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Abstract— Adaptive Packet Filters (APFs) are motivated by the pro-
liferation of distributed servers and the lack of Quality-of-Service (QoS)
management solutions for them. APFs merge packet-filtering and server
load monitoring into a novel load-sensitive packet-filtering abstraction for
overload protection and QoS differentiation. They integrate well into net-
work protocol stacks and firewalls, scale to large server farms while re-
maining completely transparent to the applications. Experimental results
of our prototype implementation demonstrate APFs’ efficacy in providing
QoS differentiation and overload protection with minimal overheads.
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I. INTRODUCTION

S
UDDEN and drastic changes in demand, content, and ser-
vice offerings are characteristic of the Internet environment.

For many web-based Internet services, peak demands can be
100 times greater than average load [1]. The Quality-of-Service
(QoS) of servers that are not able respond to extreme load seri-
ously suffers under overload — many collapse. Such failure is
unacceptable to clients who are increasingly dependent on the
availability of Internet servers. Over-design alone does not ade-
quately address this problem.

Realizing the need for higher server availability and greater
capacity at a reasonable price, modern Internet servers are im-
plemented as server clusters. Nevertheless, the fundamental
problem of performance failure under heavy loads has not dis-
appeared, mainly due to the fast growth of demand for ser-
vices. What makes matters even worse is that previous, end-
host-based QoS architectures [2–4] are not applicable to server
farm deployments for three reasons. First, they were designed
for single-server scenarios. Second, since QoS is enforced via
strict, static resource bindings for applications, these solutions
need constant reconfiguration to accommodate changing work-
load characteristics. Finally, the large number of OS changes
required for their implementation seriously hampers their de-
ployment in multi-OS server farms.

Adaptive Packet Filters (APFs) provide overload protection
and QoS differentiation for today’s Internet servers. They re-
quire neither OS changes nor difficult offline capacity analysis.
Furthermore, APFs are easily integrated into networking proto-
cols, firewalls, or Layer-3+ load-balancers that connect servers
to the Internet. APFs reduce the need for heavily over-designed
servers since the request flow to the server will be matched to its
capacity. Thus, network servers can be upgraded gradually.

APFs can be seen as an enhancement of the classic network-
based QoS-management approaches [5, 6] by allowing arbitrary
load-inputs — not just local queue lengths — to affect traffic
policing. Alternatively, one may view APFs as an extension to
firewalling [7, 8] since they, too, can be configured to enforce ar-
bitrary packet-filtering policies. What distinguishes APFs from

Fig. 1. Layers of the APF Architecture

traditional firewalls is that they respond to configurable load in-
puts by dynamically enforcing more or less restrictive packet
filters.

This paper is organized as follows: Section II describes the
basic APF abstractions. Section III discusses our APF proto-
type. Section IV evaluates its response to overload. We discuss
related work in Section V. The paper ends with concluding re-
marks in Section VI.

II. ADAPTIVE PACKET FILTERING

Overload in network servers is usually caused by an uncon-
trolled influx of requests from network clients. Since these re-
quests for service are received as network packets, server load
can be managed by controlling the influx of certain network
packets, e.g., connection requests. APFs take advantage of this
insight.

An APF allows alternative packet filters to be loaded into a
filter controller and accepts feedback from load monitors. De-
pending on the configured filters and load indicators, an APF
automatically enforces filters that avoid overload. APFs do not
prescribe the use of any specific monitoring mechanism and can
be integrated with various sources of monitoring information,
e.g., SNMP, Tivoli, etc. (see Fig. 1).

A. Rules, Filters, and Filtering Dimensions

Network-based QoS control and differentiation requires ba-
sic packet classification where each packet, once classified, will
be treated according to a policy associated with its traffic class.
Traffic classes are defined by information contained in the pack-
ets’ IP headers.

� Server-side applications via IP destination information.
� Client populations via IP source address prefixes.
� Packet types, such as, TCP, TCP-SYN, UDP, IPX, and ICMP.
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� DiffServ code points.
� A combination of the above.

The APF notion of traffic classes is used in firewall configu-
ration and was proposed by Mogul et al. [7]. A rule combines
traffic class and policy. The policy specifies whether packets
of the traffic class should be accepted, dropped, shaped, or po-
liced to a particular rate. If multiple rules apply to an incoming
packet, the most restrictive policy will be applied to the packet.
This definition of rules is consistent with that of most modern
firewall implementations.

Each individual rule defines QoS requirements for exactly one
traffic class. Thus, QoS differentiation between competing traf-
fic classes can only be achieved by installing rule combinations.
Rule combinations are expressed in filters. For example, a filter
of two rules could be set up to admit twice the packet rate from
IP address X as from IP address Y. To guarantee QoS differen-
tiation, the rules of a filter are considered a unit, i.e., all or none
of its rules are enforced.

To make filters applicable to environments of unknown or
variable server processing capacities, it is necessary to imple-
ment filter adaptation. Fixed filters with inadequate shaping
rates could easily cause underutilization of network servers. For
example, if one restricts incoming traffic to a moderately-loaded
Internet server, one risks dropping requests, which the server
could have handled easily. However, installing only permissive
filters to accommodate the common (lightly-loaded) case would
be a false conclusion. Permissive filters fail to defend the server
from load surges.

Filter adaptation is achieved in filtering dimensions (FDims).
Each FDim is a linear list of filters, f1; f2; : : : ; fn, only one of
which is enforced at any given time. A switch from one filter
to another is an atomic operation, meaning that the old filter is
uninstalled and the new filter is installed without processing any
network packets in between. Fig. 2 shows an expanded view of a
FDim. The filter selection process is driven by a FDim-specific
load index (load var in Figure 1), which is fed by external load-
monitoring software.

To provide effective overload protection, each FDim configu-
ration must satisfy the following constraints:

� filters are ordered by increasing restrictiveness,
� the least restrictive filter does not police incoming traffic, and
� the most restrictive filter drops all incoming traffic.

Multiple FDims may be installed simultaneously, each tied to
its own load variable. This pays tribute to the fact that different
types of overload may be caused by different network services,
which must be policed separately. Support for multiple FDims is
particularly useful when an APF-enabled device controls access
to different services, each of which is located on its own separate
backend server.

APFs are conceptually similar to CBQ [5]. There are, how-
ever, three key differences between the two. First, APFs are in-
bound controls. Therefore, they remain effective QoS controls
even if they are only installed on the network servers. Second,
APFs are not tied to any particular link scheduling or packet
scheduling architecture. Finally, APFs may police incoming
packets based on load measurements other than just link uti-

Fig. 2. Relationship between rules, filters, and FDim

lization. CBQ cannot adapt incoming packet rates to match the
network servers’ capacities.

B. Adaptation to Overload

In the APF framework, QoS differentiation and overload de-
fense depend on the controller’s ability to determine the best
filter for incoming traffic. The following control mechanism au-
tomatically determines the least restrictive filter in each FDim
that prevents their respective monitoring variables from report-
ing overload. This optimizes overall server throughput subject
to the “no-overload” constraint.

1. Load indices are integral numbers between 0 and 100, with 0
representing no load and 100 representing highest load.
2. APF associates user-defined thresholds with each load index
as to what constitutes an overload and an underload.
3. When an overload is detected on some load index, vi, the next
most restrictive filter for its corresponding FDim, F i, is applied.
If this change triggers the application of the most restrictive fil-
ter for that FDim, the FDim is flagged as severely overloaded
potentially requiring network administrator intervention.
4. When an underload is detected on load variable, vi, the next
less restrictive filter for its corresponding FDim, F i, is applied.
5. APFs are configured with a configurable inter-switching de-
lay, si, for each FDim, Fi to stabilize its adaptation behavior.
6. APFs keep track of how long each filter is applied against
incoming load. This is an indication of a filter’s effectiveness,
and therefore, important for FDim reconfiguration.

APF eventually begins to oscillate between the application
of a few adjacent filters because the policies of one filter are
too restrictive, and too permissive in the other. This behavior
is a natural consequence of the controller’s design and is non-
problematic unless the controller oscillates between vastly dif-
ferent filters. In this case, the FDim is configured too coarse-
grained and needs to be refined. We tackle this problem using an
automated FDims generation and reconfiguration tool [9], which
is beyond the scope of this paper.

III. PROTOTYPE IMPLEMENTATION

The APF prototype is implemented as an extension mod-
ule, called QGuard, for the Linux 2.2.14 kernel’s firewalling
layer ipchains. Ipchains provides efficient packet header
matching functionality and simple packet rejection policies. We
implemented additional support for traffic shaping. The recently
released Linux 2.4.x firewalling support, netfilters, already im-
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plements this policy. Our prototype implements the well-known
token bucket [10, 11] rate-control scheme by associating each
traffic class with a counter of remaining tokens, a bucket vol-
ume, a timestamp for the last token replenishment time, and a
per-second token rate. These variables are part of the firewalling
rule data structure. We refer to work by Mehra et al. [11] for
a detailed analysis of different configurations of traffic shaping
and smoothing solutions and their impact on client-perceived
server performance.

As soon as a FDim is created inside the kernel, user-space
scripts may start reporting load for it. This, too, is done via
a special system call. Less invasive configuration mechanisms
like a configuration file, the so-called /proc file system, or
SNMP MIBs could have been used instead. However, this detail
does not discount our prototype as a proof-of-concept.

To avoid any conflicts between adaptive filters and firewalling
rules that warrant network security, dynamic QGuard filters are
always the last to be enforced. Thus, a QGuard-enabled system
will never admit any packets that are to be rejected for security
reasons. Our particular implementation achieves this goal by
linking the QGuard firewalling chain as the last rule chain into
ipchain’s input chain list.

The QGuard implementation relies on a distributed user-
space monitor to obtain its load information (see D.MON in
Fig. 1). It consists of monitors on the backend servers and a
collector component, which resides on the AFP-enabled device.
Whenever the load on the backend servers changes, the collec-
tor receives load updates, which it feeds through to the QGuard
kernel module. A configuration file specifies the association
between load indices and FDims. This flexible monitoring ar-
chitecture allows for simple reconfiguration of the basic adap-
tation mechanism. Hence, we were able to explore a variety
of different load indicators (e.g. paging rate, disk access rate,
idle time, bandwidth consumption, packet arrival rate, and TCP
timeout rate), their relationship to overload, and their usability
in QGuard-based overload defense.

As mentioned in our discussion of the APF design, the filter
switching delay, s, is an important design parameter. We found
that s can be derived directly if load indices are computed as
averages over a base interval. The value of s should simply be
set to the duration of the base interval.

IV. EVALUATION

A. Experimental Setup

We studied the performance of APF using the QGuard pro-
totype in two key deployment scenarios: APF-enabled (stan-
dalone) servers and APF-enabled frontends. An Intel Pentium-
based PC (450 MHz, 192 MB memory) acts as a server hosting
a synthetic load generator with the following configurable load
components:

CPU: Executes a busy cycle of uniformly-distributed length.
File system: Access random blocks in a large file.
Network: Returns response messages of configurable size.
Memory: Allocates a configurable amount of memory and
touch one byte on every page.

TABLE I

BASIC OVERHEAD: AGGREGATED PERFORMANCE DROP VS. THE NUMBER

OF RULES PER FILTER (FDIM SIZE 20 FILTERS).

Load generated in response to a received request can be con-
figured on a per-port basis to include different amounts of CPU,
file system, network, and memory components.

The client machines, two other Pentium-class machines, con-
nect to the server through a Fast-Ethernet switch. They exe-
cute a request generator that simulates an arbitrary number of
concurrent clients to the load generating server. Conceptually,
our request generator follows the design of SURGE [12] and
HTTPerf [13]:

� It maintains a given request rate regardless of the server’s pro-
cessing capabilities. This allows the simulation of severe over-
load conditions.
� The clients are hosted on multiple hosts, allowing us to study
QGuard’s ability to differentiate between clients who access the
server from different subnets.
� Clients’ arrival rates can be configured on a per-server-port
basis. This, for example, allows setting the arrival rate for
memory-intensive requests to a lower rate than CPU-intensive
ones.

We configured client requests’ inter-arrival times to follow
a Poisson-distribution. Unless stated otherwise, QGuard was
configured with one FDim of 20 filters. This FDim’s load in-
dex was tied to the server’s CPU load. A baseline comparing
the QGuard-controlled server’s performance against the server
without QGuard was established in all our tests. Because of
space considerations, we present a limited evaluation. A more
complete evaluation can be found in [9].

B. Basic Overhead

APF overhead depends on how often filters are switched and
on the number of rules per filter. We determined that the delay
between filter switches has only little impact on the aggregated
throughput of a QGuard-protected server. However, the number
of rules per filter can affect performance, since the APF-enabled
device must check each incoming packet against its rule-base.
Table I shows that QGuard in standalone configuration suffers
a performance drop when the number of rules becomes large.
However, this penalty disappears when QGuard is configured
on a frontend device.

C. Overload Protection and QoS Differentiation

QGuard is designed to protect servers from overload and de-
grade QoS gracefully during overload. Overload protection was
tested by subjecting our server to various overload conditions
while monitoring the overall health of the server. In extreme
cases, such as heavy memory swapping, the unprotected server
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Fig. 3. Throughput differentiation

crashed, whereas QGuard avoided the crash.

We validated QoS differentiation in two different scenarios:
(a) the differential treatment of co-hosted services by perform-
ing destination port-based differentiation and (b) the differenti-
ation based on clients’ IP addresses. Each filter was configured
to deliver up to three times more throughput to the preferred ser-
vice than to the non-preferred service. As Figures 3 and 4 show,
QGuard provides QoS differentiation between the preferred and
the non-preferred services. The throughput and response time of
the preferred service remain stable, regardless of the increase in
the number of clients for the non-preferred service. This com-
pares favorably with a 50% drop in throughput and a twofold in-
crease in response time for clients of the preferred service with-
out QGuard. Similar QoS differentiation can be achieved when
traffic classes represent client groups instead of services.

D. Responsiveness to Overload

Not only is it important to show that APF is capable of pro-
viding QoS differentiation, but one also wants to show how
quickly it responds to overload. The following experiment sub-
jected the QGuard-protected server to a sudden request surge
and studied how quickly it restores preferred clients’ through-
put to 160 reqs=s. The experiment highlights the importance of
the size of the averaging history window that is used to compute
server load averages.

Initially, only one client class, the preferred clients, request
service from the server. Because the server can handle all re-
quests easily, QGuard does not throttle incoming traffic at all
until non-preferred clients cause a heavy load surge — more
than twice the server’s capacity — after time 60s.

Fig. 5 shows that QGuard’s reaction to this overload depends
on the length of the sliding history window over which the load
index is computed — longer histories imply slower adaptation.
As expected, short histories produce fast response to overload.
However, if histories are reduced too much, load indices become
unstable and cause an unpredictable response (not shown in the
graph).

Fig. 4. Response time differentiation

E. Limitations of Adaptive Packet Filters

The most crucial limitation of APFs relates to disparate per-
request work requirements of the controlled traffic classes (see
Fig. 6). We observed that QGuard’s ability to distinguish the
preferred service from the non-preferred service is degraded
when the amount of work required to serve one request of the
non-preferred service is orders of magnitude larger than that re-
quired to serve one request of the preferred service. Although
QGuard does the best it can to provide QoS differentiation, con-
trolling workload on a per-packet basis is too coarse-grained
when each packet imposes large amounts of work. We con-
clude that APF-based solutions should not be used to police
long-lived, resource-intensive service requests. In this context,
fine-grained OS resource reservation mechanisms like Resource
Containers, Scout, or Virtual Services [4, 14, 15] are needed.
Fortunately, most network-based services — FTP, HTTP, SMTP,
etc. — handle requests at high rates, thus permitting APF-based
QoS control in most cases.

V. RELATED WORK

The research presented in this paper extends previous ideas
of packet-filtering [7] and links them to QoS-management.
The QoS-management concepts related to our work fall into
three main categories: network-based QoS differentiation [5, 6,
16], adaptive middleware [17], and OS-level resource reserva-
tion [2–4, 15, 18]. Because of space limitation, we only discuss
network-based concepts.

Network-based QoS management solutions for Internet
servers, receive a fair amount of commercial attention since they
are completely transparent to both applications and server OSs,
inherently scalable, and easily added to existing server infras-
tructure. These solutions allow static rate definitions for differ-
ent traffic classes. Extreme’s ExtremeWare [16], for example,
allows the definition of rate limits for different flows (based on
packet source and/or destination). These approaches do not al-
low the integration of arbitrary monitoring inputs with packet-
filtering policies. They only provide static rate control. In con-
trast, APFs allow administrators to define a dynamic overload
response for their systems.

APFs may also be viewed as a descendant of traffic-flow
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Fig. 5. History length vs. rate of convergence

Fig. 6. Achieved QoS differentiation under increasing per-request work for
the non-preferred service

policing approaches, such as CBQ [5], Network Hoses [6], and
Adaptive Packet Marking [19]. These approaches target QoS
differentiation between competing traffic classes in the Internet.
They, like more recent work on DiffServ [20], share the assump-
tion that network bandwidth is the main service bottleneck and
that policy-enabled queuing at the routers will provide end-to-
end QoS differentiation. We do not question this argument’s
validity with respect to long-lived, session-based services, e.g.,
digital media streaming. However, in many Internet service sce-
narios, server load is the most important QoS factor. To manage
QoS effectively, server load must be taken into account, as is
done in our APF abstraction.

VI. CONCLUDING REMARKS

The generic nature of the APF abstraction is the result of three
major design choices. First, the dynamic adaptation mechanism
allows APF deployment in clusters of unknown request pro-
cessing capacity. Second, the configurable monitoring-feedback
mechanism makes its use against a variety of adverse server con-
ditions possible. Third, network-orientation make application
and OS modifications unnecessary, thus facilitating APF use in
arbitrary service environments. These benefits clearly justify
further research on APFs and should encourage its use in OSs
and network infrastructure devices.

Since most current OS kernels implement IP-based packet-
filtering, APFs can be added to them easily. Furthermore, fire-
walling devices, edge-routers, and IP-layer switches, and any-
thing else connecting servers to the Internet are primary can-
didates for APF integration. As we have shown in our experi-
ments, an APF-enabled frontend does not affect server perfor-
mance, yet it provides QoS differentiation.
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