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ABSTRACT
The state-of-art approaches to embedded real-time software
development are very costly. The high development cost can
be reduced signi�cantly by using model-based integration of
reusable components (models and/or software modules). To
this end, we propose an architecture that supports integra-
tion of software components and their behaviors, and recon-
�guration of component behavior at executable-code-level.
In this architecture, components are designed and used as
building blocks for integration, each of which is modeled
with event-based external interfaces, a control logic driver,
and service protocols. The behavior of each component is
speci�ed as a Finite State Machine (FSM), and the inte-
grated behavior is modeled as a Nested Finite State Machine
(NFSM). These behavior speci�cations can be packed into a
Control Plan program, and loaded to a runtime system for
execution or to a veri�cation tool for analysis. With this ar-
chitecture, embedded software can be constructed by select-
ing and then connecting (as needed) components in an asset
library, specifying their behaviors and mapping them to an
execution platform. Integration of heterogeneous implemen-
tations and vendor neutrality are also supported. Our eval-
uation based on machine tool control software development
using this architecture has shown that it can reduce develop-
ment and maintenance costs signi�cantly, and provide high
degrees of reusability and recon�gurability.
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1. INTRODUCTION
Agile and low-cost software development for real-time em-

bedded systems has become critically important as embed-
ded systems and devices are being used widely and cus-
tomized frequently. However, the current practice in em-
bedded software development relies heavily on ad-hoc imple-
mentation and labor-intensive tuning, veri�cation and sim-
ulation to meet the various constraints of the underlying
application, thereby incurring high development and main-
tenance costs. Although component-based software develop-
ment and integration are known to be eÆcient for software
development [29], such an approach is neither well-de�ned
nor well-understood in the embedded real-time systems do-
main. Typically, embedded systems software consists of var-
ious device drivers and control algorithms, which usually ex-
ist as software components and are preferred to be reused
for similar applications. Unfortunately, these components
may contain dedicated information for some physical pro-
cesses, and hence, can not be reused only based on their
functions. The physical process for a target domain, on the
other hand, is relatively static and can be modeled through
component behaviors. Thus, components can be designed
with customizable behavior mechanisms so that they can be
reused for di�erent applications. Besides supporting reuse
and recon�guration, the architecture for embedded software
should also support separation of the speci�cation and veri�-
cation of non-functional constraints from those of functions.
Such separation is essential for high-level implementation-
independent speci�cation and veri�cation of non-functional
constraints such as timing and resource constraints [24, 14].
In this paper, we present an architecture that supports

the above desired features for embedded software integra-
tion. Our reusable component model separates function def-
initions from behavior speci�cations, and enables behavior
recon�guration after structural composition. Components
can be structurally integrated using their communication
ports, through which acceptable external events can be ex-
changed to invoke target operations. The integrated soft-
ware can then be mapped onto various platform con�gura-
tions by customizing service protocols of components.
Behaviors of integrated software in our architecture are

modeled as Nested Finite State Machines (NFSMs). The
NFSMmodel supports compositional behavior speci�cations.
It further supports incremental and formal behavior analy-
sis. The behavior correctness of such an integrated system
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can be veri�ed using an approach similar to that in [2]. Fur-
thermore, since a given behavior can be implemented by
di�erent FSMs [30], di�erent components may be selected
for integration to meet di�erent constraints while achieving
the same behavior. The behaviors speci�ed in other models
or languages can be converted to this model using trans-
lators. The integrated behaviors can then be speci�ed in
a Control Plan program for remote and runtime behavior
recon�guration. Our architecture also separates other non-
functional constraints, especially timing and resource con-
straints, from functionality and behavior integration so that
these constraints can be analyzed and veri�ed incrementally
and as early as at design phase.
The rest of this paper is organized as follows. Section 2

describes the reusable component model. Section 3 presents
the behavior model and the Control Plan for integrated be-
havior speci�cation. Section 4 describes system integration
under this architecture. Section 5 presents evaluations based
on two example machine control systems built with the pro-
posed architecture. Section 6 describes related work in this
domain. The paper concludes with Section 7.

2. COMPONENT STRUCTURE
Components are pre-implemented software modules and

treated as building blocks in integration. The integrated
embedded software can be viewed as a collection of commu-
nicating reusable components. Figure 1 shows the embedded
software constructed by integrating components.
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Figure 1: Integration of embedded software compo-
nents

The component structure de�nes the required information
for components to cooperate with others in a system. Our
software component is modeled as a set of external interfaces
with registration and mapping mechanisms, communication
ports, control logic driver and service protocols, as shown in
Figure 2.
External interfaces. External interfaces de�ne the func-
tionality of the component that can be invoked outside the
component. In our model, external interfaces are repre-
sented as a set of acceptable events with designated pa-
rameters. A component with other forms of external in-
terfaces, such as function calls, can be integrated into the
system by mapping each of them to a unique event. Using
events as external interfaces enables operations to be sched-
uled and ordered adaptively in distributed and parallel en-
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Figure 2: Reusable component structure.

vironments, and enables components from di�erent vendors
(possibly implemented with di�erent considerations) to be
integrated into the system without the source code.
External interfaces are generally de�ned as global (exter-

nal) events, which are system-wide information. A customiz-
able event mapping mechanism is devised in a component to
achieve the translation between global events and the com-
ponent's internal representations. A registration mechanism
is further equipped to perform runtime check on received
events. Only those operations invoked by authorized and
acceptable events can be executed.
Communication ports. Communication ports are used to
connect reusable components, i.e., they are physical inter-
faces of a component. Each reusable component can have
one or more communication ports. The number of ports
needed for a component can be determined and customized
by the system integrator. Di�erent types of ports with dif-
ferent service protocols can be selected to achieve di�erent
performance requirements. Multiple communication parties
can share one port.
Finite State Machine driver. The control logic driver,
also called the FSM driver, is designed to separate func-
tion de�nitions from control logic speci�cations, and sup-
port control logic recon�guration. The FSM driver can be
viewed as an internal interface to access and modify the
control logic, which is traditionally hard-coded in software
implementation. Every component that controls behaviors
should have a FSM driver inside itself. Control logic of a
component can now be modeled as a FSM and fully speci-
�ed in a table form [30], or a state table. The FSM driver
will then generate commands to invoke operations of the
controlled objects at runtime according to the state table
and the events received.
The FSM driver enables the control logic to be reused,

and hence solves some cross-cutting design issues on physi-
cal process information blended with component behaviors.
Typically, the behavior of a component is designed to con-
trol some physical process and is traditionally hard coded
in the implementation of the component tailored to an ex-
ecution environment. Therefore, the design of software and
the design of an execution platform have to be done coopera-
tively. In our approach, since the behavior of a component is
separated from its implementation by introducing the FSM
driver, the design of sofware behavior and the platform con-
�guration can be done independently and separately before
integration.
The FSM driver and state tables also enable remote and

runtime control logic recon�guration. The state table can
be treated simply as data and passed around the system. A
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state table can be partitioned into several small pieces with
only one loaded to the FSM driver at a time. A component
can also be recon�gured with a di�erent state table when the
external environment changes or upon other components'
requests. This is even more useful for devices in a system
with limited resources and unreliable environments, such as
an in-vehicle control system.
Service protocols. Service protocols de�ne the execution
environment or infrastructures of a component. Example
service protocols include scheduling policies, inter-process
communication mechanisms and network protocols. A com-
ponent can be customized for use in di�erent environments
by selecting di�erent service protocols. Such selection is
based on the mechanisms available on a platform and perfor-
mance constraints (such as timing and resource constraints)
of the system.

3. BEHAVIOR MODEL AND SPECIFICA-
TIONS

Embedded systems normally deal with mission- or safety-
critical applications. Hence, the behavior of software should
be thoroughly analyzed before its implementation. In our
architecture, the behavior of integrated software is modeled
as a NFSM while component behaviors are modeled as tra-
ditional FSMs. Both of them can be formally speci�ed and
veri�ed.

3.1 Control Logic Specification
Control logic speci�cations are used to de�ne the static

behavior or the control logic of a component. Control logic
for integrated software is modeled as a NFSM. A NFSM con-
tains a set of traditional `at' FSMs organized hierarchically.
A NFSM at level i, Mi, can be de�ned as:

Mi =< Si; Ii; Oi; Ti; si0 > (level-i FSM)
where Si is a set of states of the i-th level FSM, Ii and Oi

are a set of inputs and outputs, respectively, Ti is a set of
transitions, and si0 the initial state of Mi. A non-initial
state of Mi may contain a set of FSMs at the (i + 1)-th
level.
The control logic of a component is modeled as a FSM (if

it is a leaf node in the component hierarchy) or a NFSM (if
it is a non-leaf node in the component hierarchy) and can
be implemented independently. Only the top-level FSM of
a component is visible during integration.
The FSM of a component can be fully speci�ed in table

form, where each entry de�nes a possible transition with the
following structure:

STATE; EVENTinput ;ACTION LIST; STATEnext

where STATE is the current state of the system, EVENTinput

is the incoming event, ACTION LIST speci�es the actions to
take or the functions to call, and STATEnext is the next state
that the component should reach after the transition.
All states and events have unique identi�ers. STATE and

EVENTinput together uniquely determine an entry in a state
table, and hence uniquely determine a list of actions and the
next state.

3.2 Operation Specifications
Operation speci�cations de�ne the desired runtime behav-

ior and can be speci�ed as a programmed operation sequence
that will trigger the component actions when there are no
other interferences. The operation speci�cations will gener-

ate prede�ned input events for a component FSM at run-
time.
The operation speci�cations consist of a list of operation

descriptions in the form of:
[WHEN state ] [INPUT einput [PARAM parameter ]]

OUTPUT eoutput [PARAM parameter ]

where state is the current state, einput is the received event,
eoutput is the event to send out, and parameter is the data at-
tached to the corresponding event. Fields in sequare brack-
ets are optional. If a �eld is not speci�ed, the value of the
�eld will be ignored when executed. Such structure simpli-
�es the speci�cations for pure state-triggered operations and
event-triggered operations.
One and only one event can be speci�ed in OUTPUT in

each row to prevent ambiguous execution. einput can be
a combination of several incoming events as in the speci-
�cation language of Cicero [15]. Similarly, state can also
be some combination of several local states from di�erent
FSMs. parameter is treated as a data chunk in the speci�-
cation. How to interpret and execute with these data is up
to the receiver.
Events used in operation speci�cations should be global

events for portability and reusability. However, operation
speci�cations using internal events speci�c for a component
can be integrated into the overall speci�cations as attached
data of a global event. This enables runtime recon�guration
of operation sequences for a component. The process of
such a global event results in execution of the new attached
operation speci�cations in the component.

3.3 Specifications in Control Plan
A program that contains control logic and operation se-

quences for components is called a Control Plan. A control
plan consists of two parts: logic de�nitions and operation
speci�cations, corresponding to the control logic and opera-
tion speci�cations, respectively. The structure of a control
plan is shown in Figure 3:

FSMflabelg[location]
StateTable-entry1
StateTable-entry2
......

ENDFSM

OPERATIONflabelg[location]
operation-element1
operation-element2
......

ENDOPERATION

Figure 3: Structure of control plan program.

The block FSM and ENDFSM speci�es the FSM state ta-
ble for a component, while the block OPERATION and END-
OPERATION speci�es the designed operation sequence. The
label is used to identify blocks and components. The location
is an option to specify where the block will be executed. A
block will be executed at the current local site if the location
is not speci�ed in the OPERATION block.
It is possible for a control plan to have multiple FSM and

OPERATION blocks for one component for recon�guration.
A block can also be attached to an event in either FSM or
OPERATION block as data to pass around. More details
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of control plan speci�cation and execution can be found in
[32].

3.4 Behavior Specifications in Other Models
Since di�erent subsystems of an embedded system may

deal with di�erent physical processes, it is possible that com-
ponent behaviors are expressed in other models. Although
the system integration of components in multiple models is
an active research [28, 11] and the results are directly appli-
cable to our architecture, we adopt translators to solve the
problem of integrating heterogeneous models.
In our architecture, a translator is designed and imple-

mented as a software component that converts a speci�-
cation in a given formalism of a model to a control plan
and NFSM. Translators are domain-speci�c and speci�ca-
tion language-dependent, meaning that each translator can
only convert programs in a designated speci�cation language
to control plan. Thus, several translators may be required
in a system if there are programs written in several di�erent
speci�cation languages.

4. SYSTEM INTEGRATION
Software integration includes component selection and bind-

ing, and control plan construction (both control logic and
operation sequence). A runtime system can be generated by
mapping the integrated software onto a platform.

4.1 Composition Model
The composition model de�nes how software can be in-

tegrated with given components. Since each reusable com-
ponent is implemented with a set of external interfaces that
uniquely de�ne its functionality, components can be selected
based on the match of their interfaces and design speci�ca-
tions. The integration of reusable components can be viewed
as linking the components with their external interfaces.
Reusable components in integrated software are organized

hierarchically to support integration with di�erent granular-
ities, as illustrated in Figure 4.

Level 2 component

Level 2 component

Level 0 component
(System software)

Level 1 component
(System-level)

Level 1 component
(System-level)

Figure 4: Hierarchical composition model

The behavior of an integrated component can then be
modeled as integration of its member component behaviors.
The control logic and operation sequences of each compo-
nent can be determined individually and speci�ed in a Con-
trol Plan. The behavior speci�cations can further be classi-
�ed as device-dependent behaviors and device-independent
behaviors. The device-independent behaviors depend only
on the application level control logic, and can be reused for
the same application with di�erent devices. The device-
dependent behaviors are dedicated to a device or a con�gu-

ration, and can be reused for di�erent applications with the
same device.
With such a composition model, both components for low-

level control such as algorithms and drivers and for high-
level systems can be constructed and reused. However, ad-
ditional overhead is introduced as the component level is
increased, and may results in associated performance penal-
ties due to excessive communications and code size.

4.2 Runtime System Construction
The integrated software obtained from the composition

model cannot be executed directly on a platform since the
composition model only deals with functionality. To obtain
executable software, components have to be grouped into
tasks, which are basic schedulable units in current operat-
ing systems.1 Each task needs to be assigned to a processor
with proper scheduling parameters (e.g., scheduling policy
and priority) determined by an appropriate real-time anal-
ysis. Also, communications among components should be
mapped to the services supported by the platform con�gu-
ration. After these pieces of information are obtained, the
components can be mapped to the platform by customizing
their service protocols. Figure 5 shows the mapping from
functional integrated software to a runtime system with our
architecture.

Component Component

Task Task Task Task

Platform

Functionality

Runtime

Figure 5: Runtime system generation from compo-
sition.

5. EVALUATION
We evaluated our architecture by constructing two soft-

ware prototypes for machine tool control with the same set
of reusable components. The software is running on two
control boxes (with their own processors and memory) con-
nected with a peer-to-peer Ethernet. The software com-
ponents are implemented with the proposed structures and
mechanisms. The evaluation is carried by examining the
reusability of components and recon�gurability of integrated
software.

5.1 Robotool Motion Controller
We �rst developed motion control software for a 3-axis

milling machine, called Robotool. This controller is used to
dynamically coordinate 3-axis motion with given algorithms
and computed feedrate based on sensed forces.
The reusable components include control algorithms, phys-

ical device drivers and subsystems. Some high-level compo-
nents used in the Robotool motion controller are:

� AxisGroup: receives a process model from the user
or prede�ned control programs, and coordinates the

1Although there are some operating systems that support
objects as basic units [9], they cannot be used for embedded
applications currently due to their heavy overhead.
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motion of the three axes by sending them the corre-
sponding setpoints.

� Axis: receives setpoints from AxisGroup and sends
out the drive signal to the physical device according
to the selected control algorithm (PID or FUZZY).

� G-code Translator: translates a G-code program
into a control plan.

� Force Supervisory: calculates the feedrate for Ax-
isGroup at runtime.

Figure 6 shows the corresponding software structure.

Force
Supervisory

Translator

Axis X Axis Y Axis Z

AxisGroup
MotionController

Figure 6: The structure of the Robotool motion con-
trol software.

The test application on the Robotool is a sequence of
milling operations. The integrated behavior of the Robotool
controller software consists of FSMs of Axis and AxisGroup
components, and a G-code program for operation sequences.
A higher-level motion control FSM is developed to specify
the overall machine-level control logic. Figure 7 shows the
control logic of each component and Figure 8 shows the de-
sired operations.

n10 g01 x10 y10 z0 f1
n20 g01 x10 y10 z5 f0.5
n30 g01 x30 y10 z5 f1
n40 g01 x0  y0  z0 f5

WHEN AutoMode OUTPUT startCyc PARAM (0,0,0,10,10,0,1)
WHEN InCycle  INPUT  cmplt    OUTPUT startCyc PARAM (10,10,0,10,10,5,0.5)
WHEN InCycle  INPUT  cmplt    OUTPUT startCyc PARAM (10,10,5,30,10,5,1)
WHEN InCycle  INPUT  cmplt    OUTPUT startCyc PARAM (10,10,5,0,0,0,5)

G-code program:

Translated CP:

Figure 8: G-code and Control Plan.

Recon�guration to include broken tool detection.
A broken tool detection algorithm is then developed and in-
tegrated into the motion controller to evaluate the recon�g-
urability of the software. A broken tool detection algorithm
is developed separately and implemented as an individual
component. The function of the broken tool detection com-
ponent is to detect abnormal forces at runtime, and send
a stop signal to the motion controller when such a force is
observed. The software structure with the broken tool de-
tection algorithm is shown in Figure 9.

Translator

Force
Supervisory

Axis X Axis Y Axis Z

AxisGroup
MotionController

Broken Tool
Detection

Figure 9: Software with broken tool detection.

To react to the new signal from the broken tool detec-
tion algorithm, the machine-level control logic needs to be
changed, while the rest of behaviors remain the same. Fig-
ure 10 shows the new machine-level FSM.
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Figure 10: Machine-level FSM with broken tool de-
tection.

5.2 Reconfigurable Machine Tool Controller
We then modi�ed the Robotool motion control software

to construct another motion control software for a Recon-
�gurable Machine Tool (RMT). RMT is a modularized and
composable machine tool with 2-axis and a 2-position dis-
crete device. Unlike the Robotool, the RMT motion con-
troller needs neither coordinated motion nor monitoring.
The same axes and translator components are used to con-

struct the RMT motion controller. A new component, Spin-
dle, is added into the system to cnotrol the discrete device.
The software structure for RMT controller is illustrated in
Figure 11.

Translator

Axis X Spindle

MotionController

Axis Y

Figure 11: The structure of the RMT motion con-
troller software.

The behavior speci�cations for Axis components are the
same as those used for the Robotool. The behavior spec-
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Figure 7: Behavior speci�cations of Robotool motion controller.

i�cations for the new added Spindle component is simple
with only 3 states representing the position of in or out and
the situation of estop, and transitions with corresponding
events, as shown in Figure 12.
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Figure 12: FSM for the spindle component.

Since the new Spindle component introduced new control
logic into the system, the overall machine-level control logic
had to be changed, and a new machine-level FSM was im-
plemented, as shown in Figure 13. The G-code program
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Figure 13: The machine-level FSM for the RMT.

and its corresponding control plan are also changed for new
operation sequences as shown in Figure 14.

G-code program:

n10 g01 x10 y10 f1
n20 g21
n30 g22
n40 g01 x20 y10 f1
n50 g21
n60 g21
n70 g01 x0 y0 f5

WHEN Auto  OUTPUT moveXY PARAM (0,0,10,10,1)
WHEN MvXY INPUT cmplt OUTPUT extend
WHEN MvSpnd INPUT cmplt OUTPUT withdraw
WHEN MvSpnd INPUT cmplt OUTPUT moveXY PARAM (10,10,20,10,1)
WHEN MvXY INPUT cmplt OUTPUT extend
WHEN MvSpnd INPUT cmplt OUTPUT withdraw
WHEN MvSpnd INPUT cmplt OUTPUT moveXY PARAM (20,10,0,0,5) 

Translated CP:

Figure 14: G-code program and control plan for
RMT.

5.3 Evaluation Results
According to our experience in implementing these con-

trollers, the proposed architecture provides excellent reusabil-
ity and recon�gurability of software. The component struc-
ture separates the functionality de�nition from the behav-
ior speci�cation so that the component can be reused for
di�erent applications. Furthermore, the behavior is sepa-
rated from the component implementation, and therefore,
components can be created and analyzed separately with
the NFSM. Such an approach enables the system developer
who is not familiar with the software, to do it on a daily ba-
sis. Separation of device-independent behaviors from device-
dependent behaviors further increases the reusability of be-
haviors. As seen in the above applications, the Axis behavior
can be reused when the component is reused in a di�erent
application.
Table 1 illustrates the numbers of components and be-

havior speci�cations in both controllers and the number of
Robotool components and behaviors reused in RMT. 2 We
were able to achieve over 80% reuse of components. On
the other hand, the reuse of behavior speci�cations was not

2The components referred in the table are those at levels
above Axis in the composition hierarchy.
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at the same high percentage because a lower-level behavior
change may require changes at higher-levels. However, since
the behavior speci�cations and component functional speci-
�cations have been separated, the behavior changes will not
a�ect the integration of components, and can be done with-
out much of programming skills. These numbers are also
consistent with the fact that functions are stable regardless
of the application but the behaviors are not.

Robotool RMT Reused
# of components 52 37 34

# of behavioral spec 6 5 2

Table 1: Number of components and behavioral
speci�cations reused accross the controllers.

It also took less e�ort to recon�gure an existing controller
or construct a new controller. As illustrated in Table 2,
recon�guring the Robotool controller software using our ar-
chitecture with broken tool detection took much less e�ort
than doing so to the software implemented using traditional
approaches (0.8 human-month vs. 2 human-month). The
time spent on the RMT software construction was also re-
duced by 50%.

Robotool RMT
recon�guration construction

Traditional approach 2 8
Proposed approach 0.8 4

Table 2: E�orts needed for two applications with
traditional and proposed architectures (in human-
month).

Although the proposed architecture demonstrated bene-
�ts in software construction, we experienced some perfor-
mance penalties associated with it. Table 3 shows the exe-
cution times of the MotionController component,3 collected
by a special designed hardware, VMEStopWatch card , which
has a built-in high resolution timer (25 nano-seconds). The
overhead is possibly introduced by additional context switches
for invoking components and event processing.

Robotool RMT
Traditional approach 2.1 1.3
Proposed approach 3.0 1.5

Table 3: Exectuion times for software constructed
with di�erent architectures (in millisecond).

6. RELATED WORK
Several models have been proposed in recent years to de-

scribe embedded software. Agha et al. developed an archi-
tecture based on the Actor model for embedded systems [24,
4, 1]. Selic et al. developed a Real-Time Object-Oriented
Model that supports hierarchical actors and behavior inte-
gration [26]. An architecture based on the CSP model is also
proposed to specify the embedded software [25]. Stewart,

3The MotionController component was executing as an in-
dividual task with period of 10 millisecond.

Volpe and Khosla developed an architecture for the Chimera
project using port-based objects to support dynamic re-
con�gurable real-time software [27]. All of these architec-
tures agree on modeling the components as autonomous self-
contained software modules (called Actor or Process) and
using event or message passing to describe the connection
of components. However, the behaviors of a component in
these architectures are not separated from its implementa-
tion, and therefore, it is diÆcult for engineers to recon�gure
and analyze components and their integration. This also
makes the performance analysis at design phase much more
diÆcult since only abstract models are available. The per-
formance analysis has to wait until these models are imple-
mented, which will lengthen the development cycle due to
the errors detected late in the cycle. Lack of context and
environment descriptions may further introduce mismatch
problems for both architecture and speci�cation [33, 10] and
interface inconsistency [6], especially when components from
di�erent sources are used.
Since many embedded systems deal with safety-critical

applications, formal speci�cation and veri�ation are highly
desired and widely used in software development. Vari-
ous formal methods applicable in this domain are discussed
and compared in [21]. The formal method used to describe
the behaviors of integrated software should be composable.
StateChart [12] is one of the methods widely used in current
practice for behavior modeling. Jahanian and Mok proposed
Modechart based on real-time logic to specify and analyze
real-time systems [17]. Other methods, such as Net Condi-
tion Event Systems [31] and Colored PetriNet [8], are also
introduced to specify and analyze the behaviors of integrated
embedded software.
A disadvantage of using formal methods to specify a sys-

tem is that an executable system cannot be constructed after
speci�cations are done, and the implementation can intro-
duce additional errors even if the speci�cations have been
proved to be correct. Therefore, researchers suggested us-
ing programming languages, such as Ada and C/C++, to
specify the behaviors directly [21]. Methods to specify real-
time and reactive systems using Java have been proposed
in [19, 22]. Tsang and Lai presented a method of using
Time-Estelle to specify and verify soft real-time systems.
Hooman and Roosmalen presented a method for extending
programming language to specify composable and reusable
real-time systems [13]. However, the correctness veri�cation
of all these approaches is still based on simulations. Ardis
et al. evaluated di�erent speci�cation methods, and showed
that the formal methods can satisfy more criteria [3].
Another issue for embedded software integration is model

heterogeneity. Since a component of embedded software
may deal with some physical process of the external world,
its behaviors may be represented with the model which is
most suitable for the physical process. Solutions for this
problem include the multi-graph architecture developed at
Vanderbilt University [28], the meta-architecture based on
the Actor model at University of Illinios [1] and �charts at
UC Berkeley [11].
The industry has also put signi�cant e�orts into the devel-

opment of a practical architecture for embedded software in-
tegration. UML has been used for embedded software mod-
eling [7]. The CORBA architecture has also been adapted
in embedded system software domain [5]. The OMAC user
group de�ned standard interfaces of reusable components for
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control and manufacturing systems [20]. The International
Electrotechnical Commission Technical Committee proposed
IEC 61499 function blocks to model and construct software
for electrical control systems [16, 31].
Comparing with all the related work mentioned above,

our proposed architecture supports all the desired features of
embedded software integration, including multiple-granularity
composability, executable-code-level recon�gurability, sep-
aration of functional, behavioral and timing speci�cations
and incremental integration and veri�cation. Our architec-
ture is also compliant with industrial standards in current
practices, and thus, can be applied to real-world applications
in industry.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a component-based architec-

ture for embedded software integration. This architecture
de�nes components and a composition model as well as a
behavior model. A reusable component in our architec-
ture is modeled with a set of events as external interfaces,
communication ports for connections, a control logic driver
(FSM driver) for separate behavior speci�cation and recon-
�guration, and service protocols for executing environment
adaptation. Such a structure enables multi-granularity and
vendor-neutral component integration, as well as behavior
recon�guration.
The control logic of the integrated software is modeled

using the formal method of NFSM, where each FSM rep-
resents the control logic of a component in the integration.
The control logic of each component is speci�ed in a state
table separately from the component implementation, and
can be recon�gured remotely and dynamically. Veri�cation
can also be done independently of implementation, and in-
crementally as the integration continues. A control plan is
used to specify both control logic and operations. Control
plan programs are portable and can be executed directly
by a component. The behavior speci�ed in a control plan
can be further divided into device-dependent and device-
independent parts, which can be reused for the device and
di�erent applications, respectively.
The evaluations based on two control applications has

shown that the components with our proposed model im-
prove the reusability and recon�gurability of integrated soft-
ware, and signi�cantly reduce development time and e�orts.
Our future work will focus on the timing and resource

analysis for integrated software. The architecture presented
in this paper makes it possible to separate the timing and
resource analyses from the functional integration and ver-
i�cation. To satisfy the timing constraints of integration
software, we plan to apply deadline distribution [18] at every
level of integration to obtain a feasible deadline for each com-
ponent operation. Component-level scheduling algorithms
will be developed for mapping components to tasks, and ex-
ecution analysis methods [23] will also be used to analyze
the resource requirements.
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