The analytical
results have also been confirmed by simulations [17].
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