
A Simple Refinement of Slow-start of TCP Congestion Control

Haining Wangt Hongiie XinS Douglas S. Reevest Kang G. Shint

t RTCL, EECS Department $Department of Computer Science
The University of Michigan

Ann Arbor, MI 48 109
{ hxw,kgshin} @eecs.umich.edu

Abstract

This paper presents a new variant of Slow-start, called
Smooth-start, which provides a smooth transition between
the exponential and linear growth phases of TCP congestion
window. Slow-start is known to make an abrupt transition
between the Slow-start and Congestion-Avoidance phases,
and hence, often causes multiple packet losses from a win-
dow of data and retransmission timeouts, which, in turn, re-
duce effective throughput and result in global synchroniza-
tion. Smooth-start solves this problem by approaching the
Slow-start threshold more gradually. Our extensive simula-
tion results show that Smooth-start can significantly reduce
both packet losses and trafJic burstiness, thus iniproving the
pe@orniance of TCP congestion control at the start of a TCP
connection or after a retransmission timeout. Furthermore,
Smooth-start is very simple to implement and requires TCP
modijcations at the sender side only.

1 Introduction

The wide use of the TCPOP protocol suite and the explo-
sive growth of the Internet have made TCP congestion control
crucial to the performance of the Internet. The current im-
plementation of TCP congestion control includes the classic
algorithms of Slow-start and Congestion Avoidance [8] , and
the augmentation of Fast Retransmit and Fast Recovery al-
gorithms [161. Many popular Internet application protocols,
such as HTTP, ftp, and telnet, are implemented with TCP.
Since these protocols generate a large percentage of traffic on
the Internet, the TCP congestion control should be optimized
by adapting itself to the common behavior of these protocols.

The recent Internet traffic measurements [171 indicate that
many TCP flows are short-lived but most of TCP packets in
flight still belong to long-lived TCP flows. In contrast with
the long-lived transfers, the characteristics of the short trans-
fers are that a relatively small number of data packets are de-
livered and a TCP connection is usually terminated before it
reaches steady state. The popularity of the Internet has in-
creased the complexity and size of networks, which makes it

North Carolina State University
Raleigh, NC 27695

{ hxin,reeves} @eos.ncsu.edu

take longer to probe appropriate control parameters of a TCP
connection. Thus, the start-up period of aTCP connection can
greatly influence the performance of short-lived TCP connec-
tions. Also, the increasing demand for network resources has
made bursty packet losses common, which often leads to a
retransmission timeout. So, the re-start-up period of a TCP
connection, plus the start-up period, can significantly affect
the performance of long-lived TCP connections.

TCP Slow-start is initiated both at the start of a TCP con-
nection or after a retransmission timeout, and hence greatly
influences the performance of short-lived and long-lived TCP
connections. The objective of Slow-start is to enable a TCP
sender to discover the available network bandwidth by grad-
ually increasing the amount of data injected into the network
from an initial window size of one segment, which prevents
the TCP sender from congesting the network with a large
burst of data. Unfortunately, the approach that Slow-start uses
to probe the network bandwidth is counter-intuitive. It driz-
zles data out at the beginning, and ends with a drastic leap
to reach the Slow-start threshold. If we fill a pipe or a con-
tainer with water, the approach we take is opposite to the way
Slow-start works.

Due to the way Slow-start probes the network bandwidth,
i t suffers from the following two problems. First, since the
Slow-start algorithm begins with sending one segment, it
takes many round-trip times to reach the optimal operating
point, thus resulting in poor utilization of the available band-
width for short transfers which are small compared to the
bandwidth-delay product of the path. Second, since a TCP
sender has no knowledge about the capacity of the available
resources on the networks and uses default parameters at the
beginning of transmission, the exponential growth of the con-
gestion window often misleads the sender to send too many
packets too quickly, thus causing a severe buffer overflow at
the bottleneck link. This buffer overflow results in multiple
packet losses from a window of data, thereby making the TCP
senders lose their self-clocking. The subsequent retransmis-
sion timeouts cause a global synchronization [15], [20]. The
global synchronization lowers the aggregate throughput and
makes the network traffic load and the queueing delay oscil-

0-7695-0722-O/OO $10.00 Q 2000 IEEE
98

mailto:eecs.umich.edu
mailto:eos.ncsu.edu

late, and hence, the TCP performance degrades substantially.
To resolve the first problem, a larger initial window and

TCP Fast-start have been proposed [1 1, [3], [121 to speed up
the transfer rate at the very beginning of Slow-start, which
greatly benefits short TCP transfers. To efficiently recover
multiple packet losses within a window of data, New-Reno
and SACK [7], [IO] have been proposed to recover from
bursty packet losses without losing self-clocking. Further-
more, to remove the second problem of Slow-start, estimated
initial ssrhresh and safe ssrhresh [7], [191 have been proposed
to replace the default setting of ssthresh. However, the abrupt
transition of congestion window between exponential growth
and linear growth phases that causes highly bursty traffic and
frequent buffer overflows, remains unaddressed.

Although the estimated initial ssthresh and safe ssrhresh
can make significant improvements over an arbitrary default
ssrhresh, there are still several obstacles that make it very dif-
ficult for the sender to estimate the congestion control param-
eters in an accurate and timely manner: (1) ACK compres-
sion [20], which makes the pacing between ACKs not reflect
the bottleneck delay experienced by the data packets; (2) the
delay caused by the receiver to generate an ACK for each
newly-arrived data packet; (3) routes are often asymmetric,
which can lead to bandwidth and latency asymmetries; (4)
with a varying number of connections, the remaining network
capacity along the path also varies over time; (5) out-of-order
packet delivery, which occurs frequently; (6) multi-channel
bottleneck links, which violate the assumption that there is a
single end-to-end forwarding path. Therefore, i t is very diffi-
cult to set up and maintain an appropriate ssrhresh. The im-
provement of sender-side estimated ssrhresh is thus limited. A
receiver-side estimation algorithm has been proposed [2], and
shown to yield better bandwidth estimation than the sender-
side estimation. However, i t requires to modify the receiver
side, which results in a scalability problem in the context of
millions of clients in the Internet.

In this paper, we propose a modification of Slow-start,
called Smooth-start, which is orthogonal to the proposals for
selecting an appropriate initial ssthresh. The objective of
Smooth-start is to make a smooth transition between the ex-
ponential and linear growth phases of the congestion window
by changing the way the TCP sender uses to reach the Slow-
start threshold. A separator smsthresh is introduced, which is
set to s s t h ~ e s h f 2 ~ , where d is a non-negative integer. As the
window size becomes larger than smsrhresh, we slightly re-
duce the acceleration rate of the congestion window. The in-
terval [smsrhresh, ssrhresh] is called the Smooth-start period.
During this period, the window size still increases exponen-
tially, but at a reduced rate. Therefore, the aggressiveness of
the congestion window’s growth during the Smooth-start pe-
riod is reduced, thus reducing packet losses and dampening
traffic burstiness. Smooth-start brings several benefits, even
without the ssrhresh estimator or when the estimated ssrhresh
is inaccurate or out of date.

0 Smooth-start produces less bursty traffic than Slow-start,
which reduces the fluctuation of the offered load on the
networks.

0 With the help of early congestion signals, the Smooth-
start reduces the chance of buffer overflow at intermedi-
ate routers.

0 The reduced chance for buffer overflow also reduces the
chance for multiple packet losses within the same win-
dow.

0 Without the help of early congestion signals, the
Smooth-start delays congestion. This delayed conges-
tion benefits short-lived connections because they often
finish transmission even before the congestion occurs.

Moreover, the implementation of Smooth-start is very sim-
ple and its overhead is very small. Only the sender side
requires modifications, thus facilitating incremental deploy-
ment in today’s Internet. Also, due to the inherent conser-
vativeness of Smooth-start, i t doesn’t hurt fairness. Since
Smooth-start is triggered at the beginning of a connection or
after a retransmission timeout, it benefits not only short-lived
TCP transfers but also bulk TCP transfers if a congestion oc-
curs.

The drawback of Smooth-start is that i t takes longer for the
transmission rate to reach the optimal equilibrium operating
point. However, the number of extra round-trip times intro-
duced by Smooth-start is small and deployment of a larger
initial window or TCP Fast-start, which increases the growth
rate of the congestion window at the first round-trip time of
Slow-start, compensates the slower growth rate of the conges-
tion window in the Smooth-start period.

The remainder of this paper is organized as follows. Re-
lated work is described in Section 2. Section 3 briefly intro-
duces Slow-start while Section 4 presents its details as well
as the possible probe strategies. Section 5 presents the sim-
ulation results for constant- and changing- load experiments.
Finally, Section 6 concludes the paper.

2 Related Work
A larger initial window [11 has been proposed to enhance

the TCP performance, which raises the initial window size
from 1 MSS to 4 Kbytes. Evaluation of a larger initial win-
dow [3] shows that it decreases the transfer time of short-
lived TCP over dialup channels and the Internet, and also the
larger initial window does not significantly increase the num-
ber of retransmitted packets. To speed up Web transfers, TCP
Fast-start [121 reuses cached network parameters in the re-
cent past to shorten the startup of Slow-start, which greatly
reduces transfer latency for short bursts. Also, by assigning a
higher drop priority to Fast-start packets and augmenting the
TCP loss recovery, TCP Fast-start tries to avoid performance
degradation when the cached information is stale.

99

An appropriate initial value of ssthresh, which dictates
when to switch from the Slow-start to Congestion-Avoidance
phase, is important to the performance of a TCP connection.
Recognizing this importance, new approaches [7], [191 have
been proposed to replace the default setting of ssthresh with
an estimated or safe value of ssthresh. The estimation method
in [7] is similar to the packet-pair technique proposed in [9].
In [191, a new variant of SPAND (Shared PAssive Network
Discovery [141) has been proposed to extract the current net-
work condition, and based on the extraction, to derive opti-
mal initial TCP parameters. However, these sender-side band-
width estimation schemes are found to be problematic in prac-
tice. A receiver-side algorithm has been developed to estimate
the available bandwidth more accurately [2].

A modified Slow-start algorithm is introduced in TCP Ve-
gas [5] , which limits the exponential growth of Slow-start
to every other round-trip time, instead of every round-trip
time. However, the problem is that multiple packet losses
from the same window may happen during the exponential
growth phase in the modified Slow-start. The key part of
TCP Vegas [SI is the modified congestion avoidance algo-
rithm, which allows more efficient network bandwidth uti-
lization and higher network throughput.

3 Slow-Start
In the original TCP specification [131, the window used by

the sender, denoted as wnd, is equal to the receiver advertised
window rwnd regardless of the load in the network. However,
in the TCP congestion control schemes initiated by Van Ja-
cobson [8], the TCP window size wnd is set to the minimum
of the congestion window and rwnd. The congestion window
cwnd is adjusted dynamically in response to network conges-
tion.

wnd = min(cwnd, rwnd)

The TCP congestion control algorithm runs in two phases:
Slow-start and Congestion-Avoidance. When cwnd <
ssthresh, the algorithm is in the Slow-start phase. Every re-
ceived acknowledgment increases cwnd by 1. During this
phase, cwnd exponentially increases at every round-trip time.

After cwnd reaches ssthresh, the congestion control algo-
rithm is in the Congestion-Avoidance phase. Every received
acknowledgment increases cwnd by l lcwnd. During this
phase, cwnd linearly increases at every round-trip time.

If the TCP receiver acknowledges each received data
packet and no congestion occurs during the Slow-start phase,
the amount of time required for cwnd to reach ssthresh is as
follows:

Slow - start T ime = RTT x log, ssthresh

The fundamental problem in the Slow-start algorithm is
that when the congestion window size approaches close to
the equilibrium of the connection, the increment of the con-
gestion window size is too large, causing packet loss. At the

beginning of the transmission, since the network is empty, the
exponential increase of congestion window size is reasonable
and also necessary to fill the empty pipeline quickly. How-
ever, as cwnd gets close to the equilibrium of the connection
(unfortunately the sender does not know this until packet loss
occurs), the scheme of one ACK causing one increnient of
congestion window size becomes too aggressive.

Nlb RTT

1 ssthreshll ssthreshl4 ssthreshl2 ssthresh

Cost (N-I) RTTs Cos1 Only 1 RTT!

Figure 1. Illustration of the Aggressiveness of
Slow-start Algorithm

When the congestion window size is equal to a half of
ssthresh, it will reach the value of ssthresh at the next round-
trip time. It could make the congestion window size much
larger than the actual bandwidth-delay product at the next
round-trip time if ssthresh is over-estimated, which often
causes multiple packet losses from a window of data. This
fact is illustrated in Figure 1. So, intuitively it is reasonable
to slow down the rate of increasing the congestion window
size at this point, allowing the sender to spend a little more
time to reach ssthresh while approaching the actual equilib-
rium of the connection.

4 Smooth-Start

The proposed variant of Slow-start does not make more
accurate estimation or dynamically adjust the estimation ac-
cording to the changes. Rather, i t is a more graceful rampup
of congestion window size in the Slow-start phase, so that
packet losses may be reduced significantly. The rationale be-
hind Smooth-start is that the default value of ssthresh is often
larger than the actual capacity of pipe size, and the estimated
ssrhresh is often over-estimated due to ACK compression.

4.1 Smooth-start: A New Variant of Slow-start

As Figure 1 shows, the problem with Slow-start is that
cwnd takes i RTTs to reach from 1, but only 1 RTT
to reach from w. This acceleration at the end
could cause congestion and packet loss if ssthresh is set to de-
fault or the available bandwidth is over-estimated. Here, we
assume that cwnd needs n RTTs to reach ssthresh from 1.

Figure 2 shows the dynamics of the congestion window
size in Slow-start and Smooth-start if no congestion occurs.

100

In Slow-start, the congestion window size grows exponen-
tially until it reaches ssrhresh which is set to 32 Kbytes, and
then grows linearly in the Congestion-Avoidance phase. In
Smooth-start, the congestion window size also grows expo-
nentially until it reaches the separator of Smooth-start which
is set to ssthreshl4 in this case, then grows at a slower ex-
ponential rate in the Smooth-start period. After reaching
ssthresh, it linearly enters the Congestion-Avoidance phase.

40.0 I 1

.U'
*.*e'-

5.0 10.0 15.0
0.0
0.0

Number d Round-Trip Times (RTTs)

Figure 2. Illustration of Slow-start and Smooth-
start algorithms

b The key idea of Smooth-start is to add necessary lag
points between - and - to dampen the effect
of exponentially increase. In Smooth-start, there are two sub-
phases defined by a chosen separator smsthresh (in Figure 2,
ssthresW4 is chosen as a separator). In the first sub-phase,
Smooth-start behaves the same way as Slow-start. So, we
call this period the Slow-start period. In the second sub-
phase, called the Smooth-start period, cwnd is incremented
only upon receipt of two or more ACKs. So, at every RTT
cwnd increases by a factor of 1.5 or less. The number of RTTs
needed for cwnd to reach from to $!'C"+"I; in the
Smooth-start period depends on the choice of the increasing
gradient of the congestion window size. Two types of increas-
ing gradient are introduced: coarse-grained and fine-grained.

4.1.1 Coarse-grained Probe
In the case of the coarse-grained probe, one lag point is in-
serted between - and ;:?;:;, where a lag point rep-
resents an additional round-trip interval. In the first R'IT after
congestion window size reached -, two ACKs trigger
one increment of cwnd. In the second RTT, three ACKs trig-
ger one increment of cwnd. Then two RTTs are needed to
increase cwnd from - to - 2n-(i+,). The detailed calcu-
lation is shown below.
At the end of the first RTT in the Smooth-start sub-phase,

ssthresh 1 ssthresh 3 ssthresh
2n-i+l C W N D = y + - x - - - 2 2n-a

101

At the end of the second RTT,
3 ' ssthresh 1 3 . ssthresh - ssthresh

C W N D = 2n-a+1 + 3 x 2n-a+1 2n- (%+I)
Therefore, two RTTs are required to increase cwnd from
ssthresh to ssthresh

--

2"-' 2n-(.+l) '

4.1.2 Fine-grained Probe
In the case of the fine-grained probe, two lag points are in-
serted between - and =. In the first RTT after
cwnd reached -, three ACKs trigger one increment of
cwnd. In the second RTT, four ACKs trigger one increment of
the congestion window size, and in the third RTT, five ACKs
trigger one increment of the congestion window size. The
detailed calculation is as follows:
At the end of the first RlT,

ssthresh 1 ssthresh 4 . ssthresh
C W N D = r+- x r=

3 3 x 2n-'
At the end of the second RlT,

4 . ssthresh 1 4 ' ssthresh - 5 . ssthresh C W N D = + - X -
3 x 2-1 4 3 x 27- 3 x 2n-'

At the end of the third R'IT,
5 . ssthresh 1 5 . ssthresh - ssthresh

2n-(2+1)
C W N D = + - x 3 x 2n-' 5 3 x 2n-'
Therefore, a total of three RTTs are required to increase the

--

congestion window size from - to ssthresh 2"-('+1) .

In general, if we start with k ACKs triggering one incre-
ment of the congestion window size at the first RTT, and
(k + i) ACKs triggering one increment of cwnd at the next
i-th RTT, we need k RTTs to increase cwnd from to
izt?Ly;. We call k the grain number. The number o f lag
points inserted between and 1"-!:'+4: is k - 1. In the
case of coarse- or fine- grained probe that is studied in the rest
of the paper, the grain number is set to 2 or 3.
4.2 Possible Separator

The general form of the separator of the Slow-start period
from Smooth-start period is s ~ t h r e s h / 2 ~ , where d is called
the depth number. The two candidates in our consideration
are: ssthresh12 and ssthresh/4, in which d is set to 1 and 2,
respectively. We do not consider d 2 3 because the separator
gets too small. In the current implementation of TCP Slow-
start, the default value of ssthresh is set to 64 Kbytes. If we
choose d = 3, smsthresh becomes 8 Kbytes. Considering
the proposed initial window size of 4 Kbytes, the Slow-start
period will only last for one RTT. In many cases (except for
heavy congestion), this would degrade the performance of a
TCP connection as it would take too long to reach the optimal
operating oint.

The rug for inserting lag points is illustrated in Figure 3
in the case of the separator equal to ssthreshl2, which con-
tains two graphs representing the rules for the coarse- and
fine- grained probes, respectively.

Separator: rsthresW2

(1). Number of lag polnt = 1 (Coarse Grain) Lag Point

(N-.)th RTT (N-JNh RTT (N-Z)lh RTT (N-'''h Nlh RTT

- - . I I I
1 rsthresh/8 ssthresh/4 ssthresW2 3ssmesW4 ssthresh

Pouring subphase Robing subphase

- Separator Coarse-grained Probe Fine-grained Probe
ss thresW2 1 2
ssthresW4 2 4

(2). Number of lag point = 2 (Fine Graln) Lag Point Lag Point
(N-5)lh RTT (N-4Nh RTT (N-3)lh RTT (N-2''h RTT (N-')'h RTT

.-. I
1 ssIhreshl8 sslhreshl4 SSIhreShn sslhresh

Pouring subphase Probing Subphase

Figure 3. Separator is ssthresM2

Table 1. Number of lag points inserted by the
probing strategies

work topology used is shown in Figure 4, where Si represents
a sender host and K, a receiver host. R1 and R2 represent two
finite-buffer gateways. The links are labeled with their band-
width and one-way propagation delay. Different connections
(from Si to K,) share a common bottleneck of 1.5 Mbps. The
buffer size at each gateway R, is set to 25 packets in each
experiment. The type of data traffic in our simulation is FTP.
The receiver sends an ACK for every data packet received.
For the convenience of presentation, we assume that all win-
dow sizes are measured in number of fixed-size packets. For

' / \

Figure 4. Simulation topology used for Smooth-
start experiments

the constant-load experiment, drop-tail gateways with FIFO
service are used. However, for the changing-load experiment,
RED gateways [6] , [18] are used instead. Although we have
modified different versions of TCP like Tahoe, Reno, New-
Reno and SACK to be equipped with the Smooth-start, only
the simulation results of TCP Reno are presented here, be-
cause the key difference among various TCP versions lies in
their own packet-loss recovery mechanisms. All TCP ver-
sions use the Slow-start at the start of a connection, and/or
after a retransmission timeout, and hence they have similar
behaviors during the Slow-start phase. Another reason is
that TCP Reno is built on UNIX BSD4.3, which is the most
widely-used version of TCP.

In later sections where we show the simulation results,
Course stands for the coarse-grained probe, and Fine for the
fine-grained probe. The number 2 or 4 indicates that the cho-
sen separator is ssthresW2 or ssthresW4, respectively.

5.2 Constant-Load Experiment with Drop-tail

In the constant-load experiment, the cross-traffic is con-
stant and the TCP connection we measured has a fixed share
of 1 Mbps and 8 buffer units. Thus, the bandwidth-delay
product of each TCP connection is:

Gateways

BWP = 1 Mbpsx2(45+5) ms = 100 Kbits = 12.5 Kbytes

Since each data packet size is 1024 bytes, the actual
bandwidth-delay product is approximately 12 packets. The

5 Evaluation of Smooth-start
5.1 The Simulation Setup

We evaluated the Smooth-start algorithm by implementing
it in the LBNL network simulator ns [1 I]. The simulation net-

102

total number of packets that can be in flight is 20 plus the
number of packets in the buffer of the TCP connection. The
file size transferred by this TCP connection is 60 Kbytes.

rwnd is varied to be 18 ,20 ,24 ,36 and 64. Since TCP sets
ssthresh to be the minimum of the default value and rwnd,
varying rwnd effectively changes the ratio of ssthresh to the
actual pipe size. We need to consider five different cases: (1)
ssrhresh is smaller than the actual pipe size; (2) ssthresh is
equal to the actual pipe size; (3) ssthresh is larger than the ac-
tual pipe size; (4) ssthresh is much larger than the actual pipe
size; (5) ssthresh equals the default setting, which is more
than three times larger than the actual pipe size. The case
where TCP window size is much smaller than the actual pipe
so that no congestion occurs, will be discussed in Section 5.5.

The packet losses of a TCP connection using the Slow-
start and Smooth-start are plotted in Figures 5 and 6; Fig-
ures 5 shows the reduction in packet losses when the separa-
tor = ssthreshn, while Figure 6 shows the reduction in packet
losses when the separator = ssthresW4.

14

12

10

8 -

6 -

4 -

2 -

.

-

-

Slow-start +-

Coarse2 --.---
Fine2 0

:.' ,./
0

10 20 30 40 60 70
Receiver Advertised Window ::e (Packets)

Figure 5. Separator = ssthresW2

....- ,,...... ...-' ,/'

......
,,/

0
10 20 30 40 50 60 70

Receiver Advertised Window Size (Packets)

Figure 6. Separator = ssthresW4

Obviously, the Smooth-start significantly reduces packet
losses in all cases when the separator is ssthresW4 and in
most cases when the separator is ssthreshn. It is not sur-
prising to see that if the separator of Smooth-start is chosen
to be ssthresW2 and the ssthresh is set to the default value',

'It is three times larger than the actual pipe size.

the number of packet losses in the Smooth-start is the same
as that in the Slow-start, because the separator ssthresW2 is
larger than the actual pipe size. Thus, before cwnd reaches
ssthresM2 to begin the Smooth-start period, multiple packets
have already been dropped due to the buffer overflow dur-
ing the Slow-start period. This is the main reason why we
advance the probing phase by choosing the separator to be
ssthresW4. It also shows why an inaccurate initial ssthresh
estimator is still more helpful than the default setting.

To clearly illustrate the dynamics of a TCP connection, the
standard technique of TCP sequence number plots is used.
The graphs were generated by tracing packets entering and
departing router RI. Packets are numbered starting with
packet 0. Figure 7 presents the dynamics of the TCP con-
nection with different rwnd and probe strategies. It shows us
that Smooth-start has fewer packet drops, fewer timeouts, and
consistently higher throughput than Slow-start.

Because TCP Reno performs poorly in recovering from
multiple packet losses, the transfer latency is also greatly re-
duced. However, reduction of the transfer latency depends on
the loss recovery mechanism of different TCP versions. For
TCP New-Reno and SACK, the reduction of transfer latency
is not as significant as that of TCP Reno.

Note when the initial ssthresh is set close to the actual pipe
size, the Smooth-start still can make significant performance
improvements over the Slow-start, which indicates that an ac-
curate and timely ssthresh estimation cannot entirely elimi-
nate the performance degradation caused by the Slow-start.
The TCP performance degradation due to the inappropriate
approach that Slow-start takes in reaching ssthresh can only
be remedied by the Smooth-start. An accurate estimation of
initial ssthresh can significantly improve TCP performance,
but is not a panacea to remedy all TCP start-up problems.

5.3 Changing-Load Experiment with RED Gate-
ways

The setting of the changing-load experiment is similar to
the constant-load case, except for the fact that RED gateways
replace drop-tail gateways and the traffic load is periodically
changed. Twelve TCP connections share the common bot-
tleneck of 1.5 Mbps. The first connection starts at time 0.5.
After that, once every 0.5 second, we start a new TCP connec-
tion. The probe strategy of Smooth-start is Fine-4 and rwnd
is 64 packets. In our experiment, the RED gateway notifies
early the congestion to connections by dropping packets.

The simulation results are shown in two parts. The first
part is about the queueing behaviors at the RED gateway, in-
dicating the degree of burstiness of the incoming TCP traffic.
The second part shows the traffic dynamics of one TCP con-
nection, which starts at 2.0s and sends 1 Mbytes of data.

The dynamics of the actual queue size at the RED gateway
is plotted in Figure 8. Clearly, the Smooth-start greatly re-
duces the fluctuation of actual queue size and the frequency of

103

WO

a.0

f
20.0 20.0

0.0
0.0 1.0 2.0 ao 4.0 0 0 1.0 2.0 3 0 4 0

(a) Slow-start, rwnd = 18 (b) Coarse-2, rwnd = 18 (c) Slow-start, rwnd = 36 (d) Fine-4, rwnd = 36
Figure 7. Simulation results for TCP Reno with different rwnd and probe strategies

the buffer overflow. By replacing the Slow-start with Smooth-
start, the burstiness of the incoming traffic is reduced, and
hence, the pressure upon the buffer of the gateway is reduced.

Figure 9 shows the traffic dynamics of the TCP connec-
tion, which starts at 2.0s. As expected, the Smooth-start has
consistently higher throughput, less packet losses, and less
transfer latencies than the Slow-start.

30 0
SloW-rIan
RX-4

0 0 20 4 0 6 0
Time (s)

Figure 8. Dynamics of actual queue size at the
RED gateway

5.4 Integration with ssthresh Estimator

As the Smooth-start does not require an ssthresh estima-
tor [7], integration of Smooth-start and ssthresh estimator
yields a better performance. The key point here is that the
estimated ssthresh is no worse than, and is frequently better
than, an arbitrary default. The simulation results are shown
in table 2. In the same scenario where 6 packets are dropped,
by employing Smooth-start, the number of packet losses is re-
duced to 2. By integrating the Smooth-start with an ssthresh
estimator, only one packet is dropped.

Time (s)

Figure 9. Illustration of the dynamics of a TCP
connection

Table 2. Reduction of packet losses

5.5 Side-Effect of Smooth-start

If no congestion occurs, the performance of Smooth-start
is worse than that of Slow-start. However, since the trans-
mission rate still increases exponentially during the Smooth-
start period, the degradation of TCP performance is not sig-
nificant. The worst case happens if the TCP connection
is closed exactly when the congestion window size cwnd
reaches ssthresh. If the transmission of data lasts after reach-
ing ssthresh, the degradation of TCP performance caused by
the Smooth-start will become more trivial. Table 3 shows the
percentage of the utilized bandwidth of a TCP connection if
no congestion occurs.

Moreover, the proposed larger initial window size and TCP
Fast-start, which happen at the first RTT of the Slow-start
period, compensate the slower growth rate of the conges-
tion window during the Smooth-start period. According to

104

the evaluation report in [3], the total savings provided by
the proposed initial window size is up to 3 RTTs if the re-
ceiver acknowledges every received packet. By integrating
the Smooth-start with the larger initial window, the amount
of time required for cwnd to reach ssrhresh can be computed
as follows:

6s
8s

RTT x log, ssthresh + d x (k - 1)RTT - SRTT.

L

82.7% 81.8% 80.9%
86.8% 86.1% 85.4% -

Therefore, for the probe strategy Fine-4, the Smooth-start
takes only one more RTT to reach ssthresh; but for the other
probe strategies considered in this paper, the Smooth-start
takes less RTTs to reach ssthresh if the larger initial window
is employed.

Duration I Slow-start] Coarse-2 1 Fine-2
2s I 49.8% 1 47.2% I 44.6% n 4s I 13.6% I 72.2% I lo.8% n

Note that in the environment of drop-tail gateways, the
Smooth-start only postpones congestion, instead of eliminat-
ing it. Finer-grained probe strategies are found to be able to
lead to more packet losses and reduced throughput for large
file transfers, which is counter-intuitive. The reason for this
is two-fold. Fisrt, the drop-tail gateway does not drop any
packet until the buffer is full. Second, the finer-grained probe
strategies delay the buffer overflow, and hence the congestion
signal indicated by a packet loss.

Late arrivals of the congestion signal cause the TCP
senders to inject more traffic load into the network. Once
the bottleneck runs out of buffer space, a severer conges-
tion occurs. However, with RED gateways, this phenomenon
does not hold any more. The RED gateway signals the TCP
senders of potential congestion before the buffer gets full.
The simulation results shown in Section 5.3 confirms this,
where Fine-4 is used and a 1 Mbyte file is transferred.

6 Conclusion

We proposed and evaluated a new variant of the Slow-start,
called the Smooth-start, to improve the TCP start-up perfor-
mance. The Smooth-start smoothes the transition between
the Slow-start and Congestion-Avoidance phases. Two im-
portant parameters, grain number k and depth number d, are
introduced for the Smooth-start, which determine the conser-
vativeness of Smooth-start. Several possible probe strategies
of the Smooth-start are evaluated through simulation. The
simulation results demonstrated the inherent superiority of
Smooth-start to Slow-start. With the Smooth-start algorithm,

the chance of multiple packet losses from the same window
of data is significantly reduced and the effective throughput is
greatly improved. The Smooth-start can also be easily imple-
mented and deployed since it requires only the sender side to
be modified.

References
[I] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Win-

dow”, INTERNETDRAFT, drafi-floyd-incr-init-win-03.txt, April 1998.
[2] M. Allman and V. Paxson, “On Estimating End-to-End Network Path

Properties”, Proceedings uf’ ACM SICCOMM ’99, Cambridge, MA,

[3] M. Allman, C. Hayes, and S. Ostermann, “An Evaluation of TCP
with Larger Initial Windows”, ACM Compurer Comniunicufion Review,

(41 B. Braden et al. “Recommendations on Queue Management and Con-
gestion Avoidance in the Internet”, ImERNET DRAFT, draft-irtf-e2e-
queue-mgt-00.txt. March 1997.

[5] L. Brakmo, S. OMalley, and L. Peterson, ‘TCP Vegas: New Tech-
nique for Congestion Detection and Avoidance”, Proceedings of ACM
SfGCOMM’94, London, UK, pp. 24-35, August 1994.

(61 S. Floyd and V. Jacobson, “Random Early Detection gateways for Con-
gestion Avoidance”, IEEWACM Transucrions on Neworking, Vol. 1,

[7] J. Hoe, “Improving the Start-up Behavior of a Congestion Control
Scheme for TCP’, Proceeding of ACM SIGCOMM’96, Stanford, CA,

[SI V. Jacobson, “Congestion Avoidance and Control”, Proceedings uf’
ACM SIGCOMM’RR, Stanford, CA, pp. 314-329, August 1988.

191 S. Keshav, “A Control-Theoretic Approach to Flow Control”, Proceed-
ings ofACM SIGCOMM’91, Zurich, Switzerland, pp. 3-15. September
1991.

[IO] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Option”, Internet Draft, work in progress, May 1996.

[I I] S. McCanne and S. Floyd, ns-LBNL Network Simulator. Obtain via:
http://www-nrg.ee.lbI.gov/ns/.

[I21 V. N. Padmanabhan and R. H. Katz, “TCP Fast Start: A Technique for
Speeding Up Web Transfers”, Proceedings of IEEE GLOBECOM’98,
Sydney, Australia, November 1998.

[131 J. Postel, Transmission control protocol, Request for Comments 793,
DDN Network Information Center, SRI International, September I98 I .

[I41 S. Seshan, M. Stemm, and R. H. Katz, “SPAND: Shared Passive Net-
work Performance Discovery”. Proceedings of USITS’97, Monterey,
CA, December 1997.

[I51 S. Shenker, L. Zhang, and D. D. Clark, “Some Observations on the
Dynamics of a Congestion Control Algorithm”, ACM Computer Cum-
niunicariun Review, Vol. 20, No. 4, pp. 30-39, October 1990.

[161 W. R. Stevens, TCP/IP Illusrrafed, volume I . Addison-Wesley Publish-
ing Company, 1994.

[I71 K. Thompson, G. J. Miller, and R. Wilder, ”Wide-Area Internet Traffic
Pattems and Characteristics”. IEEENerwork, Vol. 1 I , No. 6, pp. 10-23,
NovemberlDecember 1997.

[I81 H. Wang and K. G. Shin, “Refined Design of Random Early Detec-
tion Gateways”, Proceedings UfIEEE GLOBECOM’99, Rio de Janeiro,
Brazil, December, 1999

[I91 Y. Zhang, L. Qiu, and S. Keshav, “Optimizing TCP Start-up Perfor-
mance”, Cornell CS Technical Report, February 1999.

[20] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the Dynamics
of a Congestion Control Algorithm: The Effects of Two Way Traffic”,
Proceedings ofACM SfGCOMM’91, Zurich, Switzerland, pp. 133-148,
September 199 1.

pp. 263-274, August 1999.

Vol. 28 NO. 3, pp 41-52. July, 1998.

NO. 4, pp. 397-413, August 1993.

pp. 270-280, August 1996.

105

http://www-nrg.ee.lbI.gov/ns

