
Proceedings of the 2001 IEEE
International Conference on Robotics & Automation

Seoul, Korea. May 21-26, 2001

Reconfigurable Software for Open Architecture Controllers *

Shige Wang and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan

1301 Beal Avenue
Ann Arbor, MI 48109-2122

email : {wangsg,kgshin}Qeecs.umich.edu

Abstract
Reconfigurable software is highly desired for open

architecture machine control systems when new prod-
ucts require new machine configurations and app1ica.-
tions. In this paper, we present an architecture that
supports reconfigurable software construction. In this
architecture, the controller software consists of a set of
well-defined components and a set of behavior specifi-
cations. Each component is modeled with event-based
external interfaces, a control logic driver and service
protocols. Behaviors of components and their inte-
gration are modeled as Finite State Machines (FSMs)
and Nested Finite State Machines (NFSMs). The be-
haviors of software can be specified in Control Plan
programs and executed by control logic drivers at run-
time. Such software supports executable code-level
reconfiguration as well as remote behavioral reconfig-
uration. Reconfiguration with heterogeneous imple-
mentations and vendor-neutral products is also sup-
ported. Our evaluation of the motion control soft-
ware for a milling machine controller demonstrated
that the software constrcuted with this architecture
has high reconfigurability and low development and
maintenance costs.

Key Words: open architecture controllers, real-
time systems, reconfigurable software, software archi-
tecture.

1 Introduction
Open architecture machine controllers enable inte-

gration of new requirements and functions, such as
plugging in new devices, adding new control algo-
rithms and replacing existing subsystems, in a modu-
lar manner [t] , hence necessitating reconfigurable soft-

*This work is supported in part by the Defense Ad-
vanced Research Agency (DARPA) under the US Airforce
Contract No. F33615-00-(3-1706.

ware to support rapid system construction, plug-and-
play devices and easy maintenance [2,3]. Typically,
software for a machine controller consists of various
device drivers and control algorithms which usually
exist as software components and are desired .to be
reused accross multiple applications. Software needs
to be reconfigured when there is a need for changing
devices, swapping control algorithms and modifying
operations. Therefore, reconfigurable software will en-
able fast and low-cost system construction when there
is a need for reconfiguration of platform or application.

However, the current control software is not
reconfigurable due to proprietary designs, ad-hoc
implementations and platform-dependent configura-
tions, hence resulting in long production cycle and
high maintenance costs. Although the concept of
component-based software [4] has been shown to be
useful for reconfigurable software development, cer-
tain architectural issues are still unclear in this do-
main. Components are still implemented with hard-
coded information dedicated to some application, and
hence cannot be reconfigured once the system is set
up. There is also a lack of architectural mechanisms
to support separation of configurations, implementa-
tions and operations by which the functionalities and
behaviors of software can be developed and reconfig-
ured.

Most existing software models [5-71 are used for
design-phase abstraction of a system with very lim-
ited consideration of post-implementation changes,
thereby making software reconfiguration difficult. On
the other hand, most open architecture controller re-
searchers [t, 81 focus on reconfiguration at hardware-
level without software reconfiguration. Some recent
standard efforts, like IEC 61499 [9] and OMAC API
[to], attempt to achieve software reconfigurability by
defining component and composition models with uni-

0-7803-6475-9/01/$10.000 2001 IEEE 4090

http://wangsg,kgshin}Qeecs.umich.edu

fied interfaces, but are limited to design-phase struc-
ture. An architecture that supports reconfigrable real-
time software using port-based objects was proposed
in [ll], but is difficult to apply for manufacturing con-
trol systems due to the global shared memory assump-
tion in this architecture which is not generally sup-
ported in distributed machine control systems. OS-
ACA [12] is another open architecture, but doesn't
address the software reconfiguration issues directly.

In this paper, we present an software architec-
ture for building reconfigurable software with reusable
components. Our goal is to provide executable-code-
level reconfigurability for control software. In this
architecture, components are modeled with a set of
external interfaces, communication ports, a control
logic driver and service protocols. Components can be
structurally composed by linking their communication
ports to form a new component, and then mapped to
a platform by customizing their service protocols. The
behavior of each component executed by the control
logic driver is modeled as a Nested Fanate State Ma-
chzne (NFSM), which is a formal model for compo-
sitional behaviors. NFSM supports incremental and
formal behavior analyses. The behavior can be speci-
fied in a Control Plan program for runtime configura-
tion locally or remotely. Control Plan is a language
based on the NFSM model to specify control logic
and operation sequences for both individual compe-
nents and their integration. Our architecture with
these models separates function definitions from be-
havior specifications, and enables software reconfigu-
ration at executable-code-level. The architecture also
separates other non-functional constraints, especially
timing and resource constraints, from functionality
and behavior integration, so that these constraints can
be analyzed and verified incrementally and as early as
at design phase.

The rest of this paper is organized as follows. Sec-
tion 2 describes the architecture for reconfigurable
software construction, including component structure
and composition model, and structural reconfigura-
tion. Section 3 presents the NFSM model, specifica-
tions in Control Plan and behavior reconfiguration.
Section 4 evaluats the proposed architecture based on
control software construction for a machine control
system. The paper concludes with Section 5.

2 System Architecture

Reconfigurable software can be viewed as consisting
of a set of inter-communicating components, each of
which is a pre-implemented software module and used
as a building block. Figure 1 shows the reconfigurable

software structure of a control system.

-Software(
1

i F Reusable WDevelopedJ

Figure 1: Reconfigurable software structure.

2.1 Component structure
A software component consists of a set of external

interfaces with registration and mapping mechanisms,
communication ports, a control logic driver and ser-
vice protocols, as shown in Figure 2 .

Component

S e N l C e
13rOtOCO1

Platform
canfiguration

Figure 2: Reusable component structure.

External interfaces. External interfaces define
functionalities of a component, i.e., operations that
can be invoked. In our architecture, external interfaces
are represented as a set of acceptable global (exter-
nal) events with designated parameters. A customiz-
able event mapping mechanism is devised in a compo-
nent to achieve the translation between global events
and the component's internal representations. A reg-
istration mechanism is further equipped to perform
runtime check on received events. Only those opera-
tions invoked by authorized and acceptable events can
be executed. Event-based interfaces enable operations
to be scheduled and ordered adaptively in distributed
and parallel environments, and allow components in-
tegrated into the system at executable-code-level.

Communication ports. Communication ports
are used to connect components, i.e., physical inter-
faces of a component. Each reusable component can
have one or more communication ports. The number

4091

of ports for a component needed in a configuration can
be determined by the system integrator. Ports can
be customized with different service protocols to meet
different performance requirements. Multiple connec-
tions can share one port.

Control logic driver. The control logic driver,
also called the FSM driver, is designed to sepa-
rate function definitions from control logic specifi-
cations, and support control logic reconfiguration at
executable-code-level. The FSM driver can be viewed
as an interface to access and modify the control logic
inside a component, which is traditionally hard-coded
in a component implementation. Every component in-
volved in behavioral control should have such a driver
inside. Control logic of a component can then be fully
specified in state table for FSM driver executions. A
FSM driver will generate commands to invoke opera-
tions of the controlled objects a t runtime according to
its state table and received events. State tables can
also be packed as data and passed to another compo-
nent to reconfigure behavior remotely.

Service protocols. Service protocols define ex-
ecution environments or infrastructures of a compo-
nent. Service protocols include scheduling policies,
inter-process communication mechanisms and network
protocols. A component can be used in different envi-
ronments by selecting different service protocols. Such
selection is based on the available mechanisms of a
platform and performance constraints (such as timing
and resource constraints) of the system.

2.2 Composition model and structural re-
configuration

Components are organized hierarchically in our
composition model to support reconfiguration with
different granularities. A high-level component is corn-
posed of inter-communicating low-level components,
as shown in Figure 3, with a high-level control logic
driver, some communication ports and customizable
service protocols.

Level 0 component
Icr (System softwnrr) im i n n I

Figure 3: Heirarchical composition model

Structural reconfiguration is usually required when
some functions are added, removed or replaced in
the system. Such reconfiguration can be achieved by
adding, removing or replacing the corresponding com-
ponents at certain levels. Reconfiguration is also re-
quired when the existing components need to be re-
organized to achieve a different function and/or when
the platform is reconfigured. Such reconfiguration can
be achieved by reorganizing connections among the
components and/or customizing the service protocol
when the runtime system is constructed.

3 Behavior Specification and Reconfig-

Control applications are normally time- and safety-
critical, and require software behaviors to be analyzed
thoroughly before implementation. With the con-
trol logic driver that separates behavior specifications
from function definitions in our architecture, the soft-
ware behavior can be specified and verified separately
from implemenations, then stored with components
and loaded when the system starts. The behavior can
also be reconfigured after implementation. Different
component implementations can be selected and con-
figured with the same behavior to satisfy different non-
functional constraints.

3.1 Behavior specification
The behavior specifications of control software are

divided into 2 disjoint parts: control logic specifica-
tions and operation sequence specifications.

Control logic specifications. Control logic spec-
ifications define the static part of software behavior or
the control logic of a component. It is modeled as a
NFSM with a set, of traditional 'flat' FSMs organized
hierarchically. A NFSM at level i , Mi, can be defined
as:

Mi =< Si , l i ,Oi ,T i , s io > (level4 FSM)
where Si is a set of states of the ith level FSM, Ii and
Oi are a set of inputs and outputs, respectively, Ti is
a set of transitions, and si0 is the initial state of Mi.
A non-initial state of Mi may contain a set of FSMs
at the (i + 1)th level.

The NFSM behavior model corresponds to the hier-
archical composition model. Only FSMs of top-level
components in a composition are visible during be-
havior configuration and verification. A control logic
change in a component only affects the FSMs that im-
mediately connect to it in a composition.

The FSM of a component can be fully specified in
a state table with each entry defining a possible tran-
sition. The structure of each entry is:

urat ion

4092

STATE, EVENTinpUt, ACTION-LIST, STATE",,,
where STATE is the current state of the system,
EVENTinpUt is an input event, ACTION-LIST speci-
fies the actions to take or the functions to call, and
STATE,,,, is the component state after the transition.
STATE and EVENT;,,,, together determine an entry
in a state table uniquely, and consequently determine
a unique set of operations and a unique next state.

Operation specifications. Operation specifica-
tions define the desired runtime input sequence that
will trigger designated sequence of operations when no
other interferences are involved. An operation speci-
fication can be specified as a pre-programmed event
sequence consisting of a list of rows, each of which is
with the format of

[WHEN state] [INPUT einput [PARAM parameter I]
OUTPUT eoZLtPZLt [PARAM parameter]

where state is the current state, einput is the received
event, eoutPILt is the event to send out, and parameter
is the data attached to the corresponding event and is
treated as a data chunk in the specification.

Although events used in an operation specification
are normally global events for portable and reusable
reasons, internal events of a component can be used
in the component's operation specification when the
operation specification is attached as a parameter to
some global event for the component.

Specifications in Control Plan. A Control Plan
specifies software behaviors, and consists of logic defi-
nitions and operation specifications, corresponding to
the control logic specifications and operation sequence
specifications, respectively. The structure of a, control
plan is shown in Figure 4:

FSM {label) [location]
StateTable-entry1
StateTahle-entry2

ENDFSM

OPERATION (label) [location)
operation-element1
operation-element2

ENDOPERATION

Figure 4: Structure of a control plan program.

A FSM and ENDFSM block specifies a FSM state
table while an OPERATION and ENDOPERATION
block specifies a designed operation sequence for a
component indicated by label. The location is an op-
tion that indicates where the block will be executed.
A block will be executed at the current local site by
default if the location is not specified.

It is possible for a control plan to have multiple
FSM and OPERATION blocks for one component for
runtime reconfiguration. A block can also be attached

to an event as data to pass around. Details can be
found in [13].

Specifications in other models. Behavior spec-
ifications in other models or langauges can be con-
verted to a control plan using translators. Transla-
tors are programs designed to deal with the problem
of heterogeneous models and specifications in a sys-
tem. Translators are domain-specific and specification
language-dependent, meaning that each translator can
only convert programs in a designate specification lan-
guage to control plan. Therefore, several translators
may be required in a system if there are programs in
several different specification languages.

3.2 ' Behavioral reconfiguration
Behavioral reconfiguration includes control-logic

changes and operation-sequence changes. A control
logic reconfiguration is required when a component
needs to process inputs differently. Such reconfigura-
tion can be achieved by defining a different state table.
An operation sequence needs to be modified when -the
machine operation procedure changes (e.g., use the
same machine to manufacture parts of another fam-
ily). Such reconfiguration can be achieved by defining
a new operation specification. Then, a new control
plan with these configurations can be generated and
loaded into the runtime system. Thus, new behaviors
can be obtained without regenerating configurations
and implementations of components.

Our architecture provides executable-code-level be-
havioral reconfigurability via the control logic driver
mechanism. The control logic driver in each compo-
nent enables the same component to execute different
behaviors by loading different state tables and oper-
ation sequence specifications. The behavior specifi-
cations can be classified further as device-dependent
behaviors and device-independent behaviors. The
device-independent behaviors depend only on 'the
application-level control logic, and can be reused for
the same application with different devices. The
device-dependent behaviors are specific for a device
or a configuration, and can be reused for different ap-
plications with the same device.

4 Evaluation
We evaluated the reconfigurability of a motion con-

troller software constructed using the proposed archi-
tecture on a 3-axis milling machine. The primary func-
tion of this controller is to coordinate 3-axis motion
with some designated algorithms. The software was
running on 2 control boxes (with their own processors
and memory) connected with peer-to-peer Ethernets.

4093

The software components were implemented with the
structure and mechanisms described in the previous
sections.

The components in this controller include control
algorithms, physical device drivers and subsystems.
Some high-level components in the motion controller
and their functionalities are:

AxisGroup: receives process models from the
user or predefined control programs, and coordi-
nates the motion of 3 axes by sending them the
corresponding setpoints and desired velocities.

Axis: receives commands from AxisGroup and
sends out the signal to the controlled physical de-
vice according to the selected control algorithrn
(PID or FUZZY).

0 G-code Translator: translates G-code program
into control plan.

4.1 Structural reconfiguration

control software and axis component.
Figure 5 shows the structures of the original motion

J

(a) Axis compo- (b) Motion controller.
nent.

Figure 5: Structures of motion control software and
axis component.

The first reconfiguration was to replace the PID
control algorithm in Axis component with a newly-
developed Fuzzy control algorithm. This reconfigu-
ration was achieved by replacing the PID algorithm
component with the Fuzzy algorithm component in-
side the Axis component, as shown in Figure 6. This
reconfiguration required code regeneration due to the
functional changes inside the Axis component.

The second reconfiguration was to augment motion
control with a newly-developed force supervisory con-
trol algorithm which adjusts the feedrate of axes dy-
namically according to the sensed forces. This recon-
figuration was achieved by adding a new force super-
visory component developed separately with a force

sensor device driver into the system. In this reconfig-
uration, the new force supervisory component shared
the same communication port with the one for Axis-
Group commands. Since the AxisGroup component
was implemented with the capability of changing fee-
drate with given values at the designated port, and
the force supervisory algorithm was implemented out-
side the motion controller, this reconfiguration did not
require code regeneration of the existing components
and motion controller. The structure of motion con-
trol software after this reconfiguration is shown in Fig-
ure 7.

J

Figure 6: Axis with Figure 7: Motion control
Fuzzy control. with force supervisory.

4.2 Behavioral reconfiguration
A broken tool detection algorithm was then devel-

oped and integrated into the motion controller to eval-
uate the behavioral reconfigurability of the software.
The function of broken tool detection component is to
detect abnormal forces at runtime, and immediately
send a stop (broken) signal to the motion controller
upon detection of such a force. The component was
developed and integrated in the same way as the force
supervisory control component. To react to the new
broken tool signal, the machine-level control logic was
changed to implement a new behavior upon receiv-
ing the broken tool signal, while the rest of behav-
iors remain unchanged. Figure 8 shows both struc-
ture and behavior changes for integration of broken
tool detection. These reconfigurations did not require
code regeneration of the existing software since the
broken tool component was added outside the motion
controller component and machine-level behavior re-
configuration in a new state table did not affect the
implementation.

Compared to our previous implementations of the
controller with traditional software approaches on the
same testbed, the time taken to build a system with re-
configurable software was reduced by more than 50%.

5 Conclusion
In this paper, we presented a component-based

architecture to support reconfigurable software con-

4094

MolionContolle jAllrGnlud \ H

Broken Too
Detection

(a) Structure with broken tool.
’?

Figure 8

(b) Machine-level FSM before re-
configuration. configuration.

(c) Machine-level FSM after re-

Reconfiguration for broken tool integration.

struction for open architecture controllers. In this ar-
chitecture, reconfigurable software consists of inter-
communicating components that are modeled with
event-based external interfaces, a control logic driver,
communication ports, and service protocols. Behav-
iors of software can be modeled as NFSMs and op-
eration sequences, specified in Control Plan sepa-
rately from the component and system implementa-
tions, stored and reused with components, and loaded

’ into the system at runtime. The structural and be-
havioral reconfigurations can be achieved by changing
the composition of components and modifying Control
Plan, respectively. Reconfiguration without structural
changes inside existing components does not require
code regeneration, thereby achieving executable-code-
level reconfigurability. Our evaluation on a machine
tool motion controller showed that such software is
more flexible, reusable and reconfigurable.

References

[l] Y. Koren, F. Jovane, and G. Pritschow, Open Ar-
chitecture Control Systems: Summary of Global
Activity, ITIA series, vol. 2, ITIA - Institute for
Industrial Technologies and Automation, 1998.

[2] Chrysler, Ford, and GM. Requirements of open,
modular architecture controllers for applications
in the uutomitive industry, version 1.1, December
1994.

[3] General Motors Powertrain Group. Future Con-

[4] C. Szyperski, Component Software: Beyond
Object-Oriented Programming, Addison-Wesley
Publishing Company, 1997.

trols Software Requirements, April 7 1999.

[5] G. A. Agha and W. Kim, “Actors: A unifying
model for parallel and distributed computing,”
Journal of Systems Architecture, vol. 45, no. 15,
pp. 1263-1277, 1999.

[6] S. Schneider, Concurrent And Real-Time Sys-
tems: The CSP approach, John Wiley & Sons,
Ltd., 2000.

[7] B. Selic, G. Gullekson, and P. T. Ward, Real-
Time Object-Oriented Modeling, John Wiley &
Sons, Inc., 1994.

[8] ESPRIT Consortium AMICS, CIMOSA: Open
System Architecture for CIM, 2nd revised and ex-
tended edition, Springer-Verlag, 1989.

191 International Electrotechnical Commission Tech-
nical Committee. IEC 61499 - Function blocks,
1999.

[lo] OMAC working group. OMAC API Documenta-
tion, version 0.23, April 1999.

[ll] D. B. Stewart,, R. A. Volpe, and P. K. Khosla,
“Design of dynamically reconfigurable real-time
software using port-based objects,” IEEE Trans-
actions on Software Engineering, vol. 23, no. 12,
pp. 759-775, December 1997.

[12] G. Pritschow and W. Sperling, “Modular system
platform for open control systems,” Production
Engineering, vol. IV/2, pp. 77-80, 1997.

[13] S. Wang and E(. G. Shin, “Generic programming
paradigm for machine control,” in Proceedings
of the World Automation Congress 2000, MAUI,
HA, June 2000.

4095

