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Abstract. Multicast Video-on-Demand (VoD) has excellent performance,
but it is very difficult to equip such a system with full support for in-
teractive VCR functions. In this paper, we propose a new scheme, called
the Best-Effort Patching (BEP), that offers a TVoD service in terms of
both request admission and VCR interaction for multicast VoD system.
Moreover, by using a novel dynamic merging algorithm, BEP signifi-
cantly improves the efficiency of TVoD interactivity, especially for popu-
lar videos. Our extensive simulation results show that BEP outperforms
the conventional multicast TVoD interaction protocols.

1 Introduction

A VoD service allows remote clients to play back any video from a large col-
lection of videos stored at one or more video servers at any time. VoD service
is usually long-lived and real-time, and requires high storage-I/O & network
bandwidths, and needs to support VCR-like interactivity. TVoD service sup-
ports all of the control functions such as Play/Resume, Stop/Pause/Abort, Fast
Forward/Rewind, Fast Search/Reverse Search and Slow Motion, and is an ideal
service for consumers. The conventional TVoD system uses one dedicated chan-
nel for each service request, which offers the client the best QoS and interactive
service. However, it incurs high system costs, especially in terms of storage-I/O
and network bandwidth. One efficient solution to these problems is to use mul-
ticast. Multicast VoD has excellent scalability and cost/performance efficiency.

There are several approaches for multicasting VoD service. One approach is
to multicast each popular video at fixed intervals. In order to eliminate service
latency, patching [8] was proposed to enable an existing multicast to serve new
additional clients, but the conventional patching is suitable only for TVoD admis-
sion control. The other approach is to use a fixed number of multicast channels
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to periodically broadcast video objects to a group of subscribers [2,9,12]. This
periodic broadcast is efficient in transmitting popular videos from one server to
many clients, but it is difficult to support VCR interactivity.

In order to provide TVoD service, we propose a new patching scheme, called
the Best-Effort Patching (BEP). Like the conventional patching, BEP multicasts
a popular video via regular channels at fixed intervals. Requests between two
consecutive regular channels will share the latest regular stream by patching
the missed leading segment. Moreover, patching is used to support the user
interaction in BEP. Once a client interaction exceeds the capability of his CPE
buffer, BEP dispatches a patching channel to support the client’s interaction
and its merging into the nearest multicast channel. Further, BEP uses a novel
dynamic merging scheme, thus offering TVoD service efficiently.

2 Background

To eliminate the service latency, patching was proposed in [8] by enabling each
multicast session to dynamically add new requests. An important objective of
patching is to increase the number of requests each channel can serve per time
unit, thereby reducing the per-customer system cost. A new service request can
exploit an existing multicast by buffering the video stream from the multicast
while playing a new catch-up stream (via a patching channel) from the begin-
ning. Once the new catch-up stream is played back to the skew point, it can be
terminated and the new client can join the original multicast. Allowing clients to
dynamically join an existing multicast improves the multicast efficiency. More-
over, requests can be honored immediately, achieving zero-delay VoD service.

In the patching scheme, channels are often used to patch the missing portion
of a video, or deliver a patching stream. The time period during which patching
must be used, is referred to as the patching window [4]. Two simple approaches
to setting the patching window are discussed in [8]: greedy patching and grace
patching. An improved patching technique, called as the transition patching [5],
has better performance without requiring any extra download bandwidth at the
client site. Other optimal patching schemes were presented in [6,11].

In order to implement the interactivity of multicast VoD service, some effi-
cient schemes have been proposed. For example, the SAM protocol [10] offers
an efficient way for TVoD interactions, but it requires many I-Channels, thus
resulting in a high blocking rate. The authors of [1] improved the SAM proto-
col by using the CPE buffer. Other researchers, such as those of [3], focused on
interactions without picture. In this paper, we present an efficient approach to
the implementation of the continuous TVoD interactions.

3 Best-Effort Patching for TVoD Interactivity

3.1 Basic Idea

Continuous service of VCR actions can be supported in multicast VoD systems
by employing the CPE buffer, but this support is limited by the size of CPE
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buffer (see Fig. 1). Initially, the play point corresponds to the most recent frame
and the CPE buffer is progressively filled in with past frames as the playback con-
tinues. The Play operation doesn’t change the relative position of the play point
with respect to the most recent frame. When forward/backward interactions are
performed, the play point will eventually be near the most recent frame/the
oldest frame. The displacement of the play point depends on the speedup factor
SP or the slow motion factor SM. For example, the Fast Forward spanning over
time t will cause an actual displacement of (SP −1)t. Suppose dr (usually equals
d/2) is the displacement between the play point and the most recent frame, then
Fast Forward will continuously be supported if t ≤ dr

SP−1 (e.g. A is the desired
play point). A similar observation can be made for a backward interaction.
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Fig. 1. The CPE buffer and VCR actions
Now, let’s consider another situation when a Fast Forward interaction was

performed over time t ≥ dr

SP−1 , or Rewind interaction took place over the time
allowed by the CPE buffer. The CPE buffer can’t guarantee a smooth transition
between adjacent multicast groups, i.e., a discontinuous VCR interaction may
take place. The interaction can’t always join an existing channel immediately
because there isn’t always a channel with the desired playback time.

BEP eliminates discontinuity so that customers may enjoy zero-delay VCR
interactions. The main idea behind BEP is as follows. In executing VCR in-
teractive operations, once the interaction time exceeds the capacity of the CPE
buffer, BEP dispatches a patching channel to transmit the video from the desired
time point, and supports the interaction and its merging into the latest multi-
cast channel. For an interaction without picture, such as Fast Forward, Rewind,
Pause, Stop, BEP only needs to dispatch a patching channel for its merge into an
existing channel after the interaction, where the client downloads the video from
both the patching channel and the closest multicast channel simultaneously. The
video from the patching channel is played back immediately, and the video from
the closest multicast channel is buffered in the CPE buffer. For merging, the
patching channel is required only for the displacement between the play point
of the closest channel and the desired play point, and then the patching channel
is released. This way, the customer seamlessly joins an existing multicast group.
It doesn’t incur any additional CPE cost because it just makes use of the CPE
buffer required by the conventional patching.

We can further illustrate BEP by Fig. 2. Once the interaction time exceeds
the CPE buffer capacity, BEP will assign a channel to the customer. The channel
is used during both the interaction and merging phases. In the interaction phase,
the channel acts like an I-Channel in the SAM protocol [10], while it is used as a
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patching channel in the merging phase. For the forward interaction shown in Fig.
2(a), such as Fast Search, the interaction takes t units of time, and the customer’s
desired play point is A. P0 is the original play point. Upon completion of the
interaction, the normal play point of the multicast group n that the customer
shares, becomes P (n). The interaction phase uses the channel for a period of
t − t0 (t > t0), where t0 is the duration the CPE buffer can support Fast Search
without an additional channel, and t0 = dr

SP−1 . The length of the patching
channel for the merging is |P (n − i − 1) − A|. For the backward interaction
shown in Fig. 2(b), such as Reverse Search, one can give a similar illustration.
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Fig. 2. Forward/Backward interactions

3.2 The Dynamic Merging Algorithm

To improve the merging of interaction and multicast streams, BEP uses a novel
dynamic merging approach as described below.

Let P (n) be the play point of multicast group n. After completing an in-
teraction, A is the desired play point in Fig. 3. Thus, the client needs to use a
patching channel to catch up with the multicast stream of group n. The patching
stream for A is denoted as Stream A, and its lifetime is the same as its group
offset a = |P (n) − A|. When the merging is going on, say t1 minutes later, the
other interaction completes and its stream also needs to be merged into that of
group n, and its desired play point is B behind A in the relative offset of the
stream. The group offset of B is b = |P (n) − B|. If t1 is less than the lifetime of
Stream A and a − t1 > b − a, we can make the patching stream for the second
interaction (denoted as Stream B) share the grid part of Stream A so that the
need/use of patching channels can be reduced. In this situation, Stream A will
be extended so that its lifetime is b, and the lifetime of Stream B is set to b − a.
The new client downloads the video segment from Stream A and B simultane-
ously, and begins downloading of the video from the stream of multicast group
n after using up Stream B. Such merging of patching channels can go on, and
the merged clients can be recorded in a merging queue.

Assume that q is a merging queue for multicast group n, the offset of q is
the group offset of its first client, and the head record of q is the client patching
stream initiating this queue, and the lifetime of q is initially set to the offset of
its head and will possibly be changed when a new client joins it. A merged client
patching stream is called as an element of the queue. If t is the time when the
latest client joins, the queue will be released when the time is t plus its lifetime.
A merging queue has the following data structure:
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struct MQueue {
element *head; /*the head record*/
int offset,lefetime; /*the offset and lifetime of queue*/
int latime; /*joining time of the latest client*/
}
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Fig. 3. Dynamic merging

When a new client C wants to join this queue that holds a merging stream A,
given that c is C’s group offset and the arrival time of C is t+t2. We also assume
that c ≥ q.offset and c < q.offset + q.lifetime − t2; otherwise, C shouldn’t
join q. We can manage this queue for C to join in the two cases shown in Fig. 3.

Case 1: c > q.lifetime − t2, meaning that the lifetime of the queue q is not
enough to merge C, so q.lifetime, also equal to the lifetime of Stream A,
must be extended. That is, after C is merged, the lifetime of Stream C, the
patching stream for the missing leading segment of C, is set to c-q.offset,
q.lifetime=c, q.latime = t + t2. The client downloads the video segments
from Stream A and C simultaneously. After c-q.offset time units, the client
begins to download the video from the stream of group n. In this case, the
usage time of a patching channel that our algorithm can save is q.offset +
q.lifetime − t2 − c time units.

Case 2: c <= q.lifetime − t2, meaning that q.lifetime is enough to merge C,
so the lifetime of Stream A need not be extended. After C is merged, the
lifetime of Stream C, the patching stream for the missing segment of C, is set
to c-q.offset, q.latime = t+ t2, q.lifetime is unchanged. The client downloads
the video segments from Stream A and C, and the stream of group n in the
same way as in Case 1. In this case, the usage time of a patching channel
that our algorithm can save is q.offset time units.

If C can’t be merged into the existing queues, a new queue will be initiated.
Because there are probably many merging queues, C will be merged into the
queue which saves the maximum usage time of channel.

The dynamic merging algorithm is described below.
Algorithm DMA(Q, C, n, t)
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/*Q is a set of merging queues, C is an interaction client*/
/*n is the group number, t is the arrival time of C*/
c = offset(C, n); /* get the offset of C in group n*/
q0 = maxq∈Q{min{q.offset + q.lifetime − c − (t − q.latime), q.offset}

|q.offset ≤ c < q.offset + q.lifetime − (t − q.latime)}
if (q0 = null) { /* generate a new merging queue*/

Genqueue(q0); /*generate a new queue*/
q0.head is set to C; q0.offset = c;
q0.lifetime = c; q0.latime = t; }

else { /* merging C into q0*/
delta = t − q0.latime; q0.latime = t; lifetime(C) = c − q0.offset;
/* the lifetime of patching stream C is changed*/
if (c > q0.lifetime − delta) q0.lifetime = c;
}

3.3 Discussion

BEP differs from the SAM protocol in at least three aspects. First, BEP aims to
offer a zero-delay (or continuous) service for both request admission and VCR
interactions. Thus, patching channels are used to patch all of the segments that
can’t be provided by regular multicast channels for TVoD service, whereas I-
Channels in the SAM protocol are used only for VCR interaction service. Second,
the SAM protocol uses synchronization buffer to merge I-Channels and regular
multicast channels, whereas BEP uses a patching channel to patch the missing
segments of multicast VoD and merge it with regular multicast channels using
the client’s CPE buffer. Of course, use of the CPE buffer can also improve the
efficiency of the SAM protocol [1]. Third, BEP uses a dynamic technique to merge
interaction streams with regular multicast streams, significantly improving the
efficiency of multicast TVoD service.

4 Performance Evaluation

4.1 Client’s Interaction Model

We use the interaction model proposed in [1] to evaluate our approach. In this
model, a set of states corresponding to different VCR actions are designed dura-
tions and probabilities of transitions to neighboring states. If the initial state is
Play, then the system randomly transits to other interactive states or remains at
Play state according to the behavior distribution. As shown in Fig. 4, transition
probabilities Pi (i = 0, . . . , 9) are assigned to a set of states corresponding to
different VCR actions. For tractability, we divide customers into two types: Very
Interactive (VI) or Not Very Interactive (NVI). Our simulation assumes P8 = 0,
and P9 = 0.5. The other transition possibilities are summarized as Table 1.

Assume that BEP serves each state for an exponentially-distributed period
of time, and di (i = 0, 1, 2, . . . , 8) are the mean durations for the corresponding
interaction states (d1 = 0), and their default values are given in Table 2. Mean-
while, the speedup factors of Fast Forward/Rewind and Fast Search/Reverse
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Search are defined as K0, K1, respectively, and the speeddown factor of Slow
Motion is defined as K2. Our simulation used K0 = 10, K1 = 3, and K2 = 2.
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Fig. 4. VCR interactive model

Table 1. Transition probabilities from Play/Resume
Behavior P0 P1 P2, P3 P4 P5 P6, P7

VI 0.50 0.04 0.08 0.06 0.08 0.08
NVI 0.75 0.02 0.04 0.03 0.04 0.04
Table 2. Mean interactive durations

Parameter d0 d1 d2, d3 d4, d5 d6, d7 d8

Default 10 0 0.5 5 2.5 2

4.2 The Simulation Results

We compare BEP with the SAM protocol [10], and the SAM protocol improved
by the CPE buffer (abbreviated as BSM) [1]. Because the latter two schemes
also achieve the same admission performance as that of BEP by transition or
grace patching, we focus only on the comparison of their TVoD interactivities,
especially for the merging performance. For a video of 90 minutes, requests arrive
according to a Poisson process with rate λ ranging from 0 to 10 per minute. The
patching window size w is varied from 1 to 25 minutes, and the CPE buffer size
d is ranging from 0 to 30 minutes. Two types of interactive behaviors, VI and
NVI, are simulated. The results are collected from 10-hour simulations.

Fig. 5(a) shows the merging channel requirement while varying the request
rate. The merging channel requirement for SAM is significantly greater than that
for both BSM and BEP. When the request rate is low, there is not a big difference
between the merging channel requirements for BSM and BEP. The higher the
request rate is, the bigger their difference is. Fig. 5(b) indicates that the patching
window will greatly affect the merging channel requirement. When the patching
window size is small, there is not a big difference between the merging channel
requirements for BSM and BEP. When the patching window size is large, BEP
significantly outperforms BSM. Note that BEP and BSM can work only if the
patching window size is less than or equal to the CPE buffer size.

5 Conclusion

Multicast is shown to be a good remedy for improving the performance of VoD
system. In this paper, we proposed a new multicast TVoD approach called the
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Best-Effort Patching . This scheme supports both continuous VCR interactions
and zero-delay requests admission. Moreover, a novel dynamic merging algorithm
improves the efficiency of merging interaction and regular streams. Our simula-
tion results indicate that BEP can achieve significantly better performance than
the conventional multicast TVoD protocols, especially for popular videos. BEP
supports TVoD service with less bandwidth requirement.
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