182

Design and Implementation of
Efficient Message Scheduling
for Controller Area Network

Khawar M. Zuberi, Member, IEEE Computer Society,
and Kang G. Shin, Fellow, IEEE

Abstract—The Controller Area Network (CAN) is being widely used in real-time
control applications such as automobiles, aircraft, and automated factories. In this
paper, we present the mixed traffic scheduler (MTS) for CAN, which provides
higher schedulability than fixed-priority schemes like deadline-monotonic (DM)
while incurring less overhead than dynamic earliest-deadline (ED) scheduling. We
also describe how MTS can be implemented on existing CAN network adapters
such as Motorola’s TouCAN. In previous work [1], [2], we had shown MTS to be far
superior to DM in schedulability performance. In this paper, we present
implementation overhead measurements showing that processing needed to
support MTS consumes only about 5 to 6 percent of CPU time. Considering its
schedulability advantage, this makes MTS ideal for use in control applications.

Index Terms—Distributed real-time systems, Controller Area Network (CAN),
message scheduling, network scheduling implementation, priority inversion.

4

1 INTRODUCTION

DISTRIBUTED real-time systems are being used increasingly in
control applications such as in automobiles, aircraft, robotics, and
process control. These systems consist of multiple computational
nodes, sensors, and actuators interconnected by a LAN [3]. Of the
multiple LAN protocols available for such use (including MAP [4],
TTP [5], etc.), the Controller Area Network (CAN) [6] has gained
wide-spread acceptance in the industry [7].

Control networks must carry both periodic and sporadic real-
time messages, as well as non-real-time messages. All these
messages must be properly scheduled on the network so that
real-time messages meet their deadlines while coexisting with non-
real-time messages (we limit the scope of this paper to scheduling
messages whose characteristics like deadline and period are
known a priori). Previous work regarding scheduling such
messages on CAN includes [8], [9], but they focused on fixed-
priority scheduling. Shin [10] considered earliest-deadline (ED)
scheduling, but did not consider its high overhead, which makes
ED impractical for CAN. In this paper, we present a scheduling
scheme for CAN called the mixed traffic scheduler (MTS), which
increases schedulable utilization and performs better than fixed-
priority schemes while incurring less overhead than ED. This
paper goes beyond the work presented in [1], [2] by removing
some ideal assumptions made in that previous work. We also
describe how MTS can be implemented on existing CAN network
adapters. We address the problem of how to control priority
inversion (low-priority message being transmitted ahead of a
higher-priority one) within CAN network adapters and evaluate
different solutions for this problem.

We measure various execution overheads associated with MTS
by implementing it on a Motorola 68040 processor with the
EMERALDS real-time operating system [11]. EMERALDS is an OS
designed for use in distributed, embedded control applications.
For MTS’s implementation, we use EMERALDS to provide basic

o K.M. Zuberi is with Microsoft Corp., Redmond, WA 98052.

o K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript accepted 13 Sept. 1998.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 107400.

0018-9340/00/$10.00 © 2000 |IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.2, FEBRUARY 2000

SOF | Identifier [DataLen Data CRC Ack| EOF

Fig. 1. Various fields in the CAN data frame.

OS functionality such as interrupt handling and context switching.
Using an emulated CAN network device (another 68040 acting as a
CAN network adapter and connected to the main node through a
VME bus), we present detailed measurements of all execution,
interrupt handling, task scheduling, and context switching over-
heads associated with MTS to show the feasibility of using MTS for
control applications.

In the next section, we give an overview of the CAN protocol.
Section 3 describes the various types of messages in our target
application workload. They include both real-time and non-real-
time messages. Section 4 gives the MTS algorithm. Section 5
discusses issues related to implementation of MTS, focusing on the
priority inversion problem. Section 6 presents implementation
overhead measurements. The paper concludes with Section 7.

2 CONTROLLER AREA NETWORK (CAN)

The CAN specification defines the physical and data link layers
(layers 1 and 2 in the ISO/OSI reference model). Each CAN frame
has seven fields, as shown in Fig. 1, but we are concerned only
with the data length (DL) and the identifier (ID) fields. The DL field
is 4 bits wide and specifies the number of data bytes in the data
field, from 0 to 8. The ID field can be of two lengths: The standard
format is 11-bits, whereas the extended format is 29-bits. It controls
both bus arbitration and message addressing, but we are interested
only in the former, which is described next.

CAN makes use of a wired-OR (or wired-AND) bus to connect
all the nodes (in the rest of the paper, we assume a wired-OR bus).
When a processor has to send a message, it first calculates the
message ID, which may be based on the priority of the message.
The ID for each message must be unique. Processors pass their
messages and associated IDs to their bus interface chips. The chips
wait until the bus is idle, then write the ID on the bus, one bit at a
time, starting with the most significant bit. After writing each bit,
each chip waits long enough for signals to propagate along the bus,
then it reads the bus. If a chip had written a 0 but reads a 1, it
means that another node has a message with a higher priority. If
s0, this node drops out of contention. In the end, there is only one
winner and it can use the bus. This can be thought of as a
distributed comparison of the IDs of all the messages on different
nodes and the message with the highest ID is selected for
transmission.

3 WORKLOAD CHARACTERISTICS

In control applications, some devices exchange periodic messages
(such as motors and drives used in industrial applications), while
others are more event-driven (such as smart sensors). Moreover,
operators may need status information from various devices, thus
generating messages which do not have timing constraints. So, we
classify messages into three broad categories: 1) hard-deadline
periodic messages, 2) hard-deadline sporadic messages, and 3)
non-real-time (best-effort) aperiodic messages. A periodic message
has multiple invocations, each one period apart (note that,
whenever we use the term message stream to refer to a periodic,
we are referring to all invocations of that periodic). Sporadic
messages have a minimum interarrival time (MIT) between
invocations, while non-real-time messages are completely aper-
iodic, but they do not have deadline constraints.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.2, FEBRUARY 2000

1 deadline DM priority
(@)

0]1 DM priority
(b)

0|0 fixed priority

(©

Fig. 2. Structure of the ID for MTS. Parts (a) through (c) show the IDs for high-
speed, low-speed, and non-real-time messages, respectively.

3.1 Low-Speed vs. High-Speed Real-Time Messages

Messages in a real-time control system can have a wide range of
deadlines. For example, messages from a controller to a high-speed
drive may have deadlines of few hundred microseconds. On the
other hand, messages from devices such as temperature sensors
can have deadlines of a few seconds because the physical property
being measured (temperature) changes very slowly. Thus, we
further classify real-time messages into two classes: high-speed and
low-speed, depending on the tightness of their deadlines. As will be
clear in Section 4, the reason for this classification has to do with
the number of bits required to represent the deadlines of messages.

Note that “high-speed” is a relative term—relative to the
tightest deadline Dy in the workload. All messages with the same
order of magnitude deadlines as Dy (or within one order of
magnitude difference from D) can be considered high-speed
messages. All others will be low-speed.

4 THE MIXED TRAFFIC SCHEDULER

Fixed-priority deadline monotonic (DM) scheduling [12] can be
used for CAN by setting each message’s ID to its unique priority as
in [8], [9]. However, in general, fixed-priority schemes give lower
utilization than other schemes such as nonpreemptive earliest-
deadline' ED). This is why several researchers have used ED for
network scheduling [15], [16], [17]. This motivates us to use ED to
schedule messages on CAN, meaning that the message ID must
contain the message deadline (actually, the logical inverse of the
deadline for a wired-OR bus). But, as time progresses, absolute
deadline values get larger and larger and, eventually, they will
overflow the CAN ID. This problem can be solved by using some
type of a wrap-around scheme (which we present in Section 4.1),
but, even then, putting the deadline in the ID forces one to use the
extended CAN format with its 29-bit IDs. Compared to the
standard CAN format with 11-bit IDs, this wastes 20 to 30 percent
bandwidth, negating any benefit obtained by going from fixed-
priority to dynamic-priority scheduling. This makes ED imprac-
tical for CAN.

In this section, we present the MTS scheduler, which combines
ED and fixed-priority scheduling to overcome the problems of ED.

41 Time Epochs

As already mentioned, using deadlines in the ID necessitates
having some type of a wrap-around scheme. We use a simple
scheme which expresses message deadlines relative to a periodi-
cally increasing reference called the start of epoch (SOE). The time
between two consecutive SOEs is called the length of epoch, ¢. Then,
the deadline field for message ¢ will be the logical inverse of

1. Nonpreemptive scheduling under release time constraints is NP-hard
in the strong sense [13]. However, Zhao and Ramamritham [14] showed
that ED performs better than other simple heuristics.

183

end of epoch

! Dmax

Fig. 3. Quantization of deadlines (relative to start of epoch) for m = 3.

d; — SOE = d; — |4|¢, where d; is the absolute deadline of message i
and ¢ is the current time (it is assumed that all nodes have
synchronized clocks [18]).

42 MTS

The idea behind MTS is to use ED for high-speed messages and
DM for low-speed ones. First, we give high-speed messages
priority over low-speed and non-real-time ones by setting the most
significant bit to 1 in the ID for high-speed messages (Fig. 2a). This
protects high-speed messages from all other types of traffic. If the
uniqueness field is to be 5 bits [2] (allowing 32 high-speed
messages) and the priority field is 1 bit, then the remaining 5 bits
are still not enough to encode the deadlines (relative to the latest
SOE). Our solution is to quantize time into regions and encode
deadlines according to which region they fall in. To distinguish
messages whose deadlines fall in the same region, we use the DM-
priority of a message as its uniqueness code. This makes MTS a
hierarchical scheduler. At the top level is ED: If the deadlines of
two messages can be distinguished after quantization, then the one
with the earlier deadline has higher priority. At the lower level is
DM: If messages have deadlines in the same region, they will be
scheduled by their DM priority.

We can calculate length of a region (I,) as I, = %, where
D,yqz is the longest relative deadline of any high-speed message
and m is the width of the deadline field (5 bits in this case). This is
clear from Fig. 3 (shown for m = 3). The worst-case situation
occurs if a message with deadline D,,,, is released just before the
end of epoch so that its absolute deadline lies ¢ + D,,,, beyond the
current SOE. The deadline field must encode this time span using
m bits leading to the above expression for I,.

We use DM scheduling for low-speed messages and fixed-
priority scheduling for non-real-time ones, with the latter being
assigned priorities arbitrarily. The IDs for these messages are
shown in Figs. 2b and 2c, respectively. The second-most
significant bit gives low-speed messages higher priority than
non-real-time ones.

This scheme allows up to 32 different high-speed messages
(periodic or sporadic), 512 low-speed messages (periodic or
sporadic), and 480 non-real-time messages>—which should be
sufficient for most applications.

4.3 ID Update Protocol

The IDs of all high-speed messages have to be updated at every
SOE. Note that if ID updates on different nodes do not coincide
(almost) exactly, priority inversion can occur if the ID of a low-
priority message is updated before that of a high-priority one.
Then, for a small window of time, the low-priority message will
have a higher priority ID than the high-priority message. To avoid
this problem, we must use an agreement protocol to trigger the ID
update on all nodes. The CAN clock synchronization algorithm
[18] synchronizes clocks to within 20us. A simple agreement
protocol can be that one node is designated to broadcast a message
on the CAN bus. This message will be received by all nodes at the
same time (because of the nature of the CAN bus) and, upon

2. CAN disallows consecutive zeros in the six most significant bits of the
ID. This means that 32 codes for non-real-time messages are illegal, which
leaves 512 — 32 = 480 legal codes.

184

receiving this special message, all nodes will update the IDs of
their local messages. But, this protocol has two disadvantages. First
of all, too much CAN bandwidth is wasted transmitting the extra
message every { seconds. Moreover, a separate protocol must be
run to elect a new leader in case the old leader fails. Instead, we use
the following protocol, which is not only robust, but also consumes
less bandwidth. Each node has a periodic timer which fires every
£ seconds, at which time the node takes the following actions:

1. Set a flag to inform the CAN device driver that the ID
update protocol has begun.

2. Configure the CAN network adapter (NA) to receive all
messages (i.e., enter promiscuous mode by adjusting the
receive filter).

3. Increment the data length (DL) field of the highest-priority
ready message on that node.

The first incremented-DL message to be sent on the CAN bus
will serve as a signal to all nodes to update the IDs of their
messages. If the original DL of the message is less than 8, then
incrementing the DL will result in transmission of one extra data
byte (device drivers on receiving nodes strip this extra byte before
forwarding the message to the application as described later). If the
DL is already 8, CAN adapters allow the 4-bit DL field to be set to 9
(or higher), but only 8 data bytes are transmitted.

Now, each node starts receiving all messages transmitted on the
CAN bus. The device driver on each node has a table listing the
IDs of all message streams in the system along with their data
lengths. As messages arrive, the device driver compares their DL
field to the values in this table until it finds a message with an
incremented DL field. All nodes receive this message at the same
time and they all take the following actions:

1. Restore the receive filter to reenable message filtering in
the NA.

2. If the local message whose DL field was incremented by
the periodic timer has not been transmitted yet, then
decrement the DL field back to its original value.

3. Update message IDs to reflect the new SOE.

Each node receives the incremented-DL message at the same
time, so the ID update on each node starts at the same time. After
the first incremented-DL message completes, the next-highest-
priority message begins transmission. As long as all nodes
complete their ID updates before this message completes (a
window of at least 55us since this message contains at least one
data byte), all messages will have updated IDs by the time the next
bus arbitration round begins and no priority inversion will occur.
In case one or more nodes are slow and cannot complete the ID
update within this window of time, all nodes can be configured to
do the update while the nth message after the first incremented-DL
message is in transmission, where n is a small number large
enough to allow the slowest node to calculate all new IDs, and then
just write these to the NA while the nth message is in transmission.

This protocol incurs a network overhead of 16 bits every
¢ seconds (compared to 47 bits per epoch for the simple leader-
based agreement protocol). Reception of the first incremented-DL
message causes the device drivers to set the DL fields of their local
messages back to their original values, but, before this can
complete, the next transmission (also with an incremented DL
field) has already started. These two messages have 8 extra data
bits each (worst-case), which leads to the 16-bit overhead. On the
CPU side, the periodic process incurs some overhead. Moreover,
while the network adapter’s filter is disabled, the device drivers
must process two messages which may or may not be meant for
that node. The device drivers must perform filtering in software
and discard messages not meant for their node. Measurements of
these various CPU overheads are in Section 6.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.2, FEBRUARY 2000

5 IMPLEMENTATION

In this section, we present schemes to implement MTS on
Motorola’s TouCAN module [19] which features 16 message
buffers and internal arbitration between transmission buffers
based on message ID. As such, TouCAN is representative of
modern CAN NAs.

In the following, we present a brief description of TouCAN, the
problems faced when implementing real-time scheduling on CAN,
and our solution to these problems for MTS.

5.1 Motorola TouCAN

TouCAN is a module developed by Motorola for on-chip inclusion
in various microcontrollers. TouCAN lies on the same chip as the
CPU and is interconnected to the CPU (and other on-chip
modules) through Motorola’s intermodule bus. Motorola is
currently marketing the MC68376 [19] microcontroller which
incorporates TouCAN with a CPU32 core.

TouCAN has 16 message buffers. Each buffer can be configured
to either transmit or receive messages. When more than one buffer
has valid messages waiting for transmission, TouCAN picks the
buffer with the highest-priority ID and contends for the bus with
this ID. In this respect, TouCAN differs from older CAN network
adapters, such as the Intel 82527 [20], which arbitrate between
buffers using a fixed-priority, daisy-chain scheme which forces the
host CPU to sort messages according to priority before placing
them in the network adapter buffers. This was one of the main
reasons we picked TouCAN for implementing MTS.

At this time, TouCAN is available only with the MC68376
microcontroller. To implement MTS within EMERALDS on
TouCAN, we would first have to port EMERALDS to the
MC68376 microcontroller. To avoid this, we instead used device
emulation [21], under which a general-purpose microcontroller is
made to emulate a network adapter. This emulator interfaces to the
host CPU through an I/O bus. The emulator presents the host CPU
the same interface that the actual network adapter would. The
emulator receives commands from the host CPU, performs the
corresponding actions, and produces the same results that the
actual network adapter would, thus providing accurate measure-
ments of various overheads such as interrupt handling and
message queuing on host CPU. We use a 68040 board to emulate
the TouCAN module and connect it to the host CPU (another
68040) through a VME bus.

5.2 MTS on CAN

In implementing MTS on CAN, our goal is to minimize the average
overhead suffered by the host node for transmitting a message.
This overhead has the following components:

1. Queuing/buffering messages in software if network
adapter buffers are unavailable.

2. Transferring messages to network adapter.

3. Handling interrupts related to message transmission.

In CAN, priority inversion can be unbounded. If the adapter
buffers contain low-priority messages, these messages will not
be sent as long as there are higher-priority messages anywhere
else in the network. Consequently, a high-priority message can
stay blocked in software for an indeterminate period of time,
causing it to miss its deadline. Because of this priority
inversion problem, any network scheduling implementation
for CAN (regardless of which scheduling policy—DM or
MTS—is being implemented) has to ensure that adapter buffers
always contain the highest-priority messages and only lower-
priority messages are queued in software.

Suppose B buffers are allocated for message transmission
(usually, B is about two-thirds of the total number of buffers; see
Section 6). If the total number of outgoing message streams is B or

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.2, FEBRUARY 2000

185

TABLE 1
Summary of Overheads for MTS'’s Implementation on TouCAN
Message type | Overhead
Not queued Calculate ID + copy to NA
Queued Calculate ID + insert in priority queue + copy to NA + preempt +
interrupt/(Q — 1)

TABLE 2

CPU Overheads for Various Operations Involved in Implementing MTS
Operation Overhead (us)
Calculate ID (high-speed messages) 3.0
Insert in priority queue (including copying to device driver memory) | 6.3 + 1.55/9
Transfer message to NA (8 data bytes) 7.8
Preempt message 7.8
Interrupt handling and dequeuing of transmitted messages 424
Miscellaneous (parameter passing, etc.) 6.0

less, then MTS’s implementation is straightforward: Assign one
buffer to each stream. Whenever the CAN device driver receives a
message for transmission, it simply copies that message to the
buffer reserved for that stream. In this case, no buffering is needed
within the device driver, which also means that there is no need for
the CAN adapter to generate any interrupts upon completion of
message transmission’ and this leads to the lowest-possible host
CPU overhead.

When number of message streams exceeds B, some messages
have to be buffered in software. To reduce host CPU overhead, we
want to buffer the fewest possible messages while avoiding
priority inversion. Just as MTS treats low-speed and high-speed
messages differently for scheduling purposes, we treat these
messages differently for implementation purposes as well. Our
goal is to keep the overhead for frequent messages (those
belonging to high-speed periodic streams) as low as possible to
get a low average per-message overhead. In our implementation, if
the number of periodic high-speed message streams Ny, is less
than B, then we reserve Ny, buffers for high-speed periodic
streams and treat them the same as before (no buffering in
software).

The remaining L = B — Np, buffers are used for high-speed
sporadic, low-speed, and non-real-time messages. As these
messages arrive at the device driver for transmission, they are
inserted into a priority-sorted queue. To avoid priority inversion,
the device driver must ensure that the L buffers always contain the
L messages at the head of the queue. So, if a newly arrived
message has priority higher than the lowest-priority message in
the buffer, it “preempts” that message by overwriting it. This
preemption increases CPU overhead, but is necessary to avoid
priority inversion. The preempted message stays in the device
driver queue and is eventually transmitted according to its
priority.

Among these L buffers, the buffer containing the I + 1th lowest
priority message is configured to trigger an interrupt upon
message transmission (I is defined later). This interrupt is used
to refill the buffers with queued messages. I must be large enough

3. The CAN adapter must be programmed to generate interrupts if
messages are queued in software waiting for adapter buffers to become
available, which is not the case here.

to ensure that the bus does not become idle while the interrupt is
handled and buffers are refilled. Usually, an I of 1 or 2 is enough
(which can keep the bus busy for 47-94 us minimum). Note that
this puts a restriction on L that it must be greater than /. Making L
less than or equal to I can lead to the CAN bus becoming idle
while the ISR executes, but makes more buffers available for high-
speed periodic messages. This can be useful if low-speed messages
make up only a small portion of the workload and high-speed
sporadic messages are either nonexistent or very few.

If Ny, > B, then we must queue even high-speed periodic
messages in software. Then, we have a single priority-sorted queue
for all outgoing messages and all B buffers are filled from this
queue.

5.2.1 Overheads

For streams with dedicated buffers, the CPU overhead is just the
calculation of the message ID and transferring the message data
and ID to the network adapter. Note that message data can be
copied directly from user space to the network adapter to keep
overhead to a minimum.

For messages which are queued in software, there is an extra
overhead of inserting the message in the queue (including copying
the 8 or fewer bytes of message data from user space to device
driver space before inserting in the queue), plus the overhead for
handling interrupts generated upon message transmission. This
interrupt overhead is incurred once every () — I message transmis-
sions, where @ is the number of buffers being filled from the queue
(Q can be B or L, depending on whether high-speed periodic
messages are buffered or not). Also, each message will potentially
have to preempt one other message. The preempted message had
already been copied to the network adapter once and now it will
have to be copied again, so the preemption overhead is equivalent
to the overhead for transferring the message to the network
adapter. Table 1 summarizes the overheads for various types of
messages. Measurements of these overheads are in Section 6.

Note that DM scheduling also incurs similar overheads. The
only difference is that the ID of message streams under DM is
fixed, so a new ID does not have to be calculated each time. Other
than that, implementing DM on TouCAN is no different than
implementing MTS.

186

TABLE 3
CPU Overheads for Various Operations Involved
in Updating Message IDs

Operation Overhead (us)
68.0

Device driver interrupt (message arrival) | 40.4

Read message from NA (8 data bytes) 7.8

Software filtering and DL lookup 3.0

1D update

Periodic task

2.8 per message

6 RESULTS

Schedulability of MTS as compared to DM and ED has been
evaluated and published in [1], [2]. Here, we present a measure-
ment of various MTS implementation overheads and their impact
on MTS schedulability.

The overhead measurements for implementation of MTS on a
25MHz Motorola 68040 (no cache) with the EMERALDS RTOS are
in Table 2. From this data, we see that high-speed messages with
dedicated network adapter buffers incur an overhead of

ID calculation + transfer to NA + misc. = 16.8s/msg.

If high-speed periodic messages are queued, then average per-
message overhead depends on the number of buffers used for
transmission (Q). TouCAN has 16 buffers. Of these, 5-6 are usually
used for message reception and their IDs are configured to receive
the various message streams needed by the node. This leaves about
10 buffers for message transmission. Then, under worst-case
scenario, message transmission incurs an average overhead
(assuming [= 2):

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.2, FEBRUARY 2000

where the worst-case queu length [is the total number of message
streams using that queue. Low-speed and non-real-time messages
have fixed IDs, so they incur an overhead of 33.2 + 1.55lgus/msg if
all low-speed and high-speed messages share the same queue.

If high-speed messages are using dedicated buffers, then Q — I
is smaller for low-speed messages. Assuming only three buffers
are available and I =2, then low-speed and non-real-time
messages incur overheads of 70.3 + 1.55lpus/msg, while high-
speed sporadic messages have overheads of 73.3 + 1.55[gpus/msg.

From these numbers, we see that if a certain node has seven
high-speed periodic streams, one high-speed sporadic stream, 10
streams of low-speed and non-real-time messages, and if the high-
speed periodic messages make up 90 percent of the outgoing traffic
while @ — I = 1 for high-speed sporadic/low-speed /non-real-time
messages, then average per-message overhead comes to
(16.8)(0.9) + (70.3 + 1.55(11))0.1 = 23.9p1/msg. Overhead is signif-
icantly higher if the number of high-speed periodic streams is large
enough that high-speed messages have to be queued. In that case,
per-message overhead can be twice as much as the overhead when
high-speed periodic streams have dedicated buffers. Fortunately,
real-time control applications do not have more than 10-15 tasks
per node (the well-known avionics task workload [22],
[23]—which is accepted as typifying real-time control applications
—is an example). Not all tasks send internode messages and those
that do typically do not send more than one to two messages per
task. This indicates that, for most applications, dedicated buffers
should be available for high-speed message streams, resulting in a
low per-message overhead in the 20-25us range.

We used a simple linked list to sort messages in the priority
queue. This works well for a small number of messages (5-10) that
typically need to be in the queue. For a larger number of messages,
a sorted heap will give lower overhead.

Note that these overheads are applicable to DM as well. The
only difference is that, under DM, the ID does not have to be
calculated, so per-message overhead will be 3us less than for MTS.

. . interrupt
ID calculation + queuing + preempt + transfer to NA+ -1 6.1 ID Readjustment at End of Epoch
“Fmisc. = 36.2 + 1.55lgys/msg, Table 3 lists the CPU overheads.inc.urred dgring the ID update
protocol. Overhead for the periodic task includes all context
100.0 ——
A TR
<9 80.0 S A
s A
L] X
& Q
= N
4 A
& 600 A
2 5
=
E
& 400 |
=
e @ @ Sporadics=2, /=2ms
S 200 B Sporadics=2, i=4ms
=] A A Sporadics=6, I=2ms
x x Sporadics=6, I=4ms ‘
0.0 ‘ ‘ 4
50.0 60.0 70.0 80.0 90.0 100.0
Utilization (%)

Fig. 4. Impact of changing ¢ on MTS schedulability.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.2, FEBRUARY 2000

switching and CPU scheduling overheads. One context switch
occurs when the task wakes up and another when the task blocks.
Both of these are included in the overhead measurements.

During each ID update, the device driver receives two messages
(each incurring an overhead of 40.4 + 7.8 + 3.0 = 51.2us, including
all context switching overheads). After receiving the first message,
IDs of high-speed messages are updated. Assuming IDs of
five messages need to be updated, the total overhead per epoch
becomes 184.4us. If ¢ = 2ms, the ID update takes up about 9 percent
of CPU time. This motivates us to increase ¢.

Increasing ¢ increases the level of quantization of deadlines,
which results in reduced schedulability for high-speed messages.
But, on the other hand, the network overhead associated with ID
updates (16 bits per epoch) decreases, leading to increased
schedulability. For ¢ = 2ms, 16 extra bits per epoch consume only
0.8 percent of the network bandwidth for a 1Mb/s bus, but their
impact on network schedulability (due to their blocking effect) is
much higher. Our measurements showed that, with this extra
overhead, about two to three percentage points fewer workloads
are feasible under MTS (for the same workload utilization) than
without this overhead. As such, increasing £ can result in a sizeable
improvement in schedulability due to reduced ID update over-
head, which can offset the loss in schedulability due to coarser
quantization.

Fig. 4 shows the effect of increasing ¢ on schedulability. For
each data point, we generate 1,000 workloads and measure the
percentage found feasible under MTS using the schedulability
conditions in [2]. Each workload has with 8-15 high-speed periodic
streams, two or six high-speed sporadic streams, 25 low-speed
periodic streams, and four low-speed sporadic streams. Deadlines
of high-speed messages are set randomly in the 0.5-2ms range,
while those for low-speed messages are set randomly between 2-
100ms. Periods of periodic messages are calculated by adding a
small random value to the deadline, while MIT of sporadic streams
is set to 2s (for both low-speed and high-speed sporadic streams).
Different data points are obtained by varying the number of high-
speed periodic streams from eight to 15, which leads to a variation
in workload utilization roughly in the 50 to 100 percent range. All
results include the overhead resulting from 16 extra bits per epoch
for ID updates.

This figure shows that, when /¢ is doubled from 2ms to 4ms,
network schedulability is actually improved slightly when two
high-speed sporadic streams are in the workload. But, when six
sporadic streams are used, loss in schedulability from coarser
quantization is more than the gain from reduced ID update
overhead, so that one to two percentage points fewer workloads
are feasible. These results show that for light-to-moderate high-
speed sporadic loads, increasing ¢ to 4ms continues to give good
performance and, even for heavy high-speed sporadic loads,
¢ = 4ms results in only a slight degradation in performance.

If ¢ is increased to 3ms, then the ID update CPU overhead
reduces to about 6 percent of CPU time, whereas, for ¢ = 4ms, it
becomes 4.6 percent of CPU time.

7 CONCLUSION

The CAN standard message frame format has an 11-bit ID field. If
fixed-priority scheduling (such as DM) is used for CAN, some of
these bits go unused. The idea behind MTS is to use these extra bits
to enhance network schedulability. MTS places a quantized form
of the message deadline in these extra bits while using the DM-
priority of messages in the remaining bits. This enhances
schedulability of the most frequent messages in the system
(high-speed messages) so that MTS is able to feasibly schedule
more workloads than DM.

187

Since message IDs are based on deadlines, they must be
periodically updated. We presented a protocol to perform this
update without any priority inversion. This protocol consumes
about 5 to 6 percent of CPU time, but, considering the large
improvements in network schedulability that MTS displays over
DM, this extra overhead is justified.

We also presented a scheme to implement MTS on the TouCAN
network adapter, which is representative of modern CAN network
adapters. The biggest challenge in implementing CAN scheduling
(be it MTS or DM) is controlling priority inversion within the
network adapter. We showed that, because of CAN'’s character-
istics (short message size), preemption of a message in the adapter
by a newly arrived, higher-priority outgoing message is an
effective method for avoiding priority inversion.

A future avenue of research can be to study message reception
issues for CAN to try to reduce the average per-message reception
overhead. Unlike message transmission, message reception does
not depend on which network scheduling policy (DM or MTS) is
used. Message reception overheads can be reduced by optimizing
interrupt handling, using polling (instead of interrupts) to detect
message arrival, or using a combination of interrupts and polling.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by the U.S.
National Science Foundation under Grants MIP-9203895 and
DDM-9313222 and by the U.S. Office of Naval Research under
Grant N00014-94-1-0229. Any opinions, findings, and conclusions
or recommendations are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] KM. Zuberi and K.G. Shin, “Non-Preemptive Scheduling of Messages on
Controller Area Network for Real-Time Control Applications,” Proc. Real-
Time Technology and Applications Symp., pp. 240-249, May 1995.

[2] KM. Zuberi and K.G. Shin, “Scheduling Messages on Controller Area
Network for Real-Time CIM Applications,” IEEE Trans. Robotics and
Automation, vol. 13, no. 2, pp. 310-314, Apr. 1997.

[3] RS. Raji, “Smart Networks for Control,” IEEE Spectrum, vol. 31, no. 6,
pp. 49-55, June 1994.

[4] Manufacturing Automation Protocol (MAP) 3. 0 Implementation Release, MAP /
TOP Users Group, 1987.

[S] H. Kopetz and G. Grunsteidl, “TTP—A Protocol for Fault-Tolerant Real-
Time Systems,” Computer, vol. 27, no. 1, pp. 14-23, Jan. 1994.

[6] Road Vehicles—Interchange of Digital Information—Controller Area Network
(CAN) for High-Speed Communication, 1ISO 11898, 1993.

[71 H. Zeltwanger, “An Inside Look at the Fundamentals of CAN,” Control
Eng., vol. 42, no. 1, pp. 81-87, Jan. 1995.

[8] KW. Tindell, H. Hansson, and A.J. Wellings, “Analyzing Real-Time
Communications: Controller Area Network (CAN),” Proc. Real-Time
Systems Symp., pp. 259-263, Dec. 1994.

[91 K. Tindell, A. Burns, and A.J. Wellings, “Calculating Controller Area
Network (CAN) Message Response Times,” Control Eng. Practice, vol. 3,
no. 8, pp. 1,163-1,169, 1995.

[10] K.G. Shin, “Real-Time Communications in a Computer-Controlled Work-
cell,” IEEE Trans. Robotics and Automation, vol. 7, no. 1, pp. 105-113, Feb.
1991.

[11] KM. Zuberi and K.G. Shin, “EMERALDS: A Microkernel for Embedded
Real-Time Systems,” Proc. Real-Time Technology and Applications Symp.,
pp- 241-249, June 1996.

[12] J.Y.-T. Leung and J. Whitehead, “On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks,” Performance Evaluation, vol. 2,
no. 4, pp. 237-250, Dec. 1982.

[13] K. Jeffay, D.F. Stanat, and C.U. Martel, “On Non-Preemptive Scheduling of
Periodic and Sporadic Tasks,” Proc. Real-Time Systems Symp., pp. 129-139,
1991.

[14] W. Zhao and K. Ramamritham, “Simple and Integrated Heuristic
Algorithms for Scheduling Tasks with Time and Resource Constraints,”
J. Systems and Software, vol. 7, pp. 195-205, 1987.

[15] D. Ferrari and D. Verma, “A Scheme for Real-Time Channel Establishment
in Wide-Area Networks,” IEEE |. Selected Areas Comm., vol. 8, no. 3, pp. 368-
379, Apr. 1990.

[16] D.D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communication in
Multi-Hop Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 5,
no. 10, pp. 1,044-1,056, Oct. 1994.

188

(17
(18]
(19]
[20]
(21]

[22]

(23]

Q. Zheng and K.G. Shin, “On the Ability of Establishing Real-Time
Channels in Point-to-Point Packet-Switched Networks,” IEEE Trans. Comm.,
pp- 1,096-1,105, Feb./Mar./Apr. 1994.

M. Gergeleit and H. Streich, “Implementing a Distributed High-Resolution
Real-Time Clock Using the CAN-Bus,” Proc. First Int’l CAN Conf., Sept.
1994.

MC68336/376 User’s Manual, Motorola Inc., 1996.

82527 Serial Communications Controller Architectural Overview, Intel Corp.,
1993.

A. Indiresan, A. Mehra, and K.G. Shin, “The END: An Emulated Network
Device for Evaluating Adapter Design,” Proc. Third Int’l Workshop
Performability Modeling of Computer and Communication Systems, 1996.

C.D. Locke, D. Vogel, and T. Mesler, “Building a Predictable Avionics
Platform in Ada: A Case Study,” Proc. Real-Time Systems Symp., pp. 181-189,
1991.

C.D. Locke, D. Vogel, L. Lucas, and J. Goodenough, “Generic Avionics
Software Specification,” Technical Report CMU/SEI-90-TR-8, Carnegie
Mellon Univ., 1990.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 2, FEBRUARY 2000

