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ABSTRACT 
This paper presents a new robust TCP congestion-recovery 
scheme to (1) handle bursty packet losses while preserving 
the self-clocking capability; (2) detect a TCP connection’s 
new equilibrium during congestion recovery, thus improving 
both link utilization and effective throughput; and (3) make 
the TCP behavior during congestion recovery very close to  
that during congestion avoidance, thus “extending” the per- 
formance model for congestion avoidance to that for TCP loss 
recovery. Furthermore, the new recovery scheme requires only 
a slight modification to the sender side of TCP implementa- 
tion, thus making it widely deployable. 

The performance of the proposed scheme is evaluated for 
scenarios with many TCP flows under the drop-tail and RED 
gateways in the presence of bursty packet losses. The evalu- 
ation results show that the new scheme achieves at  least as 
much performance improvements as TCP SACK and consis- 
tently outperforms TCP New-Reno. Moreover, its steady- 
state TCP behavior is close to  the ideal TCP congestion be- 
havior. Since the proposed scheme does not require selective 
acknowledgments nor receiver modifications, its implementa- 
tion is much simpler than TCP SACK. 

1. INTRODUCTION 
The Transmission Control Protocol (TCP) is a reliable, uni- 

cast data-transfer protocol used widely for numerous applica- 
tions, including electronic mail, file transfer, remote login and 
WWW. The large-scale deployment of TCP in the Internet 
is due mainly to  its robustness in heterogeneous networking 
environments. The congestion avoidance and control mech- 
anisms of TCP in [lo] have made significant impacts on the 
performance and behavior of the Internet [18, 201. As the 
Internet continues to grow rapidly in size and scope, the in- 
creasing demand for network resources has increased packet- 
loss rate in the Internet, and bursty packet losses are reported 
to  be common [18]. Providing a robust congestion-recovery 
mechanism is, therefore, an important and difficult task for 
TCP implementation. 

Currently, the most widely-used TCP implementation is 
TCP Reno, which includes slow-start and congestion avoid- 
ance [lo], as well as fast retransmit and fast recovery [ll, 191. 
However, TCP Reno is shown to perform poorly in recover- 
ing from bursty losses within a window of data packets [6, 131. 
When multiple packets within the same window are lost, the 
fast-recovery algorithm treats each packet loss in a window as 
an independent congestion signal, thus halving the congestion 
window multiple times. The T C P  Reno’s drastic reduction of 
congestion window size, plus its over-estimation of data pack- 
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ets in flight, inhibits the transmission of new data  packets, 
losing its self-clocking ability. A retransmission timeout is 
triggered and then slow-start begins to  recover from packet 
losses, causing a substantial performance degradation. Recent 
Internet measurements [2] show that  the majority of timeouts 
in TCP Reno are caused by bursty packet losses. Also, it is 
observed [8] that the performance gain of TCP Vegas [3] over 
T C P  Reno is due mainly to T C P  Vegas’ new techniques for 
slow-start and congestion recovery, which are closely related 
to  reduction and recovery of bursty packet losses, not the 
innovative congestion-avoidance mechanism in T C P  Vegas. 
Thus, a robust TCP mechanism that  can recover from bursty 
packet losses without causing timeouts is key to  achieve high 
T C P  performance. 

Several enhancements to  T C P  Reno’s congestion-recovery 
mechanism have been proposed, including the modified fast 
recovery in TCP New-Reno [9], SACK and FACK T C P  [13, 
14) for recovering from multiple packet losses within the same 
window of data. While SACK and FACK T C P  can efficiently 
recover from multiple packet losses in a window, they add 
significant complexity to T C P  implementation, both at  the 
sender and receiver sides. The main weakness of SACK and 
FACK is that they require “cooperative” receivers. Consid- 
ering hundreds of millions of clients scattered in the Inter- 
net, this requirement makes them practically unattractive for 
large-scale deployment in the Internet. 

Recognizing the packet-loss signal indicated by a partial 
ACK ’, in TCP New-Reno, upon arrival of a partial ACK, the 
sender retransmits the packet immediately following the par- 
tial ACK without taking TCP out of the fast-recovery phase. 
Therefore, TCP New-Reno has better capability to  recover 
from multiple packet losses in a window than T C P  Reno, and 
it does not require selective acknowledgments. However, its 
ability to keep the “flywheel” of ACKs and data packets and 
prevent the loss of self-clocking, depends on the T C P  window 
size at  the time when the first packet loss is detected, as well 
as on the number of packets lost within a window. T C P  New- 
Reno’s ability to recover from packet losses is limited by its 
inherent weaknesses, including: 

In T C P  New-Reno, the number of new data  packets 
sent out per round-trip time (RTT) decreases exponen- 
tially due to its policy “one new data packet is sent out 
upon receipt of two duplicate ACKs” during the entire 
congestion-recovery period. Since T C P  New-Reno can 
only recover from one dropped packet per RTT, this 
rapid decrease will eventually stop the flow of returning 

’ A  partial ACK acknowledges some but  not all of the out- 
standing packets a t  the start of the previous round-trip time. 
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ACKs (hence, loss of self-clocking), and a coarse timeout 
will follow. 

During congestion recovery, TCP New-Reno only pas- 
sively recovers from the dropped packets. The exponentially- 
decreased amount of data  transmitted during each RTT 
lowers link utilization even if it does not cause the loss 
of self-clocking. 

TCP New-Reno cannot detect further data losses that 
might occur to  the new data packets sent out during 
congestion recovery. It has to  resort to another trigger 
of fast retransmit or a retransmission timeout to  detect 
such packet losses. 

To reduce coarse timeouts and improve the effectiveness of 
fast retransmit under a tiny window condition, right-edge re- 
covery [l] has been proposed, in which “one new data packet 
is sent out upon receipt of each duplicate ACK, inijtead of 
two duplicate ACKs.” Similarly, Lin and Kung [12] proposed 
that  a new data packet be generated upon each arrival of 
first two duplicate ACKs. They retain T C P  aggressiveness 
when there is no network congestion. However, the packet 
conservation rule [lo] does not apply when congestion occurs. 
TCP aggressiveness should be reduced in order to  drain the 
congestion from the network. These transmitted packets on 
the verge of detection of a packet loss - indicating network 
congestion - may add more fuel t o  the “fire” at t,he con- 
gested bottleneck. Also, these enhancements cannot quickly 
detect further data losses during congestion recovery either. 
To reduce the occurrence of bursty losses from a window of 
data, Smooth-stat [21] has been proposed as an optimiza- 
tion of the Slow-start algorithm, which is orthogonal to the 
enhanced recovery schemes. 

In this paper, we propose a robust TCP congestion recovery 
- called Robust Recovery (RR) - algorithm to make a TCP 
flow more robust to bursty packet losses. The key features of 
RR include: 

The amount of data in flight is accurately measured, 
since congestion window size (cwnd) over-estimates the 
number of packets in flight during congestion recovery, 
stalling data transmission. 

RR treats bursty packet losses within a window as a 
single congestion signal. Like TCP New-Reno, RR ex- 
ponentially backs off the sending rate after detecting 
the first packet loss within a window. However, the ex- 
ponential decrease in the amount of data injected into 
the network does not last for the entire recovery period. 
The exponential decrease is applied only during the first 
RTT of the recovery period, which is consistent with the 
treatment of single congestion signal. 

By keeping track of the number of new data packets 
arrived at  the T C P  receiver in the previous FWT, the 
TCP sender can detect any further data loss very quickly 
without triggering fast retransmit or retransmissi.on time- 
outs. Upon detection of a further data loss, the TCP 
sender linearly shrinks the pipe size and extends the exit 
point of RR. 

After the exponential back-off that happens at the first 
RTT during congestion recovery, as long as no further 
packet losses are detected, the TCP sender linearly in- 
creases the amount of new data transmitted during each 

RTT while recovering the dropped packet which is indi- 
cated by the arrival of a new partial ACK. During this 
period, similarly to  the nghl-edge recovery [l], a new 
data packet is transmitted upon receipt of each dupli- 
cate acknowledgment. 

Congestion recovery is seamlessly switched to  conges- 
tion avoidance when all outstanding data packets a t  the 
beginning of the last RTT have been acknowledged. The 
big ACK problem, which causes bursty packet transmis- 
sions upon exit of congestion recovery, is eliminated. 

In addition to  recovering the dropped packets, the RR. algo- 
rithm probes the new equilibrium of a T C P  connection during 
congestion recovery, so as to achieve higher link utilization 
while recovering the lost packets. Also, R R  makes the TCP 
behavior during congestion recovery very similar to  that  dur- 
ing congestion avoidance, thereby enabling the performance 
model for T C P  congestion avoidance [15] to  represent that  for 
T C P  congestion recovery. This allows for accurate prediction 
of the TCP-consumed bandwidth even without using selective 
acknowledgments. 

The performance benefits of the R R  scheme are demon- 
strated via extensive simulation experiments with the ns [16]. 
Our siniulation results show that the proposed scheme achieve:; 
a t  least as much performance improvements as T C P  SACK 
and consistently outperforms TCP New-Reno. Furthermore, 
since it requires neither selective acknowledgments nor re- 
ceiver modifications, its implementation and deployment is 
much simpler than that  of TCP SACK, and only the servers 
in the Internet need to  be modified slightly, while keeping 
intact millions of T C P  clients scattered in the Internet. 

One characteristic of TCP is its dependency on the return- 
ing ACKs as the trigger of data transmission and congestion 
window growth. Similarly, R R  relies on the returning dupli- 
cate ACKs to  maintain self-clocking during congestion recov- 
ery. We will elaborate on the effect of ACK losses on T C P  
congestion recovery in Section 2.3. RR also handles retrans- 
mission losses by using timeouts, as is usually done. 

The remainder of this paper is organized as follows. Sec- 
tion 2 describes the proposed RR algorithm, and Section 3 
presents its performance evaluation results in the presence of 
drop-tail and RED gateways. Section 4 assesses the fitness 
of .the proposed algorithm to the ideal congestion-avoidance 
model. Section 5 discusses the incremental deployability of 
the proposed RR algorithm along with the TCP. Finall,y, the 
paper concludes with Section 6. 

2. ROBUST TCP CONGESTION RECOVERY 
To recover bursty packet losses within a window while pre- 

sewing the self-clocking capability, we propose a new TCP 
congestion-recovery (RR) algorithm. In RR, the T C P  sender 
not. only recovers from packet losses, but also finds the con- 
nection’s new equilibrium during congestion recovery. It also 
makes the recovery behavior of bursty losses within a window 
of data  very close t o  an ideal congestion-avoidance behavior 
in which only a single packet loss within a window of data 
occurs periodically. R R  is detailed in the next subsections. 

2.11 Accurate Estimation of Data in Flight 
One of the key problems with current congestion recovery 

schemes is that congestion window size (cwnd) ,  which repre- 
sents the outstanding packets at the sender side, is still used 
as .the control “pedal” during congestion recovery. 
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Table 1: TCP parameters i n  congest ion recovery  

1 Name I Meaning of state variables II 

of unsent data. 

seqno 

recover 

During congestion recovery, the outstanding packets a t  the 
sender side can be divided into three groups: active, dormant,  
and dropped. The active group is the set of data  packets that  
are in transit, which also include the retransmitted packets. 
The dormant group is the set of data packets that  were trans- 
mitted during the past RTTs and have already arrived and 
queued at  the receiver, but have not yet been acknowledged. 
Actually, each dormant packet has caused the receiver to  send 
a duplicate ACK to the sender. The dropped group is the set 
of data packets that were lost during the past RTTs. Clearly, 
the outstanding packets a t  the sender side as a whole do not 
represent the data packets in the path. Only the active group, 
in which data packets are in “flight,” represents the data pack- 
ets in the path, since the packets in dormant and dropped 
groups have left the network either normally or abnormally 
in the previous RTTs, and do not consume network resources 
any longer. 

Thus, as a measure of the outstanding packets at the sender 
side, cwnd over-estimates the number of packets in the path 
and is no longer adequate for transmission control during con- 
gestion recovery. A new state variable actnum is thus intro- 
duced to  measure the amount of data in the path at each RTT 
of congestion recovery. During congestion recovery, actnum 
plays the usual role of cwnd as the means to  provide conges- 
tion control a t  the sender side. Once the congestion-recovery 
phase ends, the congestion-control responsibility is returned 
to  cwnd. 

A similar variable pipe [6] has been proposed in T C P  SACK, 
which counts the number of outstanding packets in the path, 
not a t  the sender side. However, the role of congestion con- 
trol is still played by cwnd. The T C P  sender can transmit a 
data  packet only when pipe < cwnd. The variable pzpe just 
passively estimates the number of outstanding packets in the 
path. By contrast, actnum not only represents the number 
of outstanding packets in the path but also controls the data- 
transmission rate. In each RTT during congestion recovery, 
actnum linearly grows or shrinks according to  the network 
condition. 

the sequence number indicated by the currently 
received ACK. 
the highest sequence number sent before 
receiving the latest dup ACKs. 

L 

Table  2: State variables i n  the descr ip t ion  of RR 

1 Name I Meaning of state variables 
n maxsea I the hiahest seauence number sent so far. 

U 

2.2 Description of Robust Recovery 
Several TCP parameters [19] are used to describe RR as 

listed in Table 1. For a better description of RR,  we divide it 

I :  Single packet loss within a window of data: 
2: Muluplc packet lnses  within a window of data. 

1 Furlher Data has 

Figure  1: The structure of the RR a lgor i thm 

into two sub-phases - retreat and probe - and three tran- 
sient states - entrance, exit, and occurrence of a further data 
loss. Figure 1 shows a high-level organization of the RR al- 
gorithm. The detailed flowchart of the algorithm is given in 
Figure 2. The state variables referred in this figure are ex- 
plained in Table 2. 

Upon rccciving 3 dup ACKs (I.e. Fast Retransmit occurs). 

I. recover= mlrscq: 
2. ssthresh = win * I/ 2; 
3. retransnut lirst lost packet. 

‘“&~~‘‘dAcK set actnum = 0 1 I Retmt Phasc. 
actnum IS still maintained as 0. 

I 

every 2 dup ACKr. send out I ncw 

I Futher Packet Loss. 1 
reset actnum = ndup; 

1 
another dup ACK received. send out 
a new data packets heyond maueq. 

Pmirl ACK, and 
actnum > ndup; 

Partial ACK, and aclnum == ndup 
set actnum = actnum + I  New ACK received 

( i . e .  seqno> recover) 

Exit. 
I .ndup=O 
2. cwnd = actnum * MSS. 
3. actnum = 0. 

Figure  2: The flowchart of the RR a lgor i thm 

As with the fast recovery, RR is triggered by a fast retrans- 
mit. However, in RR cwnd remains unchanged until the end 
of congestion recovery, as it is not used for congestion control 
in RR. At the very beginning of each RTT during conges- 
tion recovery, the state variable ndup is initialized to  0. As 
duplicate ACKs arrive within one RTT, ndup measures the 
number of duplicate ACKs received by the sender. 

Note upon the arrival of an out-of-sequence data packet a t  
the receiver, the delayed acknowledgment mechanism is 0% 
the receiver immediately sends out an ACK for each received 
out-of-sequence data  packet. The proposed RR algorithm uti- 
lizes this to  detect further data losses in the probe sub-phase. 

If there are no further data losses, the threshold that  de- 
termines the end of RR’s congestion recovery is the same as 
that of New-Reno and SACK, which is the sequence num- 
ber of the first byte of unsent data when the first packet loss 
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I 

was detected by the fast retransmit. The congestion-recovery 
phase ends as soon as snd.una advances to, or beyond, this 
threshold, indicating that all outstanding data packets a t  the 
time of entering the congestion-recovery phase have been ac- 
knowledged. 

However, if any further data-packet loss is detected, RR 
advances the threshold used to  detect the end of congestion 
recovery. In particular, the threshold is updated to the value 
of snd.nzt when a further data-packet loss was detected. The 
congestion-recovery phase ends when snduna  advances to, or 
beyond, this threshold, which may differ significant.ly from 
the value of snd.nzt when the congestion-recovery phase was 
entered. 

2.2.1 Retreat Sub-phase 
The retreat sub-phase only covers the first RTT of con- 

gestion recovery. In this sub-phase, the TCP sender expo- 
nentially backs off its transmission rate. Like in New-Reno, 
during the retreat sub-phase the sender injects one new data 
packet for every two duplicate ACKs received. So, the data- 
transmission rate per RTT is reduced at  least by half. The 
end of the retreat sub-phase is marked by the arrival of the 
first non-duplicate ACK, i.e., an ACK for a higher-sequence 
numbered packet; if multiple packets had been lost within the 
same window, it must be the first partial ACK. During the 
retreat sub-phase, actnum remains to be zero. 

When the first partial ACK (i.e., the end of the retreat 
sub-phase) is received, actnum assumes the role of congestion 
control for the rest of congestion recovery. The variable act- 
num is initially set to ndup* 1/2, which is the number of new 
data packets sent out during the retreat sub-phase. 

As can be seen from the above description, the end of the 
first RTT during congestion recovery is pivotal; the role of 
congestion control at the sender is transferred from cwnd to  
actnum, and the retreat sub-phase ends while the probe sub- 
phase starts. Note that the first lost packet is recovered in 
the retreat sub-phase. If only a single packet within a window 
of data is lost, the TCP sender exits the congestion-recovery 
phase after the retreat sub-phase. However, if multiple pack- 
ets in a window of data were lost, all but the first of the lost 
packets are recovered, one per RTT, in the probe sub-phase, 
in which the sender linearly adjusts the value of actiaum ac- 
cording to  the network condition. The sending TCP can dis- 
tinguish the two sub-phases by testing if actnum = 0. 

2.2.2 
If there are multiple packet losses within the same window, 

a key characteristic of the probe sub-phase is that each RTT 
is distinguished by the receipt of a new partial ACK. At the 
sender side, the end of the current RTT and the beginning of 
the next RTT are indicated by the receipt of a new partial 
ACK. Figure 3 illustrates this feature. Suppose that in a 
window of data, four packets are dropped and their sequence 
numbers are 4000, 5000, 7000 and 8000, respective1.y. The 
first loss is recovered in the retreat sub-phase, and the rest 
are recovered in the probe sub-phase, which are represented 
as 5 ,  7, 8 in Figure 3. 

A packet retransmission is triggered by the arrival of a par- 
tial ACK, and this retransmission is acknowledged via the 
next partial ACK if the packets are delivered in order. If 
there are no ACK losses, the state variable ndup represents 
the number of new data packets sent out during the last RTT 
that have been received, because during congestion recovery 

RTT in the Probe Sub-phase 

0 : ~ r r i v d  of a new p;mial ACK 

0 : Arrival of a duplicate ACK ' 

Time 
- 

Figure 3: RTT in the probe sub-phase (sender's side) 

each received da ta  packet triggers an ACK immediately. 
In cise of out-of-order delivery, a partial ACK would be 

generated by the arrival of a new data packet at the receiver, 
thereby generating one of duplicate ACKs upon arrival of the 
retransmitted packet. However, since the sender can treai. 
the partial ACK as the ACK of the retransmission, ndup still 
measures the number of new data packets sent during the 
last RTT that have been received. So, out-of-order delivery 
does not skew the measurement of the number of new data 
packets sent during the last RTT that have been received 
Unfortunately, this is not valid if there are ACK losses, ancl 
we will discuss it later in this section. 

2.;?.3 Probe Sub-phase 
,4t the very beginning of each RTT of the probe sub-phase, 

the arrival of a partial ACK triggers an immediate retrans- 
mission. Upon receiving each duplicate ACK after this partial 
ACK, the T C P  source sends a new data packet. If there are 
no further data and ACK losses, at  the end of this RTT, the 
value of ndup should be equal to  that of actnum. The reason 
for this is: actnum indicates the number of new data packets 
that  were sent out during the last RTT; and ndup represents, 
the number of new data packets sent out during the last RTT 
that have been received. 

Given no ACK losses, at  the end of each RTT, a further. 
daea loss can be detected by comparing ndup with actnum. 
The equality ndup = actnum indicates no further data loss 
had occurred. However, if ndup < actnum, further data losses 
had occurred during the last RTT. The difference between 
nd.up a.nd actnum indicates the number of further data losses. 

I:n case of no further data loss, the sender will increment act- 
num by 1 and send one more new data packet for every RTT 
until the end of congestion recovery, or until a further data 
loss is detected, which is similar to  the congestion-avoidance 
algorithm. However, if further data losses are detected, act- 
num is reduced to  the value of ndup. So, reduction of actnum 
linearly depends on the number of further data losses. Since 
each duplicate ACK triggers the transmission of a new data 
packet in this RTT, the reduced actnum still indicates the 
number of data packets in flight. 

The rationale behind the linear back-off when further data 
losses are detected is two-fold. The first is to reduce the dis- 
turbance caused by ACK losses. The second is to  avoid the 
drastic reduction of in-flight data since the sender exponen- 
tially backs off in the retreat sub-phase that happened only a 
few RTTs ago. 

Once further data losses are detected, the exit of the congestion- 
recovery phase must advance to recover from them. Any fur- 
ther data loss during the congestion-recovery phase can be 
identified by a new partial ACK beyond the original exit, and 
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recovered by the subsequent packet retransmission without 
waiting for two more duplicate .4CKs. The exit of conges- 
tion recovery extends to  the point where all outstanding data  
packets at the start of last RTT, instead of a t  the time of 
entering congestion recovery, have been acknowledged. 

After the sender recovers from further data losses, it ex- 
its the congestion-recovery phase and enters the congestion- 
avoidance phase. At that time, the role of congestion control 
is transferred back to cwnd.  The sender assigns the current 
value of ac tnum to  cwnd.  Since cwnd is measured in bytes, 
instead of packets, cwnd is set to  actnum x M S S .  Then act- 
num is set to 0 again. Since the reset value of cwnd accurately 
measures the amount of data packets in flight, the arrival of 
the new ACK that  takes the sender out of congestion recovery 
only triggers a new packet out, which observes the conserva- 
tion of packets. So, the big ACK problem that causes sending 
packets in burst at the exit of congestion recovery has been 
eliminated. 

TCP New-Reno and SACK use a “maxburst” parameter to  
limit the number of packets that can be sent upon receipt of a 
single incoming ACK. However, it only limits burstiness but 
doesn’t remove it. Also, it adversely affects bandwidth uti- 
lization if the bottleneck has drained all packets; or it causes 
potential packet losses if the bottleneck is not yet back to its 
knee area. 

2.3 Effect of ACK Losses 
Since RR also relies on returning ACKs to inject new data 

into the network, loss of a string of ACKs will cause RR to 
lose its self-clocking. Note, however, that RR is more robust 
to ACK losses than New-Reno. Rare ACK losses cause only a 
slight negative effect upon congestion recovery. In the probe 
sub-phase, the transmission rate only linearly decreases when 
an ACK loss falsely signals a further data loss. Although TCP 
SACK is less vulnerable to ACK losses, it still has to  time out 
if many ACKs are lost, or the ACK for a retransmission is lost, 
as shown in [4]. 

Although data loss on the forward path and the ACK loss 
on the backward appear uncorrelated in the current Inter- 
net [18], we believe that if a fair share is given to each flow 
at  the routers, the loss probability of an ACK packet should 
be much smaller than that of a data packet. Because the size 
of ACK packets is usually much smaller than that  of data 
packets - except for those that piggyback other pieces of in- 
formation - and hence an ACK-packet flow consumes much 
less network resources than a data-packet flow. 

3. PERFORMANCE EVALUATION OF RR 
We evaluated the RR algorithm using the ns-2 [16]. Since 

New-Reno is known to perform much better than Reno in 
the presence of multiple packet losses, we focused on the 
performance comparison among RR, Tahoe, New-Reno, and 
SACK TCP. The performance evaluation is based on effective 
throughput, which is a commonly-used metric for end-to-end 
protocols. 

3.1 The Simulation Setup 
The simulated network topology is shown in Figure 4, where 

Si ( K , )  represents a sending (receiving) host, i = 1, ..., n. R1 
and R2 represent two finite-buffer gateways. Different con- 
nections from S; to Ki share the common bottleneck between 
RI and R2. In our simulation experiments each data packet 
is 1000 bytes long and the size of an ACK packet is 40 bytes. 

/@ 

Figure 4: The n e t w o r k  topology used for RR experi-  
ments 

The data traffic in our simulation is generated by FTP. The 
receiver sends an ACK for every data packet it received. The 
window size and buffer space at  the gateways are measured 
in number of fixed-size packets, instead of bytes. 

3.2 Behavior with Drop-Tail Gateways 
The drop-tail gateway with FIFO queueing service has been 

widely deployed in the Internet, which schedules incoming 
packets in a FIFO manner and discards incoming packets 
when the buffer is full. The advantages of the drop-tail gate- 
way are simple, scalable and easy to  implement. 

Table 3: Simulat ion configurat ion 

Buffer size 8 packets 

Bottleneck bandwidth 0.8 Mbps 
Bottleneck link delay (1-way) 

Side-links bandwidth 10 Mbps 

The simulation parameters for R R  with drop-tail gateways 
are summarized in Table 3. There are three T C P  connec- 
tions from S, to K,, i = 1,2,3. Only the first connection 
is shown in the graphs. The second and the third connec- 
tions are included to obtain the desired packet loss pattern 
for the first connection, which only has a limited amount of 
data to  send. Note the buffer size is set to  achieve the de- 
sired packet loss pattern. If a larger buffer size is set, we can 
add more background traffic to achieve the same loss pattern. 
So, the TCP behaviors in each simulation experiment are de- 
terministic, and do not change with different runs as long as 
the simulation setup and the background traffic remain un- 
changed. 

The simulation results for scenarios with 3 and 6 lost pack- 
ets within a window of data are plotted in Figure 5, where 
the effective throughput of the TCP connection during the 
congestion-recovery period is shown with different T C P  re- 
covery schemes. 

The RR’s effective throughput is significantly higher than 
that of Tahoe and New-Reno, and slightly higher than that  
of SACK. Its consistently better performance across 3-drop 
and 6-drop scenarios indicates RR’s resilience to  bursty losses 
within a window of data. Also it is observed that Tahoe is 
more robust than New-Reno in case of high bursty losses, and 
achieves a higher effective throughput than New-Reno. 

3.3 Behavior with RED gateways 
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> a n ,  . . .  

- 
Minimum threshold 5 packets 
Maximum threshold 20 packets 
Maximum drop probability 0.02 
Weight queue 0.002 

I 

F i g u r e  5:  Effec t ive  Throughput (Left):  3 packe t  losses;  (R igh t ) :  6 packet losses from a w i n d o w  o f  data 

The drop-tail gateway has been shown to  arbitrarily dis- 
tribute packet losses among TCP connections, leading to  global 
synchronization [22], and biasing against bursty connections. 
The Random Early Detection (RED) [7] gateway has been 
proposed to alleviate the problems of the drop-tail gateway. 
The RED gateway detects incipient congestion based on the 
computation of the average queue size, and randomly drops 
or marks incoming packets before its buffer is exhausted. 

Although RED reduces the frequency of global synchro- 
nization and packet-loss rates and minimizes the bias against 
bursty connections, its performance strongly depends on the 
behavior of aggregate flows. It is in general difficult to  con- 
figure a RED gateway into its ideal region as the aggregate 
flows change with time. Furthermore, RED does not guaran- 
tee avoidance of multiple packet losses in a window of data, 
especially under heavy network congestion. Therefore, given 
a widely-deployed active queue management mechanisms such 
as RED, robust TCP congestion recovery is still very impor- 
tant to TCP performance. 

The simulation setup for the RED gateway experiments is 
similar to  the previous one, except that RED gateways re- 
place drop-tail gateways and the buffer size is set to  25 pack- 
ets. The configuration of the RED parameters is summarized 
in Table 4. Instead of only 3 TCP flows in the drop-tail ex- 
periments, 10 T C P  flows share the common bottlenec'k of 0.8 
Mbps. The first five TCP flows start at  time 0. Then, a 
new TCP flow starts every 0.5 second. The last one starts at  
time 2.5s. The duration of the simulation is 6 seconds. All 
TCP flows have an infinite amount of data to send during the 
simulation. The purpose of configuring this simulation envi- 
ronment is to generate heavy congestion at  the RED gateway. 
Due to the random drops at gateways, the TCP behaviors in 
the RED experiments are no longer deterministic. However, 
except for the case of a random retransmission loss that rarely 
occurs, randomness does not effect the TCP behaviors in re- 

covering from bursty losses. 
To clearly tell the difference of recovery behavior between 

the current congestion-recovery mechanisms and RR, the stan-. 
dard TCP sequence number plots are used. In each simulation 
experiment, all TCP flows use the same congestion-recovery 
mechanism. Since they experience a similar recovery behav- 
ior, only the first one is shown in the graphs. Figure 6 de- 
picts the dynamics of the first T C P  flow for different TCP 
congestion-recovery mechanisms. As with the drop-tail gate- 
way, Rl t  achieves the highest T C P  effective throughput when 
the RED gateway is deployed. As expected, RR's effective 
throughput is significantly higher than that of Tahoe and 
New-Reno, and is clearly higher than that of SACK. 

As shown in Figure 6, bursty packet losses occur after cvnd 
reaches 16. RR recovers the dropped packets during the 
next RTT while transmitting new data packets. During the 
recovery period, a further packet loss occurs at time 2.37s 
ancl the lost packet is then retransmitted around time 3.33s. 
Upon receipt of the new ACK for packet 64 at  time 3.65s, 
the TCP sender leaves the congestion-recovery phase and en- 
ters congestion-avoidance phase. However, two packet losses 
within LL window around time 4.0s make the TCP sender enter 
the congestion-recovery phase again. It will then switch back 
to congestion-avoidance when the new ACK for packet 98 is 
received at  time 5.30s. 

Figure 6 (a) clearly shows that in New-Reno, the exponen- 
tial reduction in the new data transmission stops the flow of 
returning ACKs and stalls the transmission of new data pack- 
ets. Before the receipt of the new ACK that takes the TCP 
sender out of the recovery phase, only a retransmissions and 
a new partial ACK flow around the path, which significantly 
degrades the link utilization. 

4. FITTING THE SQUARE-ROOT MODEL 
To analytically characterize the throughput of a TCP con- 

nection in steady-state as a function of packet-loss rate and 
RTT, a model has been proposed to describe the macroscopic 
behavior of the TCP congestion-avoidance algorithm [15]. It 
assumes that no retransmission timeouts exist with a persis- 
tent source and a sufficient receiver window. Under this as- 
sumption, the model gives an upper bound on the bandwidth 
of a TCP connection that can be achieved for a given ran- 
dom packet-loss rate. The estimation of an ideal achievable 
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throughput is: 

where p is the packet-loss rate, and C is a constant that lumps 
several factors into one term, including the ACK strategy. 

It has been shown in [4, 151 that TCP SACK is much closer 
to the ideal congestion behavior than TCP Reno. Therefore, 
in this paper we only compare the fitness of RR with that of 
TCP SACK against the model. The simulation environment 
is the same as that in Section 3 ,  except that the simulation 
length is 100 seconds. Only one TCP connection is active 
during the simulation, and its start-up phase is ignored. Ar- 
tificial losses are introduced at  the gateway R1. The uniform 
random packet-loss rate is varied in each experiment, while 
the MSS and RTT are fixed. (MSS is set to lOOObytes and 
RTT is set to 200ms.) Since the receiver sends an ACK for 

every data packet received, C is set to 4. 
The simulation results are plotted in Figure 7, where the 

x-axis represents the random packet-loss rate and the y-axis 
represents BW * RTT/MSS indicating the window size of 
the TCP connection. From Figure 7, one can see that RR 
achieves the same level of fitness to the model as SACK does, 
and its window size is even slightly closer to the upper bound 
provided by the model. 
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Figure  7: Comparison of fi tness to the model 

In Figure 7, with the increase of packet-loss rate, the upper 
bound of window size decreases, and the behavior of both RR 
and SACK does not fit the model very well. This deviation 
is due to the timeouts triggered for the following two rea- 
sons: l )  the possibility of retransmission loss increases with 

the increase of packet-loss rate, and the retransmission loss 
will lead to  a retransmission timeout; 2 )  the small window 
size reduces the effectiveness of fast retransmit, and hence re- 
covery of some random losses has to  resort to  retransmission 
timeouts if three duplicate ACKs are not received. 

To predict bandwidth more accurately, Padhye et al. [17] 
proposed a new model, which captures not only the behavior 
of fast retransmit but also the effect of retransmission time- 
outs upon throughput, and validated their model over a wider 
range of loss rates. 

5. FAIRNESS 
It is clear that RR improves the effectiveness of TCP. More- 

over, due to RR's fitness to the ideal TCP congestion model, 
the stability of TCP is enhanced and the fluctuation of traffic 
load on the network is reduced. One remaining concern is the 
fairness of RR. 

Owing to  its exponential back-off in the retreat sub-phase 
and linear adjustments in the probe sub-phase, RR strictly 
follows the AIMD rule (51 and is TCP-friendly. It converges 
to the optimal point if competing TCP connections have same 
RTTs. The linear adjustments in the probe sub-phase seam- 
lessly link the congestion-recovery phase with the congestion- 
avoidance phase, which makes a better use of the bandwidth 
under-utilized by TCP New-Reno or TCP Reno. 

However, to be an incrementally deployable TCP enhance- 
ment, RR must interoperate well, in terms of fairness, with 
existing TCP congestion-recovery strategies, especially TCP 
Reno. Given less timeouts and linear increase during the 
probe sub-phase, an obvious concern is that potential unfair- 
ness may result from RR when RR competes with other TCP 
connections whose implementation are TCP Reno. 

The simulation environment used for testing fairness is sim- 
ilar to that of testing RR behavior with drop-tail gateways in 
Section 3.2, except that  the buffer size at routers is set to  25 
packets. The common bottleneck of 0.8 Mbps is shared by 
20 TCP connections. All but one TCP connection have an 
infinite amount of data to send during the simulation, which 
are used as the background traffic load, and their starts are 
staggered. The first TCP connection starts a t  time 0, then a 
new TCP connection starts every 0.5 second. All background 
TCP connections have the same TCP implementation in each 
experiment. The targeted TCP connection, which has a 100 
KBytes file to  send from S20 to  K 2 0 ,  starts at  4.8 seconds. 
The transfer delay and packet loss rate of the targeted TCP 
connection are measured. 
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According to  the different TCP implementations med by 
background TCP connections and the targeted TCP connec- 
tion, the simulation experiments are categorized into four 

deploy RR incrementally in the Internet. 
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