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Abstract 

This paper presents a new variant of Slow-start, called 
Smooth-start, which provides a smooth transition between 
the exponential and linear growth phases of TCP congestion 
window. Slow-start is known to make an abrupt transition 
between the Slow-start and Congestion-Avoidance phases, 
and hence, often causes multiple packet losses from a win- 
dow of data and retransmission timeouts, which, in turn, re- 
duce effective throughput and result in global synchroniza- 
tion. Smooth-start solves this problem by approaching the 
Slow-start threshold more gradually. Our extensive simula- 
tion results show that Smooth-start can significantly reduce 
both packet losses and trafJic burstiness, thus iniproving the 
pe@orniance of TCP congestion control at the start of a TCP 
connection or after a retransmission timeout. Furthermore, 
Smooth-start is very simple to implement and requires TCP 
modijcations at the sender side only. 

1 Introduction 

The wide use of the TCPOP protocol suite and the explo- 
sive growth of the Internet have made TCP congestion control 
crucial to the performance of the Internet. The current im- 
plementation of TCP congestion control includes the classic 
algorithms of Slow-start and Congestion Avoidance [ 8 ] ,  and 
the augmentation of Fast Retransmit and Fast Recovery al- 
gorithms [ 161. Many popular Internet application protocols, 
such as HTTP, ftp, and telnet, are implemented with TCP. 
Since these protocols generate a large percentage of traffic on 
the Internet, the TCP congestion control should be optimized 
by adapting itself to the common behavior of these protocols. 

The recent Internet traffic measurements [ 171 indicate that 
many TCP flows are short-lived but most of TCP packets in 
flight still belong to long-lived TCP flows. In contrast with 
the long-lived transfers, the characteristics of the short trans- 
fers are that a relatively small number of data packets are de- 
livered and a TCP connection is usually terminated before it 
reaches steady state. The popularity of the Internet has in- 
creased the complexity and size of networks, which makes it 
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take longer to probe appropriate control parameters of a TCP 
connection. Thus, the start-up period of aTCP connection can 
greatly influence the performance of short-lived TCP connec- 
tions. Also, the increasing demand for network resources has 
made bursty packet losses common, which often leads to a 
retransmission timeout. So, the re-start-up period of a TCP 
connection, plus the start-up period, can significantly affect 
the performance of long-lived TCP connections. 

TCP Slow-start is initiated both at the start of a TCP con- 
nection or after a retransmission timeout, and hence greatly 
influences the performance of short-lived and long-lived TCP 
connections. The objective of Slow-start is to enable a TCP 
sender to discover the available network bandwidth by grad- 
ually increasing the amount of data injected into the network 
from an initial window size of one segment, which prevents 
the TCP sender from congesting the network with a large 
burst of data. Unfortunately, the approach that Slow-start uses 
to probe the network bandwidth is counter-intuitive. It driz- 
zles data out at the beginning, and ends with a drastic leap 
to reach the Slow-start threshold. If we fill a pipe or a con- 
tainer with water, the approach we take is opposite to the way 
Slow-start works. 

Due to the way Slow-start probes the network bandwidth, 
i t  suffers from the following two problems. First, since the 
Slow-start algorithm begins with sending one segment, it 
takes many round-trip times to reach the optimal operating 
point, thus resulting in poor utilization of the available band- 
width for short transfers which are small compared to the 
bandwidth-delay product of the path. Second, since a TCP 
sender has no knowledge about the capacity of the available 
resources on the networks and uses default parameters at the 
beginning of transmission, the exponential growth of the con- 
gestion window often misleads the sender to send too many 
packets too quickly, thus causing a severe buffer overflow at 
the bottleneck link. This buffer overflow results in multiple 
packet losses from a window of data, thereby making the TCP 
senders lose their self-clocking. The subsequent retransmis- 
sion timeouts cause a global synchronization [15], [20]. The 
global synchronization lowers the aggregate throughput and 
makes the network traffic load and the queueing delay oscil- 
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late, and hence, the TCP performance degrades substantially. 
To resolve the first problem, a larger initial window and 

TCP Fast-start have been proposed [ 1 1, [3], [ 121 to speed up 
the transfer rate at the very beginning of Slow-start, which 
greatly benefits short TCP transfers. To efficiently recover 
multiple packet losses within a window of data, New-Reno 
and SACK [7], [ IO]  have been proposed to recover from 
bursty packet losses without losing self-clocking. Further- 
more, to remove the second problem of Slow-start, estimated 
initial ssrhresh and safe ssrhresh [7], [ 191 have been proposed 
to replace the default setting of ssthresh. However, the abrupt 
transition of congestion window between exponential growth 
and linear growth phases that causes highly bursty traffic and 
frequent buffer overflows, remains unaddressed. 

Although the estimated initial ssthresh and safe ssrhresh 
can make significant improvements over an arbitrary default 
ssrhresh, there are still several obstacles that make it very dif- 
ficult for the sender to estimate the congestion control param- 
eters in an accurate and timely manner: (1) ACK compres- 
sion [20], which makes the pacing between ACKs not reflect 
the bottleneck delay experienced by the data packets; (2) the 
delay caused by the receiver to generate an ACK for each 
newly-arrived data packet; (3) routes are often asymmetric, 
which can lead to bandwidth and latency asymmetries; (4) 
with a varying number of connections, the remaining network 
capacity along the path also varies over time; ( 5 )  out-of-order 
packet delivery, which occurs frequently; (6) multi-channel 
bottleneck links, which violate the assumption that there is a 
single end-to-end forwarding path. Therefore, i t  is very diffi- 
cult to set up and maintain an appropriate ssrhresh. The im- 
provement of sender-side estimated ssrhresh is thus limited. A 
receiver-side estimation algorithm has been proposed [2], and 
shown to yield better bandwidth estimation than the sender- 
side estimation. However, i t  requires to modify the receiver 
side, which results in a scalability problem in the context of 
millions of clients in the Internet. 

In this paper, we propose a modification of Slow-start, 
called Smooth-start, which is orthogonal to the proposals for 
selecting an appropriate initial ssthresh. The objective of 
Smooth-start is to make a smooth transition between the ex- 
ponential and linear growth phases of the congestion window 
by changing the way the TCP sender uses to reach the Slow- 
start threshold. A separator smsthresh is introduced, which is 
set to s s t h ~ e s h f 2 ~ ,  where d is a non-negative integer. As the 
window size becomes larger than smsrhresh, we slightly re- 
duce the acceleration rate of the congestion window. The in- 
terval [smsrhresh, ssrhresh] is called the Smooth-start period. 
During this period, the window size still increases exponen- 
tially, but at a reduced rate. Therefore, the aggressiveness of 
the congestion window’s growth during the Smooth-start pe- 
riod is reduced, thus reducing packet losses and dampening 
traffic burstiness. Smooth-start brings several benefits, even 
without the ssrhresh estimator or when the estimated ssrhresh 
is inaccurate or out of date. 

0 Smooth-start produces less bursty traffic than Slow-start, 
which reduces the fluctuation of the offered load on the 
networks. 

0 With the help of early congestion signals, the Smooth- 
start reduces the chance of buffer overflow at intermedi- 
ate routers. 

0 The reduced chance for buffer overflow also reduces the 
chance for multiple packet losses within the same win- 
dow. 

0 Without the help of early congestion signals, the 
Smooth-start delays congestion. This delayed conges- 
tion benefits short-lived connections because they often 
finish transmission even before the congestion occurs. 

Moreover, the implementation of Smooth-start is very sim- 
ple and its overhead is very small. Only the sender side 
requires modifications, thus facilitating incremental deploy- 
ment in today’s Internet. Also, due to the inherent conser- 
vativeness of Smooth-start, i t  doesn’t hurt fairness. Since 
Smooth-start is triggered at the beginning of a connection or 
after a retransmission timeout, it benefits not only short-lived 
TCP transfers but also bulk TCP transfers if a congestion oc- 
curs. 

The drawback of Smooth-start is that i t  takes longer for the 
transmission rate to reach the optimal equilibrium operating 
point. However, the number of extra round-trip times intro- 
duced by Smooth-start is small and deployment of a larger 
initial window or TCP Fast-start, which increases the growth 
rate of the congestion window at the first round-trip time of 
Slow-start, compensates the slower growth rate of the conges- 
tion window in the Smooth-start period. 

The remainder of this paper is organized as follows. Re- 
lated work is described in Section 2. Section 3 briefly intro- 
duces Slow-start while Section 4 presents its details as well 
as the possible probe strategies. Section 5 presents the sim- 
ulation results for constant- and changing- load experiments. 
Finally, Section 6 concludes the paper. 

2 Related Work 
A larger initial window [ 11 has been proposed to enhance 

the TCP performance, which raises the initial window size 
from 1 MSS to 4 Kbytes. Evaluation of a larger initial win- 
dow [3] shows that it decreases the transfer time of short- 
lived TCP over dialup channels and the Internet, and also the 
larger initial window does not significantly increase the num- 
ber of retransmitted packets. To speed up Web transfers, TCP 
Fast-start [ 121 reuses cached network parameters in the re- 
cent past to shorten the startup of Slow-start, which greatly 
reduces transfer latency for short bursts. Also, by assigning a 
higher drop priority to Fast-start packets and augmenting the 
TCP loss recovery, TCP Fast-start tries to avoid performance 
degradation when the cached information is stale. 
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An appropriate initial value of ssthresh, which dictates 
when to switch from the Slow-start to Congestion-Avoidance 
phase, is important to the performance of a TCP connection. 
Recognizing this importance, new approaches [7], [ 191 have 
been proposed to replace the default setting of ssthresh with 
an estimated or safe value of ssthresh. The estimation method 
in [7] is similar to the packet-pair technique proposed in [9]. 
In [ 191, a new variant of SPAND (Shared PAssive Network 
Discovery [ 141) has been proposed to extract the current net- 
work condition, and based on the extraction, to derive opti- 
mal initial TCP parameters. However, these sender-side band- 
width estimation schemes are found to be problematic in prac- 
tice. A receiver-side algorithm has been developed to estimate 
the available bandwidth more accurately [2]. 

A modified Slow-start algorithm is introduced in TCP Ve- 
gas [ 5 ] ,  which limits the exponential growth of Slow-start 
to every other round-trip time, instead of every round-trip 
time. However, the problem is that multiple packet losses 
from the same window may happen during the exponential 
growth phase in the modified Slow-start. The key part of 
TCP Vegas [SI is the modified congestion avoidance algo- 
rithm, which allows more efficient network bandwidth uti- 
lization and higher network throughput. 

3 Slow-Start 
In the original TCP specification [ 131, the window used by 

the sender, denoted as wnd, is equal to the receiver advertised 
window rwnd regardless of the load in the network. However, 
in the TCP congestion control schemes initiated by Van Ja- 
cobson [8], the TCP window size wnd is set to the minimum 
of the congestion window and rwnd. The congestion window 
cwnd is adjusted dynamically in response to network conges- 
tion. 

wnd = min(cwnd, rwnd) 

The TCP congestion control algorithm runs in two phases: 
Slow-start and Congestion-Avoidance. When cwnd < 
ssthresh, the algorithm is in the Slow-start phase. Every re- 
ceived acknowledgment increases cwnd by 1. During this 
phase, cwnd exponentially increases at every round-trip time. 

After cwnd reaches ssthresh, the congestion control algo- 
rithm is in the Congestion-Avoidance phase. Every received 
acknowledgment increases cwnd by l lcwnd. During this 
phase, cwnd linearly increases at every round-trip time. 

If the TCP receiver acknowledges each received data 
packet and no congestion occurs during the Slow-start phase, 
the amount of time required for cwnd to reach ssthresh is as 
follows: 

Slow - start T ime  = RTT x log, ssthresh 

The fundamental problem in the Slow-start algorithm is 
that when the congestion window size approaches close to 
the equilibrium of the connection, the increment of the con- 
gestion window size is too large, causing packet loss. At the 

beginning of the transmission, since the network is empty, the 
exponential increase of congestion window size is reasonable 
and also necessary to fill the empty pipeline quickly. How- 
ever, as cwnd gets close to the equilibrium of the connection 
(unfortunately the sender does not know this until packet loss 
occurs), the scheme of one ACK causing one increnient of 
congestion window size becomes too aggressive. 

Nlb RTT 

1 ssthreshll ssthreshl4 ssthreshl2 ssthresh 

Cost (N-I) RTTs Cos1 Only 1 RTT! 

Figure 1. Illustration of the Aggressiveness of 
Slow-start Algorithm 

When the congestion window size is equal to a half of 
ssthresh, it will reach the value of ssthresh at the next round- 
trip time. It could make the congestion window size much 
larger than the actual bandwidth-delay product at the next 
round-trip time if ssthresh is over-estimated, which often 
causes multiple packet losses from a window of data. This 
fact is illustrated in Figure 1. So, intuitively it is reasonable 
to slow down the rate of increasing the congestion window 
size at this point, allowing the sender to spend a little more 
time to reach ssthresh while approaching the actual equilib- 
rium of  the connection. 

4 Smooth-Start 

The proposed variant of Slow-start does not make more 
accurate estimation or dynamically adjust the estimation ac- 
cording to the changes. Rather, i t  is a more graceful rampup 
of congestion window size in the Slow-start phase, so that 
packet losses may be reduced significantly. The rationale be- 
hind Smooth-start is that the default value of ssthresh is often 
larger than the actual capacity of pipe size, and the estimated 
ssrhresh is often over-estimated due to ACK compression. 

4.1 Smooth-start: A New Variant of Slow-start 

As Figure 1 shows, the problem with Slow-start is that 
cwnd takes i RTTs to reach from 1, but only 1 RTT 
to reach from w. This acceleration at the end 
could cause congestion and packet loss if ssthresh is set to de- 
fault or the available bandwidth is over-estimated. Here, we 
assume that cwnd needs n RTTs to reach ssthresh from 1. 

Figure 2 shows the dynamics of the congestion window 
size in Slow-start and Smooth-start if no congestion occurs. 
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In Slow-start, the congestion window size grows exponen- 
tially until it reaches ssrhresh which is set to 32 Kbytes, and 
then grows linearly in the Congestion-Avoidance phase. In 
Smooth-start, the congestion window size also grows expo- 
nentially until it reaches the separator of Smooth-start which 
is set to ssthreshl4 in this case, then grows at a slower ex- 
ponential rate in the Smooth-start period. After reaching 
ssthresh, it linearly enters the Congestion-Avoidance phase. 

40.0 I 1 

.U' 
*.*e'- 

5.0 10.0 15.0 
0.0 
0.0 

Number d Round-Trip Times (RTTs) 

Figure 2. Illustration of Slow-start and Smooth- 
start algorithms 

b The key idea of Smooth-start is to add necessary lag 
points between - and - to dampen the effect 
of exponentially increase. In Smooth-start, there are two sub- 
phases defined by a chosen separator smsthresh (in Figure 2, 
ssthresW4 is chosen as a separator). In the first sub-phase, 
Smooth-start behaves the same way as Slow-start. So, we 
call this period the Slow-start period. In the second sub- 
phase, called the Smooth-start period, cwnd is incremented 
only upon receipt of two or more ACKs. So, at every RTT 
cwnd increases by a factor of 1.5 or less. The number of RTTs 
needed for cwnd to reach from to $!'C"+"I; in the 
Smooth-start period depends on the choice of the increasing 
gradient of the congestion window size. Two types of increas- 
ing gradient are introduced: coarse-grained and fine-grained. 

4.1.1 Coarse-grained Probe 
In the case of the coarse-grained probe, one lag point is in- 
serted between - and ;:?;:;, where a lag point rep- 
resents an additional round-trip interval. In the first R'IT after 
congestion window size reached -, two ACKs trigger 
one increment of cwnd. In the second RTT, three ACKs trig- 
ger one increment of cwnd. Then two RTTs are needed to 
increase cwnd from - to - 2n-(i+,). The detailed calcu- 
lation is shown below. 
At the end of the first RTT in the Smooth-start sub-phase, 

ssthresh 1 ssthresh 3 ssthresh 
2n-i+l C W N D  = y + - x - - - 2 2n-a 
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At the end of the second RTT, 
3 ' ssthresh 1 3 .  ssthresh - ssthresh 

C W N D =  2n-a+1 + 3  x 2n-a+1 2n- (%+I) 
Therefore, two RTTs are required to increase cwnd from 
ssthresh to ssthresh 

-- 

2"-' 2n-(.+l) ' 

4.1.2 Fine-grained Probe 
In the case of the fine-grained probe, two lag points are in- 
serted between - and =. In the first RTT after 
cwnd reached -, three ACKs trigger one increment of 
cwnd. In the second RTT, four ACKs trigger one increment of 
the congestion window size, and in the third RTT, five ACKs 
trigger one increment of the congestion window size. The 
detailed calculation is as follows: 
At the end of the first RlT,  

ssthresh 1 ssthresh 4 .  ssthresh 
C W N D =  r+- x r= 

3 3 x 2n-' 
At the end of the second RlT, 

4 .  ssthresh 1 4 ' ssthresh - 5 .  ssthresh C W N D  = + - X  - 
3 x 2-1 4 3 x 27- 3 x 2n-' 

At the end of the third R'IT, 
5 .  ssthresh 1 5 .  ssthresh - ssthresh 

2n-(2+1) 
C W N D  = + - x  3 x 2n-' 5 3 x 2n-' 
Therefore, a total of three RTTs are required to increase the 

-- 

congestion window size from - to ssthresh 2"-('+1) . 

In general, if we start with k ACKs triggering one incre- 
ment of the congestion window size at the first RTT, and 
(k + i) ACKs triggering one increment of cwnd at the next 
i-th RTT, we need k RTTs to increase cwnd from to 
izt?Ly;. We call k the grain number. The number o f  lag 
points inserted between and 1"-!:'+4: is k - 1. In the 
case of coarse- or fine- grained probe that is studied in the rest 
of the paper, the grain number is set to 2 or 3. 
4.2 Possible Separator 

The general form of the separator of the Slow-start period 
from Smooth-start period is s ~ t h r e s h / 2 ~ ,  where d is called 
the depth number. The two candidates in our consideration 
are: ssthresh12 and ssthresh/4,  in which d is set to 1 and 2, 
respectively. We do not consider d 2 3 because the separator 
gets too small. In the current implementation of TCP Slow- 
start, the default value of ssthresh is set to 64 Kbytes. If we 
choose d = 3, smsthresh becomes 8 Kbytes. Considering 
the proposed initial window size of 4 Kbytes, the Slow-start 
period will only last for one RTT. In many cases (except for 
heavy congestion), this would degrade the performance of a 
TCP connection as it would take too long to reach the optimal 
operating oint. 

The rug for inserting lag points is illustrated in Figure 3 
in the case of the separator equal to ssthreshl2, which con- 
tains two graphs representing the rules for the coarse- and 
fine- grained probes, respectively. 



Separator: rsthresW2 

(1). Number of lag polnt = 1 (Coarse Grain) Lag Point 

(N-.)th RTT (N-JNh RTT (N-Z)lh RTT (N-'''h Nlh RTT 

- - .  I I I 
1 rsthresh/8 ssthresh/4 ssthresW2 3ssmesW4 ssthresh 

Pouring subphase Robing subphase 

- Separator Coarse-grained Probe Fine-grained Probe 
ss thresW2 1 2 
ssthresW4 2 4 

(2). Number of lag point = 2 (Fine Graln) Lag Point Lag Point 
(N-5)lh RTT (N-4Nh RTT (N-3)lh RTT (N-2''h RTT (N-')'h RTT 

.-. I 
1 ssIhreshl8 sslhreshl4 SSIhreShn sslhresh 

Pouring subphase Probing Subphase 

Figure 3. Separator is ssthresM2 

Table 1. Number of lag points inserted by the 
probing strategies 

work topology used is shown in Figure 4, where Si represents 
a sender host and K,  a receiver host. R1 and R2 represent two 
finite-buffer gateways. The links are labeled with their band- 
width and one-way propagation delay. Different connections 
(from Si to K,) share a common bottleneck of 1.5 Mbps. The 
buffer size at each gateway R,  is set to 25 packets in each 
experiment. The type of data traffic in our simulation is FTP. 
The receiver sends an ACK for every data packet received. 
For the convenience of presentation, we assume that all win- 
dow sizes are measured in number of fixed-size packets. For 

' /  \ 

Figure 4. Simulation topology used for Smooth- 
start experiments 

the constant-load experiment, drop-tail gateways with FIFO 
service are used. However, for the changing-load experiment, 
RED gateways [ 6 ] ,  [18] are used instead. Although we have 
modified different versions of TCP like Tahoe, Reno, New- 
Reno and SACK to be equipped with the Smooth-start, only 
the simulation results of TCP Reno are presented here, be- 
cause the key difference among various TCP versions lies in 
their own packet-loss recovery mechanisms. All TCP ver- 
sions use the Slow-start at the start of a connection, and/or 
after a retransmission timeout, and hence they have similar 
behaviors during the Slow-start phase. Another reason is 
that TCP Reno is built on UNIX BSD4.3, which is the most 
widely-used version of TCP. 

In later sections where we show the simulation results, 
Course stands for the coarse-grained probe, and Fine for the 
fine-grained probe. The number 2 or 4 indicates that the cho- 
sen separator is ssthresW2 or ssthresW4, respectively. 

5.2 Constant-Load Experiment with Drop-tail 

In the constant-load experiment, the cross-traffic is con- 
stant and the TCP connection we measured has a fixed share 
of 1 Mbps and 8 buffer units. Thus, the bandwidth-delay 
product of each TCP connection is: 

Gateways 

BWP = 1 Mbpsx2(45+5) ms = 100 Kbits = 12.5 Kbytes 

Since each data packet size is 1024 bytes, the actual 
bandwidth-delay product is approximately 12 packets. The 

5 Evaluation of Smooth-start 
5.1 The Simulation Setup 

We evaluated the Smooth-start algorithm by implementing 
it in the LBNL network simulator ns [ 1 I]. The simulation net- 
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total number of packets that can be in flight is 20 plus the 
number of packets in the buffer of the TCP connection. The 
file size transferred by this TCP connection is 60 Kbytes. 

rwnd is varied to be 18 ,20 ,24 ,36  and 64. Since TCP sets 
ssthresh to be the minimum of the default value and rwnd, 
varying rwnd effectively changes the ratio of ssthresh to the 
actual pipe size. We need to consider five different cases: (1) 
ssrhresh is smaller than the actual pipe size; (2) ssthresh is 
equal to the actual pipe size; (3) ssthresh is larger than the ac- 
tual pipe size; (4) ssthresh is much larger than the actual pipe 
size; (5) ssthresh equals the default setting, which is more 
than three times larger than the actual pipe size. The case 
where TCP window size is much smaller than the actual pipe 
so that no congestion occurs, will be discussed in Section 5.5. 

The packet losses of a TCP connection using the Slow- 
start and Smooth-start are plotted in Figures 5 and 6; Fig- 
ures 5 shows the reduction in packet losses when the separa- 
tor = ssthreshn, while Figure 6 shows the reduction in packet 
losses when the separator = ssthresW4. 
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Figure 5. Separator = ssthresW2 
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...... .... .... 
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Figure 6. Separator = ssthresW4 

Obviously, the Smooth-start significantly reduces packet 
losses in all cases when the separator is ssthresW4 and in 
most cases when the separator is ssthreshn. It is not sur- 
prising to see that if the separator of Smooth-start is chosen 
to be ssthresW2 and the ssthresh is set to the default value', 

'It is three times larger than the actual pipe size. 

the number of packet losses in the Smooth-start is the same 
as that in the Slow-start, because the separator ssthresW2 is 
larger than the actual pipe size. Thus, before cwnd reaches 
ssthresM2 to begin the Smooth-start period, multiple packets 
have already been dropped due to the buffer overflow dur- 
ing the Slow-start period. This is the main reason why we 
advance the probing phase by choosing the separator to be 
ssthresW4. It also shows why an inaccurate initial ssthresh 
estimator is still more helpful than the default setting. 

To clearly illustrate the dynamics of a TCP connection, the 
standard technique of TCP sequence number plots is used. 
The graphs were generated by tracing packets entering and 
departing router RI. Packets are numbered starting with 
packet 0. Figure 7 presents the dynamics of the TCP con- 
nection with different rwnd and probe strategies. It shows us 
that Smooth-start has fewer packet drops, fewer timeouts, and 
consistently higher throughput than Slow-start. 

Because TCP Reno performs poorly in recovering from 
multiple packet losses, the transfer latency is also greatly re- 
duced. However, reduction of the transfer latency depends on 
the loss recovery mechanism of different TCP versions. For 
TCP New-Reno and SACK, the reduction of transfer latency 
is not as significant as that of TCP Reno. 

Note when the initial ssthresh is set close to the actual pipe 
size, the Smooth-start still can make significant performance 
improvements over the Slow-start, which indicates that an ac- 
curate and timely ssthresh estimation cannot entirely elimi- 
nate the performance degradation caused by the Slow-start. 
The TCP performance degradation due to the inappropriate 
approach that Slow-start takes in reaching ssthresh can only 
be remedied by the Smooth-start. An accurate estimation of 
initial ssthresh can significantly improve TCP performance, 
but is not a panacea to remedy all TCP start-up problems. 

5.3 Changing-Load Experiment with RED Gate- 
ways 

The setting of the changing-load experiment is similar to 
the constant-load case, except for the fact that RED gateways 
replace drop-tail gateways and the traffic load is periodically 
changed. Twelve TCP connections share the common bot- 
tleneck of 1.5 Mbps. The first connection starts at time 0.5. 
After that, once every 0.5 second, we start a new TCP connec- 
tion. The probe strategy of Smooth-start is Fine-4 and rwnd 
is 64 packets. In our experiment, the RED gateway notifies 
early the congestion to connections by dropping packets. 

The simulation results are shown in two parts. The first 
part is about the queueing behaviors at the RED gateway, in- 
dicating the degree of burstiness of the incoming TCP traffic. 
The second part shows the traffic dynamics of one TCP con- 
nection, which starts at 2.0s and sends 1 Mbytes of data. 

The dynamics of the actual queue size at the RED gateway 
is plotted in Figure 8. Clearly, the Smooth-start greatly re- 
duces the fluctuation of actual queue size and the frequency of 
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(a) Slow-start, rwnd = 18 (b) Coarse-2, rwnd = 18 (c) Slow-start, rwnd = 36 (d) Fine-4, rwnd = 36 
Figure 7. Simulation results for TCP Reno with different rwnd and probe strategies 

the buffer overflow. By replacing the Slow-start with Smooth- 
start, the burstiness of the incoming traffic is reduced, and 
hence, the pressure upon the buffer of the gateway is reduced. 

Figure 9 shows the traffic dynamics of the TCP connec- 
tion, which starts at 2.0s. As expected, the Smooth-start has 
consistently higher throughput, less packet losses, and less 
transfer latencies than the Slow-start. 

30 0 
SloW-rIan 
RX-4 

0 0  20 4 0  6 0  
Time (s) 

Figure 8. Dynamics of actual queue size at the 
RED gateway 

5.4 Integration with ssthresh Estimator 

As the Smooth-start does not require an ssthresh estima- 
tor [7], integration of Smooth-start and ssthresh estimator 
yields a better performance. The key point here is that the 
estimated ssthresh is no worse than, and is frequently better 
than, an arbitrary default. The simulation results are shown 
in table 2. In the same scenario where 6 packets are dropped, 
by employing Smooth-start, the number of packet losses is re- 
duced to 2. By integrating the Smooth-start with an ssthresh 
estimator, only one packet is dropped. 

Time (s) 

Figure 9. Illustration of the dynamics of a TCP 
connection 

Table 2. Reduction of packet losses 

5.5 Side-Effect of Smooth-start 

If no congestion occurs, the performance of Smooth-start 
is worse than that of Slow-start. However, since the trans- 
mission rate still increases exponentially during the Smooth- 
start period, the degradation of TCP performance is not sig- 
nificant. The worst case happens if the TCP connection 
is closed exactly when the congestion window size cwnd 
reaches ssthresh. If the transmission of data lasts after reach- 
ing ssthresh, the degradation of TCP performance caused by 
the Smooth-start will become more trivial. Table 3 shows the 
percentage of the utilized bandwidth of a TCP connection if 
no congestion occurs. 

Moreover, the proposed larger initial window size and TCP 
Fast-start, which happen at the first RTT of the Slow-start 
period, compensate the slower growth rate of the conges- 
tion window during the Smooth-start period. According to 
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the evaluation report in [3], the total savings provided by 
the proposed initial window size is up to 3 RTTs if the re- 
ceiver acknowledges every received packet. By integrating 
the Smooth-start with the larger initial window, the amount 
of time required for cwnd to reach ssrhresh can be computed 
as follows: 

6s  
8s 

RTT x log, ssthresh + d x ( k  - 1)RTT - SRTT. 

L 

82.7% 81.8% 80.9% 
86.8% 86.1% 85.4% - 

Therefore, for the probe strategy Fine-4, the Smooth-start 
takes only one more RTT to reach ssthresh; but for the other 
probe strategies considered in this paper, the Smooth-start 
takes less RTTs to reach ssthresh if the larger initial window 
is employed. 

Duration I Slow-start ] Coarse-2 1 Fine-2 
2s I 49.8% 1 47.2% I 44.6% n 4s I 13.6% I 72.2% I lo.8% n 

Note that in  the environment of drop-tail gateways, the 
Smooth-start only postpones congestion, instead of eliminat- 
ing it. Finer-grained probe strategies are found to be able to 
lead to more packet losses and reduced throughput for large 
file transfers, which is counter-intuitive. The reason for this 
is two-fold. Fisrt, the drop-tail gateway does not drop any 
packet until the buffer is full. Second, the finer-grained probe 
strategies delay the buffer overflow, and hence the congestion 
signal indicated by a packet loss. 

Late arrivals of the congestion signal cause the TCP 
senders to inject more traffic load into the network. Once 
the bottleneck runs out of buffer space, a severer conges- 
tion occurs. However, with RED gateways, this phenomenon 
does not hold any more. The RED gateway signals the TCP 
senders of potential congestion before the buffer gets full. 
The simulation results shown in Section 5.3 confirms this, 
where Fine-4 is used and a 1 Mbyte file is transferred. 

6 Conclusion 

We proposed and evaluated a new variant of the Slow-start, 
called the Smooth-start, to improve the TCP start-up perfor- 
mance. The Smooth-start smoothes the transition between 
the Slow-start and Congestion-Avoidance phases. Two im- 
portant parameters, grain number k and depth number d, are 
introduced for the Smooth-start, which determine the conser- 
vativeness of Smooth-start. Several possible probe strategies 
of the Smooth-start are evaluated through simulation. The 
simulation results demonstrated the inherent superiority of 
Smooth-start to Slow-start. With the Smooth-start algorithm, 

the chance of multiple packet losses from the same window 
of data is significantly reduced and the effective throughput is 
greatly improved. The Smooth-start can also be easily imple- 
mented and deployed since it requires only the sender side to 
be modified. 
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