
Implementing Traffic Shaping and Link Scheduling on a High-Performance
Server *

Sung-Whan Moon

Samsung-dong 169-6
Seoul, South Korea

swmoon @c-eisa.com

C-EISA

Abstract

This paper examines the implementation of trafic shap-
ing and link scheduling mechanisms on an end-host server:
We first compare various implementation strategies, and
then present a network interface architecture with dedicated
support for trafic shaping and link scheduling for use in
end-host servers. This results in signijicant load reduction
on the server CPU, as shaping and scheduling tasks can ex-
ecute concurrently on the network interface. This allows the
server to provide very fine-grain link multiplexing, and con-
sequently more diverse set of QoS guarantees fo r a large
number of flows. We present two alternative implementa-
tions of our architecture. The first uses custom hardware
while the second is implemented as a sojiware component
running on a dedicated processor on the network interface.

1. Introduction

Recent advances in network technology have brought
about substantial increases in bandwidth along with wide-
spread Internet access through high-speed connections be-
yond the corporate and academic communities and into
homes. This has resulted in the introduction of a large num-
ber of applications with a wide range of quality-of-service
(QoS) requirements [9]. Representative of these new appli-
cations are those with real-time traffic, such as video and
audio. This real-time communication [2 , 301 requires guar-
antees such as bounded end-to-end delay, bounded cell-loss
rates, and guaranteed bandwidth from the network. Today’s
packet-switched networks can employ a variety of methods

*The work reported in this paper was supported in part by the National
Science Foundation under Grant EIA-9806280. Any opinions, finding, and
conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the view of the NSF.

I
Kang G. Shin

ieal-Time Computing Lab.
University of Michigan
Ann Arbor, MI 48105

kgshin @eecs.umich.c:du

to provide the QoS guarantees for present and future appli-
cations.

As a packet travels from its source towards its destina-
tion, contention for resources along its path will result in
queueing of some packets while others get access to those
resources. Assuming packets can be classified into their
corresponding flow (classification is based on one or more
fields in the packet headeI,s), QoS mechanisms will service
packets such that all flows receive their desired levels of
QoS. One such mechanism is traffic shaping, which moni-
tors and controls flows so that they abide by their specified
traffic parameters. On the other hand, link schedulers multi-
plex among queued packets from different flows onto a sin-
gle link for transmission. By combining these two mech-
anisms, flows can be gu,mmteed to receive service with
bounds on delay, delay jittl:r, and bandwidth [29, 341. These
bounds will vary depending on which combination of algo-
rithms are chosen for the :;haping and scheduling.

However, delivering (!OS guarantees requires an end-
to-end solution [3]. In other words, traffic shaping and
link scheduling mechanisms must be in place both within
the network at switches and routers, and also at the flow’s
source (i.e., the server). Although most research focuses on
implementation at nodes within the network, this paper fo-
cuses on implementing traffic shaping and link scheduling
on an end-host server with a single outgoing link. With-
out a shaping and scheduling mechanism on the end-host
server, the outgoing traffic pattern of a flow is determined
by when the application is scheduled on the server CPU,
and how much data the application is allowed to process
and transmit at a time. During heavy server CPU loads and
congestion at the outgoing link, the resulting flow’s outgo-
ing traffic pattern will not match the flow’s specified traffic
pattern. This deviation will be worse for flows which need
to transmit relatively small amounts of data within short pe-
riods of time. In a high-end content server, which needs
to process both web page: content and deliver audiohide0

2 16
0-7695-1134-1101 $10.00 0 2001 IEEE

mailto:c-eisa.com

streams for real-time playback, such deviations can result
in interrupted playback of real-time streams at end-clients.
Although larger buffers and a longer startup time can reduce
the effects of these deviations in traffic patterns, continuous
deviations under heavy server loads will still result in play-
back interruptions. Assuming QoS mechanisms within the
network, both clients’ satisfaction (small startup time delay
and no playback interruptions) and efficient use of network
resources (buffers) will be maximized if the outgoing traffic
pattern of each flow closely matches the stream’s playback
rate. This is important for content providers who must max-
imize the number of clients receiving streams from a server,
and also maximize the number of clients receiving satisfac-
tory service from the server.

Incorporating a shaper-scheduler on the server can elim-
inate traffic pattern deviations mentioned above. Unlike
switches and routers which simply react to incoming pack-
ets, depending on how the shaper-scheduler is implemented
on the server, the resulting implementation will either react
to packets generated by applications running on the server,
or will directly impact the generation of packets by appli-
cations. This direct impact can change the QoS received
by each flow. To highlight these issues, and to motivate
the need for a dedicated shaper-scheduler on the server, we
will present and examine more traditional implementation
strategies. By “traditional” we refer to software implemen-
tations, either at the operating system or application level,
which run on the same server CPU(s).

This paper presents a network interface architecture with
dedicated traffic shaping and link scheduling support. When
a new flow is initiated, its traffic parameters are downloaded
into the network interface through its programmable inter-
face. Assuming that the application receives enough CPU
cycles to process its stream into packets, the network inter-
face will smooth the flow’s stream, regardless of how bursty
the actual processing packet is, and schedule transmission
on the outgoing link so that all flows receive their desired
QoS. This approach allows the shaper-scheduler to operate
concurrently with the rest of the server, thereby reacting to
the flows. The architecture also significantly reduces server
CPU load during heavy loads (both CPU usage and number
of flows being served). Very fine-grain link multiplexing,
and consequently a more diverse set of QoS guarantees, can
be easily supported in this architecture for a large number
of flows.

The rest of the paper is organized as follows. We give
a brief overview of traffic shaping and link scheduling in
Section 2. A detailed examination of shaper-scheduler im-
plementation issues on end-host servers is given in Section
3. In Section 4 we present our network interface architec-
ture, and describe its operation within the framework of a
streaming server. We also present two possible implemen-
tations of our architecture. Section 5 presents a performance

evaluation of these two implementations, along with a brief
description of our simulation environment and traffic mod-
els. Section 6 concludes the paper with a summary of our
work and a brief list of future directions.

2. Background

There are numerous traffic shaping and link scheduling
algorithms in the literature, each characterized by different
QoS guarantee properties. Despite this difference, all these
algorithms share a common framework upon which they
can be mapped. Traffic shapers hold back newly-queued
packets from being serviced until the packet’s flow con-
forms to its traffic envelope. This implies marking each
packet with a conformance (eligibility or start) time, and
having the shaper move packets out of the shaper and into
the scheduler queue only when the system time reaches the
start time. Shapers differ in how they compute the start time.
On the other hand, when the link becomes available, the link
scheduler chooses the next packet to transmit among all el-
igible packets queued in the scheduler queue. This implies
that packets are assigned a priority (also called deadline or
Jinish time), with the scheduler choosing the packet with
the highest priority. Scheduling algorithms simply differ in
how they compute the priority. We illustrate these points by
describing several well-known algorithms.

2.1. Leaky-bucket Shaper

This algorithm [12, 26, 301 is conceptually very simple
and is the basis for most shapers in the literature. The shaper
generates tokens for a flow i at a rate of pi, where oi is
the maximum number of tokens that can be accumulated in
the bucket. A newly-arrived packet is eligible for transmis-
sion only if there are enough tokens in the bucket. Other-
wise, i t must wait in the shaper until enough tokens have
accumulated. When a packet is eligible and moves into the
scheduler, i t grabs the necessary number of tokens from the
bucket. In the case of fixed-sized packets (i.e., ATM cells),
each token corresponds to a single packet. Assuming the
P h packet from flow i arrives at time A(pC), and requires
Lf tokens, the packet’s start time S(pC) (earliest time the
packet is eligible) can be computed very easily. Since the
shaper will serve packets from the same flow in FCFS or-
der, the shaper need only keep one entry for each flow with
one or more packets queued in the shaper. The packets can
be ordered as a simple list. When the first, or head-of-the-
line (HOL) packet becomes eligible, the start time for the
flow’s next queued packet is calculated by setting its arrival
time as the start time of the previous packet. If there are
packets queued in the shaper for flow i when a new packet
arrives, the new packet is simply appended to the end of the
list without the need to calculate its start time.

217

2.2. Link Scheduling

In a static priority algorithm each flow has a predeter-

longing to the flow are marked with the same priority. The
special case where there is only one priority level is the
FCFS algorithm, where no packets have priority over 0th-

mined priority number associated with it. All packets be-

ADDlcBt,on

ers.
Under EDD [2, 301, each packet is assigned a due date __

(deadline), with the scheduler transmitting- smallest dead-
line first. With these schemes each flow i provides the min-
imum packet interarrival time Zi and a local delay bound d
for each node the packet passes in the network.

Packet-by-packet generalized processor sharing (PGPS)
[25], also known as Weighted FQ (WFQ), Frame-based FQ
(FFQ) [28, 331, Starting-potential based FQ (SPFQ) [33],
Start-time FQ (SFQ) [20], Worst-case Fair WFQ (WF2Q)
[6] and WF2Q+ [5], and Self-clocked FQ (SCFQ) [191 are
several examples of packetized versions of fair queueing
(FQ) algorithms [12, 251. Despite the large number of vari-
ations, the basic foundation for all these algorithms is the
same. The function V (t) returns the system time (or system
potential) at time t . For each packet that enters the sched-
uler, it is assigned a start time S (p f) and a finish time F (p f) .
Packets are then transmitted in increasing order of start time
or finish time, depending on the algorithm. The difference
among the various PFQ algorithms lies in how they com-
pute the system, start, and finish times. Typically, each flow
is specified only by its allocated rate p;.

Other link scheduling algorithms include weighted
round-robin [22], hiearchical round-robin [21], Stop and Go
[31] (a framing strategy), Virtual Clock [35] , and many oth-
ers.

2.3. Framework

The common denominator among all these algorithms
is the notion of stamping each packet with a number, with
service order based on that number. Shapers queue packets
and service them based on their start times, while the sched-
uler queues packets based on their priorities. Packets in the
shaper queue can only be considered for transmission when
they are eligible (i.e., the shaper moves the packet to the
scheduler queue). Several researchers have proposed vari-
ous shaper-scheduler implementations [1 1, 26, 291, whose
results are incorporated into this paper. The basic frame-
work of these implementations includes two sorted queues
(shaper and scheduler), a mechanism for determining and
moving eligible packets into the scheduler queue, and a con-
trol mechanism which computes the start and finish times
of each packet. After each packet transmission, the shaper
needs to compute the start times of any new HOL pack-
ets that have arrived and insert them into the shaper queue.

U

Figure 1. A generic server model

Next, the shaper must move any eligible HOL packets into
the scheduler queue. If lhese HOL packets are not the last
in the flow’s linked list, then the new HOL packets must be
processed by the shaper and inserted into the shaper queue.
The scheduler then needs to determine and transmit the next
packet.

3. Implementation Strategies

This section examines several traditional means of im-
plementing a shaper-scheduler on an end-host server. We
will discuss the mechanisms and limitations of these solu-
tions. We first state assumptions regarding the server con-
figuration.

3.1. Assumptions

Figure 1 shows a generic server that we assume in this
paper. One or more processors are connected to secondary
storage devices and the network interface through an in-
terconnect. In most PC: server configurations this is just
a shared bus. However, as processors and network link
speeds become faster, and larger storage devices become
more readily available, servers will be capable of serving
more and more requests. Based on this trend, the current
shared bus will become a major bottleneck, and will be re-
placed by a faster and more efficient interconnect mecha-
nism. Although we don’t assume a specific type of intercon-
nect, we do assume that the interconnect will be fast enough
not to be the bottleneck.

We also assume that applications will receive enough
CPU cycles for packet processing [13. This implies a pro-
cess scheduler on the CIS, which is important for applica-
tions which need to process and transmit date at periodic
intervals. The process scheduler sets an upper bound on
the time an application must wait to access the CPU, and
guarantees that the application can process the minimum
amount of data the application will transmit during this time
interval. Without this, any shaper-scheduler implementa-
tion will be made ineffective. We assume that each appli-
cation is associated witlh one or more flows, and that each

2 18

flow is specified by a set of traffic parameters (i.e., burst size
and minimum burst interval). For example, a stored video-
on-demand server application can transmit several different
flows (i.e., video streams) to remote clients for real-time
playback. Although the entire video file is stored on disk,
streaming the file allows the user to start playback without
waiting for the entire file to download. As video files tend
to be very large, streaming results in more efficient use of
network resources, and allows the server to deliver good
performance to a larger number of clients. In this example,
each video stream’s traffic parameter is specified by its play-
back rate. Transport layer protocols such as TCP simply try
to detect and avoid congestion within the network, and are
not suitable for such streaming applications which require a
specified spacing between each transmission burst.

3.2. Application-level traffic shaping

Applications, such as streaming servers which need to
pace each flow at a specified rate, can take advantage of a
traffic shaper. However, without any OS-level support, one
solution is to have each application pace its own flows. This
assumes either a FCFS or other link scheduler at the trans-
mit queue. Such self-pacing requires that each application
monitor each flow and hold back transmissions for a flow if
i t violates the flow’s traffic parameters. Since a send call to
the OS will attempt to transmit the data as soon as possible,
the application can do one of two things to pace out its data
transmission. It can either process the data and then perform
a check (conformance to the traffic parameters) right before
the send call, or i t can delay the processing of the data (us-
ing timers) to the next start time. Both methods require a
form of delay mechanism, which is not feasible nor accu-
rate for small delays and large number of applications and
flows. If each application or flow is processed by a different
process or thread, the number of context switches from user
to user and from the user to kernel during the send call can
add significant overhead and load on the server CPU(s). For
example, if each flow transmits 2KB every 0.1 second, 1000
simultaneous flows will require at least 10,000 task switches
in a second. To reduce this overhead, each application can
increase both the burst size and burst interval to 20KB per
second. This, however, requires larger buffers at each node
in the network for each flow. Larger bursts also can increase
the probability of packet drops during congestion within the
network.

This type of self-shaping mechanism is employed by
current commercial stream servers such as Apple’s Quick-
Time Streaming Server, Microsoft’s Windows Media Ser-
vices, and RealNetwork’s Realserver. Under low server
CPU loads, such self-time mechanisms might work well.
However, under heavy loads, especially when the stream-
ing server application must share the server CPU with other

applications, the amount of time the streaming server appli-
cation must wait for the server CPU could be much larger
than a flow’s minimum burst interval. This results in inter-
rupted playback at the client.

3.3. Operating system support

An alternative solution to self-shaping, is to add shap-
ing and link scheduling support at the OS level. Whenever
the application gets access to the server CPU, each flow can
buffer enough data at the shaper to last several burst inter-
vals, and allow the OS to perform the traffic shaping and
link scheduling. This implies that the actual send call is
not made until the scheduler decides to transmit an eligi-
ble packet. Also, to ensure that flows are shaped accord-
ing to their parameters, the shaper needs to be periodically
executed. Although in Section 2 we defined this interval
to be after each packet transmission, an actual implemen-
tation can make this period larger. This allows the shaper-
scheduler to batch schedule several packets for transmission
which become eligible during each period. However, a large
period can distort a flow so that it no longer adheres to its
traffic parameters. Also, as we will show later, the amount
of processing required to shape and schedule is not trivial.
This load grows with the number of flows, thus taking away
CPU from applications, and lowering the number of flows
supported by the server. In the worst case, the processing of
the shaper and scheduler could interfere with the processing
required by the applications.

4. Dedicated NIC Support

Both self-shaping and OS-supported shaping and
scheduling rely on running on the same CPU as the appli-
cations. When the number of flows and load on the server
CPU are low, both these schemes will work well. However,
when either increases, the processing needs of the shaper-
scheduler will interfere with the processing needs of the ap-
plications. Our solution is to add dedicated support on the
network interface (NIC). This allows concurrent operation
of the shaping and scheduling with the rest of the server.
The following subsections describe the basic operation of
our NIC, and two possible implementations.

4.1. Basics

4.1.1 Flow setup

An application will setup a new flow only if the admission
control algorithm [3] determines that the resources required
to process and transmit the new flow will not exceed server
resources. The admission control algorithm also guarantees
that flows that are currently in service will not be affected

219

next scpmem

t. I

ml ’ D r-, 0 = I pLka

when the new flow is admitted. Once the flow is admitted,
an internal flow id is assigned to that flow. All references to
the flow are made using the flow id. The flow’s data param-
eters are then downloaded into the NIC’s shaper-scheduler. T + ~ ,

4.1.2 Packet movement

Before data can be transmitted it needs to be packetized and
moved to the NIC buffers. Packetization involves moving
the data down a networking protocol stack, which appends

” L f l T ; i

=II 11 U m

PI (b)

Figure 2. Data structure used to encode traffic
parameters

headers to the data. Assuming a UDP transport protocol, an
IP network protocol, and an ethernet link, the data will be
appended with a UDP header, an IP header, and an ethernet
header before being copied into the NIC buffers. In order
to reduce the packet processing and movement overheads
[4, 13, 14, 24, 271, many researchers have proposed vari-
ous network interface architectures. Single-copy schemes
[4, 13, 14, 271, which move data directly from user space
to the NIC buffers, attempt to reduce the multiple memory
copies necessary as the data moves down the various proto-
col stacks. Other schemes move some or all of the packet
processing onto the NIC [15, 24, 321. Instead of adding to
the NIC, other schemes introduce new buffer-management
mechanisms [161, reduce DMA overheads [7], or give user-
level applications direct access to the NIC [171.

We borrow from these results by assuming the following
model. Each flow is assigned a user-level memory space
which does not get paged out of physical memory. The
amount of memory required is dependent on the maximum
amount of time an application must wait to use the CPU. As
we stated in Section 3.1, the process scheduler is respon-
sible for setting an upper bound on this time, even under
heavy CPU loads. For example, if the process scheduler
can guarantee an application enough CPU cycles every 2
seconds to process a 300 kbps video stream, the size of the
memory will need to be 70 KB. The address and size of this
memory will be fixed for the duration of the flow. The NIC
is initialized with the starting address of this block of mem-
ory at the time of flow setup. For simplicity, we assume that
all addresses are physical addresses and no address transla-
tion is needed for virtual addresses. Packets are then copied
into NIC buffers using a DMA mechanism on the NIC. At
this point, the packet has been fully processed and is ready
for transmission, requiring no further packet processing at
the NIC.

determines the next packet to transmit, the packet’s flow id
is used by the buffer manager to read the packet from NIC
buffers into the NIC’s physical interface FIFO. A separate
linked list is usNed for besl.-effort packets. Best-effort pack-
ets are transmitted by applications which are not associated
with any flows and do not require any QoS guarantees.

4.1.4 Controll interface

A memory-mapped control interface is used to communi-
cate with the NIC. All commands (download traffic parame-
ters, stop a flow) are delivered through the command FIFO.
Any exceptions, status information, and shaper-scheduler
requests are made through a request FIFO.

4.1.5 Traffic paramete’rs

Figure 2(a) shows the dsta structure (schedule segment)
used to encode the traffic: parameters for each flow. Like
most shaping and scheduling disciplines, we use a simple
rate-based scheme. The rate is specified by its burst interval
(T), burst size (S), and duration (D). The duration refers to
the number of bursts required to send the entire flow. For
a stored video file, this is simply the file size divided by S.
For a continuous flow (live video, audio), the infinite flag is
set to tell the shaper-scheduler to ignore D. Both T and S
are in units of chunks, which are fixed-size segments. We
assume that all packets arc: integer multiples of chunks. For
example, if S=2., and T=213, then the flow requires 2 chucks
to be transmitted for every 20 chunks transmitted.

This traffic model can ;dso be used to characterize VBR-
encoded video !streams. Smoothing techniques [181 can be
used to compute a transmission schedule which consists of
a small number of constant-rate transmission intervals. This
can be encoded as several schedule segments, as shown in
Figure 2(b), which uses the more flag to chain 3 schedule

4.1.3 Buffer management segments.

To amortize DMA overheads, the buffer manager on the
NIC downloads several packets at a time for each flow. Each

4.1.6

flow will have an associated linked list of packets in the NIC
buffers. The buffer manager keeps track of the current num-
ber of packets in the buffers for each flow, and downloads
packets from memory when needed. When the scheduler

Each active flaw has an associated shaper tag which is
queued in the shaper queue. The shaper tag consists of the
flow id, the start time, arid finish time of the flow’s HOL
packet. The start time is the finish time of the previous

220

packet plus the burst interval (T). For the first packet in the
flow, its start time is the current time. An internal counter
keeps track of the time by counting the number of chunks
scheduled for transmission so far. The finish time is the
packet’s start time plus T. In other words, its deadline is the
earliest time the next packet in the flow can begin transmis-
sion. When the HOL packet becomes eligible (its start time
is greater than or equal to the current time), the shaper will
create a scheduler tag (flow id and finish time) and insert it
into the scheduler queue. If there are more packets to trans-
mit in the flow, the shaper reads the flow’s schedule seg-
ment to create a new shaper tag. If this packet is the last in
‘the flow, an end-of-flow message is written into the request
fifo. After each packet transmission, the shaper will move
any packets that have become eligible, while the scheduler
determines the next packet to transmit. The scheduler then
writes a data tag (flow id) into the transmit FIFO, which is
processed by the buffer manager. If there are no eligible
packets, the shaper will release a best-effort packet into the
scheduler.

4.2. Hardware Implementation

Figure 3 shows the block diagram of the hardware imple-
mentation, which consists of two main blocks. The buffer
manager contains the packet buffers, as well as the state
machine to update the linked list of packets and interact
with the DMA engine. The control block contains pointer
memory, an SRAM module, and the traffic shaper and link
scheduler. The pointer memory, indexed by flow id, keeps
track of the list of scheduler segments for each flow. Each
line of the schedule segment SRAM contains one schedule
segment. Since a flow can have multiple schedule segments,
a FIFO (not shown) keeps track of free lines in the sched-
ule segment SRAM that can be used to store new schedule
segments. When a flow ends, or when the schedule seg-
ment ends, its address is returned to this FIFO. The heart of
the shaper and scheduler is a dedicated priority queue (PQ)
mechanism [10, 231, which provides constant time queue-
ing, sorting, insertion, and removal of tags. The shaper’s
priority queue sorts tags based on the start time, while the
scheduler’s priority queue sorts tags based on their finish
time.

4.3. Software Implementation

The NIC architecture for the software implementation is
shown in Figure 4. This is similar to Myrinet’s network in-
terface [8] which uses the LANai processor and three DMA
engines to move data to and from the network interface. Al-
though Myrinet uses byte-wide Myrinet physical connec-
tions, our architecture does not depend on the physical in-
terface and can be built upon any link technology.

Figure 3. Block diagram of hardware imple-
mentation

VO bus infeltace

1 D M A W ~ ~ ~ +

local bus

PmCessar

link

Figure 4. NIC with dedicated processor

All schedule segments, packets, and other information
are stored in onboard memory which is accessible by the
server processor. The DMA engine and transmission FIFO
are addressable by the NIC processor. We also assume that
the transmission FIFO has a DMA state machine which al-
lows it to read out packets from memory without involving
the NIC processor.

The core of the software implementation runs in an in-
finite loop creating and removing tags from the shaper and
scheduler PQs, updating schedule segments, inserting tags
into the transmission FIFO, and checking the command
FIFO. A region of the NIC processor’s memory is used as
the command FIFO which can be accessed by the server
processor.

As with the hardware implementation, the traffic shaper
will insert as many entries into the link scheduler as possi-
ble. This is done to prevent missed deadlines. Consider two
connections with the same eligibility time. If only a single
entry is written into the scheduler PQ before running the
link scheduler, the stream with the less urgent deadline can
be scheduled and transmitted first, causing the other stream
to miss its deadline.

Instead of transferring the actual page into the transmis-
sion FIFO, the NIC processor sets up the DMA engine on
the FIFO. Similarly, when reading a page from source into
NIC buffers, the NIC processor sets up the DMA engine on
the I/O bus interface. Using DMA engines frees up proces-
sor cycles for other computations. Since the NIC processor

221

is not actively involved in the actual transfer of packet data,
a notification scheme is used to signal the NIC processor at
the end of a page write into NI buffers and at the end of a
page transmission. This is needed to manage the linked list
of pages and to keep track of the NIC buffer usage.

5. Evaluation

To evaluate our proposed architecture we developed a
simple event simulator using C , and modeled both hard-
ware and software versions, also in C . This provides us with
a common framework which makes comparing our results
more meaningful. This also allows us to use the same traces

' and setup configurations to evaluate both implementations.
Simulation results show the efficacy of our architecture in
providing QoS-sensitive link multiplexing, especially when
dealing with a large number of streams with widely-varying
rates on a very high capacity link. We introduce the con-
cept of period division and show the performance improve-
ments obtained by using such fine-grain link multiplexing,
and how our architecture can support this feature.

5.1. Simulation Environment

Our simulator allowed us to model and simulate arbitrar-
ily large software components and arbitrarily small hard-
ware components on a single platform. All components are
modeled in C, while the simulator uses a single event-based
queue with events sorted by time. Each event consists of a
timestamp, a pointer to a data structure (object) which cor-
responds to an instantiation of a component, and a pointer
to the next event in the queue. An object consists of three
parts. The first includes data structures which describe the
current state of the component. The second part contains a
list of pointers to other objects which can be triggered by
the execution of the current component. The last part is a
simple pointer to the task which determines the behavior of
the component. For example, in the hardware implementa-
tion, the traffic shaper and link scheduler were implemented
as separate components. In the software implementation, a
single component models the shaping and scheduling pro-
gram running on the NIC processor.

Threads are used during the execution of software com-
ponents. Instead of modeling an entire processor, our simu-
lator executes the actual software component code. Timing
information is annotated into the original code to model de-
lays in software components, while hardware components
assume existence of a global clock. During the simula-
tion, the execution of the code is halted at regular intervals,
and resumed by adding a future event into the event queue.
Threads provide a convenient mechanism for halting and re-
suming execution of the code. Although annotating delays

22

into the code only produces rough estimates of the perfor-
mance of the software, tests showed that the simulator was
accurate in estiinating trends, which allowed us to correctly
analyze the sca.lability of the software components. Since
both the simulator and all models are compiled into a single
executable, run times are significantly reduced compared to
other methods which interpret component descriptions dur-
ing runtime. By combining the flexibility of C and the speed
of a compiled simulation we were able to quickly explore
different design alternati\,es and to obtain more meaningful
data from running simulations of longer run times.

5.2. Reducing Delay and Delay Jitter

In our simulations we)used link speeds of 100 Mbps, 622
Mbps, and 1 Cibps, with a fixed packet size of 128 bytes.
Streams that need to b u m data in larger-sized packets can
easily do so bly using multiples of 128 bytes. By parsing
the packets on the outgoing link based on their stream id,
we were able to measurl: the delay jitter seen by the end
clients.

At 100 Mbps the number of simultaneous streams ranges
from 20 to 140, while the total number of streams during
each simulation run was close to 200. For the 1 Gbps link,
these numbers were between 120 to 580, and over 1000
streams. To quantify overall performance we measured the
average delay and delay jitter for each stream over a one-
second interval. We then converted the delay jitter number
into a percentage value (average deviation) based on the de-
sired, or requested, delay. For example, a stream request-
ing data transmits every 1 msec will see 10% delay jitter
if transmissioris occur every (1 f 0.1 msec). These values
were then averaged across all streams for each 1 second in-
terval. Link utilization was kept at around 20% for the first
120 secs, 40% for time=[120,320] secs, 85% for time=[320,
7501 secs, and 20% for time=[750,800] secs.

Figure 5 shows average deviation values. As expected,
the average deviation increases with increased load on the
network link. By increasing the size of the scheduler PQ,
we can force the traffic shaper and link scheduler to look
ahead even further in time to determine a better link sched-
ule. As shown in the graphs deviation values remain con-
stant throughout the simulation run for very large scheduler
PQ sizes. We also see that after a certain size there is no fur-
ther drop in deviation deijpite further increases in the sched-
uler PQ size.

This is mainly because the rates differ greatly among the
various streams. Some of the video streams transmit large
amounts of data (5 to 215 KB) every 33 msec, while other
streams transmit much smaller amounts of data (100 to 1000
bytes) every 1 to 2 msecs. As a consequence these smaller
period streams can potentially wait past their deadlines if
they get queued behind several large bursts. Even small jit-

2

Average Deviation for all Connections

ter values translate into large percentage values because of
the relatively small period sizes. Increasing the scheduler
PQ size can reduce deviation only up to a certain point be-
cause doing so does not solve the problem where the smaller
period stream gets queued behind several large bursts.

By reducing the size of the large bursts to match the burst
size of the smaller period streams we can significantly re-
duce deviation of these smaller period streams. For exam-
ple, if a video stream needs to burst 25 KB every 33 msecs,
we can divide the period such that bursts are reduced to 750
bytes every 1 msec (factor of 33) or even 1.9 KB every 2.2
msec (factor of 15). We refer to this process as period divi-
sion. Even when a smaller period stream is queued behind
several video streams, the queueing time for the smaller
period stream is much smaller since the burst size of the
video streams has been reduced. As seen in Figure 6 devi-
ation is reduced compared to the deviation values without
the period division and using the same scheduler PQ size.
This last observation is particularly important for the hard-
ware implementation due to the hardware costs in building
very large PQs. This is explained in the next section. Fig-
ure 7 shows deviation values for one of the smaller period
streams. As expected, these streams gain the most by period
division. From Figure 7(b) we see that the same deviation
can be achieved with a 256 size PQ using period division or
8196 size PQ without period division, resulting in a factor
of 32 in hardware savings. We can see the same trends in
Figure 7(a).

5.3. CPU Load

Figure 8 shows processor loads for some of the simula-
tion runs. Since the priority queue and its operations are
implemented as a binary heap, processor load does not in-
crease significantly with increased PQ size. However, load
does increase by a factor of 2 to 4 when we use period divi-

I I I I
0 100 200 300 400 500 600 700 800

sec

(a) l00Mbps

Average Deviation for all Connections

4096
61 44
8196

f
0 100 200 300 400 500 600 700 800

sec

(b) 1 Gbps

Figure 5. Performance measurements at 100 Mbps and 1 Gbps link speeds

223

sion because the number of operations to transmit the same
amount of data has increased. At low link speeds the load
is below lo%, but approaches 100% at high link speeds.
For even higher link speeds and larger number of simulta-
neous streams, the computing load required will exceed the
capacity of the processor. This means that the server will
have to reduce the number of simultaneous clients to de-
liver the same level of QoS across all streams. Otherwise,
the shaper-scheduler’s load will exceed loo%, causing the
link to go idle even when there are packets to transmit.

6. Conclusions

In this paper we proposed and evaluated a network inter-
face architecture with dedicated support for QoS-sensitive
transmission. We defined an architecture and low-level
functions for supporting traffic shaping and link schedul-
ing. Based on hardware and software implementations we
measured performance seen by the user in terms of delay
and jitter, and showed the effect of increasing the scheduler
PQ size in reducing delay jitter. We also showed the effec-
tiveness of fine-grain link scheduling in significantly reduc-
ing delay jitter without using very large capacity scheduler
PQs, which significantly lowers hardware implementation
cost. We showed that, by moving the implementation into
the network interface, the server can take advantage of the
concurrent execution of operations. This allows the server
to support finer levels of QoS, without burdening the server
processor. Not only does this free the server processor to
process other tasks, but i t also results in a larger number
of connections receiving their desired QoS. This allows the
system to make the best use of server resources in terms of
processor time and link bandwidth.

Average Deviation for all Connections

0
0 100 200 300 400 500 600 700 800

sec

(a) 100Mbps

25

.E 20

T 'r 5 15
U

a, 10
I
0 5 z

C

U
._

.-

U -
0'

Average Deviation f x all Connections m - q 6144

i
0 100 200 300 400 500 600 700 800

sec

(b) 1 Gbps

Figure 6. Performance measurements after incorporating periiod division

Average Deviation for a Single Stream Average Deviation for a Single Stream
120

g 100 ._ - -
.E 80

a,

U
._ E 60

c
I 40
.-
U -
8 20

0
0 100 200 300 400 500 600 700 800 900

sec

(a) 100 Mbps

20

0
0 100 200 300 400 500 600 700 800 900

sec

(b) 1 Gbps

Figure 7. Performance measurements of a single small period stream

References

[I] T. Abdelzaher and K. Shin. Qos provisioning with qcon-
tracts in web and multimedia servers. In IEEE Real-Time
Systems Symposium, pages 44-53, 1999.

[2] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne.
Real-time communication in packet-switched networks.
Proceedings of IEEE, 82(I): 122-1 39, January 1994.

[3] C. Aurrecoechea, A. Campbell, and L. Hauw. A survey of
qos architectures. ACM/Springer Verlag Multimedia Sys-
tems Journal. Special Issue on QoS Architecture, 6(3): 138-
151, May 1998.

[4] D. Banks and M. Prudence. High-performance network ar-
chitecture for a pa-risc workstation. IEEE Journal on Se-
lected Areas in Communications, 1 l(2): 191-202, February
1993.

[SI J. Bennett and H. Zhang. Hierarchical packet fair queueing

[7] M. Blumrich, C. Dubnicki, E. Felten, and K. Li. Protected,
user-level dma for the shrimp network interface. In Inter-
national Symposium on High-Performance Computer Archi-
tecture, pages 154-165, 1996.

[8] N. J . Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seiti!, J. N. Si:izovic, and W.-K. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29-36, January 199.5.

[9] B. Carpenter and D. Kandlur. Diversifying intemet delivery.
IEEE Spectrum, 36(1 1 :1:57-61, November 1999.

IO] H. J. Chao. A novel architecture for queue management in
the atm network. IEEE Journal on Selected Areas in Com-
munications, 9(7):11 IC1-1118, September 1991.

1 I] H. J. Chao, Y.-R. Jenq, X. Guo, , and C. H. Lam. Design of
packet-fair queuing schedulers using a ram-based searching
engine. IE'EE Journal on Selected Areas in Communica-
tions, 17(6):1105-1126, June 1999.

algorithms. In SIGCOMM, pages 143-1.56, 1996. [I21 D. D. Clark, S. Shenker, and L. Zhang. Supporting real-
time applications in an integrated services packet network:

weighted fair queueing. In IEEE INFOCOM, pages 120- Architecture and mechanism. In ACM SIGCOMM, pages
128, 1996. 14-26, 1992.

[6] J. C. R. Bennett and H. Zhang. Wf2q : Worst-case fair

224

CPU Usage CPU Usage
10

8

6

-8
4

2

0 J
0 100 200 300 400 500 600 700 800

sec

(a) l00Mbps

100

80

60

z
40

20

0
100 200 300 400 500 600 700 800

sec

(b) 1 Gbps

Figure 8. Processor loads

[I31 C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Ed-
wards, and J. Lumley. Afterburner. IEEE Nemork, 7(4):36
43, July 1993.

[I41 B. S. Davie. The architecture and implemtation of a high-
speed host interface. IEEE Joumal on Selecied Areas in
Communications, 1 1 (2):228-239, February 1993.

[IS] Z. D. Dittia, J. R. Cox, and G. M. Parulkar. Design of the
APIC: A high performance ATM host-interface chip. In Pro-
ceedings of IEEE INFOCOM, pages 179-187, 1995.

[I61 P. Dmschel and L. Peterson. Fbufs: A high-bandwith cross-
domain transfer facility. In SIGOPS, pages 189-202, 1993.

/I71 D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shu-
bert, E Berry, A. Memtt, E. Gronke, and C. Dodd. The vir-
tual interface architecture. IEEE Micro, 18(2):66-76, 1998.

[18] W.-C. Feng and J. Rexford. A comparison of bandwidth
smoothing techniques for the transmission of prerecorded
compressed video. In INFOCOM, pages 58-66, 1997.

[19] S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In IEEE INFOCOM, pages 636-
646, 1994.

Start-time fair queu-
ing: A scheduling algorithm for integrated services packet
switching networks. IEEE/ACM Transactions on Network-
ing, 5(5):690-704, oct 1997.

[21] C. R. Kalmanek, H. Kanakia, and S. Keshav. Rate control
servers for very high-speed networks. In IEEE GLOBE-
COM, pages 12-20, 1990.

[22] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis.
Weighted round-robin cell multiplexing in a general-purpose
atm switch chip. IEEE Journal on Selecied Areas in Com-
munications, 9(8): 1265-1279, October 1991.

[23] S.-W. Moon, J. Rexford, and K. G. Shin. Scalable hard-
ware priority queue architectures for high-speed packet
switches. IEEE Transcations on Computers, 49(11):1215-
1227, November 2000.

[241 G. W. Neufeld, M. R. Ito, M. Goldberg, M. J. McCutcheon,
and S. Ritchie. Parallel host interface for an atm network.
IEEE Network, pages 24-34, July 1993.

[251 A. K. J. Parekh. A Generalized Processor Sharing Approach
io Flow Control in lntegraied Services Networks. PhD the-
sis, Massachusetts Institute of Technology, 1992.

[20] P. Goyal, H. Vin, and H. Cheng.

[26] J. Rexford, F. Bonomiand, A. Greenberg, and A. Wong.
Scalable architectures for integrated traffic shaping and link
scheduling in high-speed atm switches. IEEE Journal on Se-
lecied Areas in Communicaiions, 1 S(S):938-950, jun 1997.

[27] D. Saha. Supporting Distributed Multimedia Applicaiions
on ATM Networks. PhD thesis, The University of Maryland,
199s.

[28] D. Stiliadis and A. Varma. Frame-based fair queueing: A
new traffic scheduling algorithm for packet-switched net-
works. In SIGMETRICS, pages 104-1 IS, 1996.

[29] D. Stiliadis and A. Varma. A general methodology for de-
signing efficient traffic scheduling and shaping algorithms.
In INFOCOM, pages 326-335, 1997.

[30] D. Towsley. Providing quality of service in packet switched
networks. In L. Donatiello and R. Nelson, editors, Per-
formance Evaluation of Computer and Communicuiion Sys-
tems, pages 560-586. Springer Verlag, 1993.

[31] L. Trajkovic and S. J. Golestani. Congestion control for
multimedia services. IEEE Network, 6(5):20-26, Septem-
ber 1992.

[32] C. B. S. Traw and J. M. Smith. Hardware/software orga-
nization of a high-performance ATM host interface. IEEE
Journal on Selected Areas in Communications, 1 1 (2):240-
253, Feb. 1993.

[33] A. Varma and D. Stiliadis. Hardware implementation of
fair queuing algorithms for asynchronous transfer mode net-
works. IEEE Communicaiions Magazine, 35(12):54-68,
Dec. 1997.

[34] H. Zhang and D. Ferrari. Rate-controlled service disciplines.
Journal of High Speed Networks, 3(4):389-412, 1994.

[3S] L. Zhang. Virtual clock: A new traffic control algorithm for
packet-switched networks. ACM Transaciions on Cotnpuier
Sysiems, 9(2):101-124, May 1991.

225

