
Robust TCP Congestion Recovery

Haining Wang and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The Universit of Michigan
Ann Arbor, M Y 48109-2122

{hxw, kgshin) @ eecs.umich.edu

ABSTRACT
This paper presents a new robust TCP congestion-recovery
scheme to (1) handle bursty packet losses while preserving
the self-clocking capability; (2) detect a TCP connection’s
new equilibrium during congestion recovery, thus improving
both link utilization and effective throughput; and (3) make
the TCP behavior during congestion recovery very close to
that during congestion avoidance, thus “extending” the per-
formance model for congestion avoidance to that for TCP loss
recovery. Furthermore, the new recovery scheme requires only
a slight modification to the sender side of TCP implementa-
tion, thus making it widely deployable.

The performance of the proposed scheme is evaluated for
scenarios with many TCP flows under the drop-tail and RED
gateways in the presence of bursty packet losses. The evalu-
ation results show that the new scheme achieves at least as
much performance improvements as TCP SACK and consis-
tently outperforms TCP New-Reno. Moreover, its steady-
state TCP behavior is close to the ideal TCP congestion be-
havior. Since the proposed scheme does not require selective
acknowledgments nor receiver modifications, its implementa-
tion is much simpler than TCP SACK.

1. INTRODUCTION
The Transmission Control Protocol (TCP) is a reliable, uni-

cast data-transfer protocol used widely for numerous applica-
tions, including electronic mail, file transfer, remote login and
WWW. The large-scale deployment of TCP in the Internet
is due mainly to its robustness in heterogeneous networking
environments. The congestion avoidance and control mech-
anisms of TCP in [lo] have made significant impacts on the
performance and behavior of the Internet [18, 201. As the
Internet continues to grow rapidly in size and scope, the in-
creasing demand for network resources has increased packet-
loss rate in the Internet, and bursty packet losses are reported
to be common [18]. Providing a robust congestion-recovery
mechanism is, therefore, an important and difficult task for
TCP implementation.

Currently, the most widely-used TCP implementation is
TCP Reno, which includes slow-start and congestion avoid-
ance [lo], as well as fast retransmit and fast recovery [ll, 191.
However, TCP Reno is shown to perform poorly in recover-
ing from bursty losses within a window of data packets [6, 131.
When multiple packets within the same window are lost, the
fast-recovery algorithm treats each packet loss in a window as
an independent congestion signal, thus halving the congestion
window multiple times. The T C P Reno’s drastic reduction of
congestion window size, plus its over-estimation of data pack-

1063-6927/01$10.00 0 2001 IEEE

ets in flight, inhibits the transmission of new data packets,
losing its self-clocking ability. A retransmission timeout is
triggered and then slow-start begins to recover from packet
losses, causing a substantial performance degradation. Recent
Internet measurements [2] show that the majority of timeouts
in TCP Reno are caused by bursty packet losses. Also, it is
observed [8] that the performance gain of TCP Vegas [3] over
T C P Reno is due mainly to T C P Vegas’ new techniques for
slow-start and congestion recovery, which are closely related
to reduction and recovery of bursty packet losses, not the
innovative congestion-avoidance mechanism in T C P Vegas.
Thus, a robust TCP mechanism that can recover from bursty
packet losses without causing timeouts is key to achieve high
T C P performance.

Several enhancements to T C P Reno’s congestion-recovery
mechanism have been proposed, including the modified fast
recovery in TCP New-Reno [9], SACK and FACK T C P [13,
14) for recovering from multiple packet losses within the same
window of data. While SACK and FACK T C P can efficiently
recover from multiple packet losses in a window, they add
significant complexity to T C P implementation, both at the
sender and receiver sides. The main weakness of SACK and
FACK is that they require “cooperative” receivers. Consid-
ering hundreds of millions of clients scattered in the Inter-
net, this requirement makes them practically unattractive for
large-scale deployment in the Internet.

Recognizing the packet-loss signal indicated by a partial
ACK ’, in TCP New-Reno, upon arrival of a partial ACK, the
sender retransmits the packet immediately following the par-
tial ACK without taking TCP out of the fast-recovery phase.
Therefore, TCP New-Reno has better capability to recover
from multiple packet losses in a window than T C P Reno, and
it does not require selective acknowledgments. However, its
ability to keep the “flywheel” of ACKs and data packets and
prevent the loss of self-clocking, depends on the T C P window
size at the time when the first packet loss is detected, as well
as on the number of packets lost within a window. T C P New-
Reno’s ability to recover from packet losses is limited by its
inherent weaknesses, including:

In T C P New-Reno, the number of new data packets
sent out per round-trip time (RTT) decreases exponen-
tially due to its policy “one new data packet is sent out
upon receipt of two duplicate ACKs” during the entire
congestion-recovery period. Since T C P New-Reno can
only recover from one dropped packet per RTT, this
rapid decrease will eventually stop the flow of returning

’ A partial ACK acknowledges some but not all of the out-
standing packets a t the start of the previous round-trip time.

199

http://eecs.umich.edu

I ’

ACKs (hence, loss of self-clocking), and a coarse timeout
will follow.

During congestion recovery, TCP New-Reno only pas-
sively recovers from the dropped packets. The exponentially-
decreased amount of data transmitted during each RTT
lowers link utilization even if it does not cause the loss
of self-clocking.

TCP New-Reno cannot detect further data losses that
might occur to the new data packets sent out during
congestion recovery. It has to resort to another trigger
of fast retransmit or a retransmission timeout to detect
such packet losses.

To reduce coarse timeouts and improve the effectiveness of
fast retransmit under a tiny window condition, right-edge re-
covery [l] has been proposed, in which “one new data packet
is sent out upon receipt of each duplicate ACK, inijtead of
two duplicate ACKs.” Similarly, Lin and Kung [12] proposed
that a new data packet be generated upon each arrival of
first two duplicate ACKs. They retain T C P aggressiveness
when there is no network congestion. However, the packet
conservation rule [lo] does not apply when congestion occurs.
TCP aggressiveness should be reduced in order to drain the
congestion from the network. These transmitted packets on
the verge of detection of a packet loss - indicating network
congestion - may add more fuel t o the “fire” at t,he con-
gested bottleneck. Also, these enhancements cannot quickly
detect further data losses during congestion recovery either.
To reduce the occurrence of bursty losses from a window of
data, Smooth-stat [21] has been proposed as an optimiza-
tion of the Slow-start algorithm, which is orthogonal to the
enhanced recovery schemes.

In this paper, we propose a robust TCP congestion recovery
- called Robust Recovery (RR) - algorithm to make a TCP
flow more robust to bursty packet losses. The key features of
RR include:

The amount of data in flight is accurately measured,
since congestion window size (cwnd) over-estimates the
number of packets in flight during congestion recovery,
stalling data transmission.

RR treats bursty packet losses within a window as a
single congestion signal. Like TCP New-Reno, RR ex-
ponentially backs off the sending rate after detecting
the first packet loss within a window. However, the ex-
ponential decrease in the amount of data injected into
the network does not last for the entire recovery period.
The exponential decrease is applied only during the first
RTT of the recovery period, which is consistent with the
treatment of single congestion signal.

By keeping track of the number of new data packets
arrived at the T C P receiver in the previous FWT, the
TCP sender can detect any further data loss very quickly
without triggering fast retransmit or retransmissi.on time-
outs. Upon detection of a further data loss, the TCP
sender linearly shrinks the pipe size and extends the exit
point of RR.

After the exponential back-off that happens at the first
RTT during congestion recovery, as long as no further
packet losses are detected, the TCP sender linearly in-
creases the amount of new data transmitted during each

RTT while recovering the dropped packet which is indi-
cated by the arrival of a new partial ACK. During this
period, similarly to the nghl-edge recovery [l], a new
data packet is transmitted upon receipt of each dupli-
cate acknowledgment.

Congestion recovery is seamlessly switched to conges-
tion avoidance when all outstanding data packets a t the
beginning of the last RTT have been acknowledged. The
big ACK problem, which causes bursty packet transmis-
sions upon exit of congestion recovery, is eliminated.

In addition to recovering the dropped packets, the RR. algo-
rithm probes the new equilibrium of a T C P connection during
congestion recovery, so as to achieve higher link utilization
while recovering the lost packets. Also, R R makes the TCP
behavior during congestion recovery very similar to that dur-
ing congestion avoidance, thereby enabling the performance
model for T C P congestion avoidance [15] to represent that for
T C P congestion recovery. This allows for accurate prediction
of the TCP-consumed bandwidth even without using selective
acknowledgments.

The performance benefits of the R R scheme are demon-
strated via extensive simulation experiments with the ns [16].
Our siniulation results show that the proposed scheme achieve:;
a t least as much performance improvements as T C P SACK
and consistently outperforms TCP New-Reno. Furthermore,
since it requires neither selective acknowledgments nor re-
ceiver modifications, its implementation and deployment is
much simpler than that of TCP SACK, and only the servers
in the Internet need to be modified slightly, while keeping
intact millions of T C P clients scattered in the Internet.

One characteristic of TCP is its dependency on the return-
ing ACKs as the trigger of data transmission and congestion
window growth. Similarly, R R relies on the returning dupli-
cate ACKs to maintain self-clocking during congestion recov-
ery. We will elaborate on the effect of ACK losses on T C P
congestion recovery in Section 2.3. RR also handles retrans-
mission losses by using timeouts, as is usually done.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed RR algorithm, and Section 3
presents its performance evaluation results in the presence of
drop-tail and RED gateways. Section 4 assesses the fitness
of .the proposed algorithm to the ideal congestion-avoidance
model. Section 5 discusses the incremental deployability of
the proposed RR algorithm along with the TCP. Finall,y, the
paper concludes with Section 6.

2. ROBUST TCP CONGESTION RECOVERY
To recover bursty packet losses within a window while pre-

sewing the self-clocking capability, we propose a new TCP
congestion-recovery (RR) algorithm. In RR, the T C P sender
not. only recovers from packet losses, but also finds the con-
nection’s new equilibrium during congestion recovery. It also
makes the recovery behavior of bursty losses within a window
of data very close t o an ideal congestion-avoidance behavior
in which only a single packet loss within a window of data
occurs periodically. R R is detailed in the next subsections.

2.11 Accurate Estimation of Data in Flight
One of the key problems with current congestion recovery

schemes is that congestion window size (cwnd) , which repre-
sents the outstanding packets at the sender side, is still used
as .the control “pedal” during congestion recovery.

200

Table 1: TCP parameters i n congest ion recovery

1 Name I Meaning of state variables II

of unsent data.

seqno

recover

During congestion recovery, the outstanding packets a t the
sender side can be divided into three groups: active, dormant,
and dropped. The active group is the set of data packets that
are in transit, which also include the retransmitted packets.
The dormant group is the set of data packets that were trans-
mitted during the past RTTs and have already arrived and
queued at the receiver, but have not yet been acknowledged.
Actually, each dormant packet has caused the receiver to send
a duplicate ACK to the sender. The dropped group is the set
of data packets that were lost during the past RTTs. Clearly,
the outstanding packets a t the sender side as a whole do not
represent the data packets in the path. Only the active group,
in which data packets are in “flight,” represents the data pack-
ets in the path, since the packets in dormant and dropped
groups have left the network either normally or abnormally
in the previous RTTs, and do not consume network resources
any longer.

Thus, as a measure of the outstanding packets at the sender
side, cwnd over-estimates the number of packets in the path
and is no longer adequate for transmission control during con-
gestion recovery. A new state variable actnum is thus intro-
duced to measure the amount of data in the path at each RTT
of congestion recovery. During congestion recovery, actnum
plays the usual role of cwnd as the means to provide conges-
tion control a t the sender side. Once the congestion-recovery
phase ends, the congestion-control responsibility is returned
to cwnd.

A similar variable pipe [6] has been proposed in T C P SACK,
which counts the number of outstanding packets in the path,
not a t the sender side. However, the role of congestion con-
trol is still played by cwnd. The T C P sender can transmit a
data packet only when pipe < cwnd. The variable pzpe just
passively estimates the number of outstanding packets in the
path. By contrast, actnum not only represents the number
of outstanding packets in the path but also controls the data-
transmission rate. In each RTT during congestion recovery,
actnum linearly grows or shrinks according to the network
condition.

the sequence number indicated by the currently
received ACK.
the highest sequence number sent before
receiving the latest dup ACKs.

L

Table 2: State variables i n the descr ip t ion of RR

1 Name I Meaning of state variables
n maxsea I the hiahest seauence number sent so far.

U

2.2 Description of Robust Recovery
Several TCP parameters [19] are used to describe RR as

listed in Table 1. For a better description of RR, we divide it

I : Single packet loss within a window of data:
2: Muluplc packet lnses within a window of data.

1 Furlher Data has

Figure 1: The structure of the RR a lgor i thm

into two sub-phases - retreat and probe - and three tran-
sient states - entrance, exit, and occurrence of a further data
loss. Figure 1 shows a high-level organization of the RR al-
gorithm. The detailed flowchart of the algorithm is given in
Figure 2. The state variables referred in this figure are ex-
plained in Table 2.

Upon rccciving 3 dup ACKs (I.e. Fast Retransmit occurs).

I. recover= mlrscq:
2. ssthresh = win * I/ 2;
3. retransnut lirst lost packet.

‘“&~~‘‘dAcK set actnum = 0 1 I Retmt Phasc.
actnum IS still maintained as 0.

I

every 2 dup ACKr. send out I ncw

I Futher Packet Loss. 1
reset actnum = ndup;

1
another dup ACK received. send out
a new data packets heyond maueq.

Pmirl ACK, and
actnum > ndup;

Partial ACK, and aclnum == ndup
set actnum = actnum + I New ACK received

(i . e . seqno> recover)

Exit.
I .ndup=O
2. cwnd = actnum * MSS.
3. actnum = 0.

Figure 2: The flowchart of the RR a lgor i thm

As with the fast recovery, RR is triggered by a fast retrans-
mit. However, in RR cwnd remains unchanged until the end
of congestion recovery, as it is not used for congestion control
in RR. At the very beginning of each RTT during conges-
tion recovery, the state variable ndup is initialized to 0. As
duplicate ACKs arrive within one RTT, ndup measures the
number of duplicate ACKs received by the sender.

Note upon the arrival of an out-of-sequence data packet a t
the receiver, the delayed acknowledgment mechanism is 0%
the receiver immediately sends out an ACK for each received
out-of-sequence data packet. The proposed RR algorithm uti-
lizes this to detect further data losses in the probe sub-phase.

If there are no further data losses, the threshold that de-
termines the end of RR’s congestion recovery is the same as
that of New-Reno and SACK, which is the sequence num-
ber of the first byte of unsent data when the first packet loss

201

I '

I

was detected by the fast retransmit. The congestion-recovery
phase ends as soon as snd.una advances to, or beyond, this
threshold, indicating that all outstanding data packets a t the
time of entering the congestion-recovery phase have been ac-
knowledged.

However, if any further data-packet loss is detected, RR
advances the threshold used to detect the end of congestion
recovery. In particular, the threshold is updated to the value
of snd.nzt when a further data-packet loss was detected. The
congestion-recovery phase ends when snduna advances to, or
beyond, this threshold, which may differ significant.ly from
the value of snd.nzt when the congestion-recovery phase was
entered.

2.2.1 Retreat Sub-phase
The retreat sub-phase only covers the first RTT of con-

gestion recovery. In this sub-phase, the TCP sender expo-
nentially backs off its transmission rate. Like in New-Reno,
during the retreat sub-phase the sender injects one new data
packet for every two duplicate ACKs received. So, the data-
transmission rate per RTT is reduced at least by half. The
end of the retreat sub-phase is marked by the arrival of the
first non-duplicate ACK, i.e., an ACK for a higher-sequence
numbered packet; if multiple packets had been lost within the
same window, it must be the first partial ACK. During the
retreat sub-phase, actnum remains to be zero.

When the first partial ACK (i.e., the end of the retreat
sub-phase) is received, actnum assumes the role of congestion
control for the rest of congestion recovery. The variable act-
num is initially set to ndup* 1/2, which is the number of new
data packets sent out during the retreat sub-phase.

As can be seen from the above description, the end of the
first RTT during congestion recovery is pivotal; the role of
congestion control at the sender is transferred from cwnd to
actnum, and the retreat sub-phase ends while the probe sub-
phase starts. Note that the first lost packet is recovered in
the retreat sub-phase. If only a single packet within a window
of data is lost, the TCP sender exits the congestion-recovery
phase after the retreat sub-phase. However, if multiple pack-
ets in a window of data were lost, all but the first of the lost
packets are recovered, one per RTT, in the probe sub-phase,
in which the sender linearly adjusts the value of actiaum ac-
cording to the network condition. The sending TCP can dis-
tinguish the two sub-phases by testing if actnum = 0.

2.2.2
If there are multiple packet losses within the same window,

a key characteristic of the probe sub-phase is that each RTT
is distinguished by the receipt of a new partial ACK. At the
sender side, the end of the current RTT and the beginning of
the next RTT are indicated by the receipt of a new partial
ACK. Figure 3 illustrates this feature. Suppose that in a
window of data, four packets are dropped and their sequence
numbers are 4000, 5000, 7000 and 8000, respective1.y. The
first loss is recovered in the retreat sub-phase, and the rest
are recovered in the probe sub-phase, which are represented
as 5 , 7, 8 in Figure 3.

A packet retransmission is triggered by the arrival of a par-
tial ACK, and this retransmission is acknowledged via the
next partial ACK if the packets are delivered in order. If
there are no ACK losses, the state variable ndup represents
the number of new data packets sent out during the last RTT
that have been received, because during congestion recovery

RTT in the Probe Sub-phase

0 : ~ r r i v d of a new p;mial ACK

0 : Arrival of a duplicate ACK '

Time
-

Figure 3: RTT in the probe sub-phase (sender's side)

each received da ta packet triggers an ACK immediately.
In cise of out-of-order delivery, a partial ACK would be

generated by the arrival of a new data packet at the receiver,
thereby generating one of duplicate ACKs upon arrival of the
retransmitted packet. However, since the sender can treai.
the partial ACK as the ACK of the retransmission, ndup still
measures the number of new data packets sent during the
last RTT that have been received. So, out-of-order delivery
does not skew the measurement of the number of new data
packets sent during the last RTT that have been received
Unfortunately, this is not valid if there are ACK losses, ancl
we will discuss it later in this section.

2.;?.3 Probe Sub-phase
,4t the very beginning of each RTT of the probe sub-phase,

the arrival of a partial ACK triggers an immediate retrans-
mission. Upon receiving each duplicate ACK after this partial
ACK, the T C P source sends a new data packet. If there are
no further data and ACK losses, at the end of this RTT, the
value of ndup should be equal to that of actnum. The reason
for this is: actnum indicates the number of new data packets
that were sent out during the last RTT; and ndup represents,
the number of new data packets sent out during the last RTT
that have been received.

Given no ACK losses, at the end of each RTT, a further.
daea loss can be detected by comparing ndup with actnum.
The equality ndup = actnum indicates no further data loss
had occurred. However, if ndup < actnum, further data losses
had occurred during the last RTT. The difference between
nd.up a.nd actnum indicates the number of further data losses.

I:n case of no further data loss, the sender will increment act-
num by 1 and send one more new data packet for every RTT
until the end of congestion recovery, or until a further data
loss is detected, which is similar to the congestion-avoidance
algorithm. However, if further data losses are detected, act-
num is reduced to the value of ndup. So, reduction of actnum
linearly depends on the number of further data losses. Since
each duplicate ACK triggers the transmission of a new data
packet in this RTT, the reduced actnum still indicates the
number of data packets in flight.

The rationale behind the linear back-off when further data
losses are detected is two-fold. The first is to reduce the dis-
turbance caused by ACK losses. The second is to avoid the
drastic reduction of in-flight data since the sender exponen-
tially backs off in the retreat sub-phase that happened only a
few RTTs ago.

Once further data losses are detected, the exit of the congestion-
recovery phase must advance to recover from them. Any fur-
ther data loss during the congestion-recovery phase can be
identified by a new partial ACK beyond the original exit, and

202

recovered by the subsequent packet retransmission without
waiting for two more duplicate .4CKs. The exit of conges-
tion recovery extends to the point where all outstanding data
packets at the start of last RTT, instead of a t the time of
entering congestion recovery, have been acknowledged.

After the sender recovers from further data losses, it ex-
its the congestion-recovery phase and enters the congestion-
avoidance phase. At that time, the role of congestion control
is transferred back to cwnd. The sender assigns the current
value of ac tnum to cwnd. Since cwnd is measured in bytes,
instead of packets, cwnd is set to actnum x M S S . Then act-
num is set to 0 again. Since the reset value of cwnd accurately
measures the amount of data packets in flight, the arrival of
the new ACK that takes the sender out of congestion recovery
only triggers a new packet out, which observes the conserva-
tion of packets. So, the big ACK problem that causes sending
packets in burst at the exit of congestion recovery has been
eliminated.

TCP New-Reno and SACK use a “maxburst” parameter to
limit the number of packets that can be sent upon receipt of a
single incoming ACK. However, it only limits burstiness but
doesn’t remove it. Also, it adversely affects bandwidth uti-
lization if the bottleneck has drained all packets; or it causes
potential packet losses if the bottleneck is not yet back to its
knee area.

2.3 Effect of ACK Losses
Since RR also relies on returning ACKs to inject new data

into the network, loss of a string of ACKs will cause RR to
lose its self-clocking. Note, however, that RR is more robust
to ACK losses than New-Reno. Rare ACK losses cause only a
slight negative effect upon congestion recovery. In the probe
sub-phase, the transmission rate only linearly decreases when
an ACK loss falsely signals a further data loss. Although TCP
SACK is less vulnerable to ACK losses, it still has to time out
if many ACKs are lost, or the ACK for a retransmission is lost,
as shown in [4].

Although data loss on the forward path and the ACK loss
on the backward appear uncorrelated in the current Inter-
net [18], we believe that if a fair share is given to each flow
at the routers, the loss probability of an ACK packet should
be much smaller than that of a data packet. Because the size
of ACK packets is usually much smaller than that of data
packets - except for those that piggyback other pieces of in-
formation - and hence an ACK-packet flow consumes much
less network resources than a data-packet flow.

3. PERFORMANCE EVALUATION OF RR
We evaluated the RR algorithm using the ns-2 [16]. Since

New-Reno is known to perform much better than Reno in
the presence of multiple packet losses, we focused on the
performance comparison among RR, Tahoe, New-Reno, and
SACK TCP. The performance evaluation is based on effective
throughput, which is a commonly-used metric for end-to-end
protocols.

3.1 The Simulation Setup
The simulated network topology is shown in Figure 4, where

Si (K ,) represents a sending (receiving) host, i = 1, ..., n. R1
and R2 represent two finite-buffer gateways. Different con-
nections from S; to Ki share the common bottleneck between
RI and R2. In our simulation experiments each data packet
is 1000 bytes long and the size of an ACK packet is 40 bytes.

/@

Figure 4: The n e t w o r k topology used for RR experi-
ments

The data traffic in our simulation is generated by FTP. The
receiver sends an ACK for every data packet it received. The
window size and buffer space at the gateways are measured
in number of fixed-size packets, instead of bytes.

3.2 Behavior with Drop-Tail Gateways
The drop-tail gateway with FIFO queueing service has been

widely deployed in the Internet, which schedules incoming
packets in a FIFO manner and discards incoming packets
when the buffer is full. The advantages of the drop-tail gate-
way are simple, scalable and easy to implement.

Table 3: Simulat ion configurat ion

Buffer size 8 packets

Bottleneck bandwidth 0.8 Mbps
Bottleneck link delay (1-way)

Side-links bandwidth 10 Mbps

The simulation parameters for R R with drop-tail gateways
are summarized in Table 3. There are three T C P connec-
tions from S, to K,, i = 1,2,3. Only the first connection
is shown in the graphs. The second and the third connec-
tions are included to obtain the desired packet loss pattern
for the first connection, which only has a limited amount of
data to send. Note the buffer size is set to achieve the de-
sired packet loss pattern. If a larger buffer size is set, we can
add more background traffic to achieve the same loss pattern.
So, the TCP behaviors in each simulation experiment are de-
terministic, and do not change with different runs as long as
the simulation setup and the background traffic remain un-
changed.

The simulation results for scenarios with 3 and 6 lost pack-
ets within a window of data are plotted in Figure 5, where
the effective throughput of the TCP connection during the
congestion-recovery period is shown with different T C P re-
covery schemes.

The RR’s effective throughput is significantly higher than
that of Tahoe and New-Reno, and slightly higher than that
of SACK. Its consistently better performance across 3-drop
and 6-drop scenarios indicates RR’s resilience to bursty losses
within a window of data. Also it is observed that Tahoe is
more robust than New-Reno in case of high bursty losses, and
achieves a higher effective throughput than New-Reno.

3.3 Behavior with RED gateways

203

> a n , . . .

-
Minimum threshold 5 packets
Maximum threshold 20 packets
Maximum drop probability 0.02
Weight queue 0.002

I

F i g u r e 5: Effec t ive Throughput (Left): 3 packe t losses; (R igh t) : 6 packet losses from a w i n d o w o f data

The drop-tail gateway has been shown to arbitrarily dis-
tribute packet losses among TCP connections, leading to global
synchronization [22], and biasing against bursty connections.
The Random Early Detection (RED) [7] gateway has been
proposed to alleviate the problems of the drop-tail gateway.
The RED gateway detects incipient congestion based on the
computation of the average queue size, and randomly drops
or marks incoming packets before its buffer is exhausted.

Although RED reduces the frequency of global synchro-
nization and packet-loss rates and minimizes the bias against
bursty connections, its performance strongly depends on the
behavior of aggregate flows. It is in general difficult to con-
figure a RED gateway into its ideal region as the aggregate
flows change with time. Furthermore, RED does not guaran-
tee avoidance of multiple packet losses in a window of data,
especially under heavy network congestion. Therefore, given
a widely-deployed active queue management mechanisms such
as RED, robust TCP congestion recovery is still very impor-
tant to TCP performance.

The simulation setup for the RED gateway experiments is
similar to the previous one, except that RED gateways re-
place drop-tail gateways and the buffer size is set to 25 pack-
ets. The configuration of the RED parameters is summarized
in Table 4. Instead of only 3 TCP flows in the drop-tail ex-
periments, 10 T C P flows share the common bottlenec'k of 0.8
Mbps. The first five TCP flows start at time 0. Then, a
new TCP flow starts every 0.5 second. The last one starts at
time 2.5s. The duration of the simulation is 6 seconds. All
TCP flows have an infinite amount of data to send during the
simulation. The purpose of configuring this simulation envi-
ronment is to generate heavy congestion at the RED gateway.
Due to the random drops at gateways, the TCP behaviors in
the RED experiments are no longer deterministic. However,
except for the case of a random retransmission loss that rarely
occurs, randomness does not effect the TCP behaviors in re-

covering from bursty losses.
To clearly tell the difference of recovery behavior between

the current congestion-recovery mechanisms and RR, the stan-.
dard TCP sequence number plots are used. In each simulation
experiment, all TCP flows use the same congestion-recovery
mechanism. Since they experience a similar recovery behav-
ior, only the first one is shown in the graphs. Figure 6 de-
picts the dynamics of the first T C P flow for different TCP
congestion-recovery mechanisms. As with the drop-tail gate-
way, Rl t achieves the highest T C P effective throughput when
the RED gateway is deployed. As expected, RR's effective
throughput is significantly higher than that of Tahoe and
New-Reno, and is clearly higher than that of SACK.

As shown in Figure 6, bursty packet losses occur after cvnd
reaches 16. RR recovers the dropped packets during the
next RTT while transmitting new data packets. During the
recovery period, a further packet loss occurs at time 2.37s
ancl the lost packet is then retransmitted around time 3.33s.
Upon receipt of the new ACK for packet 64 at time 3.65s,
the TCP sender leaves the congestion-recovery phase and en-
ters congestion-avoidance phase. However, two packet losses
within LL window around time 4.0s make the TCP sender enter
the congestion-recovery phase again. It will then switch back
to congestion-avoidance when the new ACK for packet 98 is
received at time 5.30s.

Figure 6 (a) clearly shows that in New-Reno, the exponen-
tial reduction in the new data transmission stops the flow of
returning ACKs and stalls the transmission of new data pack-
ets. Before the receipt of the new ACK that takes the TCP
sender out of the recovery phase, only a retransmissions and
a new partial ACK flow around the path, which significantly
degrades the link utilization.

4. FITTING THE SQUARE-ROOT MODEL
To analytically characterize the throughput of a TCP con-

nection in steady-state as a function of packet-loss rate and
RTT, a model has been proposed to describe the macroscopic
behavior of the TCP congestion-avoidance algorithm [15]. It
assumes that no retransmission timeouts exist with a persis-
tent source and a sufficient receiver window. Under this as-
sumption, the model gives an upper bound on the bandwidth
of a TCP connection that can be achieved for a given ran-
dom packet-loss rate. The estimation of an ideal achievable

204

0.0 1.0 2.0
I

3.0 4.0 5.0 6.0

1200 1
100.0

40.0

20.0

0.0
00

, AI-
1.0 2.0 3.0 4.0 5.0

:I B O
120.0

100.0

' A

60.0

40 0

Time (s) Time (s) Time is)

(a). New-Reno (b). SACK (c). Robust Recovery

F i g u r e 6: Simula t ion r e s u l t s fo r a scenario w i t h RED g a t e w a y s

5 .

F
B
t IO .

5 -

w *

1
flr-P'=Fo*

00 P-
0 0 10 2 0 3 0 4 0 5 0

throughput is:

where p is the packet-loss rate, and C is a constant that lumps
several factors into one term, including the ACK strategy.

It has been shown in [4, 151 that TCP SACK is much closer
to the ideal congestion behavior than TCP Reno. Therefore,
in this paper we only compare the fitness of RR with that of
TCP SACK against the model. The simulation environment
is the same as that in Section 3 , except that the simulation
length is 100 seconds. Only one TCP connection is active
during the simulation, and its start-up phase is ignored. Ar-
tificial losses are introduced at the gateway R1. The uniform
random packet-loss rate is varied in each experiment, while
the MSS and RTT are fixed. (MSS is set to lOOObytes and
RTT is set to 200ms.) Since the receiver sends an ACK for

every data packet received, C is set to 4.
The simulation results are plotted in Figure 7, where the

x-axis represents the random packet-loss rate and the y-axis
represents BW * RTT/MSS indicating the window size of
the TCP connection. From Figure 7, one can see that RR
achieves the same level of fitness to the model as SACK does,
and its window size is even slightly closer to the upper bound
provided by the model.

\

. _L e-.-- .,...-.____ --I ----- ._.____

0 001 om O M 0 0 1 005 006 007 om 009 0 ,
L-IPI

Figure 7: Comparison of fi tness to the model

In Figure 7, with the increase of packet-loss rate, the upper
bound of window size decreases, and the behavior of both RR
and SACK does not fit the model very well. This deviation
is due to the timeouts triggered for the following two rea-
sons: l) the possibility of retransmission loss increases with

the increase of packet-loss rate, and the retransmission loss
will lead to a retransmission timeout; 2) the small window
size reduces the effectiveness of fast retransmit, and hence re-
covery of some random losses has to resort to retransmission
timeouts if three duplicate ACKs are not received.

To predict bandwidth more accurately, Padhye et al. [17]
proposed a new model, which captures not only the behavior
of fast retransmit but also the effect of retransmission time-
outs upon throughput, and validated their model over a wider
range of loss rates.

5. FAIRNESS
It is clear that RR improves the effectiveness of TCP. More-

over, due to RR's fitness to the ideal TCP congestion model,
the stability of TCP is enhanced and the fluctuation of traffic
load on the network is reduced. One remaining concern is the
fairness of RR.

Owing to its exponential back-off in the retreat sub-phase
and linear adjustments in the probe sub-phase, RR strictly
follows the AIMD rule (51 and is TCP-friendly. It converges
to the optimal point if competing TCP connections have same
RTTs. The linear adjustments in the probe sub-phase seam-
lessly link the congestion-recovery phase with the congestion-
avoidance phase, which makes a better use of the bandwidth
under-utilized by TCP New-Reno or TCP Reno.

However, to be an incrementally deployable TCP enhance-
ment, RR must interoperate well, in terms of fairness, with
existing TCP congestion-recovery strategies, especially TCP
Reno. Given less timeouts and linear increase during the
probe sub-phase, an obvious concern is that potential unfair-
ness may result from RR when RR competes with other TCP
connections whose implementation are TCP Reno.

The simulation environment used for testing fairness is sim-
ilar to that of testing RR behavior with drop-tail gateways in
Section 3.2, except that the buffer size at routers is set to 25
packets. The common bottleneck of 0.8 Mbps is shared by
20 TCP connections. All but one TCP connection have an
infinite amount of data to send during the simulation, which
are used as the background traffic load, and their starts are
staggered. The first TCP connection starts a t time 0, then a
new TCP connection starts every 0.5 second. All background
TCP connections have the same TCP implementation in each
experiment. The targeted TCP connection, which has a 100
KBytes file to send from S20 to K 2 0 , starts at 4.8 seconds.
The transfer delay and packet loss rate of the targeted TCP
connection are measured.

205

I !

According to the different TCP implementations med by
background TCP connections and the targeted TCP connec-
tion, the simulation experiments are categorized into four

deploy RR incrementally in the Internet.

REFERENCES
cases.
marized in Table 5.

The simulation results of these four cases are sum- [I] H. Balakrishnan, V. Padmanabhan, S . Seshan, M. Stemm, and
R. Katz, ” T C P Behavior of a Busy Internet Server: Analysis
and Improvement”, Proceedings of I E E E INFOCOM‘98, San
Francisco, CA, March 1998.

[2] J. Rolliger, U . Hengartner, and T. Gross, “The Effectiveness of
End-to-End Congestion Control Mechanisms” Technical Report
No. 313, Dept. Computer Science, ETH Zurich, February 1999.

Technique Proceedtngs for of Congestion AGM SIGCOMM’94, Detection and London, Avoidance”, UK, August 1994.

[4] R. Bruyeron, B. Hemon, L. Zhang, “Experimentations with T C P
Selective Acknowledgment”, AGM Computer Communtcation
Rewiew, Vol. 28, No. 2, April 1998.

[5] D. Chiu and R. Jain, “Analysis of the Increase and Decrease
Algorithm for Congestion Avoidance in Computer Networks”,
Computer Networks and ISDN Systems, 17:l-14, 1989.

Reno, and SACK T C P ” , AGM Computer Communication
Review, Vol. 26, No. 3, July 1996.

for Congestion Avoidance”, IEEE/ACM Transactions on
Networking, Vol. I , No. 4 , August 1993.

Revisited”, Proceedings of IEEE INFOCOMM’2000, Tel-Aviv,
Israel, March 2000.

Table 5: Performance of the targeted TCP connect ion

~~

[3] L. Hrakmo, S . O’Malley, and L. Peterson, “TCP Vegas: New

RR Renos 18.0s 11%

The simulation results show that when the targeted TCP
Reno connection competes with other TCP connections that
are implemented with RR, its transfer delay and packet loss
rate are lower than those of competing with homogeneous con-
nections that are also implemented with TCP Reno. The per-

[61 K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe,

formance Of the targeted TCP-Reno connection is inlproved
[7] S, 17loyd and V. Jacobson, “Random Early Detection gateways

when the background traffic is changed from Reno to RR, in-
stead of being degraded. The reduced global synchronization
and traffic fluctuation are the keys to the TCP improvement
in Case 2 and 3, which is caused by the background traffic of
RR. I t demonstrates that RR is TCP-friendlv and does not

[8] U. Hengartner, J . Bolliger, and T. Gross, ” T C P Vegas

bias against a less aggressive TCP connection. Its fitness to
the square-root model shown in Section 4 also confirms its
TCP-friendliness.

As shown in Table 5 , when a single RR competes with
heterogeneous connections that are implemented wit,h TCP
Reno, i t achieves shorter transfer delay and less packet loss
rate. However, the high bandwidth consumption of FLR does
not result from taking the bandwidth away from TCP-Reno’s
connections. In the homogeneous scenario, the consumed
bandwidth of each TCP Reno connection is only 24 K’bps and
the total bandwidth consumption by 20 TCP-Reno connec-
tions is 480 Kbps. The unused bandwidth at the bottleneck
is 320 Kbps. In Case 4, the achieved bandwidth of R R is 44
Kbps, which is slightly higher than the fair share of 40 Kbps,
but there is still a 300 Kbps unused bandwidth. Therefore,
RR simply makes a better use of the bandwidth that i:j under-
utilized by TCP Reno.

6. CONCLUSION
This paper proposes and evaluates a new congestion-recovery

mechanism, called Robust Recovery (RR), to improve the per-
formance of TCP flows in the presence of bursty packet losses.
RR is evaluated by simulation, and found to be able to re-
cover from multiple packet losses in a window of data without
any significant performance degradation. Also, RR makes the
TCP behavior during congestion recovery very close to that
during congestion avoidance, thereby extending the perfor-
mance model for TCP congestion avoidance to represent that
for TCP congestion recovery as well. This allows for accurate
prediction of the TCP-consumed bandwidth even if !selective
acknowledgments are not used.

In addition to the performance advantages offered by RR,
it offers an implementation advantage. In particular, RR is
much simpler than SACK TCP, and does not require iselective
acknowledgments or receiver modification. Moreover, RR is
shown to interoperate well, in terms of fairness, with exist-
ing TCP congestion-recovery strategies, making it possible to

[9] J . Hoe, “lmproving the Start-up Behavior of a Congestion
Control Scheme for T C P ” , Proceedings of ACM SIGCOMM’96,
Stanford, CA, August 1996.

[lO:l V. Jacobson, “Congestion Avoidance and Control”, Proceedings
of AGM SIGCOMM’88, Stanford, CA, August 1988.

[l l] V. Jacobson, “Berkeley T C P Evolution from 4.3-Tahoe to
4.3..Reno”, Proceedings of the Eighteenth Internet Engineering
Ta.9k Force. 1990.

[121 D. Lin and H. T. Kung, “TCP Fast Recovery Strategies:
Analysis and Improvements”, Proceedings of IEEE
INFOCOM’98, San Francisco, CA , March 1998.

[13] M. Mathis and J . Mahdavi, “Forward Acknowledgment (FACK):
Refining T C P Congestion Control”, Proceedings of AGM
S I G C O M M ’ 9 6 , Stanford, CA, August 1996.

[14] M. Mathis, J . Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Option”, Internet Draft, work in
progress, May 1996.

[15] M . Mathis, J . Semke, J. Mahdavi and T. Ot t , “The Macroscopic
Behavior of the T C P Congestion Avoidance Algorithm”, ACM
Computer Communrcation Review, Vol. 27, No. 3, July 1997.

[16] S. McCanne and S. Floyd, ns-LBNL Network Simulator. Obtain
via.: http://www-nrg.ee.lbI.gov/ns/.

[17] J . Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling
T C P Throughput: A Simple Model and its Empirical
Validation”, Proceedings of ACM SIGCOMM’98, Vancouver,
Canada, September 1998.

Proceedtngs of AGM SIGCOMM’97, Cannes, France,
September 1997.

Publishing Company, 1994.

Traffic Patterns and Characteristics”, IEEE Network, Vol. 11,
No. 6 , November/December 1997.

[21] H . Wang, H . Xin, D. Reeves, and K. Shin, “ A Simple
Refinement of Slow-Start of T C P Congestion Control”,
Proceedings of IEEE Symposium on Computers a n d
Communications’2000, Antibes, France, July 2000.

[2:!] L . Zhang, S. Shenker, and D. Clark, “Observations on the
Dynamics of a Congestion Control Algorithm: T h e Effects of
Two Way Traffic”, Proceedings of ACM SIGCOMM’91, Zurich,
Switzerland, September 1991.

[I81 V. Paxson, “End-to-End Internet Packet Dynamics”,

[19] W . Stevens, TCP/IP Illustrated, Volume 1. Addison-Wesley

[20] K. Thompson, G. J . Miller, and R. Wilder, ”Wide-Area Internet

206

http://www-nrg.ee.lbI.gov/ns

