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Abstract—Quality-of-service (QoS) routing satisfies application
performance requirements and optimizes network resource usage
by selecting paths based on connection traffic parameters and
link load information. However, distributing link state imposes
significant bandwidth and processing overhead on the network.
This paper investigates the performance tradeoff between protocol
overhead and the quality of the routing decisions in the context of
the source-directed link-state routing protocols proposed for IP
and ATM networks. We construct a detailed model of QoS routing
that parameterizes the path-selection algorithm, link-cost func-
tion, and link-state update policy. Through extensive simulation
experiments with several network topologies and traffic patterns,
we uncover the effects of stale link-state information and random
fluctuations in traffic load on the routing and setup overheads.
We then investigate how inaccuracy of link-state information
interacts with the size and connectivity of the underlying topology.
Finally, we show that tuning the coarseness of the link-cost metric
to the inaccuracy of underlying link-state information reduces
the computational complexity of the path-selection algorithm
without significantly degrading performance. This work confirms
and extends earlier studies, and offers new insights for designing
efficient quality-of-service routing policies in large networks.

Index Terms—Explicit routing, link-state, modeling, quality-of-
service, signaling, source-directed routing.

I. INTRODUCTION

T HE MIGRATION to integrated networks for voice, data,
and multimedia applications introduces new challenges

in supporting predictable communication performance. To ac-
commodate diverse traffic characteristics and quality-of-service
(QoS) requirements, these emerging networks can employ a va-
riety of mechanisms to control access to shared link, buffer, and
processing resources. These mechanisms include traffic shaping
and flow control to regulate an individual traffic stream, as well
as link scheduling and buffer management to coordinate re-
source sharing at the packet or cell level. Complementing these
lower level mechanisms, routing and signaling protocols con-
trol network dynamics by directing traffic at the flow or connec-
tion level. QoS routing selects a path for each flow or connec-
tion to satisfy diverse performance requirements and optimize
resource usage [1]–[3]. However, to support high throughput
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and low delay in establishing connections in large networks,
the path-selection scheme should not consume excessive band-
width, memory, and processing resources.

In this paper, we investigate the fundamental tradeoff between
these resource requirements and the quality of the routing de-
cisions. We focus on link-state routing algorithms where the
source switch or router selects a path based on the connection
traffic parameters and the available resources in the network.
For example, the ATM Forum’s private network–network in-
terface (PNNI) standard [4] defines a routing protocol for dis-
tributing topology and load information throughout the network,
and a signaling protocol for processing and forwarding con-
nection establishment requests from the source. Similarly, pro-
posed QoS extensions to the open-shortest-path-first (OSPF)
protocol include an “explicit routing” mechanism for source-di-
rected IP routing [5], [6]. During periods of transient overload,
link failure, or general congestion, these schemes are able to
find QoS paths for more flows. However, QoS routing proto-
cols can impose a significant bandwidth and processing load on
the network, since each switch must maintain its own view of
the available link resources, distribute link-state information to
other switches, and compute and establish routes for new con-
nections. To improve the scalability of these protocols in large
networks, switches and links can be assigned to smaller peer
groups or areas that exchange detailed link-state information.

Despite the apparent complexity of QoS routing, these
path-selection and admission-control frameworks offer net-
work designers a considerable amount of latitude in limiting
overheads. Computational overhead depends on the complexity
of the routing algorithm and the frequency of route compu-
tation, whereas protocol overhead depends on the frequency
of link-state update messages. Link-state information can be
propagated in a periodic fashion or in response to a significant
change in the link-state metric (e.g., utilization). For example,
a link may advertise its available bandwidth metric whenever it
changes by more than 10% since the previous update message;
triggering an update based on a change in available capacity
ensures that the network has progressively more accurate infor-
mation as the link becomes congested. In addition, imposing a
minimum time between update messages avoids overloading
the network bandwidth and processing resources during rapid
fluctuations in link bandwidth. However, large periods and
coarse triggers result in stale link-state information, which
can cause a switch to select a suboptimal route or a route that
cannot accommodate the new connection. Tuning the frequency
of link-state update messages requires a careful understanding
of the tradeoff between network overheads and the accuracy of
routing decisions.
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Several recent studies consider the effects of stale or coarse-
grained information on the performance of QoS routing algo-
rithms. For example, analytical models have been developed to
evaluate routing in hierarchical networks where a switch has
limited information about theaggregateresources available in
other peer groups or areas [7]. To characterize the effects of stale
information, comparisons of different QoS-routing algorithms
have included simulation experiments that vary the link-state
update period [8]–[10], while other work considers a combi-
nation of periodic and triggered updates [11]. In particular, the
work in [12] evaluates several variants of triggered updates cou-
pled with hold-down timers for three small topologies. How-
ever, these studies have not included a detailed evaluation of
how the update policies interact with realistic traffic parameters
and the key properties of the underlying network topology. Fi-
nally, new routing algorithms have been proposed that reduce
computation and memory overheads by basing path selection
on a small set of discrete bandwidth levels [6], [10]. These al-
gorithms address the tradeoff between the granularity of the
link-state metrics and computational complexity. However, ear-
lier studies do not consider how the coarse-grain metrics interact
with out-of-date link-state information.

In this paper, we investigate these performance issues through
a systematic study of the scaling characteristics of QoS routing
in large backbone networks. In contrast to recent simulation
studies that compare different routing algorithms under specific
network configurations [8]–[11], [13]–[17], we focus on the in-
terplay between link-state update policies, traffic patterns, and
network topology. Our contributions include:

• Routing versus setup failures:In evaluating the connec-
tion blocking probability, we draw an important distinc-
tion betweenrouting failures andsetupfailures. A routing
failure occurs when the source switch cannot compute a
feasible path for the new connection. In contrast, a setup
failure occurs when the source selects a seemingly feasible
path that ultimately cannot support the new connection.
Setup failures incur extra overhead to reserve resources
along the path. Our experiments illustrate how the fre-
quency of routing and setup failures depends on periodic
and triggered link-state updates.

• Traffic and topology: The performance of QoS routing
depends on the traffic patterns and the underlying network
topology. Drawing on recent work on traffic character-
ization, we consider how bursty connection arrivals
and highly variable connection durations interact with
link-state update policies. In addition, we study how the
benefits of having a rich network topology vary with
the staleness of the link-state information. The study
of network topology draws on parameterized models of
random graphs and regular graphs, as well as an example
of a real backbone topology.

• Granularity of link-state metrics: Limiting the gran-
ularity of link-state metrics reduces the computational
overhead for the routing algorithm, at the risk of higher
blocking probabilities. We present a detailed comparison
of routing performance under a range of granularities
for the link-state metrics. The experiments focus on how
out-of-date link-state information impacts the relative

performance of coarse-grain link-state metrics. These
results demonstrate how to reduce the computational
complexity of the routing algorithm without sacrificing
performance.

In Section II, we construct a detailed model of QoS routing
that parameterizes the path-selection algorithm, link-cost func-
tion, and link-state update policy, based on the PNNI standard
and proposed QoS extensions to OSPF, as well as the results
of previous performance studies. Since the complexity of the
routing model precludes a closed-form analytic expression, we
present a simulation-based study that uncovers the effects of
stale link-state information on network dynamics. To efficiently
evaluate a diverse collection of network configurations, we have
developed a connection-level event-driven simulator that limits
the computational overheads of evaluating the routing algorithm
in large networks with stale information. Based on this simu-
lation model, Section III examines the effects of periodic and
triggered link-state updates on the performance and overheads
of QoS routing. The experiments in Section IV evaluate several
different topologies to explore the impact of inaccurate informa-
tion on the network’s ability to exploit the presence of multiple
short routes between each pair of switches. Section V studies the
impact of stale load information on the choice of link metrics for
selecting minimum-cost routes for new connections. Section VI
concludes the paper with a summary of our findings and guide-
lines for tuning link-state update policies and link-cost metrics
for QoS routing in large backbone networks.

II. ROUTING AND SIGNALING MODEL

Our study evaluates a parameterized model of QoS routing,
where routes depend on connection throughput requirements
and the available bandwidth in the network. When a new con-
nection arrives, the source switch computes a minimum-hop
path that can support the throughput requirement, using the sum
of link costs to choose among feasible paths of equal length. To
provide every switch with a recent view of network load, link
information is distributed in a periodic fashion or in response to
a significant change in the available capacity.

A. Route Computation

Since predictable communication performance relies on
having some sort of throughput guarantee, our routing model
views bandwidth as the primary traffic metric for defining both
application QoS and network resources. Although application
requirements and network load may be characterized by several
other dynamic parameters, including delay and loss, initial
deployments of QoS routing are likely to focus simply on
bandwidth to reduce algorithmic complexity. Hence, our model
expresses a connection’s performance requirements with a
single parameter. Depending on the admission control policy,

may represent a peak or average bandwidth of the connection,
or some other estimate of the necessary bandwidth allocation.
In practice, the end-host application may explicitly signal its
required bandwidth, or network routers can detect a flow of
related packets and originate a signaling request. Each link
has capacity and reserved bandwidth that cannot
be allocated to new connections. Consequently, a switch’s
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link-state database stores (possibly stale) informationabout
the reserved bandwidth for each linkin order to compute
suitable routes for new connections. Each link also has a cost

( ) that depends on the reserved bandwidth.
A path consists of a set of links from the source switch to

the destination switch. Although networks can employ a wide
variety of QoS routing strategies, previous comparative studies
have demonstrated that algorithms with a strong preference for
minimum-hop routes almost always outperform algorithms that
do not consider path length [9], [13], [15], [17], [18]. For ex-
ample, the “widest shortest path” heuristic selects a path with
the minimum number of hops, breaking ties by selecting the
path with most available bandwidth (i.e., the shortest path with
the maximum value of ). Favoring wide paths
increases the likelihood of successfully routing the new connec-
tion. Similarly, the network could select the minimum-hop path
with the smallest total load (minimum value of )
to balance network utilization. In contrast, nonminimal routing
algorithms, such as shortest widest path, often select circuitous
routes that consume additional network resources at the expense
of future connections, which may be unable to locate a feasible
route. Biasing toward shortest-path routes is particularly attrac-
tive in a large distributed network, since path length is a rela-
tively stable metric, compared with dynamic measurements of
link delay or loss rate.

In our model, the source selects a route based on the band-
width requirement and the destination node in three steps:

1) (Optionally) Prune infeasible links (i.e., linkswith
).

2) Compute shortest (minimum-hop) paths amongst the re-
maining links.

3) Extract a route with the minimum total cost .

This process effectively computes a “cheapest-shortest-fea-
sible” path or a “cheapest-shortest” path, depending on whether
or not the pruning step is enabled. By pruning any infeasible
links (subject to stale information), the source performs a pre-
liminary form of admission control to avoid selecting a route
that cannot support the new connection. In an-node network
with links, pruning has computational complexity and
produces a sparser graph consisting entirely of feasible links.
Then, the switch can employ the Dijkstra shortest-path tree al-
gorithm [19] to compute the shortest path with the smallest total
cost.1 The Dijkstra shortest-path calculation has
complexity when implemented with a binary heap. Although
advanced data structures can reduce the average and worst-case
complexity [20], the shortest-path computation still incurs sig-
nificant overhead in large networks. Extracting the route intro-
duces complexity in proportion to the path length.

1In practice, a single invocation of Dijkstra’s algorithm is sufficient for com-
puting the shortest path (in terms of hop count) with the minimum total cost (in
terms of link costsc ). In a network withN switches and0 < c � 1, the link
weightsw = N + c ensure that paths withh links always appear cheaper
than paths withh + 1 links. In particular,h-hop routes have a maximum cost
of h(N + 1), while any(h+ 1)-hop route has a cost that exceeds(h+ 1)N ,
whereh � N .

B. Link-Cost Metrics

The routing algorithm uses link cost metrics to dis-
tinguish between paths of the same length. Previous studies
suggest several possible forms for the path metric, including
sum of link utilizations, maximum available bandwidth, or
sum of the link delays. Defining the path cost as the sum
of link utilization reduces connection blocking probability
and results in less route oscillation by adapting slowly to
changes in network load [13]. Other studies have shown that
assigning each link a cost that is exponential in its current
utilization results in optimal blocking probability [21]. For a
general model of link cost, we employ a function that grows
exponentially in the link utilization ( ), where the
exponent controls how expensive heavily loaded links look
relative to lightly loaded links. An exponent of reduces
to load-independent routing, whereas large values offavor
the widest shortest paths (selecting the shortest-path route that
maximizes the available bandwidth on the bottleneck link). We
define the parameter to be the minimum-cost utilization
level; any link utilization below is considered to have the
minimum cost. Setting , for example, results in a
routing policy in which all links with less than 50% utilization
look the same with regard to cost.

We represent link cost with discrete values:

otherwise.

Small values of limit the computational and storage require-
ments of the shortest-path computation [6], [10], [22]. However,
coarse-grain link-cost information can degrade performance by
limiting the routing algorithm’s ability to distinguish between
links with different available resources, though the presence of
multiple minimum-cost routes provides efficient opportunities
to balance load through alternate routing. Relatively simple al-
gorithms have complexity [19], while more com-
plicated approaches offer a further reduction in computational
complexity [20].

C. Connection Signaling

When a new connection request arrives, the source switch ap-
plies the three-step routing algorithm to select a suitable path.
However, the optional step of pruning the (seemingly) infeasible
links may actually disconnect the source and the destination,
particularly when the network is heavily loaded. When a fea-
sible route cannot be computed, the source rejects the connec-
tion without trying to signal the connection through the network.
Stale link-state information may contribute to theserouting fail-
ures, since the source may incorrectly prune a link that could ac-
tually support the new connection (i.e., the link has ,
although the source determines that ). Routing fail-
ures do not occur when pruning is disabled. In the absence of a
routing failure, the source initiates hop-by-hop signaling to re-
serve bandwidth on each link in the route.

As the signaling message traverses the selected path, each
switch performs an admission test to check that the link can ac-
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tually support the connection. If the link has sufficient resources,
the switch reserves bandwidth on behalf of the new connection
(i.e., ) before forwarding the setup message to the
next link in the route. Once the bandwidth resources are reserved
on each link in the route, the network admits the connection,
committing bandwidth on each link in the path for the dura-
tion of the call. However, asetup failureoccurs if a link does
not have enough resources available when the setup message
arrives. Stale link-state information contributes to thesesetup
failures, since the absence of sufficient resources is discovered
only during the call setup process. By blocking connections in-
side the network, setup failures consume processing resources
and delay the establishment of other connections. In addition,
a failed connection temporarily holds resources at the upstream
links, which may block other connections in the interim. In con-
trast, routing failures are purely local and do not consume any
resources beyond the processing capacity at the source switch.

To deploy QoS routing with reasonable network overheads,
the delays for propagating and processing these setup messages
must be much smaller than the link-state update periods and
connection durations. In assuming that propagation and pro-
cessing delays are negligible, our model focuses on the primary
effects of stale link-state information on establishing connec-
tions for the long-lived traffic flows. Finally, we model at most
one attempt to signal a connection. Although we do not evaluate
alternate routing (or crankback) after a setup failure, the connec-
tion blocking probability provides an estimate of the frequency
of crankback operations. In practice, a “blocked” request may
be repeated at a lower QoS level, or the network may carry the
offered traffic on a preprovisioned static route.

D. Link-State Update Policies

Every switch has accurate information about the utilization
and cost of its own outgoing links, and potentially stale infor-
mation about the other links in the network. To extend beyond
the periodic link-state update policies evaluated in previous per-
formance studies [8]–[10], [13], we consider a three-parameter
model that applies to the routing protocols in PNNI and the
proposed QoS extensions to OSPF. In particular, the model in-
cludes a trigger that responds to significant changes in available
bandwidth, a hold-down timer that enforces a minimum spacing
between updates, and a refresh period that provides an upper
bound on the time between updates. The link state is the avail-
able link bandwidth, beyond the capacity already reserved for
other QoS-routed traffic (i.e., ). This is in contrast to tra-
ditional best-effort routing protocols (e.g., OSPF) in which up-
dates essentially convey only topology information. We do not
assume, or model, any particular technique for distributing this
information in the network; two possibilities are flooding (as in
PNNI and OSPF) or broadcasting via a spanning tree.

The periodic update messages provide a refresh of the
link utilization information, without regard to changes in the
available capacity. Still, the predictable nature of periodic
updates simplifies the provisioning of processor and bandwidth
resources for the exchange of link-state information. To prevent
synchronization of update messages for different links, each
link introduces a small random component to the generation of
successive updates [23]. In addition to the refresh period, the

model generates updates upon detection of a significant change
in the available capacity since the last update message,

where

These changes in link state stem from the reservation (release)
of link bandwidth during connection establishment (termina-
tion). By updating link load information in response to a change
in available bandwidth, triggered updates respond to smaller
changes in utilization as the link nears capacity, when the link
may become incapable of supporting new connections. Simi-
larly, connections terminating on a heavily loaded link introduce
a large relative change in available bandwidth, which generates
an update message even for very large trigger thresholds. In con-
trast to periodic updates, though, triggered messages complicate
the provisioning of network resources since rapid fluctuations in
available capacity can generate a large number of link-state up-
dates, unless a reasonable hold-down timer is used.

E. Network and Traffic Model

A key challenge in studying protocol behavior in wide-area
networks lies in how to represent the underlying topology and
traffic patterns. The constantly changing and decentralized
nature of current networks (in particular, the Internet) results
in a poor understanding of these characteristics and makes it
difficult to define a “typical” configuration [24]. In addition,
conclusions about algorithm or protocol performance may
vary dramatically with the underlying network model. For
example, random graphs can result in unrealistically long paths
between certain pairs of nodes, “well-known” topologies may
show effects that are unique to particular configurations, and
regular graphs may hide important effects of heterogeneity and
nonuniformity [25]. Consequently, our simulation experiments
consider a range of network topologies with differences in
important parameters such as average path length, number
of equal-hop paths between nodes, and network diameter.
We comment on similarities and differences between the
performance trends in each configuration.

As our study focuses on backbone networks, we consider
topologies with relatively high connectivity, an increasingly
common feature of core backbone networks that support a
dense traffic matrix (with significant traffic between most pairs
of core nodes) and are resilient to link failures. Since our study
focuses on intradomain routing, our topology model is meant
to represent the nodes and links within a single domain or
autonomous system. As such, the model does not include the
edge links connecting to neighboring domains. Each node can
be viewed as a single switch that sends and receives traffic
for one or more sources and carries traffic to and from other
switches or routers. Since we focus on a single domain, we
do not incorporate recently developed models of interdomain
topology [26], [27].

We study a well-known core topology (an early representa-
tion of the MCI backbone that has appeared in other routing
studies [9], [10], [12]). In addition, we evaluate both random
graphs (generated using [28]) and regular topologies in order to
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TABLE I
TOPOLOGIESUSED IN EXPERIMENTS

vary important parameters like size and node degree in a con-
trolled fashion. Most of our graphs show results for the MCI and
random topologies, though in Section IV we use a set of regular
graphs with different degrees of connectivity to evaluate the ef-
fects of having multiple shortest-path routes between pairs of
nodes. The MCI and random graphs in general have relatively
few (if any) multiple equal-hop paths between nodes but paths
are shorter in the smaller MCI topology. The regular topology
has significantly more equal-hop paths at the expense of having
more links and, consequently, higher link-state update distribu-
tion overhead. Table I lists the pertinent characteristics of the
topologies used in our experiments. We further assume that the
links have uniform capacity (i.e., for all ). In ad-
dition, the topology remains fixed throughout each simulation
experiment; that is, we do not model the effects of link failures.

Each node generates connection requests according to a
Poisson process with rate, with uniform random selection
of destination nodes. This results in a uniform traffic pattern
in the regular graphs, and a nonuniform pattern on the MCI
and random topologies, allowing us to compare QoS routing
to static shortest-path routing under balanced and unbalanced
loads. In addition, we consider the effect of bursty arrivals
where connection interarrival times follow a Weibull distri-
bution [29]. We model connection durations using a Pareto
distribution with shape parameter to capture the
long-tailed nature of connection durations2 [24] while still
producing a distribution with finite variance, making it possible
to gain sufficient confidence in the simulation results. For
comparison, we also conducted experiments with exponentially
distributed durations. We denote the mean duration as.
Connection bandwidths are uniformly distributed within an
interval with a spread about the mean. For instance, call
bandwidths may have a mean of 5% of link capacity with
a spread of 200%, resulting in . Most of
the simulation experiments focus on mean bandwidths from
2%–5% of link capacity. Smaller bandwidth values, albeit
perhaps more realistic, would result in extremely low blocking
probabilities, making it almost impossible to complete the
wide range of simulation experiments in a reasonable time;
instead, the experiments consider how the effects of link-state
staleness scale with theparameter to project the performance
for low-bandwidth connections. With a connection arrival
rate at each of switches, the offered network load is

, where is the mean distance (in number of
hops) between nodes, averaged across all source–destination
pairs. Additional details on the simulation methodology are
available in [30].

2We use a standard form of the Pareto distribution with shape parametera,
scale parameter�, and cumulative distribution functionF (x) = 1�(�=x) .

III. L INK-STATE UPDATE POLICIES

The initial simulation experiments focus on the effects
of inaccurate link-state information on the performance and
overheads of QoS routing by evaluating periodic and triggered
updates in isolation. With a periodic update policy, large periods
substantially increase connection blocking, ultimately out-
weighing the benefits of QoS routing. In contrast, experiments
with triggered updates show that coarse-grain triggers do not
have a significant impact on the overall blocking probability,
although larger triggers shift the type of blocking from routing
failures to more expensive setup failures.

A. Periodic Link-State Updates

The connection blocking probability increases as a function
of the link-state update period, as shown in Fig. 1(a). The exper-
iment evaluates three bandwidth ranges on the random topology
with an offered load of ; the connection arrival rate re-
mains fixed at , while the Pareto scale parameteris used
to adjust the mean holding time to keep load constant across
the three configurations. For comparison, the graph shows re-
sults with and without pruning of (seemingly) infeasible links.
We vary the update periods from almost continuous updates to
very long periods of 200 times (graphs show up to 80 times)
the average connection interarrival time. Due to their higher
resource requirements, the high-bandwidth connections experi-
ence a larger blocking probability than the low-bandwidth con-
nections across the range of link-state update rates. The blocking
probability for high-bandwidth connections, while higher, does
not appear to grow more steeply as a function of the update pe-
riod; instead, the three sets of curves remain roughly equidistant
across the range of update periods.

Pruning Versus Not Pruning:In general, pruning improves
the effectiveness of QoS routing under small to moderate load
by allowing connections to consider nonminimal routes. How-
ever, stale link-state information reduces the effectiveness of
pruning, as shown in Fig. 1(a). Initially, the “pruning” curves
have a lower blocking probability than the “no pruning” curves;
however, the curves cross as the link-state update period in-
creases. With out-of-date information, the source may incor-
rectly prune a feasible link, causing a connection to follow a
nonminimal route when a minimal route is available. Hence,
the staleness of the link-state information narrows the range
of offered loads where pruning is effective. Even with accu-
rate link-state information, pruning degrades performance under
heavy load since nonminimal routes consume extra link capacity
at the expense of other connections. The network can control the
negative influence of nonminimal routes by limiting the number
of extra hops a connection can travel, or reserving a portion of
link resources to connections on minimal routes. To address stal-
eness more directly, the pruning policy could be more conser-
vative or more liberal in removing links to balance the tradeoff
between minimal and nonminimal routes [31].

Route Flapping: Although QoS routing performs well for
small link-state update periods (significantly outperforming
static routing [30]), the blocking probability rises relatively
quickly before gradually plateauing for large update periods.
In Fig. 1(a), even an update period of five time units (five times
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(a)

(b)

Fig. 1. Staleness due to periodic updates:In (a) we show that the blocking
probability grows rapidly as the link-state update period grows for several ranges
of requested bandwidth; the dashed lines indicate the performance when pruning
is disabled. In (b) we focus on small periods and routing with pruning to show
that the blocking is dominated by setup failures after only a small increase in the
period. Both graphs show results for the random topology with� = 1, � = 1,
and� = 0:75. The mean connection durations are 60.9, 40.6, 30.4, and 24.4 for
the mean bandwidths 2%, 3%, 4%, and 5%, respectively.

the average connection interarrival time) shows significant
performance degradation. By this point, setup failures account
for all of the call blocking, except when the update period is
very small (e.g., for update periods close to the interarrival
time), as shown in Fig. 1(b) which focuses on a small region of
the experiments with pruning in Fig. 1(a); when pruning is dis-
abled, routing failures never occur, and setup failures account
for all blocked connections. In general, periodic updates do not
respond quickly enough to variations in link state, sometimes
allowing substantial changes to go unnoticed. This suggests
that inaccuracy in the link-state database causes the source
switch to mistake infeasible links as feasible; hence, the source
selects an infeasible path, even when there are other feasible

routes to the destination. We see that routing failures occur only
with very accurate information since the source learns about
link infeasibility very quickly. When link state can fluctuate
significantly between updates the source is virtually certain
to find at least one seemingly feasible path, thus avoiding a
routing failure.

Under large update periods, relative to the arrival rates and
holding times, the links can experience dramatic fluctuations in
link state between successive update messages. Such link-state
flapping has been observed in packet routing networks [32],
where path selection can vary on a packet-by-packet basis; the
same phenomenon occurs here since the link-state update period
is large relative to the connection interarrival and holding times.
When an update message indicates that a link has low utiliza-
tion, the rest of the network reacts by routing more traffic to the
link. Blocking remains low during this interval, since most con-
nections can be admitted. However, once the link becomes sat-
urated, connections continue to arrive and are only admitted if
other connections terminate. Blocking stays relatively constant
during this interval as connections come and go, and the link
remains near capacity. For large update periods, this “plateau”
interval dominates the initial “climbing” interval. Hence, the
QoS-routing curves in Fig. 1(a) flatten at a level that corresponds
to the steady-state blocking probability during the “plateau” in-
terval.

Eventually, QoS routing starts to perform worse than static
routing, because the fluctuations in link state begin to exceed the
random variations in traffic load. In searching for (seemingly)
underutilized links, QoS routing targets a relatively small set of
links until new update messages arrive to correct the link-state
database. In contrast, under static routing, the source blindly
routes to a single group of links, though this set is typically
larger than the set identified by QoS routing. Thus, when the up-
date period grows quite large, static routing is more successful
at balancing load and reducing connection blocking. The exact
crossover point between the two routing algorithms is very sen-
sitive to the distribution of traffic in the network. For example,
in the presence of “hot spots” of heavy load, QoS routing can
select links that circumvent the congestion (subject to the de-
gree of staleness). Under such a nonuniform load, QoS routing
continues to outperform static routing even for large update
periods. For example, experiments with the nonhomogeneous
MCI backbone topology show that QoS routing consistently
achieves lower blocking probability than static routing over a
wide range of update rates.

Path Length, High-Bandwidth Requests, and Non-Poisson
Arrivals: Fluctuations in link state have a more pernicious
effect on connections between distant source–destination pairs,
since QoS routing has a larger chance of mistakenly selecting
a path with at least one heavily loaded link. This is especially
true when links do not report their new state at the same time,
due to skews in the update periods at different switches. We
examined this effect by comparing the connection blocking
probabilities from Fig. 1(a) to several alternative measures of
blocking (not shown). For example, the hop-count blocking
probability is defined as the ratio of the hop count of blocked
connections to the hop count of all connections; bandwidth
blocking is defined analogously relative to requested band-



168 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 2, APRIL 2001

Fig. 2. Blocking for varying arrival burstiness : Burstiness is increased with
a smaller Weibull shape parameter,a. Simulation parameters are the same as in
Fig. 1(a).

width. Compared to conventional connection blocking, these
metrics grow more quickly in the presence of stale information.
In general, bandwidth blocking exceeds hop-count blocking,
suggesting that high-bandwidth connections are even harder
to route than high hop-count connections, though link-state
staleness does not seem to affect one metric more than the
other [30]. Fig. 2 shows that increased burstiness in the arrival
process also increases blocking probability over the range of
update periods. For higher bandwidth connections, the effect of
burstiness is exacerbated by the nonminimal routes introduced
by pruning. Thus, even for the smallest update period, the
blocking for bursty traffic is significantly higher than for
nonbursty traffic. The effect is not so pronounced for lower
bandwidth connections since they consume fewer resources
even when allowed to take nonminimal routes.

Connection Durations:Despite the fact that staleness due to
periodic updates can substantially increase connection blocking,
the network can limit these effects by controlling which types
of traffic employ QoS routing. For example, our experiments
showed that longer durations allow the use of larger link-state
update periods to achieve the same blocking probability [30].
Short-lived connections cause link state to fluctuate rapidly, par-
ticularly for high-bandwidth requests, and thus require frequent
updates to maintain good routing performance. In Fig. 3, we find
that exponentially distributed connection durations result in a
more gradual rise in blocking probability over the same range
of update periods (nearly half as fast for some mean holding
times) than with the Pareto distribution. The long-tailed Pareto
distribution introduces more overall variability in the network
load by creating some very long-lived connections (relative to
the mean). The increased load fluctuation decreases the effec-
tiveness of periodic link-state updates in identifying feasible
paths. The heavier tail of the Pareto distribution also results in
more shorter-lived connections than an exponential distribution
with the same mean, implying that these shorter connections re-
quire very frequent updates to achieve acceptably low blocking

Fig. 3. Blocking for different duration distributions: The mean duration is
fixed at` = 40, and we compare exponentially distributed connection durations
to a long-tailed Pareto distribution. The arrival rate� varies to keep offered load
fixed at� = 0:75 in the random topology, withb � (0; 0:06], � = 1, and
pruning enabled.

probability. These results suggest that the network could limit
QoS routing to the longer-lived traffic that would consume ex-
cessive link resources if not routed carefully, while relegating
short-lived traffic to preprovisioned static routes [33].

B. Triggered Link-State Updates

Although periodic updates introduce a predictable overhead
for exchanging link-state information, triggered updates can
offer more accurate link-state information for the same average
rate of update messages. The graph in Fig. 4(a) plots the
connection blocking probability for a range of triggers and
several bandwidth ranges in the MCI topology. In contrast to
the experiments with periodic link-state updates, we find that
the overall blocking probability remains relatively constant as
a function of the trigger, across a wide range of connection
bandwidths, cost metrics, and load values, with and without
pruning, and with and without hold-down timers. Additional
experiments with the well-connected regular topology show
the same trend [30].

Blocking Insensitivity to Update Trigger:To understand this
phenomenon, consider the two possible effects of stale link-state
information on the path-selection process when pruning is en-
abled. Staleness can cause infeasible links to appear feasible, or
cause the switch to dismiss links as infeasible when they could
in fact support the connection. When infeasible links look fea-
sible, the source may mistakenly choose a route that cannot ac-
tually support the connection, resulting in a setup failure. How-
ever, if the source had accurate link-state information, any infea-
sible links would have been pruned prior to computing a route.
In this case, blocking is likely to occur because the source cannot
locate a feasible route, resulting in a routing failure. Instead of
increasing the connection blocking probability, the stale infor-
mation changes the nature of blocking from a routing failure to
a setup failure. Fig. 4(b) highlights this effect by plotting the
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(a)

(b)

Fig. 4. Blocking insensitivity to triggers: Connection blocking remains
fairly constant over a wide range of link-state update triggers, with and without
pruning enabled. Across the four curves for different bandwidth ranges, the
mean connection holding timèis varied to keep the offered load constant. The
experiments evaluate the MCI topology with� = 0:70, � = 1, and� = 1.
The mean connection durations are 50.4, 33.6, 25.2, and 20.2 for the mean
bandwidths 2%, 3%, 4%, and 5%, respectively.

blocking probability for both routing and setup failures. Across
the range of trigger values, the increase in setup failures is offset
by a decrease in routing failures.

Now, consider the other scenario in which staleness causes
feasible links to look infeasible. In this case, stale information
would result in routing failures because links would be unnec-
essarily pruned from the link-state database. Although this case
can sometimes occur, it is very unlikely, since the triggering
mechanism ensures that the source switch has relatively accu-
rate information about heavily loaded links. For example, a con-
nection terminating on a fully utilized link would result in an ex-
tremely large change in available bandwidth, which would ac-
tivate most any trigger. Moreover, a well-connected topology

Fig. 5. Link-state update rate for different trigger values: This graph shows
the link-state update rate for the random topology with� = 0:75, � = 1,
� = 1, and pruning disabled. Mean connection durations are the same as in
Fig. 1.

often has more than one available route between any two nodes;
the likelihood of pruning links incorrectly onall of the feasible
routes is quite low. Hence, the blocking probability is dominated
by the previous scenario, namely mistaking infeasible links as
feasible. Additional experiments (not shown) illustrate that the
tradeoff between routing and setup failures persists even in the
presence of hold-down timers, though the hold-down timer in-
creases the overall blocking probability and rate of setup fail-
ures.

Link-State Update Rate:Despite the increase in setup fail-
ures, large trigger values substantially reduce the number of
update messages for a given blocking probability, as shown in
Fig. 5. For very fine-grained triggers, every connection estab-
lishment and termination generates an update message on each
link in the route, resulting in an update rate of in a
network with switches, links, and an average path length
of hops. Here, the expression reduces to 1.23 link-state up-
date messages per unit time, which is close to the-intercept
in Fig. 5; additional experiments show that the link-state up-
date rate is not sensitive to the connection holding times, con-
sistent with the expression. In Fig. 5, the larger band-
width values have a slightly smaller link-state update rate for
small triggers; high-bandwidth connections experience a higher
blocking rate, which decreases the proportion of calls that enter
the network and generate link-state messages. When triggers are
coarse, however, more connections are signaled in the network
(due to fewer routing failures), and the high-bandwidth connec-
tions trigger more updates since they create greater fluctuation
in link state.

Unlike routing failures, setup failures may trigger link-state
update messages, since reserving and releasing link resources
generates changes in link state, even if the connection ultimately
blocks at a downstream node. The increase in setup failures for
larger triggers slows the reduction in the update rate in Fig. 5
as the trigger grows. The exact effect of setup failures depends
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Fig. 6. Bursty arrivals with triggered updates: These graphs show the
effect on connection blocking of increased burstiness with the same mean
arrival rate. Smaller Weibull shape parameters result in more burstiness in the
arrival process. Simulation parameters are the same as those in Fig. 5.

on the number of successful hops before the connection blocks.
Also, if the network supports crankback operations, the attempt
to signal the connection on one or more alternate routes could
generate additional link-state update messages. As a secondary
effect, pruning infeasible links at the source switch can inflate
the update rate by selecting nonminimal routes that reserve (and
release) resources on extra links [30]. Overall, though, modest
trigger values are effective at reducing the link-state update rate
by about a factor of three to four. Also, for a fixed update rate,
triggers are able to significantly reduce the proportion of setup
failures when compared with periodic updates. For instance, set-
ting the trigger to around 0.30 results in an average update inter-
arrival of 3 (for ) and 17% of the blocking occurs in
signaling. When using periodic updates at the same frequency,
setup failures account for 74% of the blocked connections, and
the blocking rate is much higher.

Impact of Non-Poisson Arrivals:Fig. 6 illustrates the
problem with nonminimal routes when connection requests
arrive in bursts. For both Poisson and non-Poisson arrivals of
high-bandwidth requests, blocking is higher when the trigger is
smaller. When link-state information becomes more inaccurate,
however, the blocking rate decreases for Poisson arrivals,
but not for the non-Poisson traffic. When a source chooses
nonminimal routes for groups of requests, the network is not
able to sufficiently recover from poor allocation of resources.
As a result, the source is unable to find (seemingly) feasible
routes after pruning, except when using very large triggers, as
shown by the gradual decline in blocking probability relative
to Poisson arrivals. When pruning is not permitted (results
not shown), we find that blocking is insensitive to the update
trigger, but bursty arrivals suffer a higher blocking probability
relative to Poisson traffic. A burst of connection requests
may be thought of as a single high-bandwidth request that,
when signaled, results in more link-state fluctuation relative to
nonbursty traffic. We investigated this through a comparison

of the link-state update rate for bursty and nonbursty arrivals
(experiment not shown). With small update triggers, the bursty
traffic has a lower update rate due simply to its higher blocking
probability, particularly for the higher-bandwidth requests.
When link-state triggers become coarse, however, the update
rate for bursty traffic remains high due to a combination of a
greater number of nonminimal routes and increased link-state
fluctuations. In general, bursty traffic increases the blocking
due to routing failures, and it remains high even as the update
trigger is increased. That is, larger triggers do not shift blocking
to setup failures as in Fig. 4.

Ultimately, the choice of link-state periods and triggers de-
pends on the relative cost of routing failures, setup failures,
and update messages, as well as the importance of having a
predictable link-state update rate. Coarse triggers and large pe-
riods can substantially decrease the processing and bandwidth
requirements for exchanging information about network load.
But the benefit of larger triggers and periods must be weighed
against the increase in connection blocking, particularly due to
more expensive setup failures. These tradeoffs suggest a hy-
brid policy with a moderately large trigger value to provide
load information when it is most critical, as well as a relatively
small hold-down timer to bound the peak link-state update rate
without suppressing these important messages. For example, for
the experiment shown in Fig. 5, imposing a hold-down timer
two times the connection interarrival time reduces the number
of link-state updates by nearly a factor of 3 for fine-grained trig-
gers (around 5%). With coarser triggers, the hold-down timer
still reduces the update rate but the decrease is not as dramatic.

IV. NETWORK TOPOLOGY

Though the results in Section III were mainly presented in the
context of the random topology, we have conducted numerous
additional experiments with the MCI and regular topologies (see
Table I for topology parameters). In this section, we revisit some
of the staleness issues in the previous section to highlight the de-
pendency on the underlying topology. Then, we present a more
systematic study of topology based on a parameterized model
of regular graphs that allows us to exert direct control over the
key topological properties.

A. General Topology Observations

Our experiments with periodic updates in the random
topology [Fig. 1(a)] show a strong dependency on the update
period regardless of whether link pruning was enabled or
disabled. However, in the MCI topology we observe a much
weaker dependence on the link-state update period when
pruning is disabled. Since the MCI topology has relatively
low connectivity, most source–destination pairs do not have
multiple minimum-length routes. Hence, when pruning is
disabled, the route computation does not react much to changes
in link load.

We see a more pronounced effect when considering pruning
with triggered updates. Fig. 4 showed that triggered link-state
updates generally do not affect the overall blocking rate, with or
without applying pruning. However, when pruning in a sparsely
connected network, an incorrect pruning decision can cause the
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source to erroneously consider nonminimal routes. For example,
additional experiments with the random topology (not shown)
indicated that it hashigher blocking rates with more accurate
information (i.e.,smaller trigger values), when trying to route
high-bandwidth connections. This effect is also seen with bursty
arrivals, as described in Section III-B. The random graph typi-
cally does not have multiple equal-length paths between a pair of
nodes. As a result, pruning an infeasible link along the shortest
path results in the selection of a nonminimal route. In the end,
this increases the overall blocking probability, since these non-
minimal routes consume extra resources. If, instead, the source
chose not to prune this infeasible link (say, due to stale link-state
information), then the connection would attempt to signal along
the shortest path. Although the connection would block upon
encountering the infeasible link, the network would benefit by
deciding not to accept the connection. In fact, the use of a small
hold-down timer has a similar effect, resulting in much flatter
curves for blocking as a function of the trigger.

It is generally unwise to apply pruning for high-bandwidth
connections when the topology does not have multiple routes
of equal (or similar) length. The detrimental effect of nonmin-
imal routes may also be limited, however, by explicitly control-
ling the degree of nonminimality (e.g., at most one extra hop)
rather than disabling pruning altogether. Poor performance due
to a lack of routing choices in the topology is also worsened
when connection requests arrive in bursts. We illustrated in Sec-
tion III-B that bursty connection arrivals increase blocking by
making it harder for the source to find feasible paths. Additional
experiments show that this problem is exacerbated in topologies
which have few equal-length paths between a source and desti-
nation. We find, for example, that routing failures for high-band-
width connections remain high in the random topology as the
update trigger increases, but they decline somewhat in the uni-
form topology where multiple equal-length routes are available.

We find that topology and traffic together play an important
role in defining the range of update frequencies over which QoS
routing provides a significant performance advantage over static
routing. When the traffic pattern is matched to the topology,
static routes (if properly provisioned) can perform quite well.
In comparing QoS and static routing in the uniform topology
with uniform random requests, we found that when the link-state
update period is very large, static routing begins to outperform
QoS routing. Experiments with other topologies, however, show
that QoS routing is able to capitalize on mismatches between
traffic and topology to consistently perform better than static
routing. For example, experiments with the nonhomogeneous
MCI backbone topology (with uniform traffic) show that QoS
routing consistently achieves lower blocking probability than
static routing over the entire range of update rates considered.
In this case the key point is not the topology configuration, but
rather the relationship between the topology and traffic pattern.

B. Parameterized Topology Model

The experiments with the graphs in Table I provide some
insights into the impact of topology on the performance of
QoS routing in a variety of situations (e.g., pruning/no pruning,
bursty arrivals, high-bandwidth connections). However, in

TABLE II
CHARACTERISTICS OFk-ARY n-CUBES

order to focus more directly on topology effects, we require
a model with greater control over important parameters such
as diameter, node degree, mean path length, and the number
of similar-length paths between pairs of nodes. Random graph
models (e.g., Waxman) offer some control over connectivity
but it is difficult to precisely control the other parameters of
interest. In addition, the use of random graphs makes it difficult
to match the traffic pattern with the underlying topology. For
example, applying uniform random selection of destination
nodes in a random graph results in nonuniform traffic load.
This makes it difficult to draw fair comparisons between
experiments with different random graphs.

To study the effects of staleness under a range of topologies,
we evaluate a set of regular graphs with similar size and different
degrees of connectivity under the same uniform traffic load. The
experiments focus on the class of-ary -cube graphs with
nodes along each of dimensions ( nodes of degree

, with links and diameter ), as shown
in Table II. A higher dimension () typically implies a “richer”
topology with more flexibility in selecting routes, whereas a
large number of nodes (), with a fixed , increases the average
length of routes, which requires connections to successfully re-
serve resources on a larger number of links. These differences
between the topologies have a significant influence on how well
the QoS-routing algorithm’s performance scales with the stale-
ness of link-state information, as shown in Fig. 7(a). The graph
plots the connection blocking probability over a range of up-
date periods, with offered load kept constant between the four
configurations by changing the mean (exponentially distributed)
holding time.

Under accurate link-state information, the 10-ary 2-cube and
5-ary 3-cube topologies have good performance, despite the
longer average distance between pairs of nodes. For small up-
date periods, the higher connectivity of the 5-ary 3-cube and
4-ary 3-cube results in a large number of possible routes, which
reduces the likelihood of a routing failure. Similarly, the 10-ary
2-cube has a large number of routes, though fewer than the 5-ary
3-cube. However, the performance of these richer topologies de-
grades more quickly under stale load information. For longer
link-state update periods, blocking stems mainly from signaling
failures, which are more likely when a connection has a longer
path through the network. Once the routing algorithm selects a
single path, based on stale information, the new connection can
no longer capitalize on the presence of other possible routes. The
performance of the 5-ary 2-cube degrades more slowly, since
the shorter route lengths increase the chance that the routing
algorithm selects a feasible path. Similarly, though they have
identical connectivity, the 4-ary 3-cube outperforms the 5-ary
3-cube, due to its smaller average path length.
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(a)

(b)

Fig. 7. Topology and link-state accuracy:(a) Richly connected topologies
have low blocking probabilities under accurate information, although the
benefits of multiple routes degrade under large update periods. (b) With
triggered updates, the rate of link-state messages is proportional tok and
independent ofn. In both experiments,� = 85%, b � (0; 0:1], and� = 2
(with pruning). The arrival rates in both graphs are� = 1 and� = 12:5,
respectively. Load is kept constant across the four topologies by changing`.

Direct comparisons between the four topologies are some-
what difficult, due to differences in the number of nodes and
links. For example, the crossover in Fig. 7(a) occurs because
the 5-ary 2-cube has a lower average path length, despite the
topology’s poorer connectivity. Still, varying and lends in-
sight into the effects of stale information. Fig. 7(b) shows the
overheads for triggered link-state updates in the four topolo-
gies. Although the 10-ary 2-cube has fewer nodes than the 5-ary
3-cube topology, the 10-ary 2-cube generates substantially more
link-state update messages than the other two networks. The
larger update rate stems from the large path lengths, relative
to the number of switches. Interestingly the 5-ary 3-cube and
the 5-ary 2-cube have nearly identical link-state update rates.
In fact, the update rate is approximately across all of the

-ary -cube topologies [30]. Increasing the network dimension

corresponds to growing the underlying network in a manner
that increases the average path length in proportion to the in-
crease in the number of links.

More generally, a densely connected topology with a rela-
tively low diameter should trigger fewer link-state updates since
connections are routed on shorter paths. The reduction in over-
head, however, may be offset by the cost of distributing the up-
date messages. For example, if link-state messages are flooded
throughout the network (as in PNNI and OSPF), then each node
receives the message on each incoming link. As a result, each
node receives copies of every link-state update. Hence, the
advantages of a richer topology are partially overshadowed by
the cost of flooding the link-state messages. Also, the experi-
ment in Fig. 7(a) shows that stale information limits the bene-
fits of richer connectivity, though the use of update triggers, in-
stead of periods, can mitigate these effects. With an efficient up-
date-distribution mechanism (such as spanning trees, instead of
a flooding protocol), a richly connected topology, coupled with
a reasonable trigger level, can retain the advantage of having
many routing choices and a low link-state update overhead.

V. LINK-COST PARAMETERS

The link-state update rate also impacts the choice of the
link-cost parameters ( and , Section II-B) in the routing
algorithm. Fine-grain cost metrics are much less useful,
and can even degrade performance, in the presence of stale
link-state information. With a careful selection of the exponent

, the path-selection algorithm can reduce the number of cost
levels without increasing the blocking probability. Smaller
values of reduce the space and time complexity of the route
computation, allowing the QoS-routing algorithm to scale to
larger network configurations. In addition, coarse-grain link
costs increase the likelihood of having multiple minimum-cost
routes, which allow the network to balance load across alternate
routes.

A. Number of Cost Levels ()

The experiments in Sections III and IV evaluate a link-cost
function with a large number of cost levels, limited only by
machine precision. With such fine-grain cost information, the
path-selection algorithm can effectively differentiate between
links to locate the “cheapest” shortest-path route. Fig. 8(a) eval-
uates the routing algorithm over a range of cost granularity and
link-state update periods. To isolate the effects of the cost func-
tion, the routing algorithm does not attempt to prune (seem-
ingly) infeasible links before invoking the shortest-path com-
putation in this experiment. The cost levels are distributed
throughout the range of link utilizations by setting .
Compared to the high blocking probability for static routing
( ), larger values of tend to decrease the blocking rate,
particularly when the network has accurate link-state informa-
tion, as shown in the “period ” curve in Fig. 8(a).

Fine-grain cost metrics are less useful, however, when
link-state information is stale. For example, having more
than four cost levels does not improve performance once the
link-state update period reaches 20 times the average interar-
rival time. Although fine-grain cost metrics help the routing
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(a)

(b)

Fig. 8. Discretized costs with stale link-state information: (a) With
periodic updates, connection blocking drops significantly with more cost levels
when link-state information is relatively accurate; however, stale information
counteracts the benefits of fine-grain costs. (b) Additional cost levels decrease
the rate of setup failures when using triggered updates with pruning. Both
experiments simulate the 5-ary 3-cube with� = 0:85, b � (0:0; 0:1], � = 1,
` is exponentially distributed with mean 28, and� = 1.

algorithm distinguish between links, larger values ofalso
limit the number of links that the routing algorithm considers,
which can cause route flapping. In contrast, coarse-grain
cost information generates more “ties” between the multiple
shortest-path routes to each destination, which effectively
dampens link-state fluctuations by balancing the load across
several alternate routes. In fact, under stale information, small
values of can sometimes outperform large values of, but
this crossover only occurs once the update period has grown
so large that QoS routing has a higher blocking probability
than static routing. The degradation in performance under
high update periods is less significant in the MCI and random
topologies, due to the lower likelihood of having multiple
minimum-hop paths between pairs of nodes.

Fig. 9. Exponent��� with stale link-state information: A larger exponent�
decreases the blocking probability, until� grows so large that the cost intervals
become too narrow. This experiment evaluates the random topology with update
period= 10, � = 0:75, � = 1, b � (0:0; 0:06], ` = 40:6, and pruning
disabled.

The appropriate number of cost levels depends on the
update period and the connection-bandwidth requirements, as
well as the overheads for route computation. Larger values
of increase the complexity of the Dijkstra shortest-path
computation without offering significant reductions in the
connection blocking probability. Fine-grain cost information is
more useful in conjunction with triggered link-state updates,
as shown in Fig. 8(b). We still find, however, that experi-
ments with a finite number of values are consistent with
the results in Section III-B; that is, the connection blocking
probability remains constant over a wide range of triggers.
Hence, Fig. 8(b) plots only the setup failures (with pruning).
The overall blocking rate curves have roughly the same shape
as the setup failure curves, all ranging from about 0.07 with

and flattening to roughly 0.035. In contrast to the
experiment with periodic updates, increasing the number of
cost levels beyond continues to reduce the blocking rate.
Since triggered updates do not aggravate fluctuations in link
state, the fine-grain differentiation between links outweighs the
benefits of “ties” between shortest-path routes. Although larger
values of reduce the likelihood of setup failures by a factor
of two, increasing the number of cost levels eventually offers
diminishing returns.

B. Link-Cost Exponent ()

To maximize the utility of coarse-grain load information, the
cost function should assign each cost level to a critical range
of link utilizations. Under fine-grain link costs (large), the
exponent does not have a significant impact on performance;
values of have nearly identical performance, as shown by
the “ ” curve in Fig. 9. Other experiments (not shown)
confirm that these results hold across a range of link-state update
periods, from very frequent updates to a period equal to 40 times
the mean connection interarrival time. This implies that large
values of do not introduce much extra route flapping. This also
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has important implications for path selection algorithms, since
it suggests that widest shortest-path and cheapest shortest-path
should have similar performance under stale link-state informa-
tion.

However, the choice of exponentplays a more important
role in cost-based routing with coarse-grain link costs, as shown
by the other curves in Fig. 9 with . Each plot shows a
sharp drop in the blocking probability due to the transition from
static routing ( ) to QoS routing ( ), followed by an
increase in blocking probability for larger values of. When
is too large, the link-cost function concentrates most of the cost
information in a very small high-load region.

For large and small , some of the cost intervals are so
narrow that the arrival or departure of a single connection could
change the link cost by one or more levels. For example, when

and , the link-cost function has four cost levels
in the 90%–100% range. This sensitivity exacerbates route flap-
ping and also limits the routing algorithm’s ability to differen-
tiate between links with lower utilization. Further experiments
(not shown) demonstrate that pruning lowers the differences be-
tween the curves for different values. This occurs because
pruning provides additional differentiation between links, even
for small values of . We also explored the effects of the link-
state update period on the connection blocking probability as

is increased, for a fixed value of. Interestingly, larger up-
date periods dampen the detrimental effects of large values of

, resulting in flatter curves than the plots in Fig. 9. Although
large values of limit the granularity of the cost information,
the drawback of a large value ofis largely offset by the benefit
of additional “ties” in the routing algorithm when information is
stale. Hence, the selection ofis actually more sensitive when
the QoS-routing algorithm has accurate knowledge of link state.

VI. CONCLUSION

The performance and complexity of QoS routing depends on
the complex interaction between a large set of parameters. This
paper has investigated the scaling properties of source-directed
link-state routing in large core networks. Our simulation results
show that the routing algorithm, network topology, link-cost
function, and link-state update policy each have a significant
impact on the probability of successfully routing new connec-
tions, as well as the overheads of distributing network load met-
rics. The experiments confirm and extend the findings of other
studies, and also lend new insight into the impact of out-of-date
link-state information. The results complementing the observa-
tions of other recent studies include [9]–[13], [34]:

• Periodic link-state updates:The staleness introduced by
periodic link-state update messages causes flapping that
substantially increases the rate of connection blocking. In
extreme cases with large update periods, QoS routing actu-
ally performs worse than load-independent routing, due to
excessive route flapping. Our results show that a purely pe-
riodic link-state update policy cannot meet the dual goals
of low blocking probability and low update overheads in
realistic networks.

• Triggered link-state updates: Triggered link-state up-
dates do not significantly affect the overall blocking prob-
ability. Triggers reduce the amount of unnecessary link-
state traffic but require a hold-down timer to prevent ex-
cessive update messages in short time intervals. However,
larger hold-down timers increase the blocking probability.
Hence, our findings suggest using a combination of a rel-
atively coarse trigger with a modest hold-down timer.

• Pruning infeasible links: In general, pruning infeasible
links improves performance under low-to-moderate load
by allowing connections to consider nonminimal routes,
and avoiding unnecessary setup failures by blocking more
connections in the route computation phase. However,
under heavy load, these nonminimal routes consume extra
link resources, at the expense of other connections.

• Bandwidth and hop count: Connections with large
bandwidth requirements experience higher blocking
probabilities. Likewise, connections traveling a larger
number of hops experience higher blocking probabilities.
Stale link-state information exacerbates both of these
effects. These effects degrade the performance of QoS
routing in large networks, unless the topology is designed
carefully to limit the worst-case path length.

• Connection duration: Longer connection durations
change the timescale of the network and allow the use
of larger link-state update periods. Our findings suggest
that the networks should limit QoS routing to long-lived
connections, while carrying short-lived traffic on prepro-
visioned static routes.

Our experiments also reveal several new insights:

• Impact of staleness on setup failures:In addition to in-
creasing the connection blocking probability, out-of-date
link-state information increases the fraction of connec-
tions that experience setup failures. Larger update periods
increase both the blocking probability and the proportion
of connections that block in the setup phase. Even though
triggered updates do not increase the blocking probability,
larger trigger values result in a higher proportion of setup
failures. Avoiding heavy signaling loads requires careful
selection of the update period and trigger.

• Pruning under stale information: Pruning becomes less
effective under stale link-state information, loosely con-
nected topologies, and high-bandwidth connections, since
these factors increase the amount of traffic that follows a
nonminimal route, even when a minimal route is feasible.
These results suggest that large networks should disable
pruning, unless most source–destination pairs have mul-
tiple routes of equal (or near equal) length; alternatively,
the network could impose limits on the resources allocated
to nonminimal routes.

• Long-tailed connection durations:Stale information has
a more dramatic effect under realistic long-tailed distri-
butions for connection duration. This stems from the rel-
atively large number of short-lived connections for the
same average duration and the additional variability in-
troduced in network load, compared to exponentially dis-
tributed durations. The network can segregate short- and
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long-lived traffic by partitioning link bandwidth for the
two classes, and detecting long-lived connections at the
edge of the network [33].

• Connection arrivals: Bursts of connection requests be-
have like single arrivals of very high-bandwidth connec-
tions, causing higher fluctuation in link state and greater
susceptibility to poor resource allocation. When uncon-
trolled pruning is enabled, routers choose significantly
more nonminimal paths relative to nonbursty traffic, in-
creasing blocking probability and link-state update rate.
Effects of bursty arrivals are especially harmful in topolo-
gies with a limited number of equal-hop routes.

• Rich network topologies:The tradeoff between routing
and setup failures also has important implications for the
selection of the network topology. Although dense topolo-
gies offer more routing choices, the advantages of mul-
tiple short paths dissipate as link-state information be-
comes more stale. Capitalizing on dense network topolo-
gies requires more frequent link-state updates, as well as
techniques for avoiding excessive link-state traffic. For ex-
ample, the network could broadcast link-state updates in
a spanning tree, and piggyback link-state information in
signaling messages.

• Coarse-grain link costs:Computational complexity can
be reduced by representing link cost by a small number
of discrete levels without significantly degrading perfor-
mance. This is especially true when link-state informa-
tion is stale, suggesting a strong relationship between tem-
poral and spatial inaccuracy in the link metrics. In addi-
tion, coarse-grain link costs have the benefit of increasing
the number of equal-cost routes, which improves the effec-
tiveness of alternate routing, as discussed in more detail in
[22].

These observations represent an important step in understanding
and controlling the complex dynamics of quality-of-service
routing under stale link-state information. We find that our
distinction between routing and setup failures and simulation
experiments under a wide range of parameters provide valuable
insights into the underlying behavior of the network. Future
research in this area can exploit these trends to reduce the
computational and protocol overheads of QoS routing in large
backbone networks.
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