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Abstract 

This paper examines the implementation of trafic shap- 
ing and link scheduling mechanisms on an end-host server: 
We first compare various implementation strategies, and 
then present a network interface architecture with dedicated 
support for  trafic shaping and link scheduling for  use in 
end-host servers. This results in signijicant load reduction 
on the server CPU, as shaping and scheduling tasks can ex- 
ecute concurrently on the network interface. This allows the 
server to provide very fine-grain link multiplexing, and con- 
sequently more diverse set of QoS guarantees fo r  a large 
number of flows. We present two alternative implementa- 
tions of our architecture. The first uses custom hardware 
while the second is implemented as a sojiware component 
running on a dedicated processor on the network interface. 

1. Introduction 

Recent advances in network technology have brought 
about substantial increases in bandwidth along with wide- 
spread Internet access through high-speed connections be- 
yond the corporate and academic communities and into 
homes. This has resulted in the introduction of a large num- 
ber of applications with a wide range of quality-of-service 
(QoS) requirements [9]. Representative of these new appli- 
cations are those with real-time traffic, such as video and 
audio. This real-time communication [ 2 ,  301 requires guar- 
antees such as bounded end-to-end delay, bounded cell-loss 
rates, and guaranteed bandwidth from the network. Today’s 
packet-switched networks can employ a variety of methods 

*The work reported in this paper was supported in part by the National 
Science Foundation under Grant EIA-9806280. Any opinions, finding, and 
conclusions or recommendations expressed in this paper are those of the 
authors and do not necessarily reflect the view of the NSF. 

I 
Kang G. Shin 

ieal-Time Computing Lab. 
University of Michigan 
Ann Arbor, MI 48105 

kgshin @eecs.umich.c:du 

to provide the QoS guarantees for present and future appli- 
cations. 

As a packet travels from its source towards its destina- 
tion, contention for resources along its path will result in 
queueing of some packets while others get access to those 
resources. Assuming packets can be classified into their 
corresponding flow (classification is based on one or more 
fields in the packet headeI,s), QoS mechanisms will service 
packets such that all flows receive their desired levels of 
QoS. One such mechanism is traffic shaping, which moni- 
tors and controls flows so that they abide by their specified 
traffic parameters. On the other hand, link schedulers multi- 
plex among queued packets from different flows onto a sin- 
gle link for transmission. By combining these two mech- 
anisms, flows can be gu,mmteed to receive service with 
bounds on delay, delay jittl:r, and bandwidth [29, 341. These 
bounds will vary depending on which combination of algo- 
rithms are chosen for the :;haping and scheduling. 

However, delivering (!OS guarantees requires an end- 
to-end solution [3]. In other words, traffic shaping and 
link scheduling mechanisms must be in place both within 
the network at switches and routers, and also at the flow’s 
source (i.e., the server). Although most research focuses on 
implementation at nodes within the network, this paper fo- 
cuses on implementing traffic shaping and link scheduling 
on an end-host server with a single outgoing link. With- 
out a shaping and scheduling mechanism on the end-host 
server, the outgoing traffic pattern of a flow is determined 
by when the application is scheduled on the server CPU, 
and how much data the application is allowed to process 
and transmit at a time. During heavy server CPU loads and 
congestion at the outgoing link, the resulting flow’s outgo- 
ing traffic pattern will not match the flow’s specified traffic 
pattern. This deviation will be worse for flows which need 
to transmit relatively small amounts of data within short pe- 
riods of time. In a high-end content server, which needs 
to process both web page: content and deliver audiohide0 
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streams for real-time playback, such deviations can result 
in interrupted playback of real-time streams at end-clients. 
Although larger buffers and a longer startup time can reduce 
the effects of these deviations in traffic patterns, continuous 
deviations under heavy server loads will still result in play- 
back interruptions. Assuming QoS mechanisms within the 
network, both clients’ satisfaction (small startup time delay 
and no playback interruptions) and efficient use of network 
resources (buffers) will be maximized if the outgoing traffic 
pattern of each flow closely matches the stream’s playback 
rate. This is important for content providers who must max- 
imize the number of clients receiving streams from a server, 
and also maximize the number of clients receiving satisfac- 
tory service from the server. 

Incorporating a shaper-scheduler on the server can elim- 
inate traffic pattern deviations mentioned above. Unlike 
switches and routers which simply react to incoming pack- 
ets, depending on how the shaper-scheduler is implemented 
on the server, the resulting implementation will either react 
to packets generated by applications running on the server, 
or will directly impact the generation of packets by appli- 
cations. This direct impact can change the QoS received 
by each flow. To highlight these issues, and to motivate 
the need for a dedicated shaper-scheduler on the server, we 
will present and examine more traditional implementation 
strategies. By “traditional” we refer to software implemen- 
tations, either at the operating system or application level, 
which run on the same server CPU(s). 

This paper presents a network interface architecture with 
dedicated traffic shaping and link scheduling support. When 
a new flow is initiated, its traffic parameters are downloaded 
into the network interface through its programmable inter- 
face. Assuming that the application receives enough CPU 
cycles to process its stream into packets, the network inter- 
face will smooth the flow’s stream, regardless of how bursty 
the actual processing packet is, and schedule transmission 
on the outgoing link so that all flows receive their desired 
QoS. This approach allows the shaper-scheduler to operate 
concurrently with the rest of the server, thereby reacting to 
the flows. The architecture also significantly reduces server 
CPU load during heavy loads (both CPU usage and number 
of flows being served). Very fine-grain link multiplexing, 
and consequently a more diverse set of QoS guarantees, can 
be easily supported in this architecture for a large number 
of flows. 

The rest of the paper is organized as follows. We give 
a brief overview of traffic shaping and link scheduling in 
Section 2. A detailed examination of shaper-scheduler im- 
plementation issues on end-host servers is given in Section 
3. In Section 4 we present our network interface architec- 
ture, and describe its operation within the framework of a 
streaming server. We also present two possible implemen- 
tations of our architecture. Section 5 presents a performance 

evaluation of these two implementations, along with a brief 
description of our simulation environment and traffic mod- 
els. Section 6 concludes the paper with a summary of our 
work and a brief list of future directions. 

2. Background 

There are numerous traffic shaping and link scheduling 
algorithms in the literature, each characterized by different 
QoS guarantee properties. Despite this difference, all these 
algorithms share a common framework upon which they 
can be mapped. Traffic shapers hold back newly-queued 
packets from being serviced until the packet’s flow con- 
forms to its traffic envelope. This implies marking each 
packet with a conformance (eligibility or start) time, and 
having the shaper move packets out of the shaper and into 
the scheduler queue only when the system time reaches the 
start time. Shapers differ in  how they compute the start time. 
On the other hand, when the link becomes available, the link 
scheduler chooses the next packet to transmit among all el- 
igible packets queued in the scheduler queue. This implies 
that packets are assigned a priority (also called deadline or 
Jinish time), with the scheduler choosing the packet with 
the highest priority. Scheduling algorithms simply differ in 
how they compute the priority. We illustrate these points by 
describing several well-known algorithms. 

2.1. Leaky-bucket Shaper 

This algorithm [ 12, 26, 301 is conceptually very simple 
and is the basis for most shapers in the literature. The shaper 
generates tokens for a flow i at a rate of pi, where oi is 
the maximum number of tokens that can be accumulated in 
the bucket. A newly-arrived packet is eligible for transmis- 
sion only if there are enough tokens in the bucket. Other- 
wise, i t  must wait in the shaper until enough tokens have 
accumulated. When a packet is eligible and moves into the 
scheduler, i t  grabs the necessary number of tokens from the 
bucket. In the case of fixed-sized packets (i.e., ATM cells), 
each token corresponds to a single packet. Assuming the 
P h  packet from flow i arrives at time A(pC), and requires 
Lf tokens, the packet’s start time S(pC) (earliest time the 
packet is eligible) can be computed very easily. Since the 
shaper will serve packets from the same flow in FCFS or- 
der, the shaper need only keep one entry for each flow with 
one or more packets queued in the shaper. The packets can 
be ordered as a simple list. When the first, or head-of-the- 
line (HOL) packet becomes eligible, the start time for the 
flow’s next queued packet is calculated by setting its arrival 
time as the start time of the previous packet. If there are 
packets queued in the shaper for flow i when a new packet 
arrives, the new packet is simply appended to the end of the 
list without the need to calculate its start time. 
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2.2. Link Scheduling 

In a static priority algorithm each flow has a predeter- 

longing to the flow are marked with the same priority. The 
special case where there is only one priority level is the 
FCFS algorithm, where no packets have priority over 0th- 

mined priority number associated with it. All packets be- 
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ers. 
Under EDD [2, 301, each packet is assigned a due date __ 

(deadline), with the scheduler transmitting- smallest dead- 
line first. With these schemes each flow i provides the min- 
imum packet interarrival time Zi and a local delay bound d 
for each node the packet passes in the network. 

Packet-by-packet generalized processor sharing (PGPS) 
[25], also known as Weighted FQ (WFQ), Frame-based FQ 
(FFQ) [28, 331, Starting-potential based FQ (SPFQ) [33], 
Start-time FQ (SFQ) [20], Worst-case Fair WFQ (WF2Q) 
[6] and WF2Q+ [5], and Self-clocked FQ (SCFQ) [ 191 are 
several examples of packetized versions of fair queueing 
(FQ) algorithms [12, 251. Despite the large number of vari- 
ations, the basic foundation for all these algorithms is the 
same. The function V ( t )  returns the system time (or system 
potential) at time t .  For each packet that enters the sched- 
uler, it is assigned a start time S ( p f )  and a finish time F ( p f ) .  
Packets are then transmitted in increasing order of start time 
or finish time, depending on the algorithm. The difference 
among the various PFQ algorithms lies in how they com- 
pute the system, start, and finish times. Typically, each flow 
is specified only by its allocated rate p;. 

Other link scheduling algorithms include weighted 
round-robin [22], hiearchical round-robin [21], Stop and Go 
[31] (a framing strategy), Virtual Clock [35] ,  and many oth- 
ers. 

2.3. Framework 

The common denominator among all these algorithms 
is the notion of stamping each packet with a number, with 
service order based on that number. Shapers queue packets 
and service them based on their start times, while the sched- 
uler queues packets based on their priorities. Packets in the 
shaper queue can only be considered for transmission when 
they are eligible (i.e., the shaper moves the packet to the 
scheduler queue). Several researchers have proposed vari- 
ous shaper-scheduler implementations [ 1 1, 26, 291, whose 
results are incorporated into this paper. The basic frame- 
work of these implementations includes two sorted queues 
(shaper and scheduler), a mechanism for determining and 
moving eligible packets into the scheduler queue, and a con- 
trol mechanism which computes the start and finish times 
of each packet. After each packet transmission, the shaper 
needs to compute the start times of any new HOL pack- 
ets that have arrived and insert them into the shaper queue. 

U 

Figure 1. A generic server model 

Next, the shaper must move any eligible HOL packets into 
the scheduler queue. If lhese HOL packets are not the last 
in the flow’s linked list, then the new HOL packets must be 
processed by the shaper and inserted into the shaper queue. 
The scheduler then needs to determine and transmit the next 
packet. 

3. Implementation Strategies 

This section examines several traditional means of im- 
plementing a shaper-scheduler on an end-host server. We 
will discuss the mechanisms and limitations of these solu- 
tions. We first state assumptions regarding the server con- 
figuration. 

3.1. Assumptions 

Figure 1 shows a generic server that we assume in this 
paper. One or more processors are connected to secondary 
storage devices and the network interface through an in- 
terconnect. In most PC: server configurations this is just 
a shared bus. However, as processors and network link 
speeds become faster, and larger storage devices become 
more readily available, servers will be capable of serving 
more and more requests. Based on this trend, the current 
shared bus will become a major bottleneck, and will be re- 
placed by a faster and more efficient interconnect mecha- 
nism. Although we don’t assume a specific type of intercon- 
nect, we do assume that the interconnect will be fast enough 
not to be the bottleneck. 

We also assume that applications will receive enough 
CPU cycles for packet processing [ 13. This implies a pro- 
cess scheduler on the CIS, which is important for applica- 
tions which need to process and transmit date at periodic 
intervals. The process scheduler sets an upper bound on 
the time an application must wait to access the CPU, and 
guarantees that the application can process the minimum 
amount of data the application will transmit during this time 
interval. Without this, any shaper-scheduler implementa- 
tion will be made ineffective. We assume that each appli- 
cation is associated witlh one or more flows, and that each 
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flow is specified by a set of traffic parameters (i.e., burst size 
and minimum burst interval). For example, a stored video- 
on-demand server application can transmit several different 
flows (i.e., video streams) to remote clients for real-time 
playback. Although the entire video file is stored on disk, 
streaming the file allows the user to start playback without 
waiting for the entire file to download. As video files tend 
to be very large, streaming results in more efficient use of 
network resources, and allows the server to deliver good 
performance to a larger number of clients. In this example, 
each video stream’s traffic parameter is specified by its play- 
back rate. Transport layer protocols such as TCP simply try 
to detect and avoid congestion within the network, and are 
not suitable for such streaming applications which require a 
specified spacing between each transmission burst. 

3.2. Application-level traffic shaping 

Applications, such as streaming servers which need to 
pace each flow at a specified rate, can take advantage of a 
traffic shaper. However, without any OS-level support, one 
solution is to have each application pace its own flows. This 
assumes either a FCFS or other link scheduler at the trans- 
mit queue. Such self-pacing requires that each application 
monitor each flow and hold back transmissions for a flow if 
i t  violates the flow’s traffic parameters. Since a send call to 
the OS will attempt to transmit the data as soon as possible, 
the application can do one of two things to pace out its data 
transmission. It can either process the data and then perform 
a check (conformance to the traffic parameters) right before 
the send call, or i t  can delay the processing of the data (us- 
ing timers) to the next start time. Both methods require a 
form of delay mechanism, which is not feasible nor accu- 
rate for small delays and large number of applications and 
flows. If each application or flow is processed by a different 
process or thread, the number of context switches from user 
to user and from the user to kernel during the send call can 
add significant overhead and load on the server CPU(s). For 
example, if each flow transmits 2KB every 0.1 second, 1000 
simultaneous flows will require at least 10,000 task switches 
in  a second. To reduce this overhead, each application can 
increase both the burst size and burst interval to 20KB per 
second. This, however, requires larger buffers at each node 
in the network for each flow. Larger bursts also can increase 
the probability of packet drops during congestion within the 
network. 

This type of self-shaping mechanism is employed by 
current commercial stream servers such as Apple’s Quick- 
Time Streaming Server, Microsoft’s Windows Media Ser- 
vices, and RealNetwork’s Realserver. Under low server 
CPU loads, such self-time mechanisms might work well. 
However, under heavy loads, especially when the stream- 
ing server application must share the server CPU with other 

applications, the amount of time the streaming server appli- 
cation must wait for the server CPU could be much larger 
than a flow’s minimum burst interval. This results in inter- 
rupted playback at the client. 

3.3. Operating system support 

An alternative solution to self-shaping, is to add shap- 
ing and link scheduling support at the OS level. Whenever 
the application gets access to the server CPU, each flow can 
buffer enough data at the shaper to last several burst inter- 
vals, and allow the OS to perform the traffic shaping and 
link scheduling. This implies that the actual send call is 
not made until the scheduler decides to transmit an eligi- 
ble packet. Also, to ensure that flows are shaped accord- 
ing to their parameters, the shaper needs to be periodically 
executed. Although in Section 2 we defined this interval 
to be after each packet transmission, an actual implemen- 
tation can make this period larger. This allows the shaper- 
scheduler to batch schedule several packets for transmission 
which become eligible during each period. However, a large 
period can distort a flow so that it no longer adheres to its 
traffic parameters. Also, as we will show later, the amount 
of processing required to shape and schedule is not trivial. 
This load grows with the number of flows, thus taking away 
CPU from applications, and lowering the number of flows 
supported by the server. In the worst case, the processing of 
the shaper and scheduler could interfere with the processing 
required by the applications. 

4. Dedicated NIC Support 

Both self-shaping and OS-supported shaping and 
scheduling rely on running on the same CPU as the appli- 
cations. When the number of flows and load on the server 
CPU are low, both these schemes will work well. However, 
when either increases, the processing needs of the shaper- 
scheduler will interfere with the processing needs of the ap- 
plications. Our solution is to add dedicated support on the 
network interface (NIC). This allows concurrent operation 
of the shaping and scheduling with the rest of the server. 
The following subsections describe the basic operation of 
our NIC, and two possible implementations. 

4.1. Basics 

4.1.1 Flow setup 

An application will setup a new flow only if the admission 
control algorithm [3] determines that the resources required 
to process and transmit the new flow will not exceed server 
resources. The admission control algorithm also guarantees 
that flows that are currently in service will not be affected 
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when the new flow is admitted. Once the flow is admitted, 
an internal flow id is assigned to that flow. All references to 
the flow are made using the flow id. The flow’s data param- 
eters are then downloaded into the NIC’s shaper-scheduler. T + ~  , 

4.1.2 Packet movement 

Before data can be transmitted it needs to be packetized and 
moved to the NIC buffers. Packetization involves moving 
the data down a networking protocol stack, which appends 

” L f l T ; i  

=II 11 U m 

PI (b) 

Figure 2. Data structure used to encode traffic 
parameters 

headers to the data. Assuming a UDP transport protocol, an 
IP network protocol, and an ethernet link, the data will be 
appended with a UDP header, an IP header, and an ethernet 
header before being copied into the NIC buffers. In order 
to reduce the packet processing and movement overheads 
[4, 13, 14, 24, 271, many researchers have proposed vari- 
ous network interface architectures. Single-copy schemes 
[4, 13, 14, 271, which move data directly from user space 
to the NIC buffers, attempt to reduce the multiple memory 
copies necessary as the data moves down the various proto- 
col stacks. Other schemes move some or all of the packet 
processing onto the NIC [15, 24, 321. Instead of adding to 
the NIC, other schemes introduce new buffer-management 
mechanisms [ 161, reduce DMA overheads [7], or give user- 
level applications direct access to the NIC [ 171. 

We borrow from these results by assuming the following 
model. Each flow is assigned a user-level memory space 
which does not get paged out of physical memory. The 
amount of memory required is dependent on the maximum 
amount of time an application must wait to use the CPU. As 
we stated in Section 3.1, the process scheduler is respon- 
sible for setting an upper bound on this time, even under 
heavy CPU loads. For example, if the process scheduler 
can guarantee an application enough CPU cycles every 2 
seconds to process a 300 kbps video stream, the size of the 
memory will need to be 70 KB. The address and size of this 
memory will be fixed for the duration of the flow. The NIC 
is initialized with the starting address of this block of mem- 
ory at the time of flow setup. For simplicity, we assume that 
all addresses are physical addresses and no address transla- 
tion is needed for virtual addresses. Packets are then copied 
into NIC buffers using a DMA mechanism on the NIC. At 
this point, the packet has been fully processed and is ready 
for transmission, requiring no further packet processing at 
the NIC. 

determines the next packet to transmit, the packet’s flow id 
is used by the buffer manager to read the packet from NIC 
buffers into the NIC’s physical interface FIFO. A separate 
linked list is usNed for besl.-effort packets. Best-effort pack- 
ets are transmitted by applications which are not associated 
with any flows and do not require any QoS guarantees. 

4.1.4 Controll interface 

A memory-mapped control interface is used to communi- 
cate with the NIC. All commands (download traffic parame- 
ters, stop a flow) are delivered through the command FIFO. 
Any exceptions, status information, and shaper-scheduler 
requests are made through a request FIFO. 

4.1.5 Traffic paramete’rs 

Figure 2(a) shows the dsta structure (schedule segment) 
used to encode the traffic: parameters for each flow. Like 
most shaping and scheduling disciplines, we use a simple 
rate-based scheme. The rate is specified by its burst interval 
(T), burst size (S), and duration (D). The duration refers to 
the number of bursts required to send the entire flow. For 
a stored video file, this is simply the file size divided by S. 
For a continuous flow (live video, audio), the infinite flag is 
set to tell the shaper-scheduler to ignore D. Both T and S 
are in units of chunks, which are fixed-size segments. We 
assume that all packets arc: integer multiples of chunks. For 
example, if S=2., and T=213, then the flow requires 2 chucks 
to be transmitted for every 20 chunks transmitted. 

This traffic model can ;dso be used to characterize VBR- 
encoded video !streams. Smoothing techniques [ 181 can be 
used to compute a transmission schedule which consists of 
a small number of constant-rate transmission intervals. This 
can be encoded as several schedule segments, as shown in 
Figure 2(b), which uses the more flag to chain 3 schedule 

4.1.3 Buffer management segments. 

To amortize DMA overheads, the buffer manager on the 
NIC downloads several packets at a time for each flow. Each 

4.1.6 

flow will have an associated linked list of packets in the NIC 
buffers. The buffer manager keeps track of the current num- 
ber of packets in the buffers for each flow, and downloads 
packets from memory when needed. When the scheduler 

Each active flaw has an associated shaper tag which is 
queued in the shaper queue. The shaper tag consists of the 
flow id, the start time, arid finish time of the flow’s HOL 
packet. The start time is the finish time of the previous 
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packet plus the burst interval (T). For the first packet in the 
flow, its start time is the current time. An internal counter 
keeps track of the time by counting the number of chunks 
scheduled for transmission so far. The finish time is the 
packet’s start time plus T. In other words, its deadline is the 
earliest time the next packet in the flow can begin transmis- 
sion. When the HOL packet becomes eligible (its start time 
is greater than or equal to the current time), the shaper will 
create a scheduler tag (flow id and finish time) and insert it 
into the scheduler queue. If there are more packets to trans- 
mit in the flow, the shaper reads the flow’s schedule seg- 
ment to create a new shaper tag. If this packet is the last in 
‘the flow, an end-of-flow message is written into the request 
fifo. After each packet transmission, the shaper will move 
any packets that have become eligible, while the scheduler 
determines the next packet to transmit. The scheduler then 
writes a data tag (flow id) into the transmit FIFO, which is 
processed by the buffer manager. If there are no eligible 
packets, the shaper will release a best-effort packet into the 
scheduler. 

4.2. Hardware Implementation 

Figure 3 shows the block diagram of the hardware imple- 
mentation, which consists of two main blocks. The buffer 
manager contains the packet buffers, as well as the state 
machine to update the linked list of packets and interact 
with the DMA engine. The control block contains pointer 
memory, an SRAM module, and the traffic shaper and link 
scheduler. The pointer memory, indexed by flow id, keeps 
track of the list of scheduler segments for each flow. Each 
line of the schedule segment SRAM contains one schedule 
segment. Since a flow can have multiple schedule segments, 
a FIFO (not shown) keeps track of free lines in the sched- 
ule segment SRAM that can be used to store new schedule 
segments. When a flow ends, or when the schedule seg- 
ment ends, its address is returned to this FIFO. The heart of 
the shaper and scheduler is a dedicated priority queue (PQ) 
mechanism [ 10, 231, which provides constant time queue- 
ing, sorting, insertion, and removal of tags. The shaper’s 
priority queue sorts tags based on the start time, while the 
scheduler’s priority queue sorts tags based on their finish 
time. 

4.3. Software Implementation 

The NIC architecture for the software implementation is 
shown in Figure 4. This is similar to Myrinet’s network in- 
terface [8] which uses the LANai processor and three DMA 
engines to move data to and from the network interface. Al- 
though Myrinet uses byte-wide Myrinet physical connec- 
tions, our architecture does not depend on the physical in- 
terface and can be built upon any link technology. 

Figure 3. Block diagram of hardware imple- 
mentation 

VO bus infeltace 

1 D M A W ~ ~ ~ +  

local bus 
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Figure 4. NIC with dedicated processor 

All schedule segments, packets, and other information 
are stored in onboard memory which is accessible by the 
server processor. The DMA engine and transmission FIFO 
are addressable by the NIC processor. We also assume that 
the transmission FIFO has a DMA state machine which al- 
lows it  to read out packets from memory without involving 
the NIC processor. 

The core of the software implementation runs in an in- 
finite loop creating and removing tags from the shaper and 
scheduler PQs, updating schedule segments, inserting tags 
into the transmission FIFO, and checking the command 
FIFO. A region of the NIC processor’s memory is used as 
the command FIFO which can be accessed by the server 
processor. 

As with the hardware implementation, the traffic shaper 
will insert as many entries into the link scheduler as possi- 
ble. This is done to prevent missed deadlines. Consider two 
connections with the same eligibility time. If only a single 
entry is written into the scheduler PQ before running the 
link scheduler, the stream with the less urgent deadline can 
be scheduled and transmitted first, causing the other stream 
to miss its deadline. 

Instead of transferring the actual page into the transmis- 
sion FIFO, the NIC processor sets up the DMA engine on 
the FIFO. Similarly, when reading a page from source into 
NIC buffers, the NIC processor sets up the DMA engine on 
the I/O bus interface. Using DMA engines frees up proces- 
sor cycles for other computations. Since the NIC processor 
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is not actively involved in the actual transfer of packet data, 
a notification scheme is used to signal the NIC processor at 
the end of a page write into NI buffers and at the end of a 
page transmission. This is needed to manage the linked list 
of pages and to keep track of the NIC buffer usage. 

5. Evaluation 

To evaluate our proposed architecture we developed a 
simple event simulator using C ,  and modeled both hard- 
ware and software versions, also in C .  This provides us with 
a common framework which makes comparing our results 
more meaningful. This also allows us to use the same traces 

' and setup configurations to evaluate both implementations. 
Simulation results show the efficacy of our architecture in 
providing QoS-sensitive link multiplexing, especially when 
dealing with a large number of streams with widely-varying 
rates on a very high capacity link. We introduce the con- 
cept of period division and show the performance improve- 
ments obtained by using such fine-grain link multiplexing, 
and how our architecture can support this feature. 

5.1. Simulation Environment 

Our simulator allowed us to model and simulate arbitrar- 
ily large software components and arbitrarily small hard- 
ware components on a single platform. All components are 
modeled in C, while the simulator uses a single event-based 
queue with events sorted by time. Each event consists of a 
timestamp, a pointer to a data structure (object) which cor- 
responds to an instantiation of a component, and a pointer 
to the next event in the queue. An object consists of three 
parts. The first includes data structures which describe the 
current state of the component. The second part contains a 
list of pointers to other objects which can be triggered by 
the execution of the current component. The last part is a 
simple pointer to the task which determines the behavior of 
the component. For example, in the hardware implementa- 
tion, the traffic shaper and link scheduler were implemented 
as separate components. In the software implementation, a 
single component models the shaping and scheduling pro- 
gram running on the NIC processor. 

Threads are used during the execution of software com- 
ponents. Instead of modeling an entire processor, our simu- 
lator executes the actual software component code. Timing 
information is annotated into the original code to model de- 
lays in  software components, while hardware components 
assume existence of a global clock. During the simula- 
tion, the execution of the code is halted at regular intervals, 
and resumed by adding a future event into the event queue. 
Threads provide a convenient mechanism for halting and re- 
suming execution of the code. Although annotating delays 
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into the code only produces rough estimates of the perfor- 
mance of the software, tests showed that the simulator was 
accurate in estiinating trends, which allowed us to correctly 
analyze the sca.lability of the software components. Since 
both the simulator and all models are compiled into a single 
executable, run times are significantly reduced compared to 
other methods which interpret component descriptions dur- 
ing runtime. By combining the flexibility of C and the speed 
of a compiled simulation we were able to quickly explore 
different design alternati\,es and to obtain more meaningful 
data from running simulations of longer run times. 

5.2. Reducing Delay and Delay Jitter 

In our simulations we )used link speeds of 100 Mbps, 622 
Mbps, and 1 Cibps, with a fixed packet size of 128 bytes. 
Streams that need to b u m  data in larger-sized packets can 
easily do  so bly using multiples of 128 bytes. By parsing 
the packets on the outgoing link based on their stream id, 
we were able to measurl: the delay jitter seen by the end 
clients. 

At 100 Mbps the number of simultaneous streams ranges 
from 20 to 140, while the total number of streams during 
each simulation run was close to 200. For the 1 Gbps link, 
these numbers were between 120 to 580, and over 1000 
streams. To quantify overall performance we measured the 
average delay and delay jitter for each stream over a one- 
second interval. We then converted the delay jitter number 
into a percentage value (average deviation) based on the de- 
sired, or requested, delay. For example, a stream request- 
ing data transmits every 1 msec will see 10% delay jitter 
if transmissioris occur every (1  f 0.1 msec). These values 
were then averaged across all streams for each 1 second in- 
terval. Link utilization was kept at around 20% for the first 
120 secs, 40% for time=[120,320] secs, 85% for time=[320, 
7501 secs, and 20% for time=[750,800] secs. 

Figure 5 shows average deviation values. As expected, 
the average deviation increases with increased load on the 
network link. By increasing the size of the scheduler PQ, 
we can force the traffic shaper and link scheduler to look 
ahead even further in time to determine a better link sched- 
ule. As shown in the graphs deviation values remain con- 
stant throughout the simulation run for very large scheduler 
PQ sizes. We also see that after a certain size there is no fur- 
ther drop in deviation deijpite further increases in the sched- 
uler PQ size. 

This is mainly because the rates differ greatly among the 
various streams. Some of the video streams transmit large 
amounts of data (5 to 215 KB) every 33 msec, while other 
streams transmit much smaller amounts of data (100 to 1000 
bytes) every 1 to 2 msecs. As a consequence these smaller 
period streams can potentially wait past their deadlines if 
they get queued behind several large bursts. Even small jit- 
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ter values translate into large percentage values because of 
the relatively small period sizes. Increasing the scheduler 
PQ size can reduce deviation only up to a certain point be- 
cause doing so does not solve the problem where the smaller 
period stream gets queued behind several large bursts. 

By reducing the size of the large bursts to match the burst 
size of the smaller period streams we can significantly re- 
duce deviation of these smaller period streams. For exam- 
ple, if a video stream needs to burst 25 KB every 33 msecs, 
we can divide the period such that bursts are reduced to 750 
bytes every 1 msec (factor of 33) or even 1.9 KB every 2.2 
msec (factor of 15). We refer to this process as period divi- 
sion. Even when a smaller period stream is queued behind 
several video streams, the queueing time for the smaller 
period stream is much smaller since the burst size of the 
video streams has been reduced. As seen in Figure 6 devi- 
ation is reduced compared to the deviation values without 
the period division and using the same scheduler PQ size. 
This last observation is particularly important for the hard- 
ware implementation due to the hardware costs in  building 
very large PQs. This is explained in the next section. Fig- 
ure 7 shows deviation values for one of the smaller period 
streams. As expected, these streams gain the most by period 
division. From Figure 7(b) we see that the same deviation 
can be achieved with a 256 size PQ using period division or 
8196 size PQ without period division, resulting in a factor 
of 32 in hardware savings. We can see the same trends in 
Figure 7(a). 

5.3. CPU Load 

Figure 8 shows processor loads for some of the simula- 
tion runs. Since the priority queue and its operations are 
implemented as a binary heap, processor load does not in- 
crease significantly with increased PQ size. However, load 
does increase by a factor of 2 to 4 when we use period divi- 
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Figure 5. Performance measurements at 100 Mbps and 1 Gbps link speeds 
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sion because the number of operations to transmit the same 
amount of data has increased. At low link speeds the load 
is below lo%, but approaches 100% at high link speeds. 
For even higher link speeds and larger number of simulta- 
neous streams, the computing load required will exceed the 
capacity of the processor. This means that the server will 
have to reduce the number of simultaneous clients to de- 
liver the same level of QoS across all streams. Otherwise, 
the shaper-scheduler’s load will exceed loo%, causing the 
link to go idle even when there are packets to transmit. 

6. Conclusions 

In this paper we proposed and evaluated a network inter- 
face architecture with dedicated support for QoS-sensitive 
transmission. We defined an architecture and low-level 
functions for supporting traffic shaping and link schedul- 
ing. Based on hardware and software implementations we 
measured performance seen by the user in terms of delay 
and jitter, and showed the effect of increasing the scheduler 
PQ size in  reducing delay jitter. We also showed the effec- 
tiveness of fine-grain link scheduling in significantly reduc- 
ing delay jitter without using very large capacity scheduler 
PQs, which significantly lowers hardware implementation 
cost. We showed that, by moving the implementation into 
the network interface, the server can take advantage of the 
concurrent execution of operations. This allows the server 
to support finer levels of QoS, without burdening the server 
processor. Not only does this free the server processor to 
process other tasks, but i t  also results in a larger number 
of connections receiving their desired QoS. This allows the 
system to make the best use of server resources in terms of 
processor time and link bandwidth. 
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