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AbstractÐOne of the key issues in tailoring the timed-token MAC protocol for real-time applications is synchronous bandwidth

allocation (SBA), whose objective is to meet both the protocol and deadline constraints. The former constraint requires that the total

time allocated to all nodes for transmitting synchronous messages should not exceed the target token rotation time. The latter

constraint requires that the minimum time available for a node to transmit its synchronous messages before their deadlines should be

no less than the maximum message transmission time. Several nonoptimal local SBA schemes and an optimal global SBA scheme

have been proposed [1], [2], [3], [8], [17], [29]. Local SBA schemes use only information available locally to each node and are thus

preferred to global schemes because of their lower network-management overhead. If optimal local SBA schemes, if any, can be

devised, they will be superior to their global counterparts both in performance and in ease of network management. In this paper, we

formally prove that there does not exist any optimal local SBA scheme. We also propose an optimal global SBA scheme which has an

O�nM� polynomial-time worst-case complexity, where n is the number of synchronous message streams in the system and M is the

time complexity for solving a linear programming problem with 3n constraints and n variables.

Index TermsÐReal-time communications, timed-token protocol, synchronous bandwidth allocation, FDDI.

æ

1 INTRODUCTION

THERE has been an increasing need of timely, dependable
communication services for such real-time systems as

multimedia, automated factories, and industrial process
controls. Such systems are usually realized by completing
the execution of a number of cooperating/communicating
tasks on multiple processors before their deadlines imposed
by the corresponding mission/function. To meet the
communication requirement, network architectures and
protocols are required to provide the users with a
convenient means of guaranteeing message-delivery delay
bounds.

The problem of guaranteeing the timely delivery of

messages has been studied by numerous researchers,

especially in the context of voice/video data transmission

over a data network and in the context of communications

in embedded real-time systems. Their efforts have been

directed mainly toward designing medium access control

(MAC) protocols for multiaccess networks with time-

constrained messages. In the case of token ring or token

bus networks, Strosnider et al. [26] use a priority-based

variation of the token passing protocol, called the token

scheduling protocol, to implement the rate-monotonic
scheduling algorithm [20] for network access control. Both
IEEE 802.4 [4] (adopted for the Manufacturing Automation
Protocol) [11] and FDDI [5] (developed by ANSI for high
bandwidth fiber optic networks) use the timed-token MAC
protocol.

There are two classes of messages in the timed-token
protocol: synchronous and asynchronous. Synchronous mes-
sages are usually associated with delivery deadlines.
Asynchronous messages have no such timing constraint.
At network initialization, a protocol parameter, called
Target Token Rotation Time (TTRT), is negotiated among
the nodes to specify the expected token rotation time. Each
node i is assigned a portion, say Hi, of TTRT as its
synchronous bandwidth, which is the maximum time node i is
permitted to transmit its synchronous messages every time
it receives the token. The total synchronous bandwidth
allocated should not exceed TTRT minus various protocol-
dependent overheads. Whenever a node receives the token,
it transmits its synchronous messages, if any, up to Hi units
of time. The node can transmit its asynchronous messages
only if the time interval between the previous and current
token arrivals is less than TTRT, i.e., the token arrived earlier
than expected. On the other hand, the assumption of a
bounded token rotation time provides only a necessary
condition for meeting message deadlines. If the synchro-
nous bandwidth Hi allocated to node i is too small, then a
message (with transmission time greater than Hi) may not
be transmitted in time even if the token visits node i more
than once after the message arrival. Consequently, in
addition to the protocol constraint discussed above, Hi

should be assigned so that the minimum time available for
node i to transmit its synchronous messages after their
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arrivals but before their delivery deadlines is greater than or
equal to the maximum total message transmission time
during this period. This timing constraint in calculating His
is called the deadline constraint.

Many researchers have studied the access time bounds
and other timing properties of the timed-token protocol
(e.g., the average and worst-case token rotation time),
asynchronous message throughput, and the impact of
tuning protocol parameters on the timing performance
[10], [16], [22], [25], [28]. In particular, Johnson [16] and
Sevcik and Johnson [25] proved that the average token cycle
(rotation) time is bounded by TTRT and the maximum token
cycle time is bounded by 2� TTRT. Agrawal et al. [2], [1],
[3], [8] extended Johnson's result and proved that the time
elapsed between k consecutive token visits to a node is
bounded by k� TTRT. They also formulated a synchronous
bandwidth allocation (SBA) problem and attempted to
calculate the synchronous bandwidth Hi that should be
allocated to node i, for all i, to meet the protocol constraint
and to guarantee the timely delivery of all synchronous
messages.

As discussed in [3], SBA schemes can be classified as
local or global, depending on the type of information they
use in calculating Hi. A local SBA scheme uses only
parameters available locally to node i, i.e., the message
deadline and the maximum message transmission time of a
synchronous message stream at node i, in addition to the
TTRT known to all nodes. In a global scheme, each node i
uses the parameters of all the other nodes' synchronous
message streams (as well as its own) to compute Hi. Any
change in a node's message stream parameters may
require the global scheme to adjust the synchronous
bandwidths allocated to all nodes since all nodes use
these parameters in calculating their synchronous band-
widths. As the global SBA schemes use global informa-
tion to allocate synchronous bandwidths, they are
naturally expected to achieve better performance. How-
ever, local schemes are preferable to global schemes from
the perspective of network management.

To the best of our knowledge, there is only one optimal
global SBA scheme [8] and several nonoptimal local SBA
schemes [1], [2], [3], [29] reported in the open literature. By
an ªoptimalº SBA scheme, we mean an SBA scheme that
finds a feasible set of His subject to the protocol and
deadline constraints whenever such a set exists. In this
paper, we formally prove, using the technique of adversary
argument, that there does not exist any optimal local SBA
scheme. Hence, whether to choose a nonoptimal local
scheme or an optimal global scheme depends on the trade-
off between the ease of network management and the
performance improvement.

The nonexistence of optimal local schemes also motivates
us to devise an optimal global scheme of polynomial-time
complexity. Note that the only currently known optimal
global SBA scheme (proposed in [8]) uses an iterative
approach to find the synchronous bandwidth allocation and
may not terminate. Even though a traditional engineering
approach can be applied to terminate the algorithm at a
certain point, such as forcing the algorithm to terminate
when the improvement for the solution is smaller than a

certain threshold, the synchronous bandwidths found in
their algorithm may still be unusable since some of them are
not large enough to meet the deadline constraints of the
real-time messages. One important issue is to determine if
there exists any polynomial-time optimal global SBA
scheme. In this paper, we answer this question positively
by proposing an optimal SBA scheme which has an O�nM�
polynomial-time worst-case complexity, where n is the
number of synchronous message streams in the system and
M is the time complexity for solving a linear programming
problem with 3n constraints and n variables.

The rest of the paper is organized as follows: In Section 2,
we discuss the synchronous message model used for real-
time applications and give a brief overview of the timed-
token MAC protocol. In Section 3, we present several timing
properties for the timed-token MAC protocol and discuss
the timing requirements imposed by the message streams
with delivery deadlines on the protocol. In Section 4, we
formulate the SBA problem and then present proof of
nonexistence of optimal local SBA schemes. In Section 5, we
describe our polynomial-time global optimal SBA scheme.
We conclude the paper with Section 6.

2 MESSAGE MODEL AND MAC PROTOCOL

In this section, we first discuss the synchronous message
model suitable for real-time applications. To make the
paper self-contained, we then review the timed-token
MAC protocol used in FDDI token rings and some of its
timing properties. A more detailed description of the
timed-token protocol and FDDI token rings can be found
in [5], [15], [23], [24].

2.1 Message Model

Let n be the number of nodes in the system. Without loss of
generality, we assume that there is one synchronous
message stream at each node. As was discussed in [3], a
more general token ring network in which a node may have
more than one synchronous message stream can be
transformed into an equivalent network with more nodes
in which each node has only one synchronous message
stream. We adopt a message model similar to the
�r; T �-smooth traffic model [12], [13], in which the synchro-
nous message stream at node i can be described by a 2-tuple
�Ci;Di�, where:

. Ci is the maximum total time needed to transmit the
messages that arrive at node i in any time interval of
length Di (or simply called the maximum message
transmission time) and

. Di is the relative transmission (delivery) deadline for
the messages at node i, i.e., if a message arrives at
node i at time t, it must be transmitted by time t�Di.

Note that the above message model, called the
(C, D)-smooth model, can be easily implemented by the
leaky bucket [27] traffic shaping mechanism. Moreover, this
model is, in fact, a generalization of the real-time periodic
message model adopted in [2], [8]. The reader is referred to
[14] for a detailed discussion of these message models.

The ªworst-caseº scenario of the (C, D)-smooth model
occurs when each synchronous message that arrives at
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node i has a message transmission time Ci. In such a case,
the synchronous bandwidth allocated to node i after the
arrival and before the deadline of each message must be at
least Ci. Since the exact time when a message arrives at node
i is not known a priori, in order to guarantee the timely
delivery of each synchronous message of node i, an
SBA scheme must set the parameters of the MAC protocol
in such a way that ªthe minimum time available for node i to
transmit its synchronous messages in any time interval of
length Di is at least Ci.º

2.2 MAC Protocol

The key idea of the timed-token MAC protocol is to control
the token rotation time. A protocol parameter called the
target token rotation time (TTRT) is determined at network
initialization and specifies the expected token rotation time.
Each node i is assigned a portion, say Hi, of the TTRT,
known as its synchronous bandwidth, which is the maximum
time a node is permitted to transmit its synchronous
messages every time it receives the token. The token is
then forced by the protocol to circulate with sufficient speed
so that all nodes receive their allocated fractions of
bandwidth for transmitting synchronous messages. Speci-
fically, each node has two timers and one counter:

. The token rotation timer (TRT) records the time
elapsed since the last token visit (if the TRT has
not yet expired). It is initialized to TTRT and counts
down 1) until it reaches zero or 2) until the token is
received and the time elapsed since its last visit is
less than TTRT. In either case, TRT is reset to TTRT
and continues to count down.

. The token holding timer (THT) records the amount of
time by which the token has arrived early. This time
can be used to transmit asynchronous messages. It is
initialized to zero, is set to the value of TRT when the
token arrives early, and counts down during the
transmission of asynchronous messages.

. The late counter (LC) records the number of times its
TRT has expired since the token's last visit to the
node. It is initialized to zero, is incremented
whenever TRT expires, and is reset to zero each
time the node receives the token.

After the TTRT value is negotiated among the nodes
during network initialization, each node initializes its
timers and counter as follows:

TRT TTRT; THT 0; LC 0:

TRT is enabled during all ring operations and always
counts down until one of the following three events occurs:

E1. TRT reaches zero: The following steps are taken:
1) TRT TTRT and TRT continues to count down,
and 2) LC LC� 1.

E2. The token arrives early: This is identified by LC � 0
at the time of token arrival. In this case, the
following steps are taken: 1) THT TRT and
THT counts down only during the transmission of
asynchronous messages, 2) TRT TTRT and
TRT continues to count down, 3) asynchronous
messages, if any, are transmitted until THT expires

or until all asynchronous messages are transmitted,
whichever occurs first, and 4) synchronous mes-
sages are transmitted up to Hi units of time or until
all synchronous messages are transmitted, which-
ever occurs first.

E3. The token arrives late: This is identified by LC 6� 0 at
the time of token arrival. In this case, the following
steps are taken: 1) LC 0, 2) TRT is not reset and
continues to count down, and 3) only synchronous
messages can be transmitted up to Hi units of time
and no asynchronous messages can be transmitted.

3 PROTOCOL TIMING PROPERTIES AND REAL-TIME

REQUIREMENTS

In this section, we first discuss several interesting timing
properties associated with the MAC protocol described
above. We then discuss the timing requirements imposed
on the parameters of the MAC protocol by the messages
with delivery deadlines.

To facilitate the discussion and the subsequent deriva-
tion, we introduce the following notation:

. T : the TTRT of an FDDI network.

. �i: the latency between node i and its upstream
neighbor, where the upstream neighbor is node iÿ 1
if i > 1, or node n if i � 1. �i includes medium
propagation delay, token transmission time, station
latency, and token capture delay [25].

. �: the ring latency, i.e., � �Pn
i�1 �i.

. 
: the various protocol-dependent overheads.

. � : the portion of the synchronous bandwidth
unavailable for transmitting synchronous messages,
i.e., � � �� 
.

. ~H: vector �H1; H2; . . . ; Hn�, where Hi is the synchro-
nous bandwidth allocated to node i.

. gc;i (ac;i): the time spent on transmitting synchro-
nous (asynchronous) traffic on the cth token visit
to node i.

. Cc;i: the length of the time interval between the
�cÿ 1�th token departure and the cth token depar-
ture from node i. By using the circular sum operator
[25], Cc;i can be expressed as:

Cc;i �
Xc;i

j;k�cÿ1;i�1

�gj;k � aj;k� � �;

where the double-index circular sum operator is
defined as:

Xc;i
j;k�`;m

pj;k �Pi
k�m pc;k � pc;m � pc;m�1�

� � � � pc;i
if ` � c and m � i;Pn

k�m p`;k �
Pcÿ1

j�`�1

Pn
k�1 pj;k

�Pi
k�1 pc;k

if ` < c;

8>>>><>>>>:
for 1 � m; i � n and �`;m� � �c; i� (i.e., ` < c or ` � c
and m � i), and the single-index circular sum
operator is defined as:
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Xk
i�j

pi �

pj � pj�1 � � � � � pk if 1 � j � k � n;
pj � pj�1 � � � �
�pn � p1 � p2 � � � � � pk

if 1 � k < j � n:

8><>:
. di�`�: the time instant when the token departs from

node i the `th time, 1 � b � n and ` � 1.
. Xi: the minimum time available for node i to transmit

its synchronous messages in the time interval
�t; t�Di�, for all t � 0.

. fg; fl: the functions which represent the global and
local SBA schemes, respectively. That is, a global SBA
scheme is represented as ~H � fg�~C; ~D; T ; ��, where
~C � �C1; C2; . . . ; Cn� and ~D � �D1; D2; . . . ; Dn�, and a
local allocation scheme is represented as
Hi � fl�Ci;Di; T ; ��, for i � 1; 2; . . .n.

Note that, by the protocol description, we have1

gc;i � Hi; and ac;i � max�0; T ÿ Cc;iÿ1� �3:1�
for c � 1 and 1 � i � n.

3.1 Timing Properties of Timed-Token MAC
Protocol

The protocol constraint on the allocation of synchronous

bandwidth requires that:

Xn
i�1

Hi � T ÿ �: �3:2�

Violation of the protocol constraint will make the ring

unstable and oscillate between ªclaimingº and ªopera-

tionalº [21].
Recall that db�`� is the time instant when the token

departs from node b the `th time. Let �b;i�`; c� be the time

difference between a reference time point db�`� and the time

instant when the token departs from node i the cth time after

db�`�. That is,

�b;i�`; c� � di�`� cÿ 1� ÿ db�`� if 1 � b < i � n;
di�`� c� ÿ db�`� if 1 � i � b � n:

�
Under the protocol constraint, Theorem 1 gives a timing

property of the timed-token MAC protocol [16], [25].

Theorem 1 (Johnson and Sevcik). For the timed-token MAC

protocol, the worst-case token rotation timeÐthe time interval

between the `th token departure and the �`� 1�th token

departure from node bÐis bounded by T �Pn
j�1 Hj � � , i.e.,

�b;b�`; 1� � db�`� 1� ÿ db�`� � T �
Xn
j�1

Hj � � � 2 � T;

for any 1 � b � n, and ` � 1.

In the following lemma, we give a more general result

which will be used in proving the Generalized Johnson and

Sevcik Theorem (Theorem 2 and Corollary 1).

Lemma 1. For the timed-token MAC protocol, we have

�b;i�`; 1� � T �
Xi
j�b�1

�Hj � �j� � 
 � T �
Xi
j�b�1

Hj � �;

for any 1 � b; i � n and ` � 1.

Using the above lemma and following similar derivation

steps as in [25], we can obtain a more general result on the

upper bound of the time difference between db�`� and the

time instant when the token leaves node i the cth time after

time db�`�:
Theorem 2. For the timed-token MAC protocol, we have

�b;i�`; c� � c � T �
Xi
j�b�1

�Hj � �j� � 


� c � T �
Xi
j�b�1

Hj � � � �c� 1� � T;
�3:3�

for any 1 � b; i � n, ` � 1, and c � 1.

The proof of Theorem 2 is given in Appendix A.
Note that if we use �i�`� to denote the time of the `th

token arrival at node i, then, for i < n, di�`� � �i�1�`� and,

for i � n, dn�`� � �1�`� 1� (assuming that latency/over-

head is ignored). Therefore, it is easy to see that results

similar to the above lemma/theorems can be derived for

token arrival times. If we set b � i in (3.3), we obtain the

following corollary (Fig. 1).

Corollary 1 (Generalized Johnson and Sevcik). For the

timed-token MAC protocol, the time elapsed between any c� 1

consecutive token visits to a node is bounded by

c � T �Pn
j�1 Hj � � � �c� 1� � T .

A result similar to Corollary 1 was obtained by Agrawal et

al. [2], [3], [9] using a more complicated approach.

3.2 Deadline Constraint Imposed by Real-Time
Messages

Every synchronous message must be transmitted before its

delivery deadline. Hence, the minimum time, Xi, available

for node i to transmit its synchronous messages in a time

interval �t; t�Di� should be no less than the required

maximum message transmission time,Ci. Using Corollary 1,

Agrawal et al. [3], [8] derived the following lower bound for

the time available for a node to transmit its synchronous

messages within a given interval of length Di.

Theorem 3. Let Di be the deadline constraint of the synchronous

messages arrived at node i (1 � i � n). The minimum amount

of time, Xi, available for node i to transmit its synchronous

messages during a time interval �t; t�Di� of length Di is

given by:
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Xi�~H� �

�qi ÿ 1� �Hi �max 0;min ri ÿ
X

j�1;...;n;j 6�i
Hj � �

 !
; Hi

 ! !
;

�3:4�
where qi � bDi=Tc and ri � Di ÿ qi � T . Any Di may be
represented as Di � qi � T � ri.

Note that the time available for a node to transmit its
synchronous messages within a time interval �t; t�Di�
becomes minimal when t is the time of a token departure
from the node. Also note that (3.4) can be rewritten as:

Xi�~H� �
�1� qi �Hi; if ri �

P
j Hj � �;

�2� �qi ÿ 1� �Hi � ri
ÿPj 6�i Hj ÿ �; if

P
j6�i Hj � � < ri <

P
j Hj � �;

�3� �qi ÿ 1� �Hi; if ri �
P

j6�i Hj � �:

8>>>><>>>>:
�3:5�

Fig. 2 depicts the three cases. Since the time elapsed
between any �c� 1� consecutive token visits is bounded by
c � T �Pn

j�1 Hj � � :

Case 1. If ri �
P

j Hj � � , then Di � qi � T �
P

j Hj � � and
Di can ªaccommodateº the qith token visit since time t.

Case 2. If
P

j 6�i Hj � � < ri <
P

j Hj � � , then Di can
accommodate the first �qi ÿ 1� token visits and part of
the qith token visit (i.e., ri ÿ �

P
j 6�i Hj � ��) since time t.

Case 3. If ri �
P

j6�i Hj � � , then, in the worst case, Di �
qi � T � ri � qi � T �

P
j6�i Hj � � and Di cannot accom-

modate the qith token visit since time t. However, Di �
qi � T � �qi ÿ 1� � T �Pj Hj � � and Di can accommodate
the first �qi ÿ 1� token visits since time t.
For a message with transmission time Ci and deadline Di

that arrives at node i at time t, the timing requirement
imposes the following deadline constraint:

Xi�~H� � Ci; i � 1; 2; . . . ; n: �3:6�

4 THE SBA PROBLEM AND NONEXISTENCE PROOF

In this section, we first give a formal mathematical
formulation of the SBA problem. We then give a proof of
the nonexistence of optimal local SBA schemes of the form
Hi � fl�Ci;Di; T ; ��, for i � 1; 2; . . . ; n.

Problem 1 (The SBA Problem). An SBA scheme is an

algorithm which, given the number of nodes (or

synchronous message streams), n, the maximum mes-

sage transmission time vector, ~C � �C1; C2; . . . ; Cn�, the

deadline vector, ~D � �D1; D2; . . . ; Dn�, and the nego-

tiated TTRT, T , allocates synchronous bandwidth, ~H, to

all the nodes subject to the following two constraints:
Protocol constraint: The computed SBA vector ~H

must satisfy

Xn
i�1

Hi � T ÿ �: �4:1�

Deadline constraint: The vector ~H must satisfy

Xi�~H� �

�qi ÿ 1� �Hi �max 0;min ri ÿ
X

j�1;...;n;j 6�i
Hj � �

 !
; Hi

 ! !
� Ci;

�4:2�
where qi � bDi=Tc, ri � Di ÿ qi � T � Di ÿ bDi=TcT , and

i � 1; 2; . . . ; n.
For a global SBA scheme, this is accomplished

through the function

~H � �H1; H2; . . . ; Hn� � fg�~C; ~D; T ; ��:
For a local SBA scheme, this is accomplished through the

function Hi � fl�Ci;Di; T ; ��, for i � 1; 2; . . . ; n.

A feasible solution for the SBA problem is a vector ~H that

satisfies both the protocol and deadline constraints. An

optimal global (local) SBA scheme is one that implements

the function fg (fl) and finds a feasible solution whenever

such a solution exists.
While an optimal global SBA scheme [8] and several

nonoptimal local schemes [1], [2], [3], [29] have been

proposed, it remains unknown if there exists any optimal

local SBA scheme. The following theorem provides a formal

proof of the nonexistence of optimal local SBA schemes.

Theorem 4. There does not exist any optimal local SBA scheme

for every fixed n � 3, where n is the number of nodes

(synchronous message streams) in the system.

Proof. It suffices for us to prove this theorem for n � 3 and

� � 0. Thus, � is dropped in the following discussion.
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For clarity of presentation, we outline the proof here
and leave the detailed algebraic manipulation in Appen-
dix B. Our proof is based on the technique of adversary
argument, a detailed account of which can be found in [6].
Let L be any local SBA scheme and let A be the
adversary. A first chooses (and fixes) the values for C1,
D1, and T , and asks L for the value of H1. Since L is a
local SBA scheme, it should be able to give a value of H1,
say h, based only on the values of C1; D1, and T . After L
gives A the value h of H1, A chooses the values, Ci and
Di, for i � 2; 3, such that, with H1 � h given by L, it is
impossible to find a feasible solution ~H � �h;H2; H3� for
the SBA problem with the chosen T , Ci, Di, for i � 1; 2; 3.
However, a feasible solution does exist if H1 is not
restricted to be h. If, for every value h that A receives
from L, A can always design an instance of the SBA
problem such that the above situation occurs, then, by
the adversary argument, we prove that L cannot be an
optimal local SBA scheme since there are cases in which
feasible solutions exist but L is not able to find one.
Theorem 4 is thus proven. tu

It is worth mentioning that, for n � 2, optimal local SBA

schemes do exist. In fact, it can be shown that the local SBA

scheme proposed in [29] is optimal for n � 2.

5 POLYNOMIAL-TIME OPTIMAL SBA SCHEME

In the previous section, we have formally proven that there

does not exist any optimal local SBA scheme (for every

fixed n � 3). It remains unknown if there exists any

polynomial-time optimal global SBA scheme. In this

section, we first inspect the only known optimal global

SBA scheme, MCA, proposed by Chen et al. [8], and show

that MCA may not terminate. Then, we propose an optimal

global SBA scheme.

5.1 Chen et al.'s Algorithm, MCA

For convenience of reference, we outline the optimal global
SBA scheme, MCA [8], in Fig. 3 and discuss some of its
properties below. Note that MCA assumes that qi � 2, for
all i. We first make the same assumption, and will discuss
later how to relax this assumption.

Let � be the set of ~Hs that satisfy the deadline constraint
(4.1) (but not necessarily the protocol constraint (4.1)), i.e.,

� � f~H j Xi�~H� � Ci; for all ig: �5:1�
Also, for two given vectors ~H 0 and ~H 00, we define:

. ~H 0 � ~H 00 if and only if H 0i � H 00i , for all i,

. ~H 0 � ~H 00 if and only if H 0i � H 00i , for all i, and

. ~H 0 < ~H 00 if and only if ~H 0 � ~H 00 and ~H 0 6� ~H 00, i.e.,
H 0i � H 00i , for all i, and H 0i < H 00i , for some i.

Chen et al. proved the following theorem (Theorem 6.1 in
[8]):

Theorem 5. The set � satisfies the following properties:

P1. � is nonempty, i.e., (4.2) is solvable,
P2. There is a minimal element ~H� in �, i.e., for any

~H 2 �, ~H� � ~H, and

P3. Ci
qi
� H�i � Ci

qiÿ1 , for all i.

The proof of this theorem can be found in the technical
report version of [8].

As shown in Fig. 3, MCA uses the procedure, called

Min_H, to find the minimal element ~H� in � and then

checks whether or not ~H� satisfies the protocol constraint

(4.1). If yes, ~H� is a feasible solution to the input instance of

the SBA problem. Otherwise, there is no feasible solution to

the instance (since ~H� is the minimal element in �, ifPn
i�1 H

�
i > T ÿ � , then

Pn
i�1 Hi > T ÿ � for all ~H 2 �). It is

easy to see that if Procedure Min_H can always find ~H�,
then MCA is an optimal SBA scheme (but not the converse).

To find ~H�, Procedure Min_H uses an iterative approach,
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and first sets Hi to the minimum possible value of H�i , i.e.,
Ci
qi

, for all i (see P3 in Theorem 5). If there exists any i such

that Hi is not large enough to satisfy the deadline constraint

(4.2) (i.e., Xi < Ci for some i), then Min_H calculates the

ªdeficiencyº bi � Ci ÿXi and increases Hi by the amount
bi
qiÿ1 for all i such that bi > 0. The process repeats until all

His are large enough to satisfy the deadline constraint.
Although Chen et al. proved that the value of ~H

calculated in the Repeat-Until loop of Procedure Min_H is
always less than or equal to ~H� and will finally converge to
~H�, Procedure Min_H is not guaranteed to terminate. It is
easy to find values of T , Dis (or qis and ris), Cis, and � such
that Procedure Min_H will never terminate. For example, let
T � 30, � � 0, qi � 6, ri � 24, and Ci � 30, for i � 1; 2; . . . ; 5.
Let b

�k�
i denote the value of bi at the kth iteration of the loop

in their algorithm, then b
�k�
i � �45�kÿ1 > 0, for all i. Even if we

use a traditional engineering approach to terminate the
algorithm at a certain point, such as forcing the algorithm to
terminate when all bis are smaller than a certain threshold,
the values of His thus found are still unusable since some of
them are not large enough to satisfy the deadline constraint
(i.e., bi > 0 for some i).

5.2 A New Polynomial-Time SBA Scheme

To remedy the deficiency that MCA may not terminate in
polynomial time, we propose another algorithm to find the
minimal element ~H� 2 �. The proposed algorithm is
guaranteed not only to terminate but also to terminate in
polynomial time. Before delving into the description of the
algorithm, we first study the deadline constraint in more
detail.

As discussed in Section 3, there are three possible cases

for the value of Xi�~H� depending on which region ri falls in

(see (3.5) and Fig. 2). For ease of discussion, if ~H is

unambiguous in the context, we say that Hi is in Region I, II,

or III, if ri �
P

j Hj � � ,
P

j 6�i Hj � � < ri <
P

j Hj � � , or

ri �
P

j6�i Hj � � , respectively. It is easy to see that

Xi�~H�� � Ci, for all i, since if Xi�~H�� > Ci we can find

another vector ~H 0 with H 0i � H�i ÿ � (where � is a very small

positive number) and H 0j � H�i for j 6� i, which also satisfies

the deadline constraint and, hence, contradicts that ~H� is

the minimal element in � (this property will be used later).

Therefore, we can conclude that if H�i is in Region I, II, or III,

then H�i equals Ci
qi

,
Ciÿ�riÿ

P
j6�i H

�
jÿ��

qiÿ1 , or Ci
qiÿ1 , respectively.

Moreover, if we know which region H�i falls in for each i,

then the values of H�i s can be easily determined by solving

the following system of n linear equations with n variables:

xi �

Ci
qi
; if H�i is in Region I;

Ciÿ�riÿ
P

j 6�i xjÿ��
qiÿ1 ; if H�i is in Region II;

Ci
qiÿ1 ; if H�i is in Region III;

8>><>>: �5:2�

for i � 1; 2; . . . ; n. Note that Cis, qis, ris, and � are given

numbers and xis are the variables in the above system of

linear equations. Since each H�i may fall in one of the three

regions, if we try to find the vector ~H� by guessing all the

possibilities that H�i s may fall in, we need to solve the

system of linear equations (5.2) 3n times, and find the

minimal ~x such that each of its elements indeed falls in the

region we guessed. This implies that the SBA problem can

be solved by an algorithm that is guaranteed to terminate in

exponential time.

We propose an algorithm, Procedure PT-Min_H, which

finds the minimal element ~H� in � in polynomial time. For

ease of discussion, we call Ci
qi

,
Ciÿ�riÿ

P
j 6�i Hjÿ��

qiÿ1 , and Ci
qiÿ1

Formulas I, II, and III, respectively. Note that if H�i falls in

Region I, II, or III, its correct value should be calculated

according to Formula I, II, or III, respectively.
Procedure PT-Min_H (Fig. 4) works as follows: During

the execution of PT-Min_H, Fi, i � 1; 2; 3, are the sets of

indices of His whose current values are calculated using

Formulas I, II, and III, respectively, and Ri, i � 1; 2; 3, are

the sets of His whose current values fall in Regions I, II, and

III, respectively. In Step 1, we first assume that H�i is in
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Fig. 3. The optimal global SBA scheme, MCA, proposed by Chen et al. [8].



Region I and, hence, set Hi :� Ci
qi

, for all i, set
F1 :� f1; 2; . . . ; ng, and F2 :� F3 :� ;.

As the current values of His may not all fall in the
regions as we expected, we find in Step 2 the correct region
that each Hi falls into (according to the relationship between
ri and the current value of ~H). If the formula used in
calculating Hi matches the region that Hi really falls in, then
the formula we used to calculate the value of Hi is correct. If
this is true for all i, then all His have been calculated using
the correct formulas and, hence, the algorithm terminates
(Step 3). Otherwise, some of the His should have been
calculated using Formula II or III, but were calculated using
Formula I. As will be discussed later, only His with i 2 F1

may be calculated according to wrong formulas.
At the beginning of Step 4, R � F1 ÿR1 is the set of

indices of His whose current values are calculated using
Formula I but actually fall in Region II or III. For each i 2 R,
the deficiency, bi, of Xi (i.e., the difference between the
maximum message transmission time Ci and the minimum
available transmission time Xi�~H�) is larger than 0. This
means that, to satisfy the deadline constraint, the synchro-
nous bandwidth Hi of node i, for all i 2 R, should be
increased to compensate the deficiency. However, increas-
ing His with i 2 R will further incur positive deficiency for
all of the His with i 2 F2 and some of the His with i 2 R1.
Since we are unaware of which His with i 2 R1 will incur
positive deficiency, we can only take His with i 2 S �
R [ F2 into consideration and temporarily leave His with
i 2 R1 fixed at the value Ci

qi
. Note that, since Ci

qiÿ1 is the
maximum possible value of H�i , those His with i 2 F3 no
longer need to be changed and, hence, are also fixed at Ci

qiÿ1 .
We then formulate and solve a linear programming (LP)

problem to find the (maximum) values that His (not Xis)
with i 2 S should be increased.

It is easy to see that, for each i 2 S � R [ F2, the increase,

xi, in Hi makes the increase in Xi�~H� by ai � xi (note that

ai � qi ÿ 1). Therefore, Hi should be increased by (at least)

bi
ai

to compensate for the deficiency bi of Xi. However, due to

the increase, xj, of some other Hj with j 2 S and j 6� i,
Xi�~H� will be decreased by the same amount xj and, hence,

the deficiency of Xi will be increased by xj. If we let xi be

the amount of increase for Hi, for each i 2 S, the actual

deficiency of Xi will be bi �
P

j2S;j6�i xj. Consequently, we

expect to increase Hi by the amount bi
ai
�
P

j2S;j 6�i xj
ai

((5.4) in

Step 4). To account for the other inequality (5.5), note that if

bi
ai
�
P

j2S;j 6�i xj
ai

equals �i � Ci
qiÿ1ÿHi, Hi will move from

Region I or II to Region III and, hence, it need not be

increased to a value larger than Ci
qiÿ1 . That is, the amount of

increase xi for Hi never needs to be greater than

min��i; biai �
P

j2S;j 6�i xj
ai

�. We then solve the LP with the 3 � jSj
constraints (including the nonnegativity constraints (5.6))

and the objective function (maximize) z �Pi2S xi, and

increase Hi, for all i 2 S, by the amount x�i , where �x�i � with

i 2 S is the solution of the LP.
After the step Hi :� Hi � x�i , for all i 2 S, in Step 4, His

with i 2 R1 are exactly those His whose values are fixed at
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Ci
qi

(Formula I) in the current iteration. Therefore, we reset
F1 :� R1. Similarly, His with i 2 S and x�i < �i are exactly
those whose new values are calculated using Formula II
and His with i 2 S and x�i � �i and with i 2 F3 are exactly
those whose (new) values are calculated using Formula III
or fixed at Ci

qiÿ1 in the current iteration. Therefore, we reset
F2 and F3 accordingly. It is now clear that (after the reset of
Fis) all His with i 2 F2 [ F3 are calculated using the correct
formulas (with respect to the current ~H). However, due to
the increase of those Hjs with j 2 S, some His with i 2 F1

may now move from Region I to Region II or III. As a result,
these His with i 2 F1 may still be calculated using the
wrong formula and we need to go back to Step 2 to check if
further changes are necessary.

We prove in Theorem 6 in Appendix C that the LP

formulated in Step 4 has exactly one optimal solution �x�i �
with i 2 S which satisfies either 1) 0 < x�i � �i � bi

ai
�P

j2S;j6�i xj
ai

or 2) 0 < x�i � bi
ai
�
P

j2S;j6�i xj
ai

< �i. Note that the

above property of the unique optimal solution to the LP

(i.e., either 1) or 2) is true for x�i ) is the key point of the

optimality of our algorithm since it implies that the new

value of Hi (after being increased by x�i ), for all i 2 S, found

in each iteration of Step 4 are not too large (i.e., the new

value of ~H will be less than or equal to ~H�). With this

property, if we can also show that the value of ~H found in

each iteration of Step 4 will eventually converge to ~H� in a

polynomial number of iterations, then we prove the

correctness (the optimality) and the polynomial-time com-

plexity of Procedure PT-Min_H. The detailed proofs are

given in Theorem 7 in Appendix C. In summary, we show

in Theorem 7 that PT-Min_H can always find the minimal

element ~H� in � in at most O�nM� time, where n is the

number of nodes (synchronous message streams) in the

system and M is the time complexity for solving an LP with

3n constraints and n variables. Note that, although the

famous simplex method for solving LP has an exponential-

time worst-case complexity,2 LP has been proven to be

polynomial-time solvable [7], [18], [19]. Therefore, Proce-

dure PT-Min_H is a polynomial-time algorithm.

In the above discussion, we assume that qi � 2, for all i.

As was mentioned earlier, with a little modification, the

above SBA scheme can also handle the case with qi < 2 for

some i. If, for some i, qi � 0, there does not exist any

synchronous bandwidth allocation that guarantees the

messages on node i can always meet their deadlines. If,

for some i, qi � 1, then, since Xi�~H� � max�0;min�ri ÿ
�Pj6�i Hj � ��; Hi�� � Hi for all ~H, in order to satisfy the

deadline constraint, we must have Hi � Ci. It is also easy to

see that if qi � 1, then Hi never needs to be larger than Ci
since if there exists a feasible SBA ~H with Hi > Ci, then ~H 0

with H 0i � Ci and H 0j � Hj for j 6� i is also a feasible SBA.

Therefore, we can set Hi � Ci for all i 2 fj j qj � 1g and

combine these His into the term � , i.e., we can set � 0 �
� �Pi2fjjqj�1g Ci and substitute � 0 for � in the protocol and

deadline constraints. After we find the SBA ~H� for the

modified constraints, we must also check if the deadline

constraint is satisfied for those Xis with qi � 1.

6 CONCLUSION

In this paper, we consider the synchronous bandwidth

allocation (SBA) problem for the timed-token MAC proto-

col, formally prove the nonexistence of optimal local SBA

schemes, and present an optimal global SBA scheme which

is guaranteed to find a feasible solution in polynomial time

for allocating synchronous bandwidth whenever such an

allocation exists. The polynomial-time optimal global SBA

algorithm described in this paper is, to the best of our

knowledge, the first one in the literature. The existence of

this algorithm also implies that the SBA problem is

polynomial-time solvable (for global schemes).
The nonexistence proof of optimal local schemes and

the proposed polynomial-time optimal global scheme

suggest that the decision to use a nonoptimal local

scheme or an optimal global scheme depends on the

trade-off between the network management and the

performance improvement. Another direction that is

worthy of pursuit is to use the proposed optimal global

scheme as a baseline scheme to study the performance of

currently known nonoptimal local schemes. Note that,

using the optimal global scheme, one can decide for each

input instance of the SBA problem if feasible solutions

exist. Based on the performance of these local schemes,

we can then further characterize the trade-offs.

APPENDIX A

PROOF OF THEOREM 2

Proof of Theorem 2. We prove the theorem for the case of

1 � i < b � n. The proof for the other case is similar and

thus omitted. Let Qc;i � c � T �
Pi

j�b�1�Hj � �j� � 
 and

Rc;i � �b;i�`; c� � di�`� c� ÿ db�`� ( f o r t h e c a s e o f

1 � i < b � n) and let Gc;i �4 Qc;i ÿRc;i. We want to show

that Gc;i � 0.
The proof is by contradiction. Assume that the xth

token visit to node y after time db�`� is the first visit after
db�`� for which Gc;i is negative. Then, Gx;y < 0, but Gj;k �
0 for 1; b� 1 � j; k < x; y. First, x must be � 2 because

G1;i � T �
Xi
j�b�1

�Hj � �j� � 


 !
ÿ�b;i�`; 1� � 0;

where the inequality comes from Lemma 1. Now, we

consider two cases:
Case 1: g`�x;y � a`�x;y � Hy. Consider the relationship

between Gx;y and Gx;yÿ1:
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Gx;y ÿGx;yÿ1 � �Qx;y ÿQx;yÿ1� ÿ �Rx;y ÿRx;yÿ1�
� �Hy � �y� ÿ �dy�`� x� ÿ dyÿ1�`� x��
� Hy ÿ �g`�x;y � a`�x;y� � 0:

Hence, Gx;y � Gx;yÿ1.

Case 2: g`�x;y � a`�x;y > Hy. Since Hy � g`�x;y (see

(3.1)), we know that a`�x;y > 0 in this case. That is, the

�`� x�th token visit to node y occurs early or C`�x;yÿ1 �P`�x;yÿ1
j;k�`�xÿ1;y�gj;k � aj;k� � � < T and, hence, from (3.1), we

have:

0 < a`�x;y � max�0; T ÿ C`�x;yÿ1� � T ÿ C`�x;yÿ1:

Consider the relationship between Gx;y and Gxÿ1;yÿ1:

Gx;y ÿGxÿ1;yÿ1 � �Qx;y ÿQxÿ1;yÿ1� ÿ �Rx;y ÿRxÿ1;yÿ1�
� �T �Hy � �y� ÿ �dy�`� x� ÿ dyÿ1�`� xÿ 1��
� T �Hy ÿ �C`�x;yÿ1 � g`�x;y � a`�x;y�
� ��T ÿ C`�x;yÿ1� ÿ a`�x;y� � �Hy ÿ g`�x;y� � 0:

Hence, Gx;y � Gxÿ1;yÿ1.
We showed that Gx;y was no less than Gx;yÿ1 in Case 1

and no less than Gxÿ1;yÿ1 in Case 2, implying that x; y
was not the first visit for which Gx;y is negative. This
contradiction shows that our assumption must be false
and, thus, the theorem is proven. tu

APPENDIX B

PROOF OF THEOREM 4

Proof of Theorem 4. We discuss how A chooses the
instances for the SBA problem and jeopardizes the
optimality claim of any local SBA scheme L. A first
chooses:

C1 � 2

3
T and D1 � 2

2

3
T;

where T is the TTRT and can be any fixed positive
number. Suppose L computes a value h of H1 based on
the given values of C1, D1, and T . We consider three
cases for the h value L computes: h < 1

3T , h � 1
3T , and

h > 1
3T .

C1. h < 1
3T : For this case, we have

X1�~H� � 2H1 <
2

3
T � C1;

which means that the deadline constraint for
message stream 1 is violated. However, if A
chooses C2 � C3 � 0,3 it is easy to see that
�H1; H2; H3� � �13T; 0; 0� is a feasible solution.

C2. h � 1
3T : A can choose

C2 � 1

3
T � �; C3 � 0; and D2 � 2T;

where 0 < � � 1
6T . It is easy to see that, in order to

satisfy the deadline constraint for message

stream 2, H2 must be larger than or equal to

1
3T � �. Substituting H1 � h � 1

3T , H2 � 1
3T � �,

and H3 � 0 into X1�~H�, we have:

X1�~H� � H1 � 2

3
T ÿH2

� �
� 2

3
T ÿ � < C1;

which means that the deadline constraint for

message stream 1 is violated. However,

�H1; H2; H3� � �13T � �; 1
3T � �; 0� is a feasible

solution for the chosen Cis, Dis, and T since

X1�~H� � H1 � �23T ÿH2� � 2
3T � C1, X2�~H� �

H2 � 1
3T � � � C2; and H1 �H2 � 2

3T � 2� � T ,

i.e., the deadline and protocol constraints are

satisfied.
C3. h > 1

3T : A can choose

C2 � C3 � 1

3
T and D2 � D3 � D1:

Since C2 � C3, D2 � D3, and L is a local scheme,

L will compute H2 � H3. And, since

X2�~H� � H2 �max 0;min
2

3
T ÿH1 ÿH3; H2

� �� �
;

we consider the following three subcases:
SC1. X2�~H� � 2H2, i.e.,

0 � H2 � 2

3
T ÿH1 ÿH3 :

Since H2 � H3 and H1 >
1
3T , we have

0 � H2 � 1

3
T ÿ 1

2
H1 <

1

6
T:

But then, we have

X2�~H� � 2H2 <
1

3
T � C2;

which means that the deadline constraint for

message stream 2 is violated.
SC2: X2�~H� � H2 � �23T ÿH1 ÿH3�, i.e.,

0 � 2

3
T ÿH1 ÿH3 � H2 :

For this subcase, we have

X2�~H� � H2 � 2

3
T ÿH1 ÿH3

� �
� 2

3
T ÿH1 <

1

3
T � C2;

which means that the deadline constraint for

message stream 2 is violated.
SC3: X2�~H� � H2, i.e., 2

3T ÿH1 ÿH3 � 0: For

this case, in order to satisfy the deadline

constraint for message streams 2 and 3, we must

have H2 � H3 � C2 � C3 � 1
3T . But then, we get

H1 �H2 �H3 > T;

which means that the protocol constraint is

violated.
However, one can readily see that
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H1 � 1

3
T and H2 � H3 � 1

6
T

is a feasible solution for the chosen Cis, Dis, and T
since

X1�~H� � H1 � 2

3
T ÿH2 ÿH3

� �
� 2

3
T � C1;

X2�~H� � X3�~H� � H2 � 2

3
T ÿH1 ÿH3

� �
� 1

3
T � C2 � C3;

and

H1 �H2 �H3 � 2

3
T < T;

i.e., the deadline and protocol constraints are
satisfied.

From C1±C3, Theorem 4 follows. tu

APPENDIX C

CORRECTNESS AND TIME COMPLEXITY OF PT-MIN_H

To prove the correctness and derive the time complexity of
Procedure PT-Min_H (Fig. 4), we need the following
Theorem 6 and Lemmas 2 and 3.

Theorem 6 shows that there is a unique optimal solution
to the LP formulated in Step 4 of Procedure PT-Min_H
(Fig. 4), and this optimal solution satisfies some condition
((C.5)-(C.6)) which bounds the value of each element of the
optimal solution.

Theorem 6. Consider the following linear programming
formulation:

maximize z �
Xk
i�1

ci � xi �C:1�

subject to xi � bi
ai
�
P

j6�i xj
ai

; �C:2�

xi � �i and �C:3�

xi � 0; �C:4�
for i � 1; 2; . . . ; k. If ai > 0, bi � 0, �i > 0, ci > 0, for all i,
and there exists at least one index j such that bj > 0, then:

1. The optimal value of the objective function z exists and
is bounded,

2. x� � �x�1; x�2; . . . ; x�k� satisfies the following condition:

either x�i � �i �
bi
ai
�
P

j 6�i x
�
j

ai
�C:5�

or x�i �
bi
ai
�
P

j6�i x
�
j

ai
< �i �C:6�

for each i � 1; 2; . . . ; k, where x� is any optimal
solution to the LP,

3. Any vector y � �y1; y2; . . . ; yk� satisfying (C.5)-(C.6)
must have all positive components, i.e., yi > 0, 8 i,
and

4. There is a unique vector satisfying (C.5)-(C.6), i.e., x�

is the only vector satisfying (C.5)-(C.6) (and, hence, x�

is the unique optimal solution to the LP).

Proof. The solution space of (C.2)-(C.4) is 1) nonempty since
at least the zero vector �0; 0; . . . ; 0� is a feasible solution
and 2) bounded since any feasible solution
�x1; x2; . . . ; xk� of (C.2)-(C.4) satisfies the constraint
0 � xi � �i, for all i. Since the solution space of (C.2)-
(C.4) is nonempty and bounded, the optimal value of the
objective function z exists and is bounded and, hence, 1 is
true.

Let x� � �x�1; x�2; . . . ; x�k� be a feasible solution of (C.2)-

(C.4) which maximizes z (note that x�i � 0, for all i). Each

x�i , i � 1; 2; . . . ; k, must satisfy (C.5)-(C.6) since if there

exists an index l such that xl < �l and xl <
bl
al
�
P

j 6�l xl
al

,

then �x01; x02; . . . ; x0k� with x0l � x�l � � and x0i � x�i , for all

i 6� l, and � sufficiently small is also a feasible solution for

(C.2)-(C.4) and

Xk
i�1

ci � x0i �
Xk
i�1

ci � x�i � cl � � >
Xk
i�1

ci � x�i ;

which contradicts the assumption that �x�1; x�2; . . . ; x�k�
maximizes z. Therefore, 2 is proven.

We next show that 3 is true. Let �y1; y2; . . . ; yk� be any

vector satisfying (C.5)-(C.6). If there is an index i such

t h a t yi � 0, t h e n , s i n c e �i > 0, w e h a v e

yi � bi
ai
�
P

j 6�i yi
ai
� 0. Therefore, bi � 0 and

P
j6�i yi � 0,

which implies yi � 0, for all i. But this, in turn, implies

that bi � 0, for all i, which contradicts the assumption

that there exists at least one index j such that bj > 0.

Finally, we prove, by contradiction, that there is only

one vector that satisfies (C.5)-(C.6). Assume that x0 �
�x01; x02; . . . ; x0k� and x00 � �x001 ; x002 ; . . . ; x00k� are two distinct

vectors that satisfy (C.5)-(C.6). Since x0 6� x00, they differ

in at least one component. Without loss of generality, we

can assume x0l < x00l . It is easy to see that x0l � bl
al
�
P

j 6�l x
0
j

al
<

�l since x00l � �l and if x0l � �l, then x00l � x0l, contradicting

the assumption that x0l < x00l . Now, since

x0l �
bl
al
�
P

j6�l x
0
l

al
< x00l �

bl
al
�
P

j6�l x
00
l

al
;

we have
P

j6�l x
0
j <

P
j 6�l x

00
j and, hence,X

j

x0j <
X
j

x00j : �C:7�

If there exists an h such that x0h > x00h, by the same
argument as above, we have

P
j6�h x

0
j >

P
j 6�h x

00
j andP

j x
0
j >

P
j x
00
j , which contradicts (C.7). Therefore,
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x0i � x00i ; for all i: �C:8�
Moreover, we claim that:

1. If x0i � x00i , then x0i � x00i � �i > 0, and

2. If x0i < x00i , then 0 < x0i � bi
ai
�
P

j 6�i x
0
j

ai
< �i and either

0 < x00i � �i �
bi
ai
�
P

j6�i x
00
j

ai

or

0 < x00i �
bi
ai
�
P

j6�i x
00
j

ai
< �i:

Note that if x0i � x00i < �i, then x0i � bi
ai
�
P

j 6�i x
0
j

ai
� x00i �

bi
ai
�
P

j6�i x
00
j

ai
and, hence,

P
j6�i x

0
j �

P
j6�i x

00
j . But this, in

turn, implies that
P

j x
0
j �

P
j x
00
j , which, again, contra-

dicts (C.7). Conversely, if x0i � �i, then, since x0i � x00i � �i,
we have x00i � �i � x0i. Therefore, x0i � x00i if and only if

x0i � �i, and x0i < x00i if and only if x0i � bi
ai
�
P

j 6�i x
0
j

ai
.

Moreover, from 2, we know that x0i > 0 and x00i > 0, for

all i. This concludes the proof of the above claim.
Now, let

U � i j x0i � �i �
bi
ai
�
P

j6�i x
0
j

ai

� �
;

V � fi j x0i � x00i � �ig ÿ U;
and

W � fi j x0i < x00i g [ U:

(Note that U � V [W and V \W � ;.) Since, for all

i 2 V , 0 < x0i � �i < bi
ai
�
P

j 6�i x
0
j

ai
and, for all i 2W ,

0 < x0i � bi
ai
�
P

j 6�i x
0
j

ai
� �i, �x01; x02; . . . ; x0k� is a solution for

the following system of k linear equations:

xi � �i; for i 2 V ; �C:9�
and

xi � bi
ai
�
P

j 6�i xj
ai

; for i 2W: �C:10�

Now, there are two cases to consider:
Case 1: The system of linear equations (C.9)-(C.10) has

an infinite number of feasible solutions.

Since the solution space of a system of linear

equations with an infinite number of solutions is

connected, given a solution of the system we must be

able to find another solution of the system such that their

corresponding components are very close to each other.

A n d , s i n c e x0i � �i < bi
ai
�
P

j 6�i x
0
j

ai
, f o r i 2 V , a n d

0 < x0i < �i, for i 2W , there must exist another solution

�y01; y02; . . . ; y0k� for the system of linear equations (C.9)-

(C.10) such that y0i � x0i � �i < bi
ai
�
P

j6�i y
0
i

ai
, for all i 2 V ,

and 0 � y0i < �i, for all i 2W . Therefore, �y01; y02; . . . ; y0k� is

also a solution for (C.5)-(C.6).

Now, from (C.7) and (C.8), we have, for all i, either

x0i � y0i or y0i � x0i and there exists an index j such that

x0j 6� y0j. Without loss of generality, assume y0i � x0i, for all

i. Since both �x01; x02; . . . ; x0k� and �y01; y02; . . . ; y0k� are

solutions for the system of linear equations (C.9)-(C.10),

we have that �y1; y2; . . . ; yk� with yi � y0i ÿ t � �x0i ÿ y0i�, for

any real number t, is also a feasible solution for (C.9)-

(C.10). Now, if we gradually increase t (starting from 0),

eventually we will reach a situation where either yl � 0,

for some l 2W or yl � �l � bl
al
�
P

j 6�l yj
al

, for some l 2 V .

For the former situation, we have yi � �i < bi
ai
�
P

j 6�i yj
ai

,

for all i 2 V , and yi � bi
ai
�
P

j 6�i yj
ai
� �i, for all i 2W , and

yl � 0. Therefore, �y1; y2; . . . ; yk� satisfies (C.5)-(C.6), but

yl � 0, which contradicts part 3 of the theorem stating

that yi > 0, for all i. For the latter situation, we just

substitute x0i for the role of x00i , and substitute yi for the

role of x0i in the whole proof, and repeat the proof.

Eventually, we will get to a point as the previous

situation or as the situation to be discussed next (Case 2).
Case 2: �x01; x02; . . . ; x0k� is the only solution for the

system of linear equations (C.9)-(C.10),.
For this case, we consider the following system of

linear equations:

xi � 0; for i 2 V ; �C:11�
and

xi �
�bi
ai
�
P

j6�i xj
ai

; for i 2W; �C:12�

where, for i 2W ,

�bi � bi �
X
j6�i

x00j ÿ ai � �i; if x00i � �i <
bi
ai
�
P

j6�i x
00
j

ai
�C:13�

and

�bi � 0; otherwise �i:e:; if x00i �
bi
ai
�
P

j 6�i x
00
j

ai
� �i�: �C:14�

Note that, since the system of linear equations (C.9)-

(C.10), has a unique solution, it cannot be true that

x00i � bi
ai
�
P

j 6�i x
00
i

ai
< �i, for all i 2W , since, otherwise,

�x001 ; x002 ; . . . ; x00k� is also a solution for the system of linear

equations (C.9)-(C.10). This means that �bi � 0, for all

i 2W , and there is at least one i such that

�bi � bi �
P

j 6�i x
00
i ÿ ai � �i > 0. Since the system of linear
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equations (C.9)-(C.10) has a unique solution, so does the

system of linear equations (C.11)-(C.12) (note that both

linear systems have the same constraint matrix A, and

det�A� 6� 0.) Let �y01; y02; . . . ; y0k� be the unique solution of

the system of linear equations (C.11)-(C.12). By a similar

argument as we prove part 3 of the theorem, we know

that y0i > 0, for all i 2W . Now, let us consider

�y1; y2; . . . ; yk� with yi � x00i � y0i. For each i 2 V , y0i � 0

and yi � x00i � �i. For each i 2W , if x00i � �i < bi
ai
�
P

j 6�i x
00
i

ai
,

we have

yi � x00i � y0i � x00i �
�bi
ai
�
P

j 6�i x
00
j

ai

� �i � bi
ai
�
P

j 6�i x
00
j

ai
ÿ �i �

P
j 6�i y

0
j

ai

� �
� bi
ai
�
P

j 6�i�x00j � y0j�
ai

� bi
ai
�
P

j6�i yj
ai

;

otherwise (i.e., x00i � bi
ai
�
P

j 6�i x
00
j

ai
� �i), we have

yi � x00i � y0i � x00i �
�bi
ai
�
P

j6�i x
00
j

ai

� bi
ai
�
P

j6�i x
00
j

ai

� �
�
P

j6�i y
0
j

ai
� bi
ai
�
P

j 6�i�x00j � y0j�
ai

� bi
ai
�
P

j 6�i yj
ai

:

Therefore, �y1; y2; . . . ; yk� is also a solution for the system

of l inear equat ions (C.9) - (C.10) . But , s ince

yi � x00i � y0i > x00i � x0i, for i 2W , it means that the

system of linear equations (C.9)-(C.10) has more than

one solution, which contradicts the assumption of this

case.
From Cases 1 and 2, 4 is proven, i.e., there is only one

solution, �x�1; x�2; . . . ; x�k�, satisfying (C.5)_(C.6), which is
also the unique optimal solution to the LP. tu

To facilitate further discussion, we define the following

notation: Let Fÿi and F�i denote the values of Fi before and

after the execution of Step 4 in an iteration of the loop from

Step 2 to Step 4, respectively, and let ~Hÿ and ~H� be

similarly defined. Let V 2 fRis; R; S; bis; �isg denote the

value of the corresponding variable in the current iteration

of Step 44 and let V � denote the value of the corresponding

variable in the next iteration of Step 4, i.e.,

R�1 � fi j ri �
X
j

H�j � �g;

R�2 � fi j
X
j 6�i

H�j � � < ri <
X
j

H�j � �g;

R�3 � fi j ri �
X
j 6�i

H�j � �g;

R� � F�1 ÿR�1 ;
S� � R� [ F�2 ;
b�i � Ci ÿXi�~H��;

and

��i �
Ci

qi ÿ 1
ÿH�i :

As mentioned in Section 5, F1, F2, and F3 are the sets

of indices of His whose current values are calculated

using Formulas I, II, and III, respectively. Suppose Hi is

calculated by Formula I (i.e., Hi � Ci
qi

). If the delivery

deadline of the messages at node i is changed to

D#
i � q#

i � T � r#
i � �qi � 1� � T , then the deadline constraint

for the messages at node i is guaranteed to be satisfied

since, then, X#
i �~H� � �q#

i ÿ 1� �Hi � Ci. A similar statement

also holds for His that are calculated according to

Formula III. Thus, for # 2 fÿ;�g, we define

. q#
i � qi � 1, r#

i � 0, for i 2 F#
1 ,

. q#
i � qi, r#

i � ri, for i 2 F#
2 ,

. q#
i � qi, r#

i � 0, for i 2 F#
3 ,

.

X#
i �~H� � �q#

i ÿ 1� �Hi

�max 0;min r#
i ÿ

X
j�1;...;n;j 6�i

Hj � �
 !

; Hi

 ! !
;

and
. �# � f~H j �X#

i �~H� � Ci; for all ig.
We will show that ~Hÿ (~H�) is the minimal element in �ÿ

(��).
Since, in Step 4, we fix the His with i 2 R1 and i 2 Fÿ3 at

the values calculated by Formulas I and III, respectively, we

also define:

. q0i � qi � 1, r0i � 0, for i 2 R1 � Fÿ1 ÿR,

. q0i � qi, r0i � ri, for i 2 S � R [ Fÿ2 � �Fÿ1 ÿR1� [ Fÿ2 ,

. q0i � qi, r0i � 0, for i 2 Fÿ3 ,

.

X0i�~H� � �q0i ÿ 1� �Hi

�max 0;min r0i ÿ
X

j�1;...;n;j 6�i
Hj � �

 !
; Hi

 ! !
;

and
. �0 � f~H j X0i�~H� � Ci; for all ig.

The reason we define the above notation is to show some

relationships among ~H 0 (which is the minimal element in

�0), ~Hÿ, ~H�, and ~H�. Their relationships are important in

proving the correctness of Procedure PT-Min_H.
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4. Note that these variables do not change in Step 4 after they are initially
set at the beginning of Step 4.



We will use the following assumptions in Lemmas 2 and

3 and Theorem 7. (We will show that these assumptions are

the invariants of the loop from Step 2 to Step 4).

A1. ~Hÿ � ~H�,
A2. Hÿi � Ci

qi
, for i 2 Fÿ1 ,

Ci
qi
< Hÿi �

Ci ÿ �ri ÿ
P

j6�i H
�
j ÿ ��

qi ÿ 1
<

Ci
qi ÿ 1

;

for i 2 Fÿ2 , and Hÿi � Ci
qiÿ1 , for i 2 Fÿ3 ,

A3. bi � 0, for all i 2 Fÿ2 , bi > 0, for all i 2 R � Fÿ1 ÿR1,
and �i > 0, for all i 2 S, and

A4. ~Hÿ is the minimal element in �ÿ.

Assumption A1 says that the value, ~Hÿ, found for ~H

before each iteration of Step 4 is always less than or equal

to ~H�. Note that ~Hÿ is the minimal element in �ÿ

(Assumption A4), but not necessarily equal to the minimal

element ~H� in �.
The following lemma proves some properties of the

minimal element ~H 0 in �0. These properties will be used in

the proof of Lemma 3. In Lemma 3, we will show that
~H� � ~H 0.

Lemma 2. If A1-A4 are true, then the minimal element ~H 0 in �0

satisfies H 0i � Hÿi , for i 62 S, and Hÿi � H 0i � H�i and

Xi�~H 0� � Ci, for all i 2 S.5

Proof. Let H 00i � H�i , for i 2 S, and H 00i � Hÿi (� H�i ), for

i 62 S. We have

for i 2 R1; X
0
i�~H 00� � qi �H 00i � qi �Hÿi � Xÿi �~Hÿ� � Ci;

for i 2 Fÿ3 ; X0i�~H 00� � �qi ÿ 1� �H 00i
� �qi ÿ 1� �Hÿi � Xÿi �~Hÿ� � Ci; and

for i 2 S; X0i�~H 00� � �qi ÿ 1� �H 00i

�max 0;min ri ÿ
X
j6�i

H 00j � �
 !

; H 00i

 ! !

� �qi ÿ 1� �H�i �max 0;min ri ÿ
X
j6�i

H 00j � �
 !

; H�i

 ! !

� �qi ÿ 1� �H�i �max 0;min ri ÿ
X
j6�i

H�j � �
 !

; H�i

 ! !
� Xi�~H�� � Ci:

Therefore, ~H 00 2 �0. Since ~H 00 � H�i and ~H 0 is the minimal

e lement in �0, we have ~H 0 � ~H 00 � ~H�. S ince

X0i � Xi; 8i 2 S, and X0i�~H 0� � Ci, we have Xi�~H 0� � Ci,
f o r a l l i 2 S. S i n c e r0i � rÿi � 0, q0i � qÿi , a n d

X0i�~H 0� � Xÿi �~Hÿ� � Ci, for i 62 S, it is easy to see that

H 0i � Hÿi � Ci
qi

, for i 2 R1, and H 0i � Hÿi � Ci
qiÿ1 , for i 2 Fÿ3 .

Now, we prove that H 0i � Hÿi , for all i 2 S. Note that:

1. Xÿi �~H� � qi �Hi, for i 2 Fÿ1 and, hence, for
i 2 R � Fÿ1 ÿR1,

2.

Xÿi �~H� � X0i�~H�

� �qi ÿ 1� �Hi �max 0;min ri ÿ
X
j6�i

Hj ÿ �;Hi

 ! !
;

for i 2 Fÿ2 , and
3. Xÿi �~H� � �qi ÿ 1� �Hi, for i 2 Fÿ3 .

Let H 00i � min�H 0i; Hÿi � (hence, H 00i � Hÿi ). Since, for i 62 S,
H 0i � Hÿi , we have H 00i � Hÿi . Also, since, for i 2 F1,
Hÿi � Ci

qi
, we have H 0i � Hÿi , and hence, H 00i � Hÿi , for

i 2 F1. Therefore, if H 0i < Hÿi , then we must have i 2 Fÿ2 .
Now, if there exists an index i 2 Fÿ2 such that H 0i < Hÿi ,
then H 00i < Hÿi and ~H 00 < ~Hÿ. Moreover, since

for i 2 Fÿ1 ; Xÿi �~H 00� � qi �H 00i � qi �Hÿi � Xÿi �~Hÿ� � Ci;
for i 2 Fÿ3 ; Xÿi �~H 00� � �qi ÿ 1� �H 00i � �qi ÿ 1� �Hÿi � Ci;
for i 2 Fÿ2 and H 0i � Hÿi ; Xÿi �~H 00�

� �qi ÿ 1� �Hÿi �max 0;min ri ÿ
X
j 6�i

H 00j ÿ �;Hÿi
 ! !

� �qi ÿ 1� �Hÿi

�max 0;min ri ÿ
X
j6�i

min H 0j; H
ÿ
j

� �
ÿ �;Hÿi

 ! !

� �qi ÿ 1� �Hÿi �max 0;min ri ÿ
X
j 6�i

Hÿj ÿ �;Hÿi
 ! !

� Xÿi �~Hÿ� � Ci; and

for i 2 Fÿ2 and H 0i < Hÿi ; X
ÿ
i �~H 00�

� �qi ÿ 1� �H 0i �max 0;min ri ÿ
X
j6�i

H 00j ÿ �;H 0i
 ! !

� �qi ÿ 1� �H 0i

�max 0;min ri ÿ
X
j6�i

min H 0j; H
ÿ
j

� �
� �;H 0i

 ! !

� �qi ÿ 1� �H 0i �max 0;min ri ÿ
X
j6�i

H 0j ÿ �;H 0i
 ! !

� X0i�~H 0� � Ci:
Therefore, ~H 00 2 �ÿ and, by Theorem 5, there exists a
vector ~H 000 with ~H 000 � ~H 00 (< ~Hÿ) such that ~H 000 is the
minimal element in �ÿ, which contradicts the assump-
tion that ~Hÿ is the minimal element in �ÿ. Therefore,
there cannot exist any index i such that H 0i < Hÿi . tu
The following lemma proves that Assumptions A1-A4

are loop invariants.

Lemma 3. If Assumptions A1-A4 are true and assume R is
nonempty,6 then

1. ~Hÿ < ~H� � ~H�,
2. H�i � Ci

qi
, for i 2 F�1 ,

Ci
qi
< H�i �

Ci ÿ �ri ÿ
P

j6�i H
�
j ÿ ��

qi ÿ 1
<

Ci
qi ÿ 1

;

for i 2 F�2 , and H�i � Ci
qiÿ1 , for i 2 F�3 ,
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5. Actually, we will show in Lemma 3 that Hÿi < H 0i , for all i 2 S. 6. Note that Step 4 will be executed only when R is nonempty.



3. b�i � 0, for a l l i 2 F�2 , and b�i > 0, for al l
i 2 R� � F�1 ÿR�1 , and ��i > 0, for all i 2 S�, and
R�1 � fi j ri �

P
j H
�
j � �g, and

4. ~H� is the minimal element in ��.

Proof. We first show that ~H� is the minimal element in �0.
From the algorithm, we know that, for each i 62 S,

H�i � Hÿi � H�i . For each i 2 S, H�i � Hÿi � x�i , where

�x�i � with i 2 S is the optimal solution of the LP found in

Step 4. From A3, we have, in the LP in Step 4, ai > 0,

bi � 0, �i > 0, for all i 2 S, and bi > 0, for all i 2 R. Also,

since R 6� ;, by Theorem 6, we know that �x�i � with i 2 S
is the unique solution such that each x�i , i 2 S, satisfies

(C.5)-(C.6) in Theorem 6 and, moreover, x�i > 0, for all

i 2 S. For convenience of discussion, we define x�i � 0,

for al l i 62 S, therefore , H�i � Hÿi � x�i , for al l

i � 1; 2; . . . ; n, and
P

j2S;j6�i x
�
j �

P
j 6�i x

�
j .

By Lemma 2, the minimal element ~H 0 in �0 is such that
H 0i � Hÿi � H�i , for i 62 S, and Hÿi � H 0i � H�i and
Xi�~H 0� � Ci, for all i 2 S. Let xi � H 0i ÿHÿi (note that
xi � 0, for all i 62 S, and xi � 0, for all i 2 S). We will next
show that each xi, i 2 S, satisfies (C.5)-(C.6) in Theorem 6.
And, since �x�i � with i 2 S is the unique solution such
that each x�i , i 2 S, satisfies (C.5)-(C.6), we can conclude
that xi � x�i and, hence, ~H� � ~H 0.

Since S � �Fÿ1 ÿR1� [ Fÿ2 , for all i 2 S, we have ri <P
j H
ÿ
j � � and

Xi�~H�

� �qi ÿ 1� �Hi �max 0;min ri ÿ
X
j 6�i

Hÿj � �;Hÿi
 ! !

� �qi ÿ 1� �Hi �max 0; ri ÿ
X
j 6�i

Hÿj ÿ �
 !

and there are three cases to consider (for i 2 S):
Case 1: H 0i falls in Region I, i.e., ri �

P
j H
0
j � � .

In this case, we have

Xi�~H 0� � Ci
qi �H 0i � Ci

qi � �Hÿi � xi� � Ci
xi � Ci

qi
ÿHÿi :

Since xi � 0, we have Hÿi � Ci
qi

and, since Hÿi � Ci
qi

, we

have Hÿi � Ci
qi

, which implies that i 2 S \ Fÿ1 � Fÿ1 ÿR1,

and, hence, i 62 R1. For i 62 R1, we have

ri <
X
j

Hÿj � �

ri <
X
j

�H 0j ÿ xj� � �X
j

xj < ÿ�ri ÿ
X
j

H 0j ÿ �� � 0:

But, this contradicts the fact that H 0i � Hÿi (xi � 0), for all

i 2 S. Therefore, this case cannot happen.
Case 2: H 0i falls in Region II, i.e.,

X
j 6�i

H 0j � � < ri <
X
j

H 0j � �:

In this case, we haveX
j6�i

H 0j � � < riX
j6�i

Hÿj � � �
X
j6�i

xj < ri

X
j6�i

xj < ri ÿ
X
j6�i

Hÿj ÿ � < max 0; ri ÿ
X
j 6�i

Hÿj ÿ �
 !

ai �Hÿi �
X
j 6�i

xj < Xi�~Hÿ� � Ci ÿ bi

bi �
X
j6�i

xj < Ci ÿ ai �Hÿi

bi
ai
�
P

j6�i xj
ai

< �i � Ci
ai
ÿHÿi ;

and

Xi�~H 0� � Ci

ai �H 0i � ri ÿ
X
j6�i

H 0j ÿ �
 !

� Ci

ai � �Hÿi � xi� � ri ÿ
X
j6�i

Hÿj ÿ � ÿ
X
j6�i

xj

 !
� Ci

ai �Hÿi � ri ÿ
X
j 6�i

Hÿj ÿ �
 !

� ai � xi ÿ
X
j 6�i

xj

�
� Ci:

I f ri ÿ
P

j6�i H
ÿ
j ÿ � < 0, t h e n Xi�~Hÿ� � ai �Hÿi ,

bi � Ci ÿXi�~Hÿ� � Ci ÿ ai �Hÿi � ai � �i. T h e r e f o r e ,

�i � bi
ai

. But, we have shown that bi
ai
�
P

j6�i xj
ai

< �i, which

contradicts the fact that
P

j 6�i xj � 0. Therefore, we must

have ri ÿ
P

j 6�i H
ÿ
j ÿ � � 0 and, hence,

Xi�~Hÿ� � ai �Hÿi �max 0; ri ÿ
X
j6�i

Hÿj ÿ �
 !

� ai �Hÿi � ri ÿ
X
j 6�i

Hÿj ÿ �

and

Xi�~Hÿ� � ai � xi ÿ
X
j 6�i

xj � Ci

xi � bi
ai
�
P

j6�i xj
ai

:

Therefore, for this case, we can conclude that

xi � bi
ai
�
P

j 6�i xj
ai

< �i: �C:15�

Case 3: H 0i falls in Region III, i.e., ri �
P

j6�i H
0
j � � .

In this case, we have
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Xi�~H 0� � Ci
ai �H 0i � Ci

ai � �Hÿi � xi� � Ci
xi � Ci

ai
ÿHÿi � �i;

and, since ri �
P

j6�i H
0
j � � , we have

ri �
X
j6�i

Hÿj � � �
X
j6�i

xj

ri ÿ
X
j 6�i

Hÿj ÿ � �
X
j6�i

xj:

If ri ÿ
P

j6�i H
ÿ
j ÿ � � 0, then

Xi�~Hÿ� ÿ ai �Hÿi �
X
j 6�i

xj

�Ci ÿ bi� ÿ �Ci ÿ ai � �i� �
X
j 6�i

xj

xi � �i � bi
ai
�
P

j6�i xj
ai

:

If ri ÿ
P

j6�i H
ÿ
j ÿ � < 0, then Xi�~Hÿ� � ai �Hÿi ,

bi � Ci ÿXi�~Hÿ� � Ci ÿ ai �Hÿi � ai � �i:
And, since

P
j 6�i xi � 0, we have xi � �i � bi

ai
�
P

j 6�i xj
ai

.

Therefore, for this case, we can conclude that

xi � �i � bi
ai
�
P

j6�i xj
ai

: �C:16�

From Cases 1-3, we can conclude that either 0 � xi �
bi
ai
�
P

j6�i xj
ai

< �i or 0 � xi � �i � bi
ai
�
P

j 6�i xj
ai

, for all i 2 S.

From Theorem 6, we know that there is a unique solution

satisfying the above constraint and this solution is the

solution �x�i � with i 2 S found in Step 4. Therefore, we

have H 0i ÿHÿi � x�i , for all i 2 S. Moreover, since x�i > 0,

for all i 2 S, we have Hÿi < H�i � H 0i � H�i , for all i 2 S
( n o t e t h a t H 0i � H�i � Hÿi , f o r a l l i 62 S) , i . e . ,

~Hÿ < ~H 0 � ~H� � ~H�. Therefore, 1 is proven.

Since F�1 � R1 � Fÿ1 ÿR, we have H�i � Hÿi � Ci
qi

, for

i 2 F�1 . Similarly, with some mathematical manipulation,

it is easy to check that Ci
qi
< H�i �

Ciÿ�riÿ
P

j 6�i H
�
jÿ��

qiÿ1 < Ci
qiÿ1 ,

for i 2 F�2 , and H�i � Ci
qiÿ1 , for i 2 F�3 . Hence, 2 can be

easily proven.
Since F�2 � S, and Xi�~H 0� � Xi�~H�� � Ci, for all

i 2 S, we have b�i � 0. Since R� � F�1 ÿR�1 , for all
i 2 R�, H�i is calculated using Formula I, but it actually
falls in Region II, we have b�i > 0. S� � �F�1 ÿR�1 � [ F�2
and, thus, for each i 2 S�, H�i is calculated by Formula I
or II and, hence, ��i > 0. Therefore, 3 is proven.

Finally, we prove that 4 is true. Note that, for all i 62 S
and all i 2 F�2 , X0i � X�i , and for all

i 2 F�3 ÿ Fÿ3 � fj 2 S j x�j � �jg;

H�i � H 0i � Ci
qiÿ1 . Since q�i � qi and r�i � 0, for all

i 2 F�3 � F�3 ÿ Fÿ3 , the minimal element ~H 00 in �� must

have H 00i � H�i � Ci
qiÿ1 , for i 2 F�3 ÿ Fÿ3 . If ~H� � ~H 0 is not

t h e m i n i m a l e l e m e n t ~H 00 i n ��, t h e n l e t

H 000i � min�H 0i; H 00i �, for all i. By a similar calculation as

we did in the proof of Lemma 2, we can show that

X0i�~H 000� � X�i �~H 000� � Ci, for all i 62 S and all i 2 F�2 , and

X0i�~H 000� � Ci, for all i 2 F�3 ÿ Fÿ3 . Therefore, ~H 000 < ~H 0

and ~H 000 2 �0, which contradicts that ~H 0 is the minimal

element in �0. Therefore, ~H 0 � ~H� must be the minimal

element in ��. tu
We now prove the correctness of Procedure PT-Min_H

and give its time complexity in the following theorem:

Theorem 7. Let ~H�k� be the value of ~H before the execution of the
kth iteration of Step 3 in the loop from Step 2 to Step 4. We
have:

1. Assumptions A1-A4 are true for all iterations of the
loop from Step 2 to Step 4; in particular, ~H�k� � ~H�,
for all k,

2. Procedure PT-Min_H terminates after at most
n iterations of Step 4 and, at termination (assuming
after the lth iteration of Step 3), ~H�l� � ~H�, and

3. The time complexity of Procedure PT-Min_H is at
most O�nM�, where M is the time complexity for
solving an LP with 3n constraints and n variables.

Proof. We prove 1 by induction on k. The first time when the

algorithm goes to Step 3, H
�1�
i � Ci

qi
� H�i , for all i,

F1 � f1; 2; . . . ; ng, and F2 � F3 � ;. It is easy to check that

Assumptions A1, A2, and A4 are true (note that Assump-

tion A3 is meaningful only if the algorithm goes to Step 4).

If the algorithm terminates at the first iteration of Step 3,

then, for all i, ri �
P

j H
�1�
j � � and Xi�~H�1�� � Ci. There-

fore, ~H�1� � ~H�. If the algorithm goes to Step 4, it means

that R � F1 ÿR1 6� ; and ri <
P

j H
�1�
j � � , for i 2 R.

Therefore, bi � Ci ÿXi�~H�1�� > 0 (note that F2 � ;).
Hence, Assumption A3 is true. Now, assume 1 is true

at the beginning of the kth iteration of Step 4. By

Lemma 2, 1 is still true after the execution of Step 4.

Therefore, by the logic of induction proof, 1 is true.
Next, since, for each iteration, the size of F1 will be

decreased by jRj � jF1 ÿR1j and, if jRj � 0, the algo-
rithm will terminate. Therefore, the algorithm is guar-
anteed to terminate after (at most) n iterations of Step 4
and, when the algorithm terminates at the lth iteration of
Step 3, R � ;, which means that the current value of Hi is
calculated by Formula I, II, or III (i.e., i 2 Fi, i � 1; 2; 3; ) if
and only if Hi is in Region I, II, or III (i.e., i 2 Ri,
i � 1; 2; 3), respectively. Therefore, Xi�~H�l�� � Ci, for all i
(i.e., ~H�l� 2 �). Now, from 1 (i.e., ~H�l� � ~H�), we conclude
that ~H�l� � ~H�. Thus, 2 is proven.

It is easy to see that the time complexity of the
algorithm is dominated by the LP described in Step 4,
which has at most 3n constraints and n variables. Since
there are at most n iterations of Step 4, we need to solve
the LP at most n times. Therefore, the time complexity of
the algorithm is given as in 3. tu
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