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This is a report on a panel titled “What are the top ten most influential
parallel and distributed processing concepts of the last millennium?” that was
held at the IEEE Computer Society sponsored “14th International Parallel
and Distributed Processing Symposium (IPDPS 2000).” The panelists were
chosen to represent a variety of perspectives and technical areas. After the
panelists had presented their choices for the top ten, an open discussion was
held among the audience and panelists. At the end of the discussion, a ballot
was distributed for the audience to vote on the top ten concepts (in arbitrary
order). The voting identified the following ten most influential parallel and
distributed processing concepts of the last millennium: (1) Amdahl’s law and
scalability, (2) Arpanet and Internet, (3) pipelining, (4) divide and conquer
approach, (5) multiprogramming, (6) synchronization (including sema-
phores), (7) load balancing, (8) message passing and packet switching, (9)
cluster computing, and (10) multithreaded (lightweight) program execution.
© 2001 Elsevier Science

1. INTRODUCTION

With the turn of the millennium, many groups have viewed the accomplishments
from the last millennium and rated how these advances have affected their
members. In this spirit, a panel was organized at the IEEE Computer Society
sponsored ‘““14th International Parallel and Distributed Processing Symposium
(IPDPS 2000).” The panel of senior computer scientists and computer engineers
was convened on Tuesday, May 2, 2000, and was titled ‘““What are the top ten most
influential parallel and distributed processing concepts of the last millennium?”

Howard Jay Siegel, professor in the Department of Electrical and Computer
Engineering, Colorado State University, organized and moderated the panel. The
eight panelists listed below were chosen to represent a variety of perspectives and
technical areas. Kai Hwang, professor of Electrical Engineering and Computer
Science and Director of Internet and Cluster Computing Laboratory at the Uni-
versity of Southern California, specializes in computer architecture, digital arith-
metic, and parallel processing, and is presently investigating Internet and cluster
computing. Kang G. Shin, professor of Computer Science and Engineering, and the
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Founding Director of the Real-Time Computing Laboratory (RTCL) in the
Electrical Engineering and Computer Science Department at the University of
Michigan, concentrates on real-time computing concerns, including real-time
operating systems, middleware services, and real-time applications (multimedia,
electronic commerce, telecommunication, etc.). Ken Kennedy, the Ann and John
Doerr Professor of Computational Engineering and Director of the Center for
Research on Parallel Computation (CRPC) at Rice University, explores architec-
ture independent programming support, including compilation techniques and lan-
guage design. Larry Snyder, professor of Computer Science and Engineering at the
University of Washington, Seattle, is the co-inventor of the Chaos Router and has
explored various aspects of parallel computing, including architectural and lan-
guage issues. Lui Sha, professor of Computer Science at the University of Illinois at
Urbana—Champaign, researches real-time systems and is recognized for his contri-
butions to real-time computing theory, changing the real-time computing open
standards, and for solving the Mars Pathfinder’s priority inversion problem while it
was on Mars. Mani Chandy, the Simon Ramo Professor and Executive Officer for
Computer Science at Caltech, studies concurrent computing and network models
of communication and computation performance. Marc Snir, senior manager of
research on scalable parallel systems at the IBM T. J. Watson Research Center, is
concerned with scalable massively parallel processing systems, computational
complexity, parallel algorithms, and parallel architectures, and was a major contri-
butor to the MPI standard. Thomas Sterling, a principal scientist at the NASA Jet
Propulsion Laboratory and a faculty associate at Caltech, is a leader in petaflop
computing, and is known for his advances in processor-in-memory execution
models and Beowulf cluster computing.

The panelists’ presentations are summarized in the order in which they were
given (alphabetical order by the first name) in Section 2. This is followed by the
highlights of the ensuing discussion in Section 3. Finally, Section 4 reports the
results of the informal audience survey regarding their top ten concepts.

2. PRESENTATIONS

2.1. Guidelines

The panel chair, H. J. Siegel, introduced the topic and the panelists and asked
each panelist to present his “top ten list” for the most influential parallel and dis-
tributed processing concepts. As a few guidelines, the chair stated that the panelists
could present less than 10 items, the ordering of the list could be arbitrary, and the
panelists were restricted to 10 minute presentations. The audience members were
invited to participate in an open discussion and ask questions after the presenta-
tions. Siegel also requested that the audience members vote on the top 10
(in arbitrary order) most influential concepts after the open discussion.

Many of the panelists reported less than 10 concepts. In addition, many of the
panelists issued a disclaimer that some of their proposed concepts may predate the
millennium being considered.
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TABLE 1
Kai Hwang’s Top Ten List
Amdahl’s Law PRAM model
Dataflow computing RISC architecture
Distributed shared memory machines Parallel software or programming
RAID Clusters of computers
Internet computing EPIC—explicit parallelism instruction computing

2.2. Kai Hwang

Kai Hwang began his presentation by noting that computing was only 50 years
old, and as such, he selected his choices from the past 50 years. Hwang’s list of the
top ten influential concepts is shown in Table 1. Hwang went on to justify why he
thought that the concepts given in his list were the most important concepts in the
last millennium. He felt that Amdahl’s law was an important concept because it set
a limit on parallel processing, and that the PRAM (parallel RAM) model was
important because it simplified the development of parallel algorithms. He believed
that dataflow computing was important because it enabled fine-grain parallelism.
Hwang reasoned that the DSM (distributed shared memory) architecture allowed
the combination of the shared-memory and the message passing paradigms and was
therefore an important concept. He concluded by stating that his list covered both
models, e.g., PRAM and RAID (redundant array of inexpensive disks), and archi-
tecture advancements, e.g., RISC (reduced instruction set computing) and clusters.

2.3. Kang G. Shin

Kang Shin began by stating that the problem was far too difficult to answer, and
pointed out that neither computer scientists and engineers nor the computers had
existed for a thousand years. Shin emphasized that it was the integration of many
concepts, rather than many individual concepts, which had developed computing
into its present form. He feared that each person’s tunnel vision would produce
very subjective answers to the posed question. Then Shin presented his list of top
ten items (shown in Table 2). He also addressed the concern about who cared about
the answers to the panel question, and why they cared. He believed that Wall Street
cared about the answers because Internet companies were becoming very rich based
on parallel and distributed computing technology. Shin concluded with the sugges-
tion that high performance Internet servers were a good target for parallel and
distributed computing.

2.4. Ken Kennedy

Ken Kennedy began with an analysis of the question posed to the panel. In par-
ticular, he focused on the words “influence’ and “concept,” arguing that a concept
to be included among the most influential of the millennium should have deeply
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TABLE 2

Kang Shin’s Top Ten List

Arpanet and its descendents (TCP/IP, UDP) World Wide Web

LAN:S (especially Ethernet) Concurrent CPU, I/0, and memory

E-mail Multitasking OSs and parallelizing compilers
Stored memory, SIMD, MIMD computers Distributed shared memory

Client-server computing Distributed embedded systems and devices

influenced the way we think about parallelism. He asserted that such a concept
should be both broad and abstract. In Kennedy’s view, most of the important
abstract parallel concepts arose from analogies in everyday life. Examples include
divide and conquer, cloning, load balancing, and synchronization. He argued that
even those concepts that do not immediately seem to arise from everyday life (like
scalable communication interconnects) could after some thought be linked to anal-
ogous concepts outside the world of parallel computation. Kennedy pointed out
that this leads to the question: were these concepts influential because they captured
the familiar, or were they familiar because they were uniquely powerful concepts?
He remarked that when the panel had disposed of this issue, perhaps it could finally
resolve the primacy of the chicken or the egg. Kennedy’s top ten list is presented in
Table 3.

2.5. Larry Snyder

Larry Snyder began his presentation by discussing a linear plot (Fig. 1) of the
millennium’s advances in parallel processing. Snyder pointed out that the plot
showed that the advances were clustered near the 2000 end of the timeline, even
when the graph was converted to a log time scale (Fig. 2). He felt that even though
the advances were clustered at one point, the important parallel and distributed
computing concepts were more evenly distributed. He cautioned that we must
interpret parallel ideas more broadly to get an even distribution of ideas from the
past millennium.

Starting in a light tone, Snyder began his broadening of the traditional parallel
concepts by interpreting the Parthenon as a parallel architecture, by contending
that the first instance of multithreading was a programmable loom with multiple

TABLE 3

Ken Kennedy’s Top Ten List

Divide and conquer Scalable interconnect

Multiprogramming Pipelining

Synchronization Multithreading

Scalability—Amdahl’s law Cloning of sheep, code, and computations

Load balancing Distributed memory
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FIG. 1. Larry Snyder’s plot of millennium’s advances in parallel processing using a linear scale.

threads, and by observing that the leaning tower of Pisa was a faulty parallel
design. On a more serious note, he stated that we needed to refine the criterion used
to find the top ideas of the millennium. He noted that a concept needed to have
importance beyond parallel computing to qualify as a concept that had the greatest
impact in the last millennium. Using this criterion, Snyder delivered his top five
ideas from the second millennium (shown in Table 4).

Snyder thought that ‘“zero” was the second millennium’s most important
concept. He claimed that “one” was known before the second millennium. Snyder
reasoned that the ‘“‘synthesis that gave the binary alphabet its other half, the
coupling of “off”” with the ubiquitous “on,” the ability to have nothing and know
it, to recognize an empty task queue and initialize memory, or even to have memory
at all, must be the second millennium’s greatest contribution to parallelism and
computation generally.”

2.6. Lui Sha

Lui Sha said that his emphasis would be on resource management concepts
because he worked in real-time systems. Sha observed that there were two perspec-
tives to consider: (1) application development (e.g., divide and conquer) and (2)
foundation and infrastructure. He reasoned that he would present only five key
concepts from the last millennium because his work dealt with only one of the two
perspectives, foundation and infrastructure. After presenting his top five concepts
(shown in Table 5). Sha discussed in greater detail the fifth concept in his list, the
concept of priority inversion control (i.e., reducing and bounding the interference of
lower priority tasks on higher priority ones). He felt that the priority inversion
control was not very well known outside of the real-time computing and multi-
media communities. Sha claimed that the standard computer hardware bus arbitra-
tion logic and operating systems synchronization mechanisms suffered from
unbounded priority inversion until this problem was addressed in the late 1980s to
early 1990s. He stressed that this concept had transformed the infrastructure of
resource allocation mechanisms and has become part of open hardware and
software standards including IEEE POSIX Real-time Extension, Ada 95, IEEE
Futurebus+, and all the later standards related to real-time computing such as
Real-Time CORBA and Real-Time JAVA.

2.7. Mani Chandy

Mani Chandy began his presentation with the observation that a system might
(1) use concurrency for speed or (2) be inherently concurrent. Chandy claimed that
the phrase parallel computing was often used for a system that used concurrency
for speed, and that the phrase distributed computing was often used for an
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FIG. 2. Larry Snyder’s plot of millennium’s advances in parallel processing using a log scale.

inherently concurrent system. He noted that a parallel computing problem consisted
of selecting an algorithm, a programming language, and a machine to execute a
given computational task with adequate speed. He claimed that designers of parallel
computing systems did not have to use concurrency; they might prefer to use
sequential algorithms provided they executed with adequate speed. Chandy stated
that most of the concepts that he considered important were in distributed comput-
ing because, in his view, inherent concurrency would play a much more critical role
in the next millennium than discretionary concurrency would. Chandy further
noted that distributed computing dealt with collaboration among collections of
people, information appliances, and objects. He felt that the designers of those
infrastructures could not choose to eliminate concurrency from consideration
because concurrency was part of the specification. He remarked that we needed to
examine if concurrency was part of the problem or part of the solution.

Chandy felt that the advances in parallel computing were disappointing. He
reasoned that someone like Newton could be taught the last millennium’s advan-
cements in parallel computing in a one-month long tutorial, but that modern che-
mistry or modern physics could not be taught in the same time period. He asked
why parallel computing had not advanced as much as modern chemistry or
physics had.

Chandy then presented his list of influential concepts (shown in Table 6). He also
mentioned several disappointments in distributed computing (shown in Table 7).
He commented that although our efforts in advancing the economy might be
commendable, not much of the parallel computing work was truly revolutionary.
Chandy concluded by asserting that if the advances in parallel computing were
truly revolutionary, it would take Newton more than a month-long tutorial to
understand them.

2.8. Marc Snir

Marc Snir started his discussion by posing the following question. “Twenty years
ago we had distributed systems with 10’s to 100’s of loosely connected, full-function
computers, parallel systems with 100’s of tightly connected, sub-function compu-
ters, and massively parallel systems with 1000’s or 1,000,000’s of tightly coupled,

TABLE 4

Larry Snyder’s Top Five List

Broadcast communication Clocking
Point-to-point communication Pipelining

Zero
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TABLE 5
Lui Sha’s Top Five List
Mutual exclusion and synchronization State feedback
Rate control Weighted fair queuing

Priority inversion control

sub-function computers. Today we have a distributed system called the World Wide
Web, with 100,000’s to 1,000,000’s of interacting computers, a 64-way shared
memory multiprocessor is considered a large-scale parallel system, and a cluster of
1,500 4-way SMPs is considered to be a massively parallel system. Have we gone
backwards?”’ Snir asked the audience if the parallel computing community had
stopped dreaming and if massive parallelism was dead. Then he announced that he
had a plan (in contrast to a dream) for massively parallel computing. Snir’s plan
was to build a one petaflop massively parallel system comprising more than 10
million execution threads. He reasoned that because a highly parallel computer
could beat the best human chess player, massively parallel computers may be the
way to intelligent computing. He pointed to the brain as an example of a massively
parallel system that had worked well (at 10" operations per second). He claimed
that the parallel computing community could achieve (small) brain performance on
a supercomputer in less than ten years.

Snir also felt that neural networks could serve as a feasible model for the mas-
sively parallel systems. He claimed that small neural networks could learn to perform
specific tasks very efficiently, and that (infinite) neural networks could serve as
universal compute devices. As other examples of massively parallel systems that had
worked well, he offered the (human) body and cellular automata. Snir’s top five list
is given in Table 8.

2.9. Thomas Sterling

Thomas Sterling began by expressing that his understanding of the panel ques-
tion was different from that of other panelists’ understanding. Sterling felt that the
answer to the panel question should involve both the enabler and the constraint on
parallelism—the market.

He then presented his list of concepts (shown in Table 9). After presenting the
list, Sterling mentioned that our ideas of parallelism had parallels in the real world,
and that we could benefit from those analogues in our own computing universe. His
examples of real-world parallelism included military troops as an example of

TABLE 6

Mani Chandy’s Top Four List

Problem partitioning Synchronization

Domain decomposition Determinism
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TABLE 7

Mani Chandy’s Top Seven Distributed Computing
Disappointments List

Massively distributed peer to peer systems Formal methods
Authentication Mobile agents
Standards Tiered systems
Encryption

SIMD, galactic clusters as multitasking, and e-mail as message passing. Sterling felt
that there were other parallelism paradigms in the real world that we were not fully
exploiting. He cited power generation, transmission, and distribution; gravitational
systems; and speciation and evolution as examples of those paradigms. For the case
of a gravitational system like the solar system, Sterling pointed out that each planet
had its own measure of the system state (i.e., the gravitational field through super-
position of the contributions of the gravity forces from other planets). Furthermore,
the net force was calculated within the space at each point, and the change in
acceleration, velocity, and position was made for each planet at the same time. He
posed the question: how could we model the amounts of parallelism available in
these systems? He also provided a list of constraints that have hindered parallel
computer design. This list is given in Table 10.

Sterling concluded by discussing ‘“hyper-super-massive-parallelism.” He thought
the concept of massive parallelism was used too soon. He suggested that massive
parallelism should have the following attributes: relaxation (finding a global
solution in distributed systems through local interactions using successive approx-
imations), ensemble (different elements of a distributed system performing the
computation simultaneously with their own version of the global data), stochastic,
nondeterministic, and “localized action yields global behavior.” Elaborating more
on the last attribute, he felt that the emergence of global behavior and rules from
local and parallel behavior and rules (e.g., as in Conway’s game of life) was a very
important concept, and a good example of synergy or symbiosis. Sterling asserted
that the universe was the ultimate constraint-based parallel computer, with the
program being the collection of physical laws and the input data being the initial
conditions at the start of the universe.

3. GROUP DISCUSSION

After the panelists presented their ideas, the floor was opened for discussion. The
first question asked of the panelists was “What is required in the next millennium
to manage these massively parallel systems of the future?”’ Snir answered by point-
ing out that one had to let go of the deterministic approaches to understanding
systems, and that one had to examine stochastic and continuous modeling to
analyze large systems. Sterling claimed that programming constructs of the future
would dispense of the program counter, and focus on local action. This would then
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TABLE 8

Marc Snir’s Top Five List

Neural networks Machine chess/artificial intelligence
Digital simulations of continuous events Packet switching

Cellular automata

merge the ideas of program flow and data structure into the same semantic con-
struct, which would then allow fine grain parallelism to be used independently of
particular resources. Chandy thought that perhaps the decision to build a digital
system was a step backward. But he claimed that this backward step was taken
because customers would not buy a computer that sometimes ran slow and some-
times ran fast, and that the marketplace wanted exactly deterministic behavior.

Hwang commented that massive parallelism would not lead to intelligence. He
felt that the only way to gain intelligence was to create systems that were more
biological. Chandy noted that computer scientists built computers based upon their
observations of nature, whereas chemists investigated outside of their knowledge
base and designed systems that were not seen in nature. Sha remarked that
although most systems found in nature were analog, computer scientists had moved
to digital systems because digital systems were deterministic and predictable. Snir
said that when one dealt with a very large system, one could not attempt to analyze
the system at a low level. He gave the example of the Internet as a large system,
where one would not look at individual packets entering the Internet. Sha
interjected that the Internet was not trying to solve a single large problem; instead it
was trying to solve many different problems.

An audience member stated that in the current marketplace, influence and
popularity determined which software was used most often, not worthiness. As a
result, users were stuck with software that was unreliable and resulted in problems
with performance and productivity. He then asked the panelists if that state existed
because good ideas did not have enough influence, or because there were not
enough good ideas. Chandy began the discussion by asking if concurrency was part
of the problem or part of the solution. He felt that concurrency was part of the
problem with the World Wide web. Chandy claimed that for intelligence, con-
currency was not part of the problem. He also thought that intelligence would be
found with a very fast machine, not necessarily a parallel machine. Kennedy

TABLE 9

Thomas Sterling’s Top Ten List

Bit level parallelism Multitasking
Communicating sequential processors Fine rain pipelining
SIMD /SPMD Dataflow

Systolic systems Multithreading

Cellular automata Futures
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TABLE 10

Thomas Sterling’s Parallelism Implementation
Constraints

Cost of devices Limited resources

Overhead and temporal costs Mass market

Software mindset/models

continued by looking at parallel software and how the market had influenced it. He
thought that good ideas had been developed that did not have the desirable
influence due to the market. Sterling stated that there were two points that should
be considered: choice of program and choice of management. He thought that,
currently, the same people handled both of these areas, and that should be done
differently in the future.

Another audience member thought that a historian would do a statistical analysis
on how often concepts appeared most often in the literature to decide how impor-
tant a given concept was. In this regard, he thought that Flynn’s taxonomy was one
of the most cited concepts in the literature, and deserved an honorable mention.
The panel chair, however, said that many students now in universities had never

TABLE 11

The Ballot for the Audience Survey

Adaptive distributed systems

Amdahl’s Law and scalability

Arpanet and subsequent Internets
(TCP/UDP/IP)

Basic data structures

Big O and asymtotics

Cache coherence

Cellular automata (systolic arrays)

Client-server computing

Cloning

Cluster computing

Communicating sequential processes (aka
message passing)

Computer chess and Deep Blue

Data distribution

Data parallelism, including array SIMD and
some vector

Dataflow with I-structures and futures

Depth-first search and applications

Digital simulation

Load balancing

Market

Message passing and packet switching

MPI

Multiprogramming

Multithreaded (lightweight) program execution

NP-completeness and reductions

Neural networks

One-sided (asynchronous) communication

Optical fiber technology and wireless

technology

parallel programming

Parallel search

Pipelining including vector operations,
overlapping memory bank access,
and wormbhole routing

PRAM

Priority inversion

PVM

Quality of service
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Continued

Distributed memory systems (not shared)

Distributed shared memory systems

Divide and conquer

Encryption and authentication algorithms

EPIC paradigm

Ethernet

FFT algorithm

Ford /Fulkerson for maxflow/mincut
algorithm

Fork-join

Full/empty bits

Futures

Incompleteness and incomputability

Interleaving model

Java

Job stream parallelism

Gauss for his text and work on factoring

Linear programming

RAID

RISC microprocessor

Remote procedure call

RSA, Merkle, and Diffie-Hellman for public-
key cryptography

Scalable communications interconnect

Scalable database servers

Synchronization (including semaphores)

Transaction systems

Understanding composition (of complex
systems from simpler ones) and state

URLs

Vector architectures

Web

Weighted fair queuing

XML

Quantum computing

Von Neuman architecture

Zero

heard of “SIMD” or “MIMD” acronyms used in Flynn’s taxonomy. Kennedy
suggested there could be many ways one could decide upon the top ten concepts of
the millennium. He said that one could look for the top ten most cited papers, and
then determine the concepts that were in those papers; or the audience could vote
on the individual concepts; or one could look for successful systems that were based
on some subset of the ideas that were being considered for the top ten.

TABLE 12

The Top Ten Most Influential Concepts of the Last Millenium

Number of votes Concept
96 Amdahl’s Law and scalability
95 Arpanet and Internet
79 Pipelining
63 Divide and conquer
53 Multiprogramming
50 Synchronization (including semaphores)
42 Load balancing
42 Message passing and packet switching
40 Cluster computing

39 Multithreaded (lightweight) program execution
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4. VOTING

Prior to the panel discussion, a ballot was prepared for the distribution to the
audience members. This ballot listed all of the suggestions received from panelists
prior to the panel and was slightly modified and expanded at the end of the panel
based on comments from the panelists and audience. The ballot, edited slightly for
clarity, is shown in Table 11. The audience (and panelists) then voted for up to 10
top choices (in an arbitrary order). A total of 139 ballots were returned. The top ten
most voted concepts, along with the number of votes cast, are shown in Table 12.
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