
EMERALDS: A Small-Memory
Real-Time Microkernel

Khawar M. Zuberi, Member, IEEE Computer Society, and Kang G. Shin, Fellow, IEEE

AbstractÐEMERALDS (Extensible Microkernel for Embedded, ReAL-time, Distributed Systems) is a real-time microkernel designed

for small-memory embedded applications. These applications must run on slow (15-25MHz) processors with just 32-128 kbytes of

memory, either to keep production costs down in mass produced systems or to keep weight and power consumption low. To be

feasible for such applications, the OS must not only be small in size (less than 20 kbytes), but also have low overhead kernel services.

Unlike commercial embedded OSs which rely on carefully optimized code to achieve efficiency, EMERALDS takes the approach of

redesigning the basic OS services of task scheduling, synchronization, communication, and system call mechanism by using

characteristics found in small-memory embedded systems, such as small code size and a priori knowledge of task execution and

communication patterns. With these new schemes, the overheads of various OS services are reduced 20-40 percent without

compromising any OS functionality.

Index TermsÐReal-time operating systems, embedded systems, real-time scheduling, task synchronization, intertask

communication.

æ

1 INTRODUCTION

REAL-TIME computing systems must behave predictably,
even in unpredictable environments [1]. This predict-

ability is ensured by system-level services, most important
among them being the real-time operating system (RTOS).
The RTOS must ensure that all real-time tasks complete by
their deadlines and that no low-priority execution or
communication activities are able to block higher-priority
tasks for an extended period. The wide variety of real-time
applications (from multimedia to industrial automation
control) and the variety of hardware used in these systems
(from single-board computers to distributed systems to
multiprocessors) have resulted in dozens of RTOSs being
designed to support these applications. Commercial RTOSs
like pSOS [2], QNX [3], and VxWorks [4] support stand
alone as well as distributed systems. Research RTOSs like
HARTOS [5] and the Spring Kernel [6] were designed for
multiprocessors, while other research OSs like Harmony [7]
and RT-Mach [8] are for distributed platforms. All these
RTOSs were designed with relatively powerful processors
and networks in mind: processors with several megabytes
of memory and networks with at least tens of Mbit/s
bandwidth. In fact, just the code size of some of these
RTOSs alone is in the megabytes. This is acceptable for
many real-time applications such as robotics, telemetry, and
multimedia. However, real-time computing today is no
longer limited to high-powered, expensive applications.
Many embedded real-time control applications use slow

processors with small memories (tens of kilobytes) and slow
fieldbus networks (with 1-2 Mbit/s bandwidth) [9], [10].
There are two main reasons for using such restricted
hardware:

. to keep production costs down in mass-produced
items such as home and portable electronics and
automotive control systems,

. to keep weight and power consumption low in
avionics and space applications.

For the first category, systems like automotive engine and
ABS controllers, cellular phones, and camcorders are all
produced in volumes of millions of units. Keeping per unit
costs down is vital in such systems and savings of even one
dollar per unit translate into millions of dollars of overall
savings. For the second category, even though cost may not
be the primary limiting factor, the weight and power
consumption restrictions simply do not allow elaborate
hardware. As a result, the only hardware feasible for such
applications is cheap/slow processors with limited
amounts of memory. Yet, these small-memory embedded
systems must perform increasingly complex tasks. Auto-
motive engine controllers use sophisticated control algo-
rithms with an increasing number of sensors to precisely
control the engine to minimize exhaust emissions. Camcor-
ders can counteract a jittery human operator to stabilize the
picture. Cellular phones use filtering algorithms to produce
a clear sound. All these algorithms must run on slow
processors with only a few tens of kilobytes of on-chip ROM
and static RAM (external memory increases cost, volume,
weight, and power consumption, so it is not used in our
target applications).

Until recently, because of these severe hardware restric-
tions, the above-mentioned applications did not use an OS
at all. Instead, the application directly managed all
hardware resources. But, as these applications became

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001 909

. K.M. Zuberi is with Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052. E-mail: khawarz@microsoft.com.

. K.G. Shin is with the Real-Time Computing Lab, Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript received 12 Aug. 1998; accepted 7 Aug. 2000.
Recommended for acceptance by M. Young and A.A. Andrews.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107273.

0098-5589/01/$10.00 ß 2001 IEEE

more sophisticated (due to additional functions intro-

duced), continuing with this approach became infeasible;

the application code was too difficult to modify and almost

impossible to port. Moreover, the product development

cycle was long and expensive because the application

designer had to include OS functionality in application

code. The need for an OS in these small-memory

embedded applications opened up a new market for

small-size, low-overhead RTOSs. These RTOSs must not

only provide predictable services but must also be efficient

and small in size. The maximum acceptable kernel code

size is about 20 kbytes and the kernel services, such as task

scheduling, system calls, and interrupt handling, must

incur minimal overheads. Many commercial vendors

responded to this demand with products like RTXC [11],

pSOS Select, and a dozen other small, real-time kernels.

Their approach was to take a core set of OS services (task

scheduling, semaphores, timers, interrupt handling, etc.),

implement them using optimized, carefully crafted code,

and package them into an OS.
EMERALDS is an RTOS designed for small-memory

embedded systems. Like the above-mentioned commercial

RTOSs, EMERALDS also provides a core set of OS services

in a small-sized kernel, but our approach for achieving

efficiency in EMERALDS is to rely not on carefully crafted

code but on new OS schemes and algorithms. We focus on

the following key OS services:

. task scheduling,

. semaphores,

. intranode message-passing,1

. memory protection and system call overhead.

For each of these areas, we have designed innovative

schemes which lower OS overheads without compromising

OS functionality, thus making more computational re-

sources available for the execution of application tasks. To

achieve this, we used some basic characteristics common to

all small-memory embedded systems such as small kernel

and application code size and a priori knowledge of task

communication and execution patterns. Some of these

characteristics are also found in other real-time applica-

tions, so some of the schemes we present (such as the task

scheduler) have applicability beyond small-memory em-

bedded systems.
In the next section, we describe the performance

requirements that an RTOS must satisfy to be feasible for

embedded applications. Section 3 presents a brief overview

of EMERALDS. Section 4 shows how EMERALDS, as a real-

time embedded OS, is different from more generalized

microkernels like Mach [14] and SPIN [15]. Sections 5, 6, 7,

and 8 give details of our scheduling, synchronization,

message-passing, and system call schemes, respectively.

Performance of these schemes is evaluated in Section 9 and

we conclude with Section 10.

2 EMBEDDED APPLICATION REQUIREMENTS

Our target embedded applications use single-chip micro-
controllers with relatively slow processing cores (such as
Motorola 68000 derivatives) running at 15-25 MHz. Typical
examples are the Motorola 68332 and Intel i960 controllers.
All ROM and RAM is on-chip which limits memory size to
32-128 kbytes. These applications are either uniprocessor
(such as cellular phones and home electronics) or distrib-
uted, consisting of 5-10 nodes interconnected by a low-
speed (1-2 Mbit/s) fieldbus network (such as automotive
and avionics control systems).

Despite these hardware restrictions, the RTOS must still
provide a comprehensive set of services:

1. task scheduling,
2. task synchronization (semaphores),
3. task communication (message-passing),
4. memory protection,
5. interaction with external environment (interrupt

handling),
6. clock and timer services.

Note that disks are not used in small-memory embedded
systems, so a file system is not part of the RTOS.

Of these basic services, the last two deal with hardware

devices such as the on-chip timer and the processor's

interrupt handling mechanism, so their overhead is dictated

primarily by the hardware. Other than optimizing the

kernel code, the OS designer can do little to reduce the

overhead of these two services. However, the remaining

services present opportunities for innovative optimizations.

The thrust of EMERALDS is to come up with new

optimized solutions for embedded systems for the well-

known problems of scheduling, synchronization, commu-

nication, and page-table-based memory protection by using

certain characteristics common to all embedded applica-

tions. The remainder of this section discusses why

improvements in these four areas are important for

embedded systems and what hurdles must be overcome

to reduce the overhead of these OS services.

2.1 Task Scheduling

Consider a periodic task which runs once every 1 ms. For

just this one task, the task scheduler must run twice every

1 ms: once when the task is released and once when the task

completes. Considering that typical OS operations take 50-

100 �s on the slow processors we are concerned with and

that a typical task workload consists of 10-20 tasks with at

least three to five tasks having periods less than 10 ms, the

scheduler's execution alone can use up 10-15 percent of

CPU time. This is why embedded application programmers

have untill now preferred cyclic time-slice scheduling

techniques in which the entire schedule is calculated offline

and, at runtime, tasks are switched in and out according to

this fixed schedule. This reduces the scheduler's runtime

overhead, but introduces several problems:

. The schedules must be calculated by hand, so they
are difficult and costly to modify if the task
characteristics change during the application design

910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

1. Internode networking issues are discussed in [12], [13] and are not
covered in this paper.

process. Heuristics can be used to calculate sche-
dules [16], but they result in nonoptimal solutions
(some feasible workloads may get rejected).

. Cyclic schedulers give poor response times for high-
priority aperiodic tasks because the arrival times of
these tasks cannot be anticipated offline.

. If a workload contains both short and long period
tasks (as is often the case in control applications), the
resulting time-slice schedule can be quite large,
consuming significant amounts of memory.

With embedded systems now having more tasks and
more aperiodic activities, cyclic schedulers are no longer
suitable for task scheduling. The alternative is to turn to
priority-driven schedulers like rate-monotonic (RM) [17] and
earliest-deadline-first (EDF) [17], which use task priorities to
make runtime decisions as to which task should execute
when. These schedulers do not require any costly offline
analysis, can easily handle changes in the workload during
the design process, and can handle aperiodic tasks as well.
However, since they make runtime scheduling decisions,
they incur overhead which can be 10-15 percent of the CPU
time. This calls for new task scheduling schemes with lower
overheads, which would free up more time for application
tasks, as described in Section 5.

2.2 Task Synchronization

Object-oriented (OO) programming is ideal for designing
real-time software. Real-time systems must deal with real-
world entities and objects are ideal for modeling these
entities: The object's internal data represents the physical
state of the entity (such as temperature, pressure, position,
RPM, etc.) and the object's methods allow the state to be
read or modified. These notions of encapsulation and
modularity greatly help the software design process
because various system components, such as sensors,
actuators, and controllers, can be modeled by objects. Then,
under the OO paradigm, real-time software is simply a
collection of threads of execution, each invoking the
methods of various objects [18].

Conceptually, this OO paradigm is very appealing and
gives benefits such as reduced software design time and
software reuse. But, these benefits come at a cost. The
methods of an object must synchronize their access to the
object's data to ensure mutual exclusion. Semaphores [19],
[20] are typically used for this purpose (e.g., to provide the
monitor construct [21]). Because a semaphore system call is
made every time an object's method is invoked, semaphore
operations of acquire and release become some of the
most heavily used OS primitives when OO design is used.
This calls for new and efficient schemes for implementing
semaphore locking in EMERALDS, as described in Section 6.

2.3 Task Communication

The traditional mechanism for exchange of information
between tasks is message-passing using mailboxes. Under
this scheme, one task prepares a message, then invokes a
system call to send that message to a mailbox from which
the message can be retrieved by the receiver task. While this
scheme is suitable for certain purposes, it has two major
disadvantages:

. Passing one message may take 50-100 �s on a
processor such as the Motorola 68040. Since tasks
in embedded applications usually need to exchange
several thousand messages per second, this over-
head is unacceptable.

. If a task needs to send the same message to multiple
tasks, it must send a separate message to each.

Because of these disadvantages, application designers
are typically forced to use global variables to exchange
information between tasks. This is an unsound software
design practice because reading and writing these variables
is not regulated in any way, which can introduce subtle,
hard-to-trace bugs in the software.

This requires new mechanisms for intertask communica-
tion. We selected the state message paradigm [22], which
makes protected global variables available for information
exchange between tasks. We optimized the basic state
message scheme to reduce execution overhead and memory
consumption, as described in Section 7.

2.4 Memory Protection

Providing memory protection requires maintaining page
tables and programming the memory management unit.
This not only increases the size of the kernel, but also adds
overhead to several kernel services, which is contrary to our
primary goal of building a small and fast kernel.

The need for memory protection in time-shared systems
is indisputable. One user's processes must be protected
from all otherÐpossibly maliciousÐprocesses. But, in
embedded systems, all processes are cooperative and will
never try to intentionally harm another process, making
memory protection seem extraneous. However, bugs in
application code can manifest themselves as malicious
faults. For example, suppose some pointer in a C program is
left uninitialized. If this pointer is used for writing, one
process can easily corrupt another process or even the
kernel. With memory protection, such an access will cause a
TRAP to the kernel and recovery action may be taken,
providing a form of software fault tolerance. Without
memory protection, such a fault may not even be detected
until the CPU crashes, with possibly catastrophic conse-
quences. Also, in EMERALDS, the kernel is mapped into
each user-level address space. This way, a system call
reduces to a TRAP, then a jump to the appropriate kernel
address, without the need to switch address spaces. Details
are given in Section 8.

3 OVERVIEW OF EMERALDS

EMERALDS is a microkernel real-time operating system
written in the C++ language. Following are EMERALDS'
salient features, as shown in Fig. 1.

. Multithreaded processes:

- Full memory protection between processes.
- Threads are scheduled by the kernel.

. IPC based on message-passing and mailboxes.
Shared-memory support is also provided.

- Optimized local message passing.

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 911

. Semaphores and condition variables for synchroni-
zation; priority inheritance for semaphores.

. Support for communication protocol stacks [23].

. Highly optimized context switching and interrupt
handling.

. Support for user-level device drivers.

To provide all these services in a small-sized (less than
20 kbytes) kernel, we make use of certain characteristics of
embedded applications. First of all, our target applications
are in-memory, so a file system is not needed. Moreover,
embedded application designers know which resources
(threads, mailboxes, etc.) reside at which node, so naming
services are not necessary, allowing considerable savings
in code size. Also, nodes in embedded applications
typically exchange short, simple messages over fieldbuses.
Threads can do so by talking directly to network device
drivers, so EMERALDS does not have a built-in protocol
stack. Further details regarding protocol stacks, device
drivers, EMERALDS, system calls, and other techniques
used to reduce code size in EMERALDS can be found in
[24]. With these techniques, EMERALDS provides a rich
set of OS services in just 13 kbytes of code.

An embedded RTOS must not only be small, but efficient
as well. In the remainder of this paper, we focus on new
kernel schemes for reducing the overheads of scheduling,
synchronization, message-passing, and system calls.

4 WHAT MAKES EMERALDS DIFFERENT?

Microkernel optimization has been an active area of
research in recent years, but little effort has been made in
addressing the needs of real-time systems, let alone small-
memory embedded ones. In microkernels designed for
general-purpose computing, such as Mach [14], L3 [25], and

SPIN [15], researchers have focused on optimizing kernel
services such as thread management [26], [27], IPC [28], and
virtual memory management [29]. Virtual memory is not a
concern in our target applications. Thread management and
IPC are important, but not for the same reasons as for
general-purpose computing. The sources of OS overhead
are different for embedded real-time systems than for
general-purpose computing systems and this necessitates
different optimization techniques.

Thread management is a concern in typical microkernels
because either the kernel itself has a large number of
threads (one for each user-level thread) so that switching
overhead and stack use by these threads must be
minimized [26] or, in the case of user-level threads, the
kernel must export the correct interface to these threads
[27]. Neither of these concerns apply to EMERALDS.
EMERALDS has kernel-managed threads, but the kernel
itself has no threads. To make a system call, a user thread
enters protected kernel mode and simply calls the appro-
priate kernel procedure (see Section 8). What is important
in a real-time environment is that these threads be
scheduled properly to ensure timely completion of real-
time tasks. So, in EMERALDS, optimizing thread manage-
ment takes the form of ensuring a low-overhead transition
between user and kernel modes and providing efficient
real-time scheduling of threads.

IPC is important in most microkernels because RPC is
used to communicate with user-level servers. Frequently
accessed services such as file systems and virtual memory
are implemented in servers. But, embedded systems do not
need these services. In EMERALDS, only internode net-
working is implemented at the user level and even this
server is accessed only infrequently (because nodes are
loosely coupled). Instead, IPC is important in embedded
systems for intranode intertask communication and this is
what we address in EMERALDS.

Task synchronization does not receive much attention in
the design of most microkernels, but it is of crucial
importance in embedded systems. The little research that
has been conducted in this area has focused primarily on
multiprocessors [30], [31], whereas we are interested in
uniprocessor locking.

In summary, design of an optimized OS for small-
memory real-time embedded applications is a largely
underexplored area of research. With embedded systems
quickly becoming part of everyday life, designing OSs
targeted specifically toward embedded applications has
become important (as witnessed by the emergence of many
commercial RTOSs, see Section 9.5), and EMERALDS is a
first step in this direction.

5 COMBINED STATIC/DYNAMIC SCHEDULER

The task scheduler's overhead can be broken down into two
components: the runtime overhead and the schedulability
overhead. The runtime overhead is the time consumed by the
execution of the scheduler code. This has to do with
managing the queues of tasks and selecting the highest-
priority task to execute whenever some task blocks or
unblocks.

The schedulability overhead is defined as 1ÿ U�, where
U� is the ideal schedulable utilization. For a given workload

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

Fig. 1. EMERALDS' architecture.

and a given scheduler, U� is the highest workload
utilization that the scheduler can feasibly schedule under
the ideal conditions that the scheduler's runtime overhead
is ignored. This is best explained through examples.
Consider a workload of n tasks, f�i : i � 1; 2; . . . ; ng. Each
task �i has a period Pi, an execution time ci, and deadline di.
In this paper, we assume di � Pi unless stated otherwise
(see [32] for methods to derive schedulability conditions
with this restriction relaxed). Note that, inside the kernel,
tasks are represented by threads. Then, this workload has a
utilization U �Pn

i�1 ci=Pi. Obviously, no scheduler can
schedule a workload with U > 1. EDF is a dynamic priority
scheduler which gives the highest priority to the earliest-
deadline task [17] and can schedule all workloads with U �
1 under the ideal condition that EDF's runtime overhead is
ignored. U� � 1 for EDF because this is the utilization that
EDF can schedule under ideal conditions. Other schedulers,
such as the static priority RM scheduler (which schedules
tasks according to fixed priorities based on the tightness of
their Pi [17]), can have U� < 1. For example, a workload
with U � 0:80 may be schedulable under RM, but, if some ci
is slightly increased so that U becomes 0:81, the workload
may no longer be schedulable, even under ideal conditions.
U� � 0:80 for this workload under RM. This means that 20
percent of CPU time is wasted because of the scheduling
policy and we refer to this as the schedulability overhead.

EDF has zero schedulability overhead, but high runtime
overhead. RM has low runtime overhead, but, depending
on the workload, it can cause significant schedulability
overhead. In the rest of this section, we analyze the sources
of these overheads and then devise a scheduler with low
schedulability and runtime overheads which gives better
performance than both EDF and RM.

Note that both static and dynamic priority schedulers
have advantages/disadvantages other than those men-
tioned above. For example, dynamic schedulers can, in
general, handle aperiodic tasks better than static schedulers
[12]. On the other hand, static schedulers may provide
better guarantees for completion of critical tasks under
processor overload situations. Detailed discussion of these
issues is beyond the scope of this paper. Interested readers
are referred to [33], [32] for comparisons between various
scheduling methodologies. In this paper, we focus on
schedulability and runtime overhead properties of EDF
and RM schedulers.

5.1 Runtime Overhead

The runtime overhead (�t) has to do with parsing queues of
tasks and adding/deleting tasks from these queues.

When a running task blocks, the OS must update some
data structures to identify the task as being blocked and
then pick a new task for execution. We call the overheads
associated with these two steps the blocking overhead �tb and
the selection overhead �ts, respectively. Similarly, when a
blocked task unblocks, the OS must again update some
internal data structures, incurring the unblocking overhead
�tu. The OS must also pick a task to execute (since the
newly unblocked task may have higher priority than the
previously executing one), so the selection overhead is
incurred as well.

Each task blocks and unblocks at least once every
period: It is unblocked at the beginning of the period and
then blocks itself after executing for ci time units. This
means that the minimal scheduler runtime overhead per
task �i is �tb ��tu � 2�ts, incurred once every period.
Overhead is even greater if �i uses blocking system calls
during execution. This is application-dependent, but we
assume that half of the tasks block once during their
execution, waiting for a message or a signal to be sent by
one of the other half of the tasks. For simplicity, we can
say that each task suffers a runtime overhead of
�t � 1:5��tb ��tu � 2�ts�. Then, with the runtime sche-
duler overhead figured in, the workload utilization
becomes U �Pn

i�1�ci ��t�=Pi, which can be significantly
greater than the utilization when �t is ignored.

Now, we calculate �t for both EDF and RM scheduling
policies. In EMERALDS, we have implemented EDF as
follows: All blocked and unblocked tasks lie in a single,
unsorted queue. This makes sense because task priorities
continually change under EDF (especially when using
priority inheritance semaphores which cause repeated
changes in thread priorities, as described in Section 6), so
keeping the queue sorted is not worth the overhead. Tasks
are blocked and unblocked by changing one variable in the
appropriate task control block (TCB). To select the next task
to execute, the entire list is parsed and the earliest-deadline
ready task is picked. With this scheme, both �tb and �tu are
O�1�, but �ts is O�n�, where n is the number of tasks. Since
�ts is counted twice per task block/unblock operation, �t
for EDF increases rapidly as n increases.

The typical implementation for RM is to have a queue of
ready tasks sorted by (fixed) task priorities. Blocking and
unblocking involve deletion from and insertion into the list
in sorted order. But, in EMERALDS, we chose a different
implementation which allows us to optimize semaphores
(as discussed in Section 6) while the runtime overhead
stays about the same as for the typical implementation. All
blocked and unblocked tasks are in a single queue sorted
by priority, highest-priority task first. A single pointer
highestP points to the highest-priority ready task, so �ts
is O�1� because highestP is the task which should execute
next. To block a task, one variable is updated in the TCB
(same as in EDF), but, now, highestP has to be updated
as well. The scheduler parses down the queue till it finds
the next ready task in the queue, then sets highestP to
point to that task. This is why �tb takes O�n� time. On the
other hand, unblocking a task only involves checking if the
unblocked task has higher priority than the highestP

task. If so, highestP is simply reset to point to the newly
unblocked task and this takes O�1� time.

For RM, �tb � O�n�, whereas, for EDF, �ts � O�n�. �tb
is counted only once for every task block/unblock opera-
tion while �ts is counted twice, which is why �t �
1:5��tb ��tu � 2�ts� is significantly less for RM than it is
for EDF, especially when n is large (20 or more).

5.2 Schedulability Overhead

We have already mentioned that EDF has zero schedul-
ability overhead, so, if the runtime overhead is ignored, no
scheduler can be better than EDF. Previous work has shown
that, on average, U� � 0:88 for RM [34]. To see why U� for

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 913

RM is less than that for EDF, consider the workload shown
in Table 1. Each task �i has deadline di � Pi. U � 0:88 for
this workload, so it is feasible under EDF.

Fig. 2 shows what happens if this workload is scheduled
by RM. In the time interval �0; 4�, tasks �1 through �4

execute, but, before �5 can run, �1 is released again. Under
RM, �1 through �4 have higher priority than �5 (because of
their shorter Pi), so the latter cannot run until all of the
former execute for the second time, but, by then, �5 has
missed its deadline. This makes the workload infeasible
under RM and illustrates why RM has a nonzero schedul-
ability overhead.

On the other hand, if EDF is used to schedule the same
workload, �5 will run before �1 through �4 run for the
second time (because d5 � 8 is earlier than the deadlines of
second invocations of �1 through �4) and the workload will
be feasible.

5.3 CSD: A Balance between EDF and RM

Going back to the workload in Table 1, notice that �5 is the
ªtroublesomeº task, i.e., because of this task, the workload
is infeasible under RM. Tasks �6 through �10 have much
longer periods, so they can be easily scheduled by any
scheduler, be it RM or EDF.

We used this observation as the basis of the combined
static/dynamic (CSD) scheduler. Under CSD, tasks �1

through �5 will be scheduled by EDF so that �5 will not
miss its deadline. Once the troublesome task is taken care
of, we can use the low-overhead RM policy to schedule the
remaining tasks �6 through �10. This way, the runtime
overhead of CSD is less than that of EDF (since the EDF
queue's length has been halved) but a little more than that
of RM. The schedulability overhead of CSD is the same as
for EDF (i.e., zero) which is much less than that of RM.
Thus, the total scheduling overhead of CSD is significantly
less than that of both EDF and RM.

The CSD scheduler maintains two queues of tasks. The
first queue is the dynamic-priority (DP) queue which
contains the tasks to be scheduled by EDF. The second
queue is the fixed-priority (FP) queue which contains tasks to
be scheduled by RM (or any other fixed-priority scheduler
such as deadline-monotonic [35], but, for simplicity, we
assume RM is the policy used for the FP queue).

Given a workload f�i : i � 1; 2; . . . ; ng with tasks sorted
by their RM-priority (tasks with shorter periods have lower

index i), let �r be the ªtroublesomeº task in this workload.
Then, tasks �1 through �r are placed in the DP queue while
�r�1 through �n are in the FP queue. CSD gives priority to
the DP queue over the FP queue. This makes sense because
all tasks in the DP queue have higher RM-priority (shorter
periods) than any task in the FP queue. A single counter
keeps track of the number of ready tasks in the DP queue. It
is incremented when a DP task becomes ready and is
decremented when a DP task blocks. When the scheduler is
invoked, it first checks this counter. If it is greater than zero,
the DP queue is parsed to pick the earliest deadline-ready
task. Otherwise, the DP queue is skipped completely and
the scheduler picks the highest priority ready task from the
FP queue (pointed to by highestP).

5.4 Runtime Overhead of CSD

We mentioned that CSD has zero schedulability overhead.
Its runtime overhead depends on whether the task being
blocked or unblocked is a DP or FP task. There are four
possible cases:

1. DP task blocks. �tb is constant (same as for EDF),
but �ts depends on whether any ready tasks are left
in the DP queue or not. For real-time schedulability
analysis, we are interested in the worst-case over-
head and this occurs when there are other ready
tasks in the DP queue. Then, �ts is the time to parse
the DP queue and is the same as �ts for EDF except
that the queue length is only r instead of n. So, �ts �
O�r� instead of O�n�.

2. DP task unblocks. �tu is constant (same as for EDF).
At least one ready task is definitely in the DP queue
(the one that was just unblocked), so �ts is always
the time to parse the r-long DP queue, i.e.,
�ts � O�r�.

3. FP task blocks. �tb is the same as for RM except the
queue length is only nÿ r so that �tb � O�nÿ r�.
Regarding �ts, we need to know if any DP task can
be ready or not. But, this is not possible because the
task which just blocked is an FP task and this task
could not have been executing had any DP tasks
been ready. Since the DP queue has no ready tasks,
the scheduler just selects highestP from the FP
queue. This makes �ts � O�1� (same as for RM).

4. FP task unblocks. �tu is a constant (same as for
RM). The DP queue may or may not have ready
tasks, but, for the worst-case �ts, we must assume
that it does, so �ts � O�r�.

From this analysis, the total scheduler overhead for
CSD is �tb ��ts block ��tu ��ts unblock per task block/
unblock operation. For DP tasks, this becomes O�1�
�O�r� �O�1� �O�r� � 2O�r�, whereas, for FP tasks, the
overhead equals O�nÿ r� �O�1� �O�1� �O�r� � O�n�.

914 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

TABLE 1
A Typical Task Workload with U � 0:88

It is feasible under EDF, but not under RM.

Fig. 2. RM scheduling of the workload in Table 1.

This means that an r-long list is parsed twice for DP tasks

(worst case), while an n-long list is parsed once for

FP tasks. Comparing this to EDF (n-long list parsed twice)

and RM (n-long list parsed once), we see why the runtime

overhead of CSD can be significantly less than that of EDF

(considering that the median r is about n=2; see Section 9)

and only slightly greater than that of RM. Considering

that CSD has no schedulability overhead, it easily outper-

forms both EDF and RM. This is corroborated by

performance measurements in Section 9.

5.5 Schedulability Test

A task set f�i : i � 1; 2; . . . ; ng with tasks sorted by their

priority (tasks with shorter periods have lower index i) is

feasible under EDF if [17]

U �
Xn
i�1

ci ��t�EDF �
Pi

� 1;

where �t�EDF � is �t for EDF. The workload is feasible

under RM if [34]

8i; 1 � i � n; min
0<t�di

Xi
j�1

cj ��t�RM�
t

t

Pj

� � !
� 1:

In practice, this equation need only be evaluated for a finite

number of t values, as described in [32].
Schedulability under CSD is tested as follows: First,

check if the DP tasks �1 through �r are feasible under EDF:

UDP �
Xr
i�1

ci ��t�DP �
Pi

� 1:

Then, check the feasibility of the FP tasks as follows:

8i; r� 1 � i � n; min
0<t�di

Xi
j�1

cj ��t�FP �
t

t

Pj

� � !
� 1:

This check is done only for FP tasks (i goes from r� 1 to n),

but it considers all the DP tasks as having higher priority

than a given FP task (j goes from 1 to i).
The best possible length of the DP queue for a given

workload is found iteratively. Start by assuming r � 0 and

perform the schedulability test. If successful, then stop;

otherwise, keep increasing r until the schedulability test

passes or r exceeds n, in which case the workload is not

feasible by CSD.

5.6 Reducing Runtime Overhead of CSD

CSD's main advantage is that, even though it uses EDF to

deliver good schedulable utilization, it cuts back on runtime

overhead by keeping the DP queue short. But, as the

number of tasks in the workload increases, the DP queue's

length also increases and this degrades CSD's performance.

To rectify this situation, we modify CSD to keep runtime

overhead under control as the number of tasks n increases.

5.6.1 Controlling DP Queue Runtime Overhead

Under CSD, the effective execution time of each task in the
DP queue increases by �t�DP �, which depends on the
length of the DP queue r. �t�DP � increases rapidly as r
increases, which degrades performance of CSD.

Our solution to this problem is to split the DP queue

into two queues, DP1 and DP2. DP1 has tasks with higher

RM-priority (shorter periods), so the scheduler gives DP1

priority over DP2. We call this modified scheme CSD-3

because of its three queues. Properly allocating tasks to

DP1 and DP2 is discussed in Section 5.6.3, but, first, note

that both DP1 and DP2 are expected to be significantly

shorter than the original DP queue so that the runtime

overhead of CSD-3 should be well below that of the

original CSD scheme (which we will call CSD-2 from now

on), as discussed next.

5.6.2 Runtime Overhead of CSD-3

The runtime overheads for CSD-3 can be derived using the
same reasoning as used for CSD-2 in Section 5.4. The
overheads for different cases are shown in Table 2, where q
is the length of the DP1 queue and r is the total number of
DP tasks (so that rÿ q is the length of DP2 queue). The table
shows that the runtime overhead associated with DP1 tasks
is O�r�, which is a significant improvement over O�2r� for
CSD-2. Since DP1 tasks are the shortest-period tasks in the
workload, they are the ones which execute the most
frequently and are responsible for most of the scheduling
overhead. Reducing the runtime overhead associated with
these tasks from O�2r� to O�r� leads to CSD-3 performing
significantly better than CSD-2.

The runtime overhead of DP-2 tasks is reduced as well,
from O�2r� in CSD-2 to O�2rÿ q�. Similarly, the overhead
for FP tasks is reduced from O�n� to O�nÿ q�.
5.6.3 Allocating Tasks to DP1 and DP2

If all DP tasks had the same periods, we could split them
evenly between DP1 and DP2. Each queue's length will be
half that of the original DP queue. This would cut the

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 915

TABLE 2
Runtime Overheads for CSD-3

The total values assume that the DP2 queue is longer than the DP1 queue (max�q; rÿ q� � rÿ q), which is typically the case.

runtime overhead of scheduling DP tasks in half2 and would
give the best possible reduction in scheduler overhead. But,
when tasks have different periods, two factors must be
considered when dividing tasks between DP1 and DP2:

. Tasks with the shortest periods are responsible for
the most scheduler runtime overhead. For example,
suppose �t � 0:1 ms. A task with Pi � 1 ms will be
responsible for �t=Pi � 10 percent CPU overhead,
whereas a task with Pi � 5 ms will be responsible for
only 2 percent. This means that only a few tasks with
short periods should be kept in DP1 to keep
�t�DP1� small. DP2 should have more tasks than
DP1. This will make �t�DP2� > �t�DP1�, but this
will balance out because tasks in DP2 have longer
periods so that

P
i �t=Pi for the two queues is

approximately balanced.
. Balancing the runtime overhead between the queues

cannot be made the sole criterion for allocating tasks
to DP1 and DP2; the scheduling overhead must be
considered as well. Once the DP tasks are split into
two queues, they no longer incur zero schedulability
overhead. Even though tasks within a DPx queue
are scheduled by EDF, the queues themselves are
scheduled by RM (all DP1 tasks have statically
higher priorities than DP2 tasks) so that CSD-3 has
nonzero schedulability overhead. Tasks must be
allocated to DP1 and DP2 to minimize the sum of the
runtime and schedulability overheads. For example,
consider the workload in Table 1. Suppose the least
runtime overhead results by putting tasks �1 through
�4 in DP1 and the rest of the DP tasks in DP2, but this
will cause �5 to miss its deadline (see Fig. 2). Putting
�5 in DP1 may lead to slightly higher runtime
overhead, but will lower schedulability overhead
so that �5 will meet its deadline.

At present, we use an exhaustive search (using the
schedulability test described next) to find the best possible
allocation of tasks to DP1, DP2, and FP queues. The search
runs the schedulability test O�n2� times for three queues.
This takes 2-3 minutes on a 167MHz Ultra-1 Sun work-
station for a workload with 100 tasks.

5.7 Schedulability Test for CSD-3

As before, assume the task set f�i : i � 1; 2; . . . ; ng has tasks
sorted by their RM-priority. Since DP1 tasks are scheduled
by EDF, tasks �1 ± �q are feasible if:

Xq
i�1

ci ��t�DP1�
Pi

� 1:

DP1 tasks have priority over DP2 tasks, while DP2 tasks
among themselves are scheduled by EDF. We modify the
test for FP tasks to work for DP2 tasks. To check
schedulability for a DP2 task i, the test treats all DP1 tasks
as having higher priority than i (j runs from 1 to q), but
checks deadlines of DP2 tasks (k runs from q � 1 to r) to

decide how many invocations of each (if any) have priority
over the first invocation of i:

8i; q < i � r; min
0<t�di

Xq
j�1

cj ��t�DP1�
t

t

Pj

� �
�

Xr
k�q�1

ck ��t�DP2�
t

t

Pk

� ��!
� 1;

where the function dxe� excludes the last invocation of j
released before time t if its deadline exceeds di:

t

Pk

� ��
�

t
Pk

l m
t
Pk

l m
ÿ 1

� �
Pk � dk � di

t
Pk

l m
ÿ 1 otherwise:

8<:
This test for DP2 tasks uses the critical time zone

assumption [17], which is valid only if all DP1 and DP2

tasks have utilization � 1 (
Pr

i�1
ci��t�X�

Pi
� 1, X is DP1 or

DP2 if i is a DP1 or DP2 task, respectively). Note that,

because of the check for deadlines, the critical time zone

assumption is not automatically valid here as it is under

rate-monotonic analysis.
The test for FP tasks is the same as for CSD-2 except for

minor modifications:

8i; r < i � n; min
0<t�di

Xi
j�1

cj ��t�X�
t

t

Pj

� � !
� 1;

where X is DP1, DP2, or FP when j is a DP1, DP2, or FP
task, respectively.

5.8 Beyond CSD-3

The general scheduling framework of CSD is not limited to
just three queues. It can be extended to have 4; 5; . . . ; n
queues. The two extreme cases (one queue and n queues)
are both equivalent to RM, while the intermediate cases
give a combination of RM and EDF.

We would expect CSD-4 to have slightly better perfor-
mance than CSD-3, etc. (as confirmed by evaluation results
in Section 9.1), although the performance gains are expected
to taper off once the number of queues gets large and the
increase in schedulability overhead (from having multiple
EDF queues) starts exceeding the reduction in runtime
overhead.

For a given workload, the best number of queues and the
best number of tasks per queue can be found through an
exhaustive search, but this is a computationally intensive
task and is not discussed further in this paper. We
demonstrated the usefulness of the general CSD scheduling
framework and how it can be beneficial in real systems.

6 EFFICIENT SEMAPHORE IMPLEMENTATION

Previous work in lowering the overhead of semaphore
operations has focused on either relaxing the semaphore
semantics to get better performance [36] or coming up with
new semantics and new synchronization policies [37]. The
problem with this approach is that such new/modified
semantics may be suitable for some particular applications,
but usually do not have wide applicability.

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

2. Increasing the number of queues also increases the overhead of
parsing the prioritized list of queues, but our measurements showed this
increase to be negligible (less than a microsecond) when going from two to
three queues.

We took an approach of providing full semaphore
semantics (with priority inheritance [38]), but optimizing
the implementation of these semaphores by exploiting
certain features of embedded applications.

The first step in designing efficient semaphores is to
look at the way semaphores are typically implemented in
various systems, identify distinct steps involved in lock-
ing/unlocking semaphores, and try to eliminate or
optimize those steps which incur the greatest overhead
by using characteristics common in small-memory em-
bedded applications.

6.1 Standard Semaphore Implementation

The standard procedure to lock a semaphore can be
summarized as follows:

if (sem locked) {

do priority inheritance;

add caller thread to wait queue;

block; /* wait for sem to be released */

}

lock sem;

Priority inheritance [38] is needed in real-time systems to
avoid unbounded priority inversion [37]. If a high-priority
thread Th calls acquire_sem() on a semaphore already
locked by a low-priority thread Tl, the latter's priority is
temporarily increased to that of the former. Without
priority inheritance, a medium priority thread Tm can get
control of the CPU by preempting Tl while Th remains
blocked on the semaphore, thus causing priority inversion.
With priority inheritance, Tl will keep on running until it
unlocks the semaphore. At that point, its priority will go
back to its original value, but, now, Th will be unblocked
and it can continue execution.

First of all, notice that if the semaphore is free when
acquire_sem() is called, then the semaphore lock
operation has very little overhead. In fact, for this case,
only one counter has to be incremented and some other
variables updated.

In real-time systems, we are interested in worst-case
overheads and, for semaphores, this occurs when the
semaphore is already locked by thread T1 when some
thread T2 invokes the acquire_sem() call. Fig. 3 shows a
typical scenario for this situation. Thread T2 wakes up (after
completing some unrelated blocking system call) and then
calls acquire_sem(). This results in priority inheritance
and a context switch to T1, the current lock holder. After T1

releases the semaphore, its priority returns to its original

value and a context switch occurs to T2. These steps are
outlined in Fig. 4.

For tasks scheduled by EDF, the context switches are
responsible for the largest overhead because this is where
�ts is incurred (which takes O�r� time), whereas the
remaining operations take only O�1� time. For this reason,
we will focus our optimization efforts on eliminating one or
more context switches and this should result in good
performance improvement for DP tasks.

For FP tasks, context switches incur a fixed, albeit
significant, overhead, so eliminating one context switch is
not as beneficial for FP tasks as it is for DP tasks. However,
each of the two priority inheritance (PI) steps take O�nÿ r�
time because the task must be removed from the FP queue
and then reinserted in sorted order according to its new
priority. All the remaining operations take O�1� time, even
the block operation, because the PI operation preceding the
block resets highestP so that the block operation doesn't
have to. This is why, for FP tasks, we focus our optimization
efforts on the PI operations.

6.2 Implementation in EMERALDS

Going back to Fig. 4, we want to eliminate context switch C2

[39]. We also want to optimize the two PI steps. First, we
deal with C2, which occurs when T2 is unblocked after some
blocking system call (T2 had made this call to wait for some
event E such as a message arrival or timer expiry). T2 then
executes and calls acquire_sem(), only to block again
because the semaphore is locked by T1.

The idea is that, when event E occurs, instead of letting
T2 run, let T1 execute. T1 will go on to release the
semaphore and T2 can be activated at this point, saving
C2 (Fig. 5). This is implemented as follows: As part of the
blocking call just preceding acquire_sem(), we instru-
ment the code (using a code parser described later) to add
an extra parameter which indicates which semaphore T2

intends to lock (semaphore S in this case). When event E
occurs and T2 is to be unblocked, the OS checks if S is
available or not. If S is unavailable, then priority
inheritance from T2 to the current lock holder T1 occurs
right here. T2 is added to the waiting queue for S and it
remains blocked. As a result, the scheduler picks T1 to
executeÐwhich eventually releases S through and T2 is

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 917

Fig. 3. A typical scenario showing thread T2 attempting to lock a

semaphore already held by thread T1. Tx is an unrelated thread which

was executing while T2 was blocked.

Fig. 4. Operations involved in locking a semaphore for the scenario

shown in Fig. 3.

unblocked as part of this release_sem() call by T1.

Comparing Fig. 5 to Fig. 3, we see that context switch C2 is

eliminated. The semaphore lock/unlock pair of operations

now incur only one context switch instead of two, resulting

in considerable savings in execution time overhead for DP

tasks (see Section 9 for performance results).
For FP tasks, we want to optimize the two PI steps, each

of which takes O�nÿ r� time. The first PI step (T1 inherits

T2's priority) is easily optimized by using the observation

that, according to T1's new priority, its position in the

FP queue should be just ahead of T2's position. So, instead

of parsing the FP queue to find the correct position to insert

T1, we insert T1 directly ahead of T2 without parsing the

queue, which reduces overhead to O�1�.
We want to reduce the overhead of the second PI step to

O�1� as well. In this step, T1 returns to its original priority.

We want to do this without having to parse the entire

queue. One incorrect solution is to remember T1's neighbors

from its original position in the queue in an attempt to

return T1 to that position by inserting it between these

neighbors. But, if these neighbors themselves undergo

priority inheritance, their position in the queue will change

and the scheme will not work.
The solution used in EMERALDS is to switch the

positions of T1 and T2 in the queue as part of the first

PI operation when T1 inherits T2's priority. This puts T1 in

the correct position according to its new priority, while T2

acts as a ªplace-holderº for T1 to remember T1's original

position in the queue. Then, the question is: Is it safe to put

T2 in a position lower than what is dictated by its priority?

The answer is yes. As long as T2 stays blocked, it can be in

any position in the queue. T2 unblocks only when T1 releases

the semaphore and, at that time, we switch the positions of

T1 and T2 again, restoring each to their original priorities.

With this scheme, both PI operations take O�1� time.
One complication arises if T1 first inherits T2's priority,

then a third thread T3 attempts to lock this semaphore and

T1 inherits T3's priority. For this case, T3 becomes T1's place-

holder and T2 just goes back to its original position. This

involves one extra step compared to the simple case

described initially, but the overhead is still O�1�.
Note that these optimizations on the PI operations

were possible because our scheduler implementation

keeps both ready and blocked tasks in the same queue.

Had the FP queue contained only ready tasks, we could

not have kept the place-holder TCB in the queue.

6.2.1 Code Parser

In EMERALDS, all blocking calls take an extra parameter,
which is the identifier of the semaphore to be locked by the
upcoming acquire_sem() call. This parameter is set to
ÿ1 if the next blocking call is not acquire_sem().

Semaphore identifiers are statically defined (at compile

time) in EMERALDS, as is commonly the case in OSs for

small-memory applications, so it is trivial to write a parser

which examines the application code and inserts the correct

semaphore identifier into the argument list of blocking calls

just preceding acquire_sem() calls. Hence, the applica-

tion programmer does not have to make any manual

modifications to the code.

6.2.2 Schedulability Analysis for the New Scheme

From the viewpoint of schedulability analysis, there can be
two concerns regarding the new semaphore scheme (refer
back to Fig. 5):

1. What if thread T2 does not block on the call
preceding acquire_sem()? This can happen if
event E has already occurred when the call is made.

2. Is it safe to delay execution of T2 even though it may
have higher priority than T1 (by doing priority
inheritance earlier than would occur otherwise)?

Regarding the first concern, if T2 does not block on the

call preceding acquire_sem(), then a context switch has

already been saved. For such a situation, T2 will continue to

execute untill it reaches acquire_sem() and a context

switch will occur there. What our scheme really provides is

that a context switch will be saved either on the acquir-

e_sem() call or on the preceding blocking call. Where the

savings actually occur at runtime does not really matter to

the calculation of worst-case execution times for schedul-

ability analysis.
For the second concern, the answer is that yes it is safe

to let T1 execute earlier than it would otherwise. The

concern here is that T2 may miss its deadline. But, this

cannot happen because, under all circumstances, T2 must

wait for T1 to release the semaphore before T2 can

complete. So, from the schedulability analysis point of

view, all that really happens is that chunks of execution

time are swapped between T1 and T2 without affecting

the completion time of T2.

6.3 Applicability of the New Scheme

Going back to Fig. 5, suppose the lock holder T1 blocks after
event E, but before releasing the semaphore. With standard
semaphores, T2 will then be able to execute (at least, untill it
reaches acquire_sem()), but, under our scheme, T2 stays
blocked. This gives rise to the concern that, with this new
semaphore scheme, T2 may miss its deadline.

In Fig. 5, T1 had a lower priority than that of T2 (call
this case A). A different problem arises if T1 has a higher
priority than T2 (call it case B). Suppose semaphore S is
free when event E occurs. Then, T2 will become
unblocked and it will start executing (Fig. 6). But, before
T2 can call acquire_sem(), T1 wakes up, preempts T2,
locks S, and then blocks for some event. T2 resumes, calls

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

Fig. 5. The new semaphore implementation scheme. Context switch C2

is eliminated.

acquire_sem(), and blocks because S is unavailable.

The context switch is not saved and no benefit comes out

of our semaphore scheme.
All these problems occur when a thread blocks while

holding a semaphore. These problems can be resolved as

follows: First, by making a small modification to our

semaphore scheme, we can change the problem in case B

to be the same as the problem in case A. This leaves us with

only one problem to address. By looking at the larger

picture and considering threads other than just T1 and T2,

we can then show that this problem is easily circumvented

and our semaphore scheme works for all blocking situations

that occur in practice, as discussed next.

6.3.1 Modification to the Semaphore Scheme

The problem illustrated in Fig. 6 necessitates a small

modification to our scheme. We want to somehow block

T2 when the higher-priority thread T1 locks S and unblock

T2 when T1 releases S. This will prevent T2 from executing

while S is locked, which makes this the same as the

situation in case A.
Recall that, when event E occurs (Fig. 6), the OS first

checks if S is available or not before unblocking T2. Now,

let's extend the scheme so that the OS adds T2 to a special

queue associated with S. This queue holds the threads

which have completed their blocking call just preceding

acquire_sem() but have not yet called acquire_sem().
Thread T1 will also get added to this queue as part of its

blocking call just preceding acquire_sem(). When T1

calls acquire_sem(), the OS first removes T1 from this

queue, then puts all threads remaining in the queue in a

blocked state. Then, when T1 calls release_sem(), the OS

unblocks all threads in the queue.
With this modification, the only remaining concern (for

both cases A and B) is: If execution of T2 is delayed like

this while other threads (of possibly lower priority)

execute, then T2 may miss its deadline. This concern is

addressed next.

6.3.2 Applicability under Various Blocking Situations

There can be two types of blocking:

. Wait for an internal event, i.e., wait for a signal from
another thread after it reaches a certain point.

. Wait for an external event from the environment.
This event can be periodic or aperiodic.

Blocking for internal events, i.e., handshake between
threads. The typical scenario for this type of blocking is for
thread T1 to enter an object (and lock semaphore S), then
block, waiting for a signal from another thread Ts. Mean-
while, T2 stays blocked (Fig. 7). But, it is perfectly safe to
delay T2 like this (even if Ts is lower in priority than T2)
because T2 cannot lock S until T1 releases it and T1 will not
release it until it receives the signal from Ts. Letting Ts
execute earlier leads to T1 releasing S earlier than it would
otherwise, which leaves enough time for T2 to complete by
its deadline.

Blocking for external events. External events can be
either periodic or aperiodic. For periodic events, polling is
usually used to interact with the environment and blocking
does not occur. Blocking calls are used to wait for aperiodic
events, but it does not make sense to have such calls inside
an object. There is always a possibility that an aperiodic
event may not occur for a long time. If a thread blocks
waiting for such an event while inside an object, it may keep
that object locked for a long time, preventing other threads
from making progress. This is why the usual practice is to
not have any semaphores locked when blocking for an
aperiodic event. In short, dealing with external events
(whether periodic or aperiodic) does not affect the applic-
ability of our semaphore scheme under the commonly
established ways of handling external events.

7 STATE MESSAGES FOR INTERTASK

COMMUNICATION

From the performance point of view, global variables are
ideal for sharing information between tasks, but, if reading
from and writing to global variables are not regulated,
subtle bugs can crop up in the application code. State
messages [22] use global variables to pass messages
between tasks, but these variables are managed by code
generated automatically by a software tool, not by the
application designer. In fact, the application designer does
not even know that global variables are being used: The
interface presented to the programmer is almost the same as
the mailbox-based message-passing interface.

State messages are not meant to replace traditional
message-passing, but are meant as an efficient alternative to
traditional message-passing for a wide range of situations,
as explained next.

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 919

Fig. 6. If a higher priority thread T1 preempts T2, locks the semaphore,

and blocks, then T2 incurs the full overhead of acquire_sem() and a

context switch is not saved.

Fig. 7. Situation when the lock holder T1 blocks for a signal from another

thread Ts.

7.1 State-Message Semantics

State messages solve the single-writer, multiple-reader
communication problem. One can imagine that state
message ªmailboxesº are associated with the senders, not
with the receivers: Only one task can send a state message
to a ªmailboxº (call this the writer task), but many tasks can
read the ªmailboxº (call these the reader tasks). This way,
state message ªmailboxesº behave very differently from
traditional mailboxes, so, from now on, we will call them
SMmailboxes. The differences are summarized below.

. SMmailboxes are associated with the writers. Only
one writer may send a message to an SMmailbox,
but multiple readers can receive this message.

. A new message overwrites the previous message.

. Reads do not consume messages, unlike standard
mailboxes for which each read operation pops one
message off the message queue.

. Both reads and writes are nonblocking. This reduces
the number of context switches suffered by applica-
tion tasks.

7.2 Usefulness

In real-time systems, a piece of data such as a sensor
reading is valid only for a certain duration of time, after
which a new reading must be made. Suppose task �1 reads a
sensor and supplies the reading to task �2. If �1 sends two
such messages to �2, then the first message is useless
because the second message has a more recent and up-to-
date sensor reading. If traditional mailboxes with queues
are used for communication, then �2 must first read the old
sensor reading before it can get the new one. Moreover, if
multiple tasks need the same sensor reading, �1 must send a
separate message to each.

State messages streamline this entire process. An
SMmailbox SM1 will be associated with �1 and it will be
known to all tasks that SM1 contains the reading of a
certain sensor. Every time �1 reads the sensor, it will send
that value to SM1. Tasks which want to receive the sensor
value will perform individual read operations on SM1 to
receive the most up-to-date reading. Even if �1 has sent
more than one message to SM1 between two reads by a
task, the reader task will always get the most recent
message without having to process any outdated messages.
More importantly, if a reader does two or more reads
between two writes by �1, the reader will get the same
message each time without blocking. This makes perfect
sense in real-time systems because the data being received
by the reader is still valid, up-to-date, and useful for
calculations.

The single-writer, multiple-reader situation is quite
common in embedded real-time systems. Any time data is
produced by one task (be it a sensor reading or some
calculated value) and is to be sent to one or more other
tasks, state messages can be used. But, in some situations,
blocking read operations are still necessary, such as when a
task must wait for an event to occur. Then, traditional
message-passing and/or semaphores must be used. Hence,
state messages do not replace traditional message passing
for all situations, but they do replace it for most intertask
communication requirements in embedded applications.

7.3 Previous Work

State messages were first used in the MARS OS [22] and

have also been implemented in ERCOS [40]. The state

message implementation used in these systems, as de-

scribed in [41], is as follows: The problem with using global

variables for passing messages is that a reader may read a

half-written message since there is no synchronization

between readers and writers. This problem is solved by

using an N-deep circular buffer for each state message. An

associated pointer is used by the writer to post messages

and used by readers to retrieve the latest message. With a

deep enough buffer, the scheme can guarantee that data

will not be corrupted while it is being read by a reader, but

a large N can make state messages infeasible for our

limited-memory target applications.
The solution presented in [41] limits N by having readers

repeat the read operation until they get uncorrupted data.

This saves memory at the cost of increasing the read time by

as much as several hundred microseconds, even under the

assumption that writers and readers run on separate

processors with shared memory. With such an architecture,

it is not possible for a reader to preempt a writer. But, we

want to use state messages for communication between

readers and writers on the same CPU without increasing

the read overheads. For this situation, depending on the

relative deadlines of readers and writers, N may have to be

in the hundreds to ensure correct operation.
Our solution to the problem is to provide OS support for

state messages to reduce N to no more than 5-10 for all
possible cases. In what follows, we describe our implemen-
tation for state messages, including the calculation of N for
the case when both readers and writers are residing on the
same CPU. Then, we describe a system call included in
EMERALDS to support state messages.

7.4 Implementation of State Messages in
EMERALDS

Let B be the maximum number of bytes the CPU can read
or write in one instruction. For most processors, B � 4
bytes. The tool MessageGen produces customized code for
the implementation of state messages depending on
whether the message length L exceeds B or not.

The case for L � B is simple. MessageGen assigns one

L-byte global variable to the state message and provides

macros through which the writer can write to this variable

and readers can read from it. Note that, for this simple case,

it is perfectly safe to use global variables. The only

complication possible for a global variable of length < B

is to have one writer accidentally overwrite the value

written to the variable by another writer. But, this problem

cannot occur with state messages because, by definition,

there is only one writer.
For the case of L > B, MessageGen assigns an N-deep

circular buffer to each state message. Each slot in the buffer
is L bytes long. Moreover, each state message has a 1-byte
index I which is initialized to 0. Readers always read slot I,
the writer always writes to slot I � 1, and I is incremented
only after the write is complete. In this way, readers always
get the most recent consistent copy of the message.

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

Calculating buffer depth N . Now, we address the issue
of how to set N , the depth of the buffer. It is possible that a
reader starts reading slot i of the buffer, is preempted after
reading only part of the message, and resumes only after
the writer has done x number of write operations on this
message. Then, N must be greater than the largest value x
can take:

N � max�2; xmax � 1�:
Let maxReadTime be the maximum time any reader can take
to execute the read operation (including time the reader may
stay preempted). Because all tasks must complete by their
deadlines (ensured by the scheduler), the maximum time
any task can be preempted is dÿ c, where d is its deadline
and c is its execution time. If cr is the time to execute the read
operation, then maxReadTime � dÿ �cÿ cr�.

The largest number of write operations possible during
maxReadTime occur for the situation shown in Fig. 8 when
the first write occurs as late as possible (just before the
deadline of the writer) and the remaining writes occur as
soon as possible after that (right at the beginning of the
writer's period). Then,

xmax ÿ 1 � maxReadTimeÿ �Pw ÿ dw�
Pw

� �
;

where Pw and dw are the writer's period and deadline,
respectively. Then, N can be calculated using xmax.

Slow readers. If it turns out that one or more readers
have long periods/deadlines (call them slow readers) and,
as a result, xmax is too large (say, 10 or more) and too much
memory will be needed for the buffer, then EMERALDS
provides a system call which executes the same read
operation as described above, but disables interrupts so that
copying the message from the buffer becomes an atomic
operation. This call can be used by the slow readers while
the faster readers use the standard read operation. By doing
this, N depends only on the faster readers and memory is
saved. The disadvantage is that the system call takes longer
than the standard read operation. But, this system call is
invoked only by slow readers, so it is invoked infrequently
and the extra overhead per second is negligible. Note that
the write operation is unchanged no matter whether the
readers are slow or fast.

8 MEMORY PROTECTION AND SYSTEM CALLS

The benefits of memory protection mentioned earlier in
Section 2.4 will not be of much practical use if the
implementation of memory protection was not efficient
and small-sized. In fact, many small RTOSs (specially

commercial ones) do not include memory protection
because of the belief that its negative impact on perfor-
mance would be unacceptable. We show that this belief is
unfounded.

To get an efficient and small-sized implementation of
memory protection, we made full use of the fact that our
target applications are in-memory. This enabled us to
reduce the total size of a page table to a few kbytes without
relying on any special hardware features. In virtual memory
systems with disk backing stores, there is a need to
distinguish unmapped pages from those which have been
swapped out to disk. But, for in-memory systems, this
distinction is not needed. This allows the page table to be
trimmed down using the hierarchical nature of most page
tables. For example, the Motorola 68040 has three-level page
tables. Each third level page table represents 256 kbytes of
address space. If a process has three segmentsÐcode, data,
and stackÐand each is less than 256 kbytes, then its page
table will be as shown in Fig. 9.

All but three entries in the first-level page table are null,
so only three second-level page tables exist. An attempt to
access an address covered by an invalid entry will result in
a TRAP to the kernel, indicating a bug in the software.
Similarly, in each second-level page table, only one entry is
valid and all other third-level page tables do not exist. This
way, total size of the page table is just 2,432 bytes for a page
size of 8 kbytes. (More third-level page tables are needed if
any segment exceeds 256 kbytes.) While this example is
specific to the MC 68040, most other modern CPUs also
provide three-level page tables with similar parameters.

Other OSs with virtual memory with disk backing stores
also have small page tables, but they achieve this with
hardware support. Linux uses segment registers present in
x86 processors to distinguish unmapped and swapped out
pages. VAX/VMS uses the page table length register of the
VAX-11 to achieve the same goal [42]. But, depending on

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 921

Fig. 8. Calculation of xmax. Write operations are denoted by X. Excluding

the first write, there are b�maxReadTimeÿ �Pw ÿ dw��=Pwc � 4 writes,

so xmax � 5.

Fig. 9. A typical page table in EMERALDS.

such hardware support in embedded systems is not feasible
since it increases hardware costs.

The small size of page tables not only saves memory, but
also enables other optimizations like mapping the kernel
into every address space. A typical 32-bit EMERALDS
address space is shown in Fig. 10. With this type of
mapping, a switch from user to kernel involves just a TRAP
(which switches the CPU from user to kernel/supervisor
mode) and a jump to the appropriate address; there is no
need to switch address spaces. Also, system call code in
EMERALDS is designed to take parameters straight off the
user's stack (possible since both kernel and user are in the
same address space) with no need to copy parameters from
user space to kernel space. All that Locore.S (assembly code
used for making system calls) does is point the kernel stack
pointer to the user stack and some other minor stack
adjustments. As a result, system calls in EMERALDS
(except those involving servers) have an overhead compar-
able to that of a subroutine call (see Section 9).

Note that mapping the kernel into each user address
space is feasible in EMERALDS because both the kernel and
its data segment are so small. In other operating systems
with standard virtual memory, the size of the kernel's data
segment is so large (due to large page tables) that directly
mapping it into each address space is not feasible. Some
OSs, like Windows NT [43], use a lazy mapping scheme in
which portions of the kernel's data segment are dynami-
cally mapped into user address spaces as needed, but this
incurs the high (and unpredictable) overhead of manipulat-
ing page tables when a system call needs to access some
data and discovers that the page is not mapped into the

current address space. Such schemes are not appropriate for
embedded systems because of their high overhead and
unpredictability. In EMERALDS, mapping the kernel in
every address space is achieved by having appropriate
second-level page table entries point to common third-level
page tables which map the kernel. Thus, the size of a
process's page table is not affected. Moreover, once an
address space is set up, no more page table manipulation is
needed, leading to low overhead. Also, the kernel areas are
protected from corruption by buggy user code by using
page table entries to mark them as read-only for user mode.
This way, user processes are protected from each other and
the kernel is protected from user processes.

9 PERFORMANCE EVALUATION

EMERALDS has been implemented on the Motorola 68040
processor [44]. It has a code size of just 13 kbytes.
EMERALDS has also been ported to the PowerPC 505,
the Super Hitachi 2 (SH-2), and the Motorola 68332
microcontroller [45], the last two of which are popular in
automotive control applications. In this section, we evalu-
ate the benefits of the scheduling, semaphore, message-
passing, and system call schemes presented thus far. These
evaluations are performed on a 25MHz MC 68040 with
4 kbyte I and D-caches. All measurements are made using a
5MHz on-chip timer.

EMERALDS is also being evaluated by the Scientific
Research Laboratory of the Ford Motor Company for use in
automotive engine control. Their initial testing focused on
basic OS overheads related to interrupt handling, context
switching, event signaling, and timer services. Their
evaluation covered nine commercial RTOSs in addition to
EMERALDS, and their evaluation results are presented at
the end of this section.

9.1 CSD Scheduler

In this section, we evaluate the usefulness of CSD in
scheduling a wide variety of workloads by comparing CSD
to EDF and RM. In particular, we want to know which is the
best scheduler when all scheduling overheads (runtime and
schedulability) are considered. The EDF and RM runtime
overheads for EMERALDS measured on a 25MHz Motorola
68040 processor [44] with separate 4 kbytes instruction and
data caches are in Table 3. The runtime overhead of CSD is
derived from these values, as already discussed in
Sections 5.4 and 5.6.2. The overhead to parse the list of
queues in CSD-x (to find a queue with ready tasks) was
measured at 0:55�s per queue.

Table 3 also shows the runtime overhead for RM when a
sorted heap is used instead of a linked list to hold the tasks.

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

Fig. 10. A typical address space in EMERALDS. Area labeled kernel

stack is used for interrupts and area labeled user stack is used by both

the user and the kernel.

TABLE 3
Runtime Overheads for EDF and RM (n is the Number of Tasks)

The table also shows measurements for RM when a heap is used instead of a linked list. Measurements made using a 5MHz on-chip timer.

The total runtime overhead �t for a heap is more than that
for a queue for n � 58. Most real-time workloads do not
have enough tasks to make heaps feasible, so, for the rest of
this section, we use the measurements for queues.

Our test procedure involves generating random task
workloads, then, for each workload, scaling the execution
times of tasks until the workload is no longer feasible for a
given scheduler. The utilization at which the workload
becomes infeasible is called the breakdown utilization [46].
We expect that, with scheduling overheads considered,
CSD will have the highest breakdown utilization.

Because scheduling overheads are a function of the
number of tasks (n) in the workload, we tested all
schedulers for workloads ranging from n � 5 to n � 50.
For each n, we generate 500 workloads with random task
periods and execution times. We scale the execution times
and check feasibility, using the schedulability tests in
Sections 5.5 and 5.7, until the workload becomes infeasible.

The runtime overhead of priority-based schedulers
depends not only on the number of tasks but on the
periods of tasks as well (since the scheduler is invoked
every time a task blocks or unblocks). Short period tasks
lead to frequent invocation of the scheduler, resulting in
high runtime overhead, whereas long-period tasks

produce the opposite result. In our tests, we vary not
only the number of tasks but the periods of tasks as well.
We do this by generating a base workload (with a fixed
n), then producing three workloads from it by dividing
the periods of tasks by a factor of 1, 2, and 3. This allows
us to evaluate the impact of varying task periods on
various scheduling policies.

We generate base task workloads by randomly selecting
task periods such that each period has an equal probability
of being single-digit (5-9ms), double-digit (10-99ms), or
triple-digit (100-999ms). Figs. 11, 12, and 13 show break-
down utilizations when task periods are divided by 1, 2,
and 3, respectively. In Fig. 11, task periods are relatively
long (5ms-1s). The runtime overheads are low, which
allows EDF to perform close to its theoretical limits. Even
then, CSD performs better than EDF. CSD-4 has 17 percent
lower total scheduling overhead for n � 15 and this
increases to more than 40 percent for n � 40 as EDF's
strong dependency on n begins to degrade its performance.

Fig. 12 is for periods in the 2.5-500ms range. For these
moderate length periods, initially, EDF is better than RM,
but then EDF's runtime overhead increases to the point that
RM becomes superior. For n � 15, CSD-4 has 25 percent less
overhead than EDF, while, for n � 40, CSD-4 has 50 percent
lower overhead than RM (which in turn has lower overhead
than EDF for this large n).

Fig. 13 shows similar results. Task periods range from
1.67-333ms and these short periods allow RM to quickly
overtake EDF. Nevertheless, CSD continues to be superior
to both.

Figs. 11, 12, and 13 also show a comparison between
three varieties of CSD. They show that, even though a
significant performance improvement is seen from CSD-2 to
CSD-3 (especially for large n), only a minimal improvement
is observed from CSD-3 to CSD-4. This is because, even
though the runtime overhead continues to decrease, the
increase in schedulability overhead almost nullifies the
reduction in runtime overhead.

CSD-4 could be expected to give significantly better
breakdown utilization than CSD-3 only if workloads can be
easily partitioned into four queues without increasing
schedulability overhead, but this is rarely the case. DP1

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 923

Fig. 11. Average breakdown utilizations for CSD, EDF, and RM when
task periods are scaled down by a factor of one.

Fig. 12. Average breakdown utilizations for CSD, EDF, and RM when task periods are scaled down by a factor of two.

tasks have statically higher priority than DP2 tasks, DP2

tasks have higher priority than DP3 tasks, etc. As the

number of queues increases, the schedulability overhead

starts increasing from that of EDF to that of RM. This is why

we would expect that, as x increases, performance of CSD-x

will quickly reach a maximum and then start decreasing

because of reduced schedulability and increased overhead

of managing x queues (which increases by 0:55�s per

queue). Eventually, as x approaches n, performance of

CSD-x will degrade to that of RM.
The results presented here confirm the superiority of the

CSD scheduling framework as compared to EDF and RM.

The results show that, even though CSD-2 suffers from high

runtime overhead for large n, CSD-3 overcomes this

problem without any significant increase in schedulability

overhead. This way, CSD-3 consistently delivers good

performance over a wide range of task workload character-

istics. Increasing the number of queues gives some further

improvement in performance, but the schedulability over-

head starts increasing rapidly so that using more than three

queues yields only a minimal improvement in performance.

9.2 Semaphore Scheme

When a thread enters an object, it first acquires the
semaphore protecting the object and, when it exits the
object, it releases the semaphore. The cumulative time spent
in these two operations represents the overhead associated
with synchronizing thread access to objects. To determine
by how much this overhead is reduced when our scheme is
used, we measured the time for the acquire/release pair of
operations for both standard semaphores and our new
scheme and then compared the two results.

Our semaphore scheme eliminates one context switch
and optimizes the priority inheritance mechanism for
FP tasks, so the performance of our scheme depends on
whether the relevant tasks are in the DP or FP queue, as
well as on the number of tasks in the queue. Fig. 14 shows
the semaphore overheads for tasks in the DP queue as the
number of tasks in the queue are varied from 3 to 30. Since
the context switch overhead is a linear function of the
number of tasks in the DP queue (because of �ts), the
acquire/release times increase linearly with the queue
length. But, the standard implementation's overhead in-
volves two context switches, while our new scheme incurs
only one, so the measurements for the standard scheme

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

Fig. 13. Average breakdown utilizations for CSD, EDF, and RM when task periods are scaled down by a factor of three.

Fig. 14. Worst-case performance measurements for DP tasks. The overhead for the standard implementation increases twice as rapidly as for the

new scheme.

have a slope twice that of our new scheme. For a typical
DP queue length of 15, our scheme gives savings of 11�s

over the standard implementation (a 28 percent improve-
ment) and these savings grow even larger as the DP queue's
length increases.

For the FP queue (Fig. 15), the standard implementation
has a linearly increasing overhead, while, with the new
implementation, the overhead is constant (because priority
inheritance takes O�1� time). Also, one context switch is
eliminated. As a result, the acquire/release overhead stays
constant at 29:4�s. For an FP queue length of 15, this is an
improvement of 10:4�s or 26 percent over the standard
implementation.

In general, our scheme gives performance improve-
ments of 20-30 percent, depending on whether the tasks
involved in locking and unlocking the semaphore are in
the DP or FP queue and the length of the queue.

9.3 State Messages

Table 4 shows a comparison between the overheads for
state messages and for mailbox-based message-passing. The
measurements are for message sizes of 8 bytes, which are
enough to exchange sensor readings and actuator com-
mands in embedded control applications.

Most of the overhead for the state message operations is
due to copying the message to and from the SMmailbox,
whereas mailbox-based IPC has many other overheads as
well (allocation/deallocation of kernel data structures,
manipulation of message queues, etc.), which is why state
messages clearly outperform mailboxes for small message
lengths typical in embedded applications. For example, if
an application exchanges 5,000 8-byte messages per second

(assume 1,000 of these are received by tasks with long
periods, i.e., they must use receive_slow), then mail-
boxes give an overhead of 118ms/s or 11.8 percent, whereas
using state messages results in an overhead of only 24ms/s
or 2.4 percent. This overhead decreases even further if one
message has multiple recipients: For mailboxes, a separate
send is needed for each recipient, while only one send is
enough for state messages.

9.4 Efficient System Calls

Table 5 shows the comparison between the overheads for a
null() subroutine call and a null() system call. The
latter incurs an extra overhead of only 1:8�s because no
context switch is needed since the kernel is mapped into
each address space.

9.5 Comparison with Commercial RTOSs

The Scientific Research Laboratory (SRL) of Ford Motor
Company has evaluated the performance of EMERALDS
and nine commercial embedded RTOSs for automotive
engine control. These RTOSs include Nucleus, pSOS
Select, RTX, RTXC, RTOS, C-Executive, VRTX mc, RTEK,
and MTASK.

In initial testing, SRL has focused on measuring over-
heads of basic OS services like interrupt handling, task
switching, timers, and clock tick on a 16.7 MHz Motorola
68332 microcontroller. Their results3 are shown in Fig. 16
(the results released by SRL do not identify which
measurements are for which OS, so we refer to the
commercial RTOSs as OS1±OS9). The number of inter-
rupts/second that the engine controller must service
depends on the engine's speed. At high RPM (revolutions
per minute), the controller sees about 1,000 interrupts/s. At
this rate, the various RTOSs have an overhead ranging from
15 percent to 30 percent of CPU time. EMERALDS is one of
the best with only 16 percent overhead. Only OS9 has a
lower overhead of 15.5 percent, but, compared to other OSs,
it has much higher RAM overhead (about 4,000 bytes for
10 tasks compared to 500-1,000 bytes for all the other OSs

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 925

TABLE 4
Overheads for Sending and Receiving 8-byte Messages

3. The 68332 does not have an MMU, so these results are for a version of
EMERALDS without memory protection.

Fig. 15. Worst-case performance measurements for FP tasks. The overhead for the standard implementation increases linearly, while, new scheme

has a constant overhead.

including EMERALDS), which makes OS9 infeasible for
small-memory embedded systems by SRL standards.

These results show that, as far as basic OS overheads are
concerned, EMERALDS' implementation is quite efficient.
This also gives reassurance that various performance
measurements presented earlier in this section are not
distorted due to poor implementation of basic OS services.

SRL is planning a more detailed evaluation of these
10 RTOSs to measure the effect on OS overheads of varying
the number of resources (threads, semaphores, mailboxes,
etc.) being used by the application.

10 CONCLUSIONS

Small-memory embedded applications are not only becom-
ing more commonplace (automotive, home electronics,
avionics, etc.), but the complexity of these applications is
increasing as well. As a result, embedded applications
which previously managed the hardware resources now
directly need embedded RTOSs to handle the increased
complexity of the application. These RTOSs must be
efficient and small in size to be feasible on the slow/cheap
processors used in small-memory applications. Commercial
embedded RTOSs rely on optimized code for achieving
efficiency, but, in the design of EMERALDS, we took a
different approach. We identified key OS services which are
responsible for a large portion of the OS overhead seen by
applications and redesigned these services using new
schemes which exploit certain characteristics common to
all embedded applications. In the area of task scheduling,
we presented the CSD scheduler, which creates a balance
between static and dynamic scheduling to deliver greater
breakdown utilization through a reduction in scheduling
overhead of as much as 40 percent compared to EDF and
RM. For task synchronization, we presented a new
implementation for semaphores which eliminates one
context switch and reduces priority inheritance overhead
to achieve 20-30 percent improvement in semaphore lock/
unlock times. Our semaphore scheme has wide applicability
compared to some other optimization schemes which work
well only for certain applications. For message-passing,
EMERALDS uses the state-message paradigm which incurs
1=4 to 1=5 the overhead of mailbox-based message passing
for message sizes typical in embedded applications. Unlike
previous schemes for state messages, our scheme bounds
the RAM overhead by providing OS support for state
messages. Finally, by mapping the kernel into each address
space, EMERALDS reduces the overhead of system calls so
that the null() system call takes only 1:8�s more than a
null() subroutine call on a 25MHz MC68040.

In the future, we plan to focus on networking issues. We
have already investigated fieldbus networking among a

small number (5-10) of nodes [12], [13]. Next, we will
investigate ways to efficiently and cheaply interconnect a
large number (10-100) of clusters of embedded processors.
Each cluster can be a small number of nodes connected by a
fieldbus. The clusters must be interconnected using cheap,
off-the-shelf networks and new protocols must be designed
to allow efficient, real-time communication among the
clusters. This type of networking is needed in aircraft,
ships, and factories to allow various semi-independent
embedded controllers (some of which may be small-
memory while others may not be) to coordinate their
activities.

ACKNOWLEDGMENTS

The authors would like to thank Steven Toeppe and Scott
Ranville of Ford SRL for the comparative evaluation data
for EMERALDS and nine commercial embedded RTOSs.
The work reported in this paper was supported in part by
the US National Science Foundation under Grant MIP-
9203895, and by the US Office of Naval Research under
Grants N00014-94-1-0229 and N00014-99-1-0465. Any opi-
nions, findings, and conclusions or recommendations are
those of the authors and do not necessarily reflect the views
of the funding agencies. An earlier version was presented at
the 17th ACM Symposium on Operating Systems Principles
(SOSP99). This work was conducted while K.M. Zuberi was
at the University of Michigan, Ann Arbor.

REFERENCES

[1] K.G. Shin and P. Ramanathan, ªReal-Time Computing: A New
Discipline of Computer Science and Engineering,º Proc. IEEE,
vol. 82, no. 1, pp. 6±24, Jan. 1994.

[2] L.M. Thompson, ªUsing pSOS+ for Embedded Real-Time Com-
puting,º Proc. Conf. COMPCON, pp. 282±288, 1990.

[3] D. Hildebrand, ªAn Architectural Overview of QNX,º Proc. Usenix
Workshop Micro-Kernels and Other Kernel Architectures, Apr. 1992.

[4] VxWorks Programmer's Guide, 5.1. Wind River Systems, 1993.
[5] K.G. Shin, D.D. Kandlur, D. Kiskis, P. Dodd, H. Rosenberg, and A.

Indiresan, ªA Distributed Real-Time Operating System,º IEEE
Software, pp. 58±68, Sept. 1992.

[6] J. Stankovic and K. Ramamritham, ªThe Spring Kernel: A New
Paradigm for Real-Time Operating Systems,º ACM Operating
Systems Review, vol. 23, no. 3, pp. 54±71, July 1989.

926 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

TABLE 5
Comparison of Overheads for the null() Subroutine

and System Calls

Fig. 16. OS overhead due to interrupts, 250 periodic task switches/s,

and a 4ms clock tick timer.

[7] W.M. Gentleman, ªRealtime Applications: Multiprocessors in
Harmony,º Proc. BUSCON/88 East, pp. 269±278, October 1988.

[8] H. Tokuda, T. Nakajima, and P. Rao, ªReal-Time Mach: Towards a
Predictable Real-Time System,º Proc. USENIX Mach Workshop,
Oct. 1990.

[9] J.G. Ganssle, The Art of Programming Embedded Systems. Academic
Press, 1992.

[10] R.S. Raji, ªSmart Networks for Control,º IEEE Spectrum, vol. 31,
no. 6, pp. 49±55, June 1994.

[11] RTXC User's Manual. Embedded System Products, Inc., 1995.
[12] K.M. Zuberi and K.G. Shin, ªNon-Preemptive Scheduling of

Messages on Controller Area Network for Real-Time Control
Applications,º Proc. Real-Time Technology and Applications Symp.,
pp. 240±249, May 1995.

[13] K.M. Zuberi and K.G. Shin, ªScheduling Messages on Controller
Area Network for Real-Time CIM Applications,º IEEE Trans.
Robotics and Automation, pp. 310±314, Apr. 1997.

[14] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A.
Tevanian, and M. Young, ªMach: A New Kernel Foundation for
UNIX Development,º Proc. Summer Usenix, pp. 93±113, July 1986.

[15] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski, D.
Becker, C. Chambers, and S. Eggers, ªExtensibility, Safety and
Performance in the SPIN Operating System,º Proc. Symp. Operat-
ing Systems Principles, pp. 267±284, 1995.

[16] M.B. Jones, D. Rosu, and M.-C. Rosu, ªCPU Reservations and
Time Constraints: Efficient, Predictable Scheduling of Indepen-
dent Activities,º Proc. Symp. Operating Systems Principles, pp. 198±
211, Oct. 1997.

[17] C.L. Liu and J.W. Layland, ªScheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,º J. ACM, vol. 20,
no. 1, pp. 46±61, Jan. 1973.

[18] Y. Ishikawa, H. Tokuda, and C.W. Mercer, ªAn Object-Oriented
Real-Time Programming Language,º Computer, vol. 25, no. 10,
pp. 66±73, Oct. 1992.

[19] E.W. Dijkstra, ªCooperating Sequential Processes,º Technical
Report EWD-123, Technical Univ., Eindhoven, The Netherlands,
1965.

[20] A.N. Habermann, ªSynchronization of Communicating Pro-
cesses,º Comm. ACM, vol. 15, no. 3, pp. 171±176, Mar. 1972.

[21] C.A.R. Hoare, ªMonitors: An Operating System Structuring
Concept,º Comm. ACM, vol. 17, no. 10, pp. 549±557, Oct. 1974.

[22] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C.
Senft, and R. Zainlinger, ªDistributed Fault-Tolerant Real-Time
Systems: The MARS Approach,º IEEE Micro, vol. 9, no. 1, pp. 25±
40, Feb. 1989.

[23] K.M. Zuberi and K.G. Shin, ªAn Efficient End-Host Protocol
Processing Architecture for Real-Time Audio and Video Traffic,º
Proc. Network and Operating System Support for Digital Audio and
Video (NOSSDAV), July 1998.

[24] K.M. Zuberi and K.G. Shin, ªEMERALDS: A Microkernel for
Embedded Real-Time Systems,º Proc. Real-Time Technology and
Applications Symp., pp. 241±249, June 1996.

[25] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R. Ruland, and G.
Szalay, ªTwo Years of Experience with a �-Kernel Based OS,º
Operating Systems Review, pp. 51±62, Apr. 1991.

[26] R. Draves, B. Bershad, R. Rashid, and R. Dean, ªUsing Continua-
tions to Implement Thread Management and Communication in
Operating Systems,º Proc. Symp. Operating Systems Principles,
pp. 122±136, 1991.

[27] T. Anderson, B. Bershad, E. Lazowska, and H. Levy, ªScheduler
Activations: Effective Kernel Support for the User-Level Manage-
ment of Parallelism,º Proc. Symp. Operating Systems Principles,
pp. 95±109, 1991.

[28] J. Liedtke, ªImproving IPC by Kernel Design,º Proc. Symp.
Operating Systems Principles, pp. 175±188, 1993.

[29] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black,
W. Bolosky, and J. Chew, ªMachine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor Archi-
tectures,º IEEE Trans. Computers, vol. 37, no. 8, pp. 896±908, Aug.
1988.

[30] J. Mellor-Crummey and M. Scott, ªAlgorithms for Scalable
Synchronization on Shared-Memory Multiprocessors,º ACM
Trans. Computer Systems, vol. 9, no. 1, pp. 21±65, Feb. 1991.

[31] C.-D. Wang, H. Takada, and K. Sakamura, ªPriority Inheritance
Spin Locks for Multiprocessor Real-Time Systems,º Proc. Second
Int'l Symp. Parallel Architectures, Algorithms, and Networks, pp. 70±
76, 1996.

[32] C.M. Krishna and K.G. Shin, Real-Time Systems, McGraw-Hill,
1997.

[33] K. Ramamritham and J.A. Stankovic, ªScheduling Algorithms and
Operating Systems Support for Real-Time Systems,º Proc. IEEE,
vol. 82, no. 1, pp. 55±67, Jan. 1994.

[34] J. Lehoczky, L. Sha, and Y. Ding, ªThe Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,º
Proc. Real-Time Systems Symp., 1989.

[35] J.Y.-T. Leung and J. Whitehead, ªOn the Complexity of Fixed-
Priority Scheduling of Periodic, Real-Time Tasks,º Performance
Evaluation, vol. 2, no. 4, pp. 237±250, Dec. 1982.

[36] H. Takada and K. Sakamura, ªExperimental Implementations of
Priority Inheritance Semaphore on ITRON-Specification Kernel,º
Proc. 11th TRON Project Int'l Symp., pp. 106±113, 1994.

[37] H. Tokuda and T. Nakajima, ªEvaluation of Real-Time Synchro-
nization in Real-Time Mach,º Proc. Second Mach Symp., pp. 213±
221, 1991.

[38] L. Sha, R. Rajkumar, and J. Lehoczky, ªPriority Inheritance
Protocols: An Approach to Real-Time Synchronization,º IEEE
Trans. Computers, vol. 39, no. 3, pp. 1175±1198, Mar. 1990.

[39] K.M. Zuberi and K.G. Shin, ªAn Efficient Semaphore Implemen-
tation Scheme for Small-Memory Embedded Systems,º Proc. IEEE
Real-Time Technology and Applications Symp., 1997.

[40] S. Poledna, T. Mocken, and J. Schiemann, ªERCOS: An Operating
System for Automotive Applications,º Soc. Automotive Eng. Int'l
Congress and Exposition, pp. 55±65, Feb. 1996.

[41] H. Kopetz and J. Reisinger, ªThe Nonblocking Write Protocol
NBW: A Solution to a Real-Time Synchronization Problem,º Proc.
Real-Time Systems Symp., pp. 131±137, 1993.

[42] H. Levy and R. Eckhouse Jr., Computer Programming and
Architecture: The VAX-11. Digital Press, 1980.

[43] D. Soloman, Inside Windows NT. Microsoft Publishing, 1998.
[44] M68040 User's Manual. Motorola Inc., 1992.
[45] MC68332 User's Manual. Motorola Inc., 1993.
[46] D. Katcher, H. Arakawa, and J. Strosnider, ªEngineering and

Analysis of Fixed Priority Schedulers,º IEEE Trans. Software Eng.,
vol. 19, no. 9, pp. 920±934, Sept. 1993.

ZUBERI AND SHIN: EMERALDS: A SMALL-MEMORY REAL-TIME MICROKERNEL 927

Khawar M. Zuberi received the BSEE degree in electrical engineering
from the University of Florida in 1993 and the MSE and PhD degrees in
computer science and engineering from the University of Michigan, Ann
Arbor, in 1995 and 1998, respectively. At the University of Michigan, he
was a member of the Real-Time Computing Lab, where he worked on
operating systems and networking support for embedded real-time
systems. Since 1998, he has been working in the Windows Networking
and Communications Department at Microsoft Corporation, where he
develops middleware for system area networks. He is a member of the
IEEE Computer Society.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Seoul, Korea, in 1970 and both the
MS and PhD degrees in electrical engineering
from Cornell University, Ithaca, New York, in
1976 and 1978, respectively. He is a professor
and the director of the Real-Time Computing
Laboratory, Department of Electrical Engineer-
ing and Computer Science, The University of
Michigan, Ann Arbor. He has supervised the

completion of 42 PhD theses and authored/coauthored more than 600
technical papers and numerous book chapters in the areas of distributed
real-time computing and control, computer networking, fault-tolerant
computing, and intelligent manufacturing. He has coauthored (jointly
with C.M. Krishna) a textbook Real-Time Systems (McGraw Hill 1997).
In 1987, he received the Outstanding IEEE Transactions on Automatic
Control Paper Award, the Research Excellence Award in 1989, the
Outstanding Achievement Award in 1999, the Service Excellence Award
in 2000 from the University of Michigan, and the Distinguished Faculty
Achievement Award in 2001. In 1985, he founded the Real-Time
Computing Laboratory, where he and his colleagues are investigating
various issues related to real-time and fault-tolerant computing. His
current research focuses on Quality of Service (QoS) sensitive
computing and networking, with emphasis on timeliness and depend-
ability. He has also been applying the basic research results to
telecommunication and multimedia systems, intelligent transportation
systems, embedded systems, and manufacturing applications. From
1978 to 1982, he was on the faculty of Rensselaer Polytechnic Institute,
Troy, New York. He has held visiting positions at the US Airforce Flight
Dynamics Laboratory, AT&T Bell Laboratories, the Computer Science
Division within the Department of Electrical Engineering and Computer
Science at the Univetsity of California at Berkeley, and the International
Computer Science Institute, Berkeley, California, the IBM T.J. Watson
Research Center, and the Software Engineering Institute at Carnegie
Mellon University. He also chaired the Computer Science and
Engineering Division, Electrical engineering and Computer Science
Department, the University of Michigan for three years, beginning in
January 1991. He is an IEEE fellow and member of the Korean
Academy of Engineering and was the general chair of the 2000 IEEE
Real-Time Technlogy and Applications Symposium, the program chair-
man of the 1986 IEEE Real-Time Systems Symposium (RTSS), the
general chairman of the 1987 RTSS, the guest editor of the 1987 August
special issue of IEEE Transactions on Computers on real-time systems,
a program cochair for the 1992 International Conference on Parallel
Processing, and he served on numerous technical program committees.
He also chaired the IEEE Technical Committee on Real-Time Systems
during 1991-1993, was a distinguished visitor of the Computer Society of
the IEEE, an editor of IEEE Transactions on Parallel and Distributed
Computing, and an area editor of the International Journal of Time-
Critical Computing Systems and Computer Networks.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

928 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 10, OCTOBER 2001

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

