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Abstract—

This paper describes and evaluates Stochastic Fair Blue(SFB), a
novel technique for enforcing fairness among a large number of
flows. SFB scalably detects and rate-limits non-responsive flows
through the use of a marking probability derived from the BLUE

queue management algorithm and a Bloom filter. Using analysis
and simulation, SFB is shown to effectively handle non-responsive
flows using an extremely small amount of state information.

I. INTRODUCTION

Up until recently, the Internet has mainly relied on the
cooperative nature of TCP congestion control in order to
limit packet loss and fairly share network resources. In-
creasingly, however, new applications are being deployed
which do not use TCP congestion control and are not re-
sponsive to the congestion signals given by the network.
Such applications are potentially dangerous because they
drive up the packet loss rates in the network and can even-
tually cause congestion collapse [8, 13]. In order to ad-
dress the problem of non-responsive flows, a lot of work
has been done to provide routers with mechanisms for
protecting against them [2, 9]. The idea behind these ap-
proaches is to detect non-responsive flows and to limit
their rates so that they do not impact the performance of
responsive flows.

This paper describes and evaluates Stochastic Fair
BLUE (SFB), a novel technique for protecting TCP

flows against non-responsive flows using the BLUE algo-
rithm [6]. SFB is highly scalable and enforces fairness
using an extremely small amount of state and a small
amount of buffer space. SFB is based on two indepen-
dent algorithms. The first is the BLUE queue management
algorithm. This algorithm uses a single marking probabil-
ity to mark packets (using ECN [14]) in times of conges-
tion. The heavier the congestion is, the higher the mark-
ing probability. The second algorithm is based on Bloom
filters [1]. This algorithm allows for the unique classifi-
cation of objects through the use of multiple, independent
hash functions. Using Bloom filters, object classification
can be done with an extremely small amount of state in-
formation.

The rest of the paper is organized as follows. Sec-

tion II briefly describes the BLUE algorithm and Bloom
filters. Using these two techniques, Section III describes
and evaluates Stochastic Fair BLUE (SFB), an algorithm
which scalably enforce fairness amongst a large number
of connections using a small amount of buffer space. Sec-
tion IV compares SFB to other approaches which have
been proposed to enforce fairness amongst connections.
Finally, Section V concludes with a discussion of future
work.

II. BACKGROUND

SFB is a simple modification of the BLUE algorithm.
BLUE is a fundamentally different queue management al-
gorithm which uses a single marking probability to man-
age congestion. BLUE addresses one of the fundamen-
tal problems of current active queue management algo-
rithms in that they rely on queue lengths as an estimator
of congestion. While the presence of a persistent queue
indicates congestion, its length gives very little informa-
tion as to the severity of congestion, that is, the number
of competing connections sharing the link. In a busy pe-
riod, a single source transmitting at a rate greater than
the bottleneck link capacity can cause a queue to build up
just as easily as a large number of sources can. Since the
RED algorithm relies on queue lengths, it has an inherent
problem in determining the severity of congestion. As a
result, RED requires a wide range of parameters to oper-
ate correctly under different congestion scenarios. While
RED can achieve an ideal operating point, it can only do
so when it has a sufficient amount of buffer space and is
correctly parameterized [18].

The idea behind BLUE, on the other hand, is to per-
form queue management based directly on packet loss and
link utilization rather than on the instantaneous or aver-
age queue lengths. BLUE maintains a single probability,
which it uses to mark (or drop) packets when they are en-
queued. If the queue is continually dropping packets due
to buffer overflow, BLUE increments the probability, thus
increasing the rate at which it sends back congestion no-
tification. Conversely, if the queue becomes empty or if
the link is idle, BLUE decreases its marking probability.
This effectively allows BLUE to “learn” the correct rate
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B[l][n]: L x N array of bins
enque()

Calculate hashes h0, h1, ..., hL�1;
Update bins at each level
for i = 0 to L� 1

if (B[i][hi]:qlen > bin size)
B[i][hi]:pm += delta;
Drop packet;

else if (B[i][hi]:qlen == 0)
B[i][hi]:pm -= delta;

pmin = min(B[0][h0]:pm .. B[L][hL]:pm);
if (pmin == 1)

ratelimit()

else
Mark/drop with probability pmin;

Fig. 1. SFB algorithm

it needs to send back congestion notification. BLUE has
been shown to effectively manage congestion using an ex-
tremely small amount of buffer space [6].

SFB is an application of a Bloom filter to the BLUE

algorithm. Bloom filters are commonly used in word pro-
cessing software applications as an efficient means to do
spell-checking. They are also used in web caches to effi-
ciently determine the existence of an object in the cache.
The idea behind Bloom filters is to use L levels of bins
with each level containing N bins. For each level, an in-
dependent hash function is used to hash a particular object
(URL string, English word, TCP/IP connection ID, etc.)
into one of the N bins. Each object is then classified and
identified by the bins it maps into in each level. Since an
object can map into N possible values at each level, an
object is identified by an L-tuple of numbers which range
from 1 to N . This effectively gives the algorithm NL

unique “buckets” using L�N number of bins. One appli-
cation of this filter is in spell checkers. Using sufficiently
large values of L and N , the entire English dictionary is
run through the Bloom filter. Each bin in this filter has a
single bit. For each word in the dictionary, every bin that
the word hashes into has its bit set to 1. When a document
is then spell-checked, words which do not map into bins
that are all 1 are flagged as incorrect.

III. STOCHASTIC FAIR BLUE

A. The algorithm
SFB combines BLUE and Bloom filters to produce a

highly scalable means to enforce fairness amongst flows

using an extremely small amount of state and a small
amount of buffer space. Figure 1 shows the basic algo-
rithm. SFB is a FIFO queueing algorithm that identifies
and rate-limits non-responsive flows based on accounting
mechanisms similar to those used with BLUE. SFB main-
tains N � L accounting bins. The bins are organized in
L levels with N bins in each level. SFB also maintains
(L) independent hash functions, each associated with one
level of the accounting bins. Each hash function maps
a flow into one of the N accounting bins in that level.
The accounting bins are used to keep track of queue oc-
cupancy statistics of packets belonging to a particular bin.
This is in contrast to Stochastic Fair Queueing [11] (SFQ)
where the hash function maps flows into separate queues.
Each bin in SFB keeps a marking/dropping probability pm
as in BLUE, which is updated based on bin occupancy. As
a packet arrives at the queue, it is hashed into one of the
N bins in each of the L levels. If the number of packets
mapped to a bin goes above a certain threshold (i.e., the
size of the bin), pm for the bin is increased. If the number
of packets drops to zero, pm is decreased.

The observation which drives SFB is that a non-
responsive flow quickly drives pm to 1 in all of the L bins
it is hashed into. Responsive flows may share one or two
bins with non-responsive flows, however, unless the num-
ber of non-responsive flows is extremely large compared
to the number of bins, a responsive flow is likely to be
hashed into at least one bin that is not polluted with non-
responsive flows and thus has a normal pm value. The
decision to mark a packet is based on pmin, the mini-
mum pm value of all bins to which the flow is mapped
into. If pmin is 1, the packet is identified as belonging
to a non-responsive flow and is then rate-limited. Note
that this approach is akin to applying a Bloom filter on
the incoming flows. In this case, the dictionary of mes-
sages or words is learned on the fly and consists of the
IP headers of the non-responsive flows which are multi-
plexed across the link. When a non-responsive flow is
identified using these techniques, a number of options are
available to limit the transmission rate of the flow. In this
paper, flows identified as being non-responsive are sim-
ply limited to a fixed amount of bandwidth. This policy is
enforced by limiting the rate of packet enqueues for flows
with pmin values of 1. Figure 2(a) shows an example of
how SFB works. As the figure shows, a non-responsive
flow drives up the marking probabilities of all of the bins
it is mapped into. While the TCP flow shown in the figure
may map into the same bin as the non-responsive flow at
a particular level, it maps into normal bins at other levels.
Because of this, the minimum marking probability of the
TCP flow is below 1.0 and thus, it is not identified as being
non-responsive. On the other hand, since the minimum
marking probability of the non-responsive flow is 1.0, it
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(a) Example of SFB (b) Network topology for evaluation

Fig. 2. SFB example and topology

Packet Loss 2Mbs flow
(Mbs) SFB RED SFRED SFQ

Total 1.86 1.79 3.10 3.60
2Mbs flow 1.85 0.03 0.63 1.03
All TCP flows 0.01 1.76 2.57 2.47

Packet Loss 45Mbs flow
(Mbs) SFB RED SFRED SFQ

Total 44.85 13.39 42.80 46.47
45Mbs flow 44.84 10.32 40.24 43.94
All TCP flows 0.01 3.07 2.56 2.53

TABLE I

SFB LOSS RATES (ONE NON-RESPONSIVE FLOW)

is identified as being non-responsive and rate-limited.

Note that just as BLUE’s marking probability can be
used in SFB to provide protection against non-responsive
flows, it is also possible to apply Adaptive RED’s maxp
parameter to do the same [5]. In this case, a per-binmaxp
value is kept and updated according to the behavior of
flows which map into the bin. As with RED, however,
there are two problems which make this approach inef-
fective. The first is the fact that a large amount of buffer
space is required in order to get RED to perform well. The
second is that the performance of a RED-based scheme
is limited since even a moderate amount of congestion
requires a maxp setting of 1. Thus, RED, used in this
manner, has an extremely difficult time distinguishing be-
tween a non-responsive flow and moderate levels of con-
gestion. In order to compare approaches, Stochastic Fair
RED (SFRED) was also implemented by applying a Bloom
filter to RED.

B. Evaluation

Using ns, the SFB algorithm was simulated in the same
network as in Figure 2(b) with the transmission delay
of all of the links set to 10ms. The SFB queue is con-
figured with 200KB of buffer space and maintains two
hash functions each mapping to 23 bins. The size of

each bin is set to 13, approximately 50% more than 1

23

rd

of the available buffer space. Note that by allocating

more than 1

23

rd
the buffer space to each bin, SFB effec-

tively “overbooks” the buffer in an attempt to improve
statistical multiplexing. Notice that even with overbook-
ing, the size of each bin is quite small. Since BLUE

performs extremely well under constrained memory re-
sources, SFB can still effectively maximize network effi-
ciency. The queue is also configured to rate-limit non-
responsive flows to 0:16Mbs.

In the experiments, 400 TCP sources and one non-
responsive, constant rate source are run for 100 seconds
from randomly selected nodes in (n0; n1; n2; n3; n4) to
randomly selected nodes in (n5; n6; n7; n8; n9). In one
experiment, the non-responsive flow transmits at a rate of
2Mbs while in the other, it transmits at a rate of 45Mbs.
Table I shows the packet loss observed in both experi-
ments for SFB. As the table shows, for both experiments,
SFB performs extremely well. The non-responsive flow
sees almost all of the packet loss as it is rate-limited to a
fixed amount of the link bandwidth. In addition, the table
shows that in both cases, a very small amount of packets
from TCP flows are lost. Table I also shows the perfor-
mance of RED. In contrast to SFB, RED allows the non-
responsive flow to maintain a throughput relatively close
to its original sending rate. As a result, the remaining TCP

sources see a considerable amount of packet loss which
causes their performance to deteriorate. SFRED, on the
other hand, does slightly better at limiting the rate of the
non-responsive flow, however, it cannot fully protect the
TCP sources from packet loss since it has a difficult time

1522 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

discerning non-responsive flows from moderate levels of
congestion. Finally, the experiments were repeated using
SFQ with an equivalent number of bins (i.e., 46 distinct
queues) and a buffer more than twice the size (414KB),
making each queue equally sized at 9KB. For each bin in
the SFQ, the RED algorithm was applied with minth and
maxth values set at 2KB and 8KB, respectively. As
the table shows, SFQ with RED does an adequate job of
protecting TCP flows from the non-responsive flow. How-
ever, in this case, partitioning the buffers into such small
sizes causes a significant amount of packet loss to occur.
Additional experiments show that as the amount of buffer
space is decreased even further, the problem is exacer-
bated and the amount of packet loss increases consider-
ably.

To qualitatively examine the impact that the non-
responsive flow has on TCP performance, Figure 3(a)
plots the throughput of all 400 TCP flows using SFB when
the non-responsive flow sends at a 45Mbs rate. As the
figure shows, SFB allows each TCP flow to maintain close
to a fair share of the bottleneck link’s bandwidth while
the non-responsive flow is rate-limited to well below its
transmission rate. In contrast, Figure 3(b) shows the same
experiment using normal RED queue management. The
figure shows that the throughput of all TCP flows suf-
fers considerably as the non-responsive flow is allowed
to grab a large fraction of the bottleneck link bandwidth.
Figure 3(c) shows that while SFRED does succeed in rate-
limiting the non-responsive flow, it also manages to drop
a significant amount of packets from TCP flows. This is
due to the fact that the lack of buffer space and the inef-
fectiveness of maxp combine to cause SFRED to perform
poorly as described in Section III-A. Finally, Figure 3(d)
shows that while SFQ with RED can effectively rate-limit
the non-responsive flows, the partitioning of buffer space
causes the fairness between flows to deteriorate as well.
The large amount of packet loss can induce retransmis-
sion timeouts across a subset of flows which causes sig-
nificant amounts of unfairness [12]. Thus, through the
course of the experiment, a few TCP flows grab a dispro-
portionate amount of the bandwidth while many of the
flows receive significantly less than a fair share of the
bandwidth across the link. In addition to this, SFQ with

RED allows 1

46

th
of the 400 flows to be mapped into the

same queue as the non-responsive flow. Flows that are
unlucky enough to map into this bin receive an extremely
small amount of the link bandwidth. SFB, in contrast, is
able to protect all of the TCP flows in this experiment.

C. Limitations of SFB

While it is clear that the basic SFB algorithm can pro-
tect TCP-friendly flows from non-responsive flows with-
out maintaining per-flow state, it is important to under-

stand how it works and its limitations. SFB effectively
uses L levels with N bins in each level to create NL vir-
tual buckets. This allows SFB to effectively identify a sin-
gle non-responsive flow in an NL flow aggregate using
O(L � N) amount of state. For example, in the previous
section, using two levels with 23 bins per level effectively
creates 529 buckets. Since there are only 400 flows in the
experiment, SFB is able to accurately identify and rate-
limit a single non-responsive flow without impacting the
performance of any of the individual TCP flows. As the
number of non-responsive flows increases, the number of
bins which become “polluted” or have pm values of 1 in-
creases. Consequently, the probability that a responsive
flow gets hashed into bins which are all polluted, and thus
becomes misclassified, increases. Clearly, misclassifica-
tion limits the ability of SFB to protect well behaved TCP

flows.

Using simple probabilistic analysis, Equation (1) gives
a closed-form expression of the probability that a well-
behaved TCP flow gets misclassified as being non-
responsive as a function of number of levels (L), the
number of bins per level (B), and the number of non-
responsive/malicious flows (M), respectively.

p = [1� (1�
1

B
)M ]L (1)

In this expression, when L is 1, SFB behaves much like
SFQ. The key difference is that SFB using one level is still
a FIFO queueing discipline with a shared buffer while SFQ

has separate per-bin queues and partitions the available
buffer space amongst them.

Using the result from Equation (1), it is possible to op-
timize the performance of SFB given a priori information
about its operating environment. Suppose the number of
simultaneously active non-responsive flows can be esti-
mated (M ) and the amount of memory available for use in
the SFB algorithm is fixed (C). Then, by minimizing the
probability function in Equation (1) with the additional
boundary condition that L � N = C, SFB can be tuned
for optimal performance. To demonstrate this, the prob-
ability for misclassification across a variety of settings is
evaluated. Figure 4 shows the probability of misclassify-
ing a flow when the total number of bins is fixed at 90
and 900. In these figures, the number of levels used in
SFB along with the number of non-responsive flows are
varied. As the figures show, when the number of non-
responsive flows is small compared to the number of bins,
the use of multiple levels keeps the probability of misclas-
sification extremely low. However, as the number of non-
responsive flows increases past half the number of bins
present, the single level SFB queue affords the smallest
probability of misclassification. This is due to the fact that
when the bins are distributed across multiple levels, each
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Fig. 3. Bandwidth of TCP flows (45Mbs non-responsive flow)
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Fig. 4. Probability of misclassification

non-responsive flow pollutes a larger number of bins. For
example, using a single level SFB queue with 90 bins,

a single non-responsive flow pollutes only one bin. Us-
ing a two-level SFB queue with each level containing 45
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bins, the number of effective bins is 45�45 (2025). How-
ever, a single non-responsive flow pollutes two bins (one
per level). Thus, the advantage gained by the two-level
SFB queue is lost when additional non-responsive flows
are added, as a larger fraction of bins become polluted
compared to the single-level situation.

To examine the performance degradation of SFB as
the number of non-responsive flows increases, Figure 5
shows the bandwidth plot of the 400 TCP flows when 4
and 8 non-responsive flows are present. In these exper-
iments, each non-responsive flow transmits at a rate of
5Mbs. As Equation (1) predicts, in an SFB configura-
tion that contains two levels of 23 bins, 2:65% of the TCP

flows (11) are misclassified when 4 non-responsive flows
are present. Similarly, when 8 non-responsive flows are
present, 8:96% (36) of the TCP flows are misclassified.
When the number of non-responsive flows approaches
N , the performance of SFB deteriorates quickly as an in-
creasing number of bins at each level becomes polluted.
In the case of 8 non-responsive flows, approximately 6
bins or one-fourth of the bins in each level are polluted.
As the figure shows, the number of misclassified flows
matches the model quite closely. Note that even though
a larger number of flows are misclassified as the number
of non-responsive flows increases, the probability of mis-
classification in a two-level SFB still remains below that
of SFQ or a single-level SFB. Using the same number of
bins (46), the equation predicts that SFQ and a single-level
SFB misclassify 8:42% of the TCP flows (34) when 4 non-
responsive flows are present and 16:12% of the TCP flows
(64) when 8 non-responsive are present.

D. SFB with moving hash functions

In this section, two basic problems with the SFB algo-
rithm are addressed. The first, as described above, is to
mitigate the effects of misclassification. The second is to
be able to detect when non-responsive flows become re-
sponsive and to reclassify them when they do.

The idea behind SFB with moving hash functions is to
periodically or randomly reset the bins and change the
hash functions. A non-responsive flow will continually
be identified and rate-limited regardless of the hash func-
tion used. However, by changing the hash function, re-
sponsive TCP flows that happen to map into polluted bins
will potentially be remapped into at least one unpolluted
bin. Note that this technique effectively creates virtual
bins across time just as the multiple levels of bins in the
original algorithm creates virtual bins across space. In
many ways the effect of using moving hash functions is
analogous to channel hopping in CDMA [17] systems. It
essentially reduces the likelihood of a responsive connec-
tion being continually penalized due to erroneous assign-
ment into polluted bins.

Packet Loss (Mbs) 10-30s 30-50s 50-70s

TCP Flows 0.402 0.358 0.260
Non-responsive 4.866 4.849 4.898
Oscillating 4.871 0.025 4.845
Total 10.139 5.232 10.003

TABLE II

SFB LOSS RATES (OSCILLATING FLOW EXPERIMENT)

To show the effectiveness of this approach, the idea
of moving hash functions was applied to the experiment
in Figure 5(b). In this experiment, 8 non-responsive
flows along with 400 responsive flows share the bottle-
neck link. To protect against continual misclassification,
the hash function is changed every two seconds. Fig-
ure 6(a) shows the bandwidth plot of the experiment. As
the figure shows, SFB performs fairly well. While flows
are sometimes misclassified causing a degradation in per-
formance, none of the TCP-friendly flows are shut out due
to misclassification. This is in contrast to Figure 5 where
a significant number of TCP flows receive very little band-
width.

While the moving hash functions improve fairness
across flows in the experiment, it is interesting to note
that every time the hash function is changed and the bins
are reset, non-responsive flows are temporarily placed on
“parole”. That is, non-responsive flows are given the ben-
efit of the doubt and are no longer rate-limited. Only after
these flows cause sustained packet loss, are they identi-
fied and rate-limited again. Unfortunately, this can po-
tentially allow such flows to grab much more than their
fair share of bandwidth over time. For example, as Fig-
ure 6(a) shows, non-responsive flows are allowed to con-
sume 3:85Mbs of the bottleneck link. One way to solve
this problem is to use two sets of bins. As one set of bins
is being used for queue management, a second set of bins
using the next set of hash functions can be warmed up. In
this case, any time a flow is classified as non-responsive,
it is hashed using the second set of hash functions and
the marking probabilities of the corresponding bins in the
warmup set are updated. When the hashes are switched,
the bins which have been warmed up are then used. Thus,
non-responsive flows are rate-limited right from the be-
ginning. Figure 6(b) shows the performance of the double
buffered moving hash. The algorithm effectively controls
the bandwidth of the non-responsive flows and affords the
TCP flows a very high level of protection.

One of the advantages of the moving hash function is
that it can quickly react to non-responsive flows which be-
come TCP-friendly. In this case, changing the hash bins
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(a) 4 non-responsive flows (b) 8 non-responsive flows
Fig. 5. Bandwidth of TCP flows using SFB
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(a) Moving hash (b) Double buffered moving hash
Fig. 6. Bandwidth of TCP flows using modified SFB algorithms
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Fig. 7. Bandwidth of TCP flows (One non-responsive, one oscillating flow)

places the newly reformed flow out on parole for good
behavior. Only after the flow resumes transmitting at a

high rate, is it again rate-limited. To show this, an ad-
ditional experiment was run using the same experimental
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setup as above. In this experiment, one non-responsive
flow with a transmission rate of 5Mbs and one oscillating
flow is run between network endpoints. The oscillating
flow transmits at 5Mbs from t = 10s to t = 30s and
from t = 50s to t = 70s. At all other times, the flow
transmits at 0:10Mbs, approximately a fair share of the
bottleneck link. Table II shows the packet loss rates in the
experiment. As the table shows, the first non-responsive
flow sees a sustained packet loss rate throughout the ex-
periment which effectively limits its throughput to well
below its transmission rate. The table also shows that
when the second flow transmits at 5Mbs, it observes a
sustained packet loss rate as a large fraction of its packets
are dropped by the queue. When the second flow cuts its
transmission rate to a fair share of the link’s bandwidth, it
is reclassified and a very small fraction of its packets are
dropped. Finally, the table shows that all 400 TCP flows
see a minimal amount of packet loss throughout the ex-
periment. Figure 7 shows the bandwidth plot for the TCP

flows in the experiment. As shown in the figure, SFB pro-
tects the TCP flows from the non-responsive flows, thus
allowing them to maintain close to a fair share of the bot-
tleneck link.

E. Round-trip time sensitivity
The previous experiments with SFB use a network

topology in which all of the connections have approx-
imately the same round-trip time. When a large num-
ber of connections with varying round-trip times are used
with SFB, fairness between flows can deteriorate. It has
been shown that TCP connections with smaller round-
trip times can dominate the bandwidth on the bottleneck
link since their window increases are clocked more fre-
quently. When a small number of such connections are
present, SFB can mitigate this problem somewhat. Similar
to the non-responsive flow cases above, TCP connections
with small round-trips slowly drive the marking probabil-
ity of their bins higher. Thus, when pmin is calculated,
they receive a larger fraction of congestion notification.
However, when a large number of TCP flows with vary-
ing round-trip times are present, this mechanism breaks
down just as SFB breaks down with a large number of
non-responsive flows.

Figure 8 shows the performance of RED and SFB using
the original network shown in Figure 2(b). Using this net-
work, 400 sources are randomly started between network
end points. As the figure shows, both RED and SFB show
biases towards connections with smaller round-trip times.
However, since all of the flows still use TCP, the amount
of unfairness between flows is limited.

IV. COMPARISON TO OTHER APPROACHES

SFB provides one particular solution for identifying
and rate-limiting non-responsive flows, thereby enforcing

fairness. This section compares SFB to other related ap-
proaches.

A. RED with Penalty Box
The RED with penalty box approach uses a finite log of

recent packet loss events. The algorithm identifies flows
which are non-responsive based on the log [10] and takes
corrective action. Flows which are identified as being
non-responsive are rate-limited using a mechanism such
as class-based queueing [7]. While this approach may be
viable under certain circumstances, it is unclear how the
algorithm performs in the face of a large number of non-
responsive flows. Unless the packet loss log is large, a
single set of high bandwidth flows can dominate the loss
log and allow other, non-responsive flows to go through
without rate-limitation. In addition, flows which are clas-
sified as non-responsive remain in the “penalty box” even
if they subsequently become responsive to congestion. A
periodic and explicit check is required to move flows out
of the penalty box. Finally, the algorithm relies on a TCP-
friendliness check in order to determine whether or not
a flow is non-responsive. Without a priori knowledge of
the round-trip time of every flow being multiplexed across
the link, it is difficult to accurately determine whether or
not a connection is TCP-friendly.

B. FRED

Another proposal for using RED mechanisms to pro-
vide fairness is Flow-RED (FRED) [9]. The idea behind
FRED is to keep state based on instantaneous queue oc-
cupancy of a given flow. If a flow continually occupies
a large amount of the queue’s buffer space, it is detected
and limited to a smaller amount of the buffer space. While
this scheme provides rough fairness in many situations,
since the algorithm only keeps state for flows which have
packets queued at the bottleneck link, it requires a large
amount of buffers to work well. Without sufficient buffer
space, it becomes hard for FRED to detect non-responsive
flows since they may not have enough packets continually
queued to trigger the detection mechanism. In addition,
non-responsive flows are immediately re-classified as be-
ing responsive as soon as they clear their packets from
the congested queue. For small queue sizes, it is quite
easy to construct a transmission pattern which circum-
vents FRED’s protection mechanisms. Note that SFB does
not directly rely on queue occupancy statistics, but rather
long-term packet loss and link utilization behavior. Be-
cause of this, SFB is better suited for protecting TCP flows
against non-responsive flows using a minimal amount of
buffer space. Finally, as with the packet loss log approach,
FRED also has a problem when dealing with a large num-
ber of non-responsive flows. In this situation, the ability
to distinguish these flows from normal TCP flows dete-
riorates considerably since the queue occupancy statis-
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Fig. 8. Bandwidth of TCP flows over varying round-trip times.

tics used in the algorithm become polluted. By not us-
ing packet loss as a means for identifying non-responsive
flows, FRED cannot make the distinction between N TCP

flows multiplexed across a link versus N non-responsive
flows multiplexed across a link.

C. RED with per-flow Queueing

A RED-based, per-active flow approach has also been
proposed for providing fairness [16]. The idea behind
this approach is to do per-flow accounting and queueing
only for flows which are active. The approach argues that
since keeping a large amount of state is feasible, per-flow
queueing and accounting is possible even in the core of
the network. The drawbacks of this approach is that it
provides no savings in the amount of state required. If
N flows are active, O(N) amount of state must be kept
to isolate the flows from each other. In addition, this ap-
proach does not address the large amount of legacy hard-
ware which exists in the network. For such hardware, it
may be infeasible to provide per-flow queueing and ac-
counting. Because SFB provides considerable savings in
the amount of state and buffers required, it is a more vi-
able alternative.

D. Stochastic Fair Queueing
Stochastic Fair Queueing (SFQ) is similar to an SFB

queue with only one level of bins. The biggest differ-
ence is that instead of having separate queues, SFB uses
the hash function for accounting purposes. Thus, SFB has
two fundamental advantages over SFQ. The first is that
it can make better use of its buffers. SFB gets some sta-
tistical multiplexing of buffer space as it is possible for
the algorithm to overbook buffer space to individual bins
in order to keep the buffer space fully utilized. As de-
scribed in Section III-B, partitioning the available buffer
space adversely impacts the packet loss rates and the fair-

ness amongst TCP flows. The other key advantage is that
SFB is a FIFO queueing discipline. As a result, it is possi-
ble to change the hash function on the fly without having
to worry about packet re-ordering caused by mapping of
flows into a different set of bins. Without additional tag-
ging and book-keeping, applying the moving hash func-
tions to SFQ can cause significant packet re-ordering.

E. Core-Stateless Fair Queueing
Core-Stateless Fair Queueing [15] (CSFQ) is a highly

scalable approach for enforcing fairness between flows
without keeping any state in the core of the network. The
approach relies on per-flow accounting and marking at
the edge of the network in conjunction with a probabilis-
tic dropping mechanism in the core of the network. The
idea behind CSFQ is to estimate the rate of the flow at the
ingress of the network or network cloud and to attach an
estimate of the flow’s sending rate to every packet that
the flow sends. Given this label, intermediate routers at
congested links in the network calculate a dropping prob-
ability which is derived from an estimate of a fair share
of the bottleneck link capacity and the rate of the flow as
identified in the label.

While CSFQ provides an elegant and efficient solution
to providing fairness, it relies on the use of additional in-
formation that is carried in every packet of the flow. Thus,
the scheme trades off overhead in the packet header at ev-
ery network link for resource management overhead at
the bottleneck router. In addition, it requires that both in-
termediate routers and edge devices adhere to the same
labeling and dropping algorithm. A misconfigured or
poorly implemented edge device can significantly impact
the fairness of the scheme. SFB, on the other hand, does
not rely on coordination between intermediate routers and
edge markers and can peform well without placing addi-
tional overhead in packet headers.
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V. CONCLUSION AND FUTURE WORK

This paper has demonstrated the efficacy of SFB a new
queue management algorithm for protetcting TCP flows
against non-responsive flows. As part of on-going work,
several extensions to SFB are being considered. In partic-
ular, additional mechanisms for managing non-responsive
flows are being examined. In this paper, non-responsive
flows were rate-limited to a fixed amount of bandwidth
across the bottleneck link. However, it is possible to rate-
limit non-responsive flows to a fair share of the link’s ca-
pacity. One way to do this is to estimate both the number
of non-responsive flows and the total number of flows go-
ing through the bottleneck. Using this information, the
rate-limiting mechanism can be set accordingly. Another
possible mechanism to find the number of “polluted” bins
and use it to derive the fraction of flows which are non-
responsive. Assuming perfect hash functions, this can be
directly derived from simple analytical models of SFB as
described in Section III. Finally, the development of an
“enhanced” BLUE queue management algorithm which is
similar to “enhanced” RED [3, 4] is being considered. By
using BLUE, the buffer requirements needed to support
differentiated services can be greatly reduced.
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