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Abstract 
Reconfigurable software is highly desired for open 

architecture machine control systems when new prod- 
ucts require new machine configurations and app1ica.- 
tions. In this paper, we present an architecture that 
supports reconfigurable software construction. In this 
architecture, the controller software consists of a set of 
well-defined components and a set of behavior specifi- 
cations. Each component is modeled with event-based 
external interfaces, a control logic driver and service 
protocols. Behaviors of components and their inte- 
gration are modeled as Finite State Machines (FSMs) 
and Nested Finite State Machines (NFSMs). The be- 
haviors of software can be specified in Control Plan 
programs and executed by control logic drivers at run- 
time. Such software supports executable code-level 
reconfiguration as well as remote behavioral reconfig- 
uration. Reconfiguration with heterogeneous imple- 
mentations and vendor-neutral products is also sup- 
ported. Our evaluation of the motion control soft- 
ware for a milling machine controller demonstrated 
that the software constrcuted with this architecture 
has high reconfigurability and low development and 
maintenance costs. 

Key Words: open architecture controllers, real- 
time systems, reconfigurable software, software archi- 
tecture. 

1 Introduction 
Open architecture machine controllers enable inte- 

gration of new requirements and functions, such as 
plugging in new devices, adding new control algo- 
rithms and replacing existing subsystems, in a modu- 
lar manner [t] , hence necessitating reconfigurable soft- 
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ware to support rapid system construction, plug-and- 
play devices and easy maintenance [2,3]. Typically, 
software for a machine controller consists of various 
device drivers and control algorithms which usually 
exist as software components and are desired .to be 
reused accross multiple applications. Software needs 
to be reconfigured when there is a need for changing 
devices, swapping control algorithms and modifying 
operations. Therefore, reconfigurable software will en- 
able fast and low-cost system construction when there 
is a need for reconfiguration of platform or application. 

However, the current control software is not 
reconfigurable due to proprietary designs, ad-hoc 
implementations and platform-dependent configura- 
tions, hence resulting in long production cycle and 
high maintenance costs. Although the concept of 
component-based software [4] has been shown to be 
useful for reconfigurable software development, cer- 
tain architectural issues are still unclear in this do- 
main. Components are still implemented with hard- 
coded information dedicated to some application, and 
hence cannot be reconfigured once the system is set 
up. There is also a lack of architectural mechanisms 
to support separation of configurations, implementa- 
tions and operations by which the functionalities and 
behaviors of software can be developed and reconfig- 
ured. 

Most existing software models [5-71 are used for 
design-phase abstraction of a system with very lim- 
ited consideration of post-implementation changes, 
thereby making software reconfiguration difficult. On 
the other hand, most open architecture controller re- 
searchers [t,  81 focus on reconfiguration at hardware- 
level without software reconfiguration. Some recent 
standard efforts, like IEC 61499 [9] and OMAC API 
[to], attempt to achieve software reconfigurability by 
defining component and composition models with uni- 
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fied interfaces, but are limited to design-phase struc- 
ture. An architecture that supports reconfigrable real- 
time software using port-based objects was proposed 
in [ll], but is difficult to apply for manufacturing con- 
trol systems due to the global shared memory assump- 
tion in this architecture which is not generally sup- 
ported in distributed machine control systems. OS- 
ACA [12] is another open architecture, but doesn't 
address the software reconfiguration issues directly. 

In this paper, we present an software architec- 
ture for building reconfigurable software with reusable 
components. Our goal is to provide executable-code- 
level reconfigurability for control software. In this 
architecture, components are modeled with a set of 
external interfaces, communication ports, a control 
logic driver and service protocols. Components can be 
structurally composed by linking their communication 
ports to form a new component, and then mapped to 
a platform by customizing their service protocols. The 
behavior of each component executed by the control 
logic driver is modeled as a Nested Fanate State Ma- 
chzne (NFSM), which is a formal model for compo- 
sitional behaviors. NFSM supports incremental and 
formal behavior analyses. The behavior can be speci- 
fied in a Control Plan program for runtime configura- 
tion locally or remotely. Control Plan is a language 
based on the NFSM model to specify control logic 
and operation sequences for both individual compe- 
nents and their integration. Our architecture with 
these models separates function definitions from be- 
havior specifications, and enables software reconfigu- 
ration at executable-code-level. The architecture also 
separates other non-functional constraints, especially 
timing and resource constraints, from functionality 
and behavior integration, so that these constraints can 
be analyzed and verified incrementally and as early as 
at design phase. 

The rest of this paper is organized as follows. Sec- 
tion 2 describes the architecture for reconfigurable 
software construction, including component structure 
and composition model, and structural reconfigura- 
tion. Section 3 presents the NFSM model, specifica- 
tions in Control Plan and behavior reconfiguration. 
Section 4 evaluats the proposed architecture based on 
control software construction for a machine control 
system. The paper concludes with Section 5. 

2 System Architecture 

Reconfigurable software can be viewed as consisting 
of a set of inter-communicating components, each of 
which is a pre-implemented software module and used 
as a building block. Figure 1 shows the reconfigurable 

software structure of a control system. 
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1 
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Figure 1: Reconfigurable software structure. 

2.1 Component structure 
A software component consists of a set of external 

interfaces with registration and mapping mechanisms, 
communication ports, a control logic driver and ser- 
vice protocols, as shown in Figure 2 .  

Component 
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Platform 
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Figure 2:  Reusable component structure. 

External interfaces. External interfaces define 
functionalities of a component, i.e., operations that 
can be invoked. In our architecture, external interfaces 
are represented as a set of acceptable global (exter- 
nal) events with designated parameters. A customiz- 
able event mapping mechanism is devised in a compo- 
nent to achieve the translation between global events 
and the component's internal representations. A reg- 
istration mechanism is further equipped to perform 
runtime check on received events. Only those opera- 
tions invoked by authorized and acceptable events can 
be executed. Event-based interfaces enable operations 
to be scheduled and ordered adaptively in distributed 
and parallel environments, and allow components in- 
tegrated into the system at executable-code-level. 

Communication ports. Communication ports 
are used to connect components, i.e., physical inter- 
faces of a component. Each reusable component can 
have one or more communication ports. The number 
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of ports for a component needed in a configuration can 
be determined by the system integrator. Ports can 
be customized with different service protocols to meet 
different performance requirements. Multiple connec- 
tions can share one port. 

Control logic driver. The control logic driver, 
also called the FSM driver, is designed to sepa- 
rate function definitions from control logic specifi- 
cations, and support control logic reconfiguration at 
executable-code-level. The FSM driver can be viewed 
as an interface to access and modify the control logic 
inside a component, which is traditionally hard-coded 
in a component implementation. Every component in- 
volved in behavioral control should have such a driver 
inside. Control logic of a component can then be fully 
specified in state table for FSM driver executions. A 
FSM driver will generate commands to invoke opera- 
tions of the controlled objects a t  runtime according to 
its state table and received events. State tables can 
also be packed as data and passed to another compo- 
nent to reconfigure behavior remotely. 

Service protocols. Service protocols define ex- 
ecution environments or infrastructures of a compo- 
nent. Service protocols include scheduling policies, 
inter-process communication mechanisms and network 
protocols. A component can be used in different envi- 
ronments by selecting different service protocols. Such 
selection is based on the available mechanisms of a 
platform and performance constraints (such as timing 
and resource constraints) of the system. 

2.2 Composition model and structural re- 
configuration 

Components are organized hierarchically in our 
composition model to  support reconfiguration with 
different granularities. A high-level component is corn- 
posed of inter-communicating low-level components, 
as shown in Figure 3, with a high-level control logic 
driver, some communication ports and customizable 
service protocols. 

Level 0 component 
Icr (System softwnrr) im i n  n I  

Figure 3: Heirarchical composition model 

Structural reconfiguration is usually required when 
some functions are added, removed or replaced in 
the system. Such reconfiguration can be achieved by 
adding, removing or replacing the corresponding com- 
ponents at certain levels. Reconfiguration is also re- 
quired when the existing components need to be re- 
organized to achieve a different function and/or when 
the platform is reconfigured. Such reconfiguration can 
be achieved by reorganizing connections among the 
components and/or customizing the service protocol 
when the runtime system is constructed. 

3 Behavior Specification and Reconfig- 

Control applications are normally time- and safety- 
critical, and require software behaviors to  be analyzed 
thoroughly before implementation. With the con- 
trol logic driver that separates behavior specifications 
from function definitions in our architecture, the soft- 
ware behavior can be specified and verified separately 
from implemenations, then stored with components 
and loaded when the system starts. The behavior can 
also be reconfigured after implementation. Different 
component implementations can be selected and con- 
figured with the same behavior to  satisfy different non- 
functional constraints. 

3.1 Behavior specification 
The behavior specifications of control software are 

divided into 2 disjoint parts: control logic specifica- 
tions and operation sequence specifications. 

Control logic specifications. Control logic spec- 
ifications define the static part of software behavior or 
the control logic of a component. It is modeled as a 
NFSM with a set, of traditional 'flat' FSMs organized 
hierarchically. A NFSM at level i ,  Mi,  can be defined 
as: 

Mi =< Si , l i ,Oi ,T i , s io  > (level4 FSM) 
where Si is a set of states of the ith level FSM, Ii and 
Oi are a set of inputs and outputs, respectively, Ti is 
a set of transitions, and si0 is the initial state of Mi. 
A non-initial state of Mi may contain a set of FSMs 
at  the (i + 1)th level. 

The NFSM behavior model corresponds to the hier- 
archical composition model. Only FSMs of top-level 
components in a composition are visible during be- 
havior configuration and verification. A control logic 
change in a component only affects the FSMs that im- 
mediately connect to it in a composition. 

The FSM of a component can be fully specified in 
a state table with each entry defining a possible tran- 
sition. The structure of each entry is: 

urat ion 
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STATE, EVENTinpUt, ACTION-LIST, STATE",,, 
where STATE is the current state of the system, 
EVENTinpUt is an input event, ACTION-LIST speci- 
fies the actions to take or the functions to call, and 
STATE,,,, is the component state after the transition. 
STATE and EVENT;,,,, together determine an entry 
in a state table uniquely, and consequently determine 
a unique set of operations and a unique next state. 

Operation specifications. Operation specifica- 
tions define the desired runtime input sequence that 
will trigger designated sequence of operations when no 
other interferences are involved. An operation speci- 
fication can be specified as a pre-programmed event 
sequence consisting of a list of rows, each of which is 
with the format of 

[WHEN state ] [INPUT einput [PARAM parameter I] 
OUTPUT eoZLtPZLt [PARAM parameter ] 

where state is the current state, einput is the received 
event, eoutPILt is the event to send out, and parameter 
is the data attached to the corresponding event and is 
treated as a data chunk in the specification. 

Although events used in an operation specification 
are normally global events for portable and reusable 
reasons, internal events of a component can be used 
in the component's operation specification when the 
operation specification is attached as a parameter to 
some global event for the component. 

Specifications in Control Plan. A Control Plan 
specifies software behaviors, and consists of logic defi- 
nitions and operation specifications, corresponding to 
the control logic specifications and operation sequence 
specifications, respectively. The structure of a, control 
plan is shown in Figure 4: 

FSM {label) [location] 
StateTable-entry1 
StateTahle-entry2 

ENDFSM 

OPERATION (label) [location) 
operation-element1 
operation-element2 

ENDOPERATION 

Figure 4: Structure of a control plan program. 

A FSM and ENDFSM block specifies a FSM state 
table while an OPERATION and ENDOPERATION 
block specifies a designed operation sequence for a 
component indicated by label. The location is an op- 
tion that indicates where the block will be executed. 
A block will be executed at the current local site by 
default if the location is not specified. 

It is possible for a control plan to have multiple 
FSM and OPERATION blocks for one component for 
runtime reconfiguration. A block can also be attached 

to an event as data to  pass around. Details can be 
found in [13]. 

Specifications in other models. Behavior spec- 
ifications in other models or langauges can be con- 
verted to a control plan using translators. Transla- 
tors are programs designed to deal with the problem 
of heterogeneous models and specifications in a sys- 
tem. Translators are domain-specific and specification 
language-dependent, meaning that each translator can 
only convert programs in a designate specification lan- 
guage to control plan. Therefore, several translators 
may be required in a system if there are programs in 
several different specification languages. 

3.2 ' Behavioral reconfiguration 
Behavioral reconfiguration includes control-logic 

changes and operation-sequence changes. A control 
logic reconfiguration is required when a component 
needs to process inputs differently. Such reconfigura- 
tion can be achieved by defining a different state table. 
An operation sequence needs to be modified when -the 
machine operation procedure changes (e.g., use the 
same machine to manufacture parts of another fam- 
ily). Such reconfiguration can be achieved by defining 
a new operation specification. Then, a new control 
plan with these configurations can be generated and 
loaded into the runtime system. Thus, new behaviors 
can be obtained without regenerating configurations 
and implementations of components. 

Our architecture provides executable-code-level be- 
havioral reconfigurability via the control logic driver 
mechanism. The control logic driver in each compo- 
nent enables the same component to execute different 
behaviors by loading different state tables and oper- 
ation sequence specifications. The behavior specifi- 
cations can be classified further as device-dependent 
behaviors and device-independent behaviors. The 
device-independent behaviors depend only on 'the 
application-level control logic, and can be reused for 
the same application with different devices. The 
device-dependent behaviors are specific for a device 
or a configuration, and can be reused for different ap- 
plications with the same device. 

4 Evaluation 
We evaluated the reconfigurability of a motion con- 

troller software constructed using the proposed archi- 
tecture on a 3-axis milling machine. The primary func- 
tion of this controller is to coordinate 3-axis motion 
with some designated algorithms. The software was 
running on 2 control boxes (with their own processors 
and memory) connected with peer-to-peer Ethernets. 
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The software components were implemented with the 
structure and mechanisms described in the previous 
sections. 

The components in this controller include control 
algorithms, physical device drivers and subsystems. 
Some high-level components in the motion controller 
and their functionalities are: 

AxisGroup: receives process models from the 
user or predefined control programs, and coordi- 
nates the motion of 3 axes by sending them the 
corresponding setpoints and desired velocities. 

Axis: receives commands from AxisGroup and 
sends out the signal to the controlled physical de- 
vice according to the selected control algorithrn 
(PID or FUZZY). 

0 G-code Translator: translates G-code program 
into control plan. 

4.1 Structural reconfiguration 

control software and axis component. 
Figure 5 shows the structures of the original motion 

J 

(a) Axis compo- (b) Motion controller. 
nent. 

Figure 5: Structures of motion control software and 
axis component. 

The first reconfiguration was to replace the PID 
control algorithm in Axis component with a newly- 
developed Fuzzy control algorithm. This reconfigu- 
ration was achieved by replacing the PID algorithm 
component with the Fuzzy algorithm component in- 
side the Axis component, as shown in Figure 6. This 
reconfiguration required code regeneration due to the 
functional changes inside the Axis component. 

The second reconfiguration was to augment motion 
control with a newly-developed force supervisory con- 
trol algorithm which adjusts the feedrate of axes dy- 
namically according to the sensed forces. This recon- 
figuration was achieved by adding a new force super- 
visory component developed separately with a force 

sensor device driver into the system. In this reconfig- 
uration, the new force supervisory component shared 
the same communication port with the one for Axis- 
Group commands. Since the AxisGroup component 
was implemented with the capability of changing fee- 
drate with given values at the designated port, and 
the force supervisory algorithm was implemented out- 
side the motion controller, this reconfiguration did not 
require code regeneration of the existing components 
and motion controller. The structure of motion con- 
trol software after this reconfiguration is shown in Fig- 
ure 7. 

J 

Figure 6: Axis with Figure 7: Motion control 
Fuzzy control. with force supervisory. 

4.2 Behavioral reconfiguration 
A broken tool detection algorithm was then devel- 

oped and integrated into the motion controller to  eval- 
uate the behavioral reconfigurability of the software. 
The function of broken tool detection component is to 
detect abnormal forces at runtime, and immediately 
send a stop (broken) signal to the motion controller 
upon detection of such a force. The component was 
developed and integrated in the same way as the force 
supervisory control component. To react to the new 
broken tool signal, the machine-level control logic was 
changed to implement a new behavior upon receiv- 
ing the broken tool signal, while the rest of behav- 
iors remain unchanged. Figure 8 shows both struc- 
ture and behavior changes for integration of broken 
tool detection. These reconfigurations did not require 
code regeneration of the existing software since the 
broken tool component was added outside the motion 
controller component and machine-level behavior re- 
configuration in a new state table did not affect the 
implementation. 

Compared to our previous implementations of the 
controller with traditional software approaches on the 
same testbed, the time taken to build a system with re- 
configurable software was reduced by more than 50%. 

5 Conclusion 
In this paper, we presented a component-based 

architecture to  support reconfigurable software con- 
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Figure 8 

(b) Machine-level FSM before re- 
configuration. configuration. 

(c) Machine-level FSM after re- 

Reconfiguration for broken tool integration. 

struction for open architecture controllers. In this ar- 
chitecture, reconfigurable software consists of inter- 
communicating components that are modeled with 
event-based external interfaces, a control logic driver, 
communication ports, and service protocols. Behav- 
iors of software can be modeled as NFSMs and op- 
eration sequences, specified in Control Plan sepa- 
rately from the component and system implementa- 
tions, stored and reused with components, and loaded 

’ into the system at runtime. The structural and be- 
havioral reconfigurations can be achieved by changing 
the composition of components and modifying Control 
Plan, respectively. Reconfiguration without structural 
changes inside existing components does not require 
code regeneration, thereby achieving executable-code- 
level reconfigurability. Our evaluation on a machine 
tool motion controller showed that such software is 
more flexible, reusable and reconfigurable. 
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