
Distributed Route Selection
for Establishing Real-Time Channels

Kang G. Shin, Fellow, IEEE, Chih-Che Chou, Member, IEEE Computer Society, and Seok-Kyu Kweon

AbstractÐTo guarantee the delivery of real-time messages before their deadline, a real-time channel or connection must be

established before the transmission of any message belonging to the connection. During this channel establishment phase, one must

first select a route between the source and destination of this channel and then reserve sufficient resources along this route so that the

worst-case end-to-end delay over the selected route may not exceed the user-specified delay bound. We propose an efficient

distributed route selection scheme that is guaranteed to find a ªqualifiedº route, if any, satisfying the performance requirement of the

requested channel without compromising any of the existing guarantees. The proposed scheme can also eliminate the common

reliability/performance bottleneck of a centralized route selection scheme while improving efficiency over the centralized and other

distributed schemes. Although the proposed solution starts with searching all possible routes in parallel, it prunes infeasible routes

quickly, and its worst-case operational overhead is shown to be only a linear function of the number of links in the network. Several

examples and simulation results are presented to demonstrate the effectiveness of the proposed distributed route selection scheme as

compared to sequential route-search schemes.

Index TermsÐHard real-time communication systems, real-time channel/connection, deadline guarantees, distributed route selection,

message scheduling.

æ

1 INTRODUCTION

THE demand of real-time network services has been rising

fast in many applications, such as process control,

factory automation, and nuclear reactor control. To meet

this demand, researchers proposed several real-time com-

munication protocols [1], [2], [3]. The concept of a ªreal-time

channelºÐproposed by Ferrari and Verma [1] and refined

by Kandlur et al. [2]Ðis one of the most notable solutions to

the problem of meeting message/packet1 delivery dead-

lines in wide area networks (WANs). A real-time channel is

a unidirectional virtual circuit which, once established, is

guaranteed to meet user-specified performance require-

ments as long as the user does not violate his a priori

specified traffic-generation characteristics [1].

Generally, two distinct phases are required to realize the

concept of real-time channel: off-line channel establishment

and run-time message scheduling. The channel establish-

ment phase is of prime importance to the realization of a

real-time channel, and during this phase, the system has to

select a route between the source and destination of the

channel along which sufficient resources can be reserved to

meet the user-specified delay and buffer requirements.

Although several channel establishment schemes have been

proposed in the literature [2], [1], [4], [5], [6], [7], [8], very

few of them expliecity have addressed the issue of selecting

a route between the source and destination of a channel

with end-to-end deadline guarantees, despite its impor-

tance to the channel establishment phase.

Since the number of possible routes between two

communicating peers could be large, selecting a route for

each real-time channel is potentially a time-consuming task.

It is therefore very important to develop an efficient scheme

that is guaranteed to select a ªqualifiedº route, if any, for

each requested real-time channel. If the worst-case antici-

pated traffic over a real-time channel is given (typically in

terms of the minimum message interarrival time and the

maximum message size), a ªqualifiedº route for this real-

time channel is defined to be the one that can meet the user-

specified end-to-end delay requirement without compro-

mising any of the existing guarantees. The service provider

(the network operating system in our case) must also be

able to reject a channel establishment request as soon as

possible if no qualified routes are available for the

requested channel.

There are basically two approaches to the route selection

problem: centralized or distributed. Most existing channel

establishment schemes are based on the centralized

approach [2], [4], [5], [6], [7]. They simply assume the

existence of a global network manager which maintains the

information about all the established real-time channels, the

topology and resource distribution and commitment of the

318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

. K.G. Shin and S.K. Kweon are with the Real-Time Computing Laboratory,
Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109-2122.
E-mail: {kgshin, skkweon}@eecs.umich.edu.

. C.C. Chou is with Lucent Technologies, 101 Crawfords Corner Rd. Room
1L-212, Holmdel, NJ 07733. E-mail: ccchou@lucent.com.

Manuscript received 14 Jan. 1999; accepted 17 Sept. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 108967.

1. We will use the term ªmessageº throughout the paper, but it could be
replaced by the term ªpacket,º depending on the desired context.

1045-9219/00/$10.00 ß 2000 IEEE

network thus far, and hence, can select an appropriate route

for each requested real-time channel. In such a centralized

scheme, all of the real-time channel establishment requests

require the network manager's approval. That is, each

channel establishment request is sent, along with its traffic-

generation characteristics and user-specified performance

requirements, to the network manager which then selects a

qualified route and reserves resources along the selected

route. The network manager also informs all intermediate

nodes on this route of the establishment of the new channel

and the information necessary for run-time scheduling of

the messages of this channel. Although with the centralized

approach one can devise efficient algorithms for the

network manager to select qualified routes, there are two

serious problems with this approach. First, the network

manager is likely to be a performance bottleneck, since it

must handle all channel establishment and disconnection

requests. Second, the system is susceptible to single-point

failures of the network manager, since, without the network

manager, no new real-time channel can be established.

To eliminate/alleviate performance and reliability bottle-

necks, one may use distributed link-state routing [9]. In this

approach, each node maintains the information on the

entire network at a local database by exchanging link-state

information with all other nodes, so that the source or the

destination can determine a route for a new requested

channel solely based on the information kept in its database.

The original link-state routing [9] was intended for best-

effort communication in a datagram network, and incurs a

very small overhead because each node is required to

exchange minimal information on the status of neighboring

links periodically or occasionally. In order for this type of

routing protocols to be used for real-time communication,

however, the detailed information on real-time channels

traversing each link must be exchanged between nodes; this

is significantly more than the minimal information ex-

changed in the original protocol, thus consuming significant

network resources [1], [2]. For example, for the real-time

channel approach in [2]Ðwhich is based on the linear-

bounded arrival processÐhas local delay bounds, mini-

mum message interarrival times, and maximum message

sizes of all the real-time connections established over each

link that must be broadcast over the entire network

whenever a new channel is established or an old channel

is torn down. In this type of real-time communication

protocol, the aggregation of link-state information [10] itself

is impossible. This excessive information exchange and the

large database kept at each node make it impractical to use

distributed link-state routing.

In this paper, we propose an efficient distributed route

selection scheme which is guaranteed to find a qualified

route, if any, for each real-time channel establishment

request. The proposed scheme searches for a qualified route

in parallel by flooding the connection request messages

through the network. In order to reduce the number of

request messages, it prunes infeasible routes quickly.

Unlike the centralized approach, our scheme doesn't suffer

performance and reliability bottlenecks. Moreover, it

doesn't require each node to keep the global information

on the network topology, and can also keep the overhead in

establishing a channel very low even under a heavy load

condition. This scheme also works well for handling

multiple simultaneous channel establishment requests.

The paper is organized as follows: Section 2 states the

problem of finding a qualified route for each channel

establishment request. Our proposed solution to this

problem and its overhead analysis are presented in

Section 3. In Sections 4 and 5 and in the Appendix, we

demonstrate, using examples and simulations, the correct-

ness and the effectiveness of the proposed solution. The

paper concludes with Section 6.

2 DISTRIBUTED ROUTE-SELECTION PROBLEM

The reliability and performance bottlenecks of the centra-

lized route selection scheme make the distributed approach

an attractive alternative. To choose a qualified route for a

new real-time channel, we have to perform an admission

test on each candidate route to check if there are sufficient

resources along the route to meet the user-specified end-to-

end delay requirement for this channel. (Although there

may be other performance requirements to be met, for

clarity of presentation we will focus on meeting the user-

specified end-to-end delay requirement.)

Since there could be a large number of routes between

two communicating peers, choosing a qualified route

among all possible routes between the source and destina-

tion of each requested channel may not be an easy task. One

can think of two simple-minded approaches to the dis-

tributed route selection problem:

1. Sequential search of n possible routes one by one
until a qualified one is found or all the n routes are
exhausted.

2. Parallel search of all possible routes, i.e., sending
multiple copies of an establishment request message
through all possible routes, making ªconditionalº
resource reservation and performing admission tests
on all of them.

The first approach determines a candidate route using the

information on the network topology and sends a real-time

channel establishment request along the candidate route. If

channel-admission tests succeed at all the links along the

route, the channel will be established. Otherwise, a second

candidate is chosen with the first one excluded, and the

same procedure is repeated. Since choosing candidate

routes requires the knowledge of the network topology,

this approach can be considered as a distributed approach

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 319

augmented with a centralized feature. The well-known

Dijkstra shortest-path algorithm [11] can be used for finding

candidate routes. However, this approach could be poten-

tially very time-consuming for the complete search of all

possible routes, and its operational overheadÐwhich is

measured in number of connection establishment request

messagesÐis proportional to n. One way to reduce the

search cost is to 1) determine several minimum-hop routes

(MHRs) and 2) check them, one at a time, if they can meet

the connection's timing requirements, until a ªqualifiedº

route is found from the selected MHRs or all MHRs

are exhausted.

The second approach, on the other hand, may be very

fast although it may possibly induce a large operational

overhead. Moreover, it can guarantee the discovery of a

qualified route, if any. This approach, if its overhead can be

reduced/minimized, will therefore become very attractive.

We propose a scheme based on the second approach that

is guaranteed to find a qualified route, if any, for the case of

a single establishment request at a time, while minimizing

its operational overhead. The scheme is also designed to

work well for multiple simultaneous requests by employing

ªtemporaryº resource reservation. In this scheme, each

node in the network maintains certain information of the

real-time traffic going through it and exchanges this

information with its neighbors, so that an algorithm similar

to the Bellman-Ford shortest path algorithm [11], [12] can

be used to find a qualified route. Although the proposed

scheme starts with searching all possible routes in parallel,

it prunes infeasible and/or inferior routes very quickly,

thereby reducing the operational overhead, i.e., the

number of request messages. Under the realistic assump-

tion that messages travel faster through lightly loaded links,

its operational overhead is only a linear function of E,

the number of links in the network. Another feature of

the proposed approach is elimination of shortest-path

calculations from the routing algorithm, thanks to its

parallel search.

3 THE PROPOSED SOLUTION APPROACH

We first describe the environment and the assumption

under which our distributed route selection scheme will be

developed. The underlying network is an arbitrary point-to-

point network. As in [13], [14], [2], [15], [16], the generation

of real-time messages is assumed to be governed by the

linear-bounded model that is characterized by three

parameters: maximum message size Smax (bytes), maximum

message rate Rmax (messages/second), and maximum burst

size Bmax (messages). In the linear bounded model, the

number of messages generated in any time interval of

length t does not exceed Bmax � tRmax. Based on this

message arrival model, the authors of [2], [15] proposed a

scheme to estimate the worst-case delay on each link and a

run-time scheduling algorithm for real-time messages. By

adding the worst-case delays of all links that a channel runs

through, one can calculate the worst-case end-to-end

delivery delay. This end-to-end delay is then compared

against the user-specified end-to-end delay bound for the

requested channel and the system can decide whether to

accept/reject the corresponding request. Note that these

schemes have been developed under the assumption that a

proper route for the requested channel was already

available. Using the delay-estimation method in [2], [15]

and a Bellman-Ford-like algorithm, we will in this paper

develop a scheme to find a qualified route for each channel

establishment request. Table 1 lists the notations used in

this section.

320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

TABLE 1
Notations

3.1 Link-Delay Estimation

Since real-time messages are given priority over non-real-

time ones, we will ignore the effects of non-real-time traffic

in the rest of the paper unless stated otherwise. We will

thus assess the delay of a link based only on the underlying

real-time traffic. Since the algorithm in [2], [15] will be used

to estimate link delays, we will briefly introduce this

algorithm first.

The goal of the algorithm in [2], [15] is to compute the

minimum worst-case delay on a link for a new real-time

channel to be added without compromising the perfor-

mance guarantee of any of the existing channels on the link.

Let fMi � �Ci; pi; di�; i � 1; . . . ; kg be the set of k existing

channels on a link, where Ci is the maximum time required

to transmit a message of channel Mi on the link, pi � 1
Ri
max

is

the minimum message interarrival time in Mi, and di is the

maximum delay assigned to Mi on this link, or link (delay)

deadline. Note that the inequality di � pi must hold for the

algorithm in [2], [15] to work correctly. Given a new channel

Mk�1 � �Ck�1; pk�1� to be established, the authors of [2], [15]

proposed an algorithm for computing the minimum worst-

case response time (MWRT), rk�1, on a link of channel

Mk�1s route without compromising the performance guar-

antees of other existing channels over the link. The

algorithm statically assigns priority to each real-time

channel to calculate the MWRT for this new channel, but

uses a multiclass Earliest-Due-Date (EDD) algorithm for

runtime scheduling. The algorithm can compute the MWRT

for a new channel through link ` based on the traffic-

generation characteristics (C and p) of the channel, when C

(maximum service time for a message), p (minimum

message interarrival time), and d (maximum permissible

delay over link `) for all existing channels are available.

The method in [2], [15] did not include those channels

pending for final confirmation in the calculation of MWRT

for the new channel establishment request, but we will

include them in our calculation of MWRT as if they had

already been established. This can simplify the channel

establishment phase, since the MWRT remains valid when

the confirmation message travels back from the destination

to the source. Otherwise, the MWRT for a new channel may

change due to the confirmation of other pending channels

which share one or more links with this channel, and thus,

we have to check this possibility at every intermediate node

the confirmation message visits en route to the source node.

On the other hand, inclusion of these pending channels in

the link-delay estimation will sometimes make MWRT

larger than what it actually would be if some of them are

rejected or choose not to use this link later. This over-

estimation of MWRT may sometimes result in incorrect

rejections of channel establishment requests. The over-

estimation problem occurs only when multiple requests

are initiated at about the same time. The incorrect rejection

decisions due to the overestimation of MWRT will be

made only when there is a very high percentage of real-

time traffic so that the overestimation of MWRT may

make the end-to-end delay larger than the application-

required latency. Since a good system design should also

anticipate the existence of a substantial percentage of non-

real-time traffic, the overestimation problem is usually not

serious. In order to avoid any possible confusion, ªexisting

channelsº will henceforth mean both established and

pending channels.

Note that different real-time channels have different

traffic-generation patterns, and hence, each of them is

associated with a different MWRT, i.e., different channels

may have different MWRTs over the same link. Determina-

tion of each channel's MWRT on a link will henceforth be

referred to as link-delay estimation.

3.2 The Route-Selection Algorithm

Based on the above definition of link delay, we can apply a

variation of the Bellman-Ford algorithm [11], [12] to solve

the route selection problem. The proposed algorithm is not

exactly the same as the original Bellman-Ford shortest path

algorithm in terms of the number of routes explored. Under

the original Bellman-Ford algorithm, only the one which

has the shortest delay is explored at any time. However,

under our algorithm, we simultaneously explore all routes

which could possibly be shortest.

Since the information of existing channels is necessary

for the calculation of a new channel's MWRT as well as for

the run-time scheduling of messages belonging to those

channels already established, each node has to maintain

two sets of tables for existing channels. The first set is the

tables of established channels (TECs), one for each of its

outgoing links. Each entry of a TEC represents a real-time

channel which goes through the corresponding link and

consists of the following four data fields:

. Channel identifier (ID), which uniquely identifies
the corresponding real-time channel. In order for a
source node to generate unique channel IDs, each ID
consists of two parts. The first part is the source ID
(or address), and the second part is a channel
number (unique within the source). This composi-
tion of channel IDs ensures their uniqueness
throughout the network.

. The maximum service time of a message (C) of this
channel.

. The minimum message interarrival time (p) of this
channel.

. The maximum permissible delay on this link (d) for
this channel.

To be consistent with the way channel priorities are

assigned for the link-delay estimation, these entries are

placed in ascending order of d values, i.e., the highest

priority is given to the channel with the least permissible

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 321

delay on this link. Note that this priority assignment is used

only for calculating MWRT; a multiclass EDD algorithm is

used for the run-time scheduling of message transmissions.

(The optimality of EDD in meeting deadlines legitimates the

off-line calculation of MWRT with fixed-priority scheduling

followed by the on-line EDD scheduling of message

transmissions.)

The second set of tables each node has to maintain are

ªtemporaryº tables for pending channel establishment

requests, also one for each of its outgoing links. These

tables will be referred to as ªtables of pending requestsº

(TPRs). Each entry of a TPR represents a channel establish-

ment request (or a pending channel) and consists of six

fields. The first three fields are the same as those of a TEC

and the remaining three fields are:

. da: the accumulated delay from the source to the
current node,

. timeout: the expiration time of this request message,

. r: MWRT of the corresponding outgoing link.

For a real-time channel establishment request, the first five

fields are the same for all outgoing links of a node, and thus,

can be shared among all TPRs for the node's different

outgoing links, i.e., one may easily use only one table to

store the combined information of all TPRs. However, for

convenience of presentation, we will assume that each TPR

(one per outgoing link) contains all of these data fields.

When the source wishes to establish a real-time channel

to another node, it will use the foregoing link-delay

estimation method to compute the channel's MWRT on

each of its outgoing links. After computing all MWRTs, the

source will send a real-time channel request message (Req)

via each outgoing link, which contains a channel identifier

(ID), the destination address (destination), the maximum

message size of this channel (Smax), the minimum message

interarrival time (p), the end-to-end delay bound D, the

expiration time (timeout) of this request, the path (path) and

the total number of hops (hops) this message has traveled

thus far, and the corresponding accumulated delay da.

Initially, the da field is set to the MWRT of the correspond-

ing link, path is set to the source and hops is set to 1. Note

that although we include hops in the request message for

convenience of presentation, it can be omitted in a real

implementation because the information carried in hops can

be derived from path. Copies of this channel-request

message will be put into the queues of all of its outgoing

links at the same time,2 each with priority lower than all

existing channels but higher than non-real-time traffic. This

new establishment request will also be inserted into the

source node's TPRs.

Fig. 1 outlines the procedure an intermediate node A will

execute upon receipt of a real-time channel establishment

request.

Procedure rcv req checks the received request message to

determine whether the message should be discarded or

processed further. The first two if statements check whether

the request has expired (timeout � current time), or the

request is in any of TECs, i.e., a qualified route for the

channel has already been found. If either of these is true, the

request message will be discarded. Procedure reply req will

then be called in if node A is the destination of the channel.

The fourth if clause is for the requests already in TPRs.

The request will be discarded if its accumulated delay (da) is

322 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

Fig. 1. Procedure for processing a channel establishment request.

2. One can build hardware to do this [17]. If such hardware is not
available then the copies will be put in the queues sequentially, one at a
time.

not smaller than the corresponding one in TPRs which

represents the minimum accumulated delay from the

source known to node A thus far, i.e., the path this request

message has traveled so far is inferior to the ones recorded in

TPRs. If the da value of the received request is smaller,

node A will update its TPRs to reflect the fact that a better

route has been found and the received request will be

forwarded to the next node by procedure forward req.

Finally, we conclude that the request is new to node A.

Thus, the request message will be appropriately stored and

forwarded (with procedure insert req and forward req) if

the sum of the accumulated delay and the MWRT of the

corresponding next link is less than D. Otherwise, the path

this request message has traveled so far cannot possibly be a

qualified oneÐi.e., the path is infeasibleÐso it will be

discarded. A request message will be forwarded by an

intermediate node only if it carries a smaller accumulated

worst-case response time (Req:da) before its expiration time.

Fig. 2 shows the procedures of inserting a new channel

establishment request and forwarding a request. As can be

seen from these procedures, most of the fields are directly

copied from the requesting messages to TPR and the

forwarding messages. Note that the request message is

assumed to come from the immediate upstream node B.

Each destination node has to keep a temporary list of

already-processed requests (LPRs) in order to avoid

reporting the request to applications more than once. Each

entry of this list consists of two fields, request ID and

timeout, which tells when to discard the request. Fig. 3

shows the operations a destination node will perform after

receiving a request. From Procedure reply req, one can see

that if the system decides to accept the request, the

(qualified) path carried by the request arrived first will be

selected as the route for the real-time channel.

Since the da field of a request represents the sum of

MWRTs of all links on the path from the source to

destination, the user-specified end-to-end delay bound

D may be larger than da, i.e., we are allowed to spend

more time than the corresponding MWRTs when sending

a message across each intermediate link. In such a case,

Dÿ da is divided evenly for all the intermediate links of the

real-time channel's path [2], [15]. Then, the permissible

delay of a real-time message of this particular channel

over an intermediate linkÐsimply called the link (delay)

deadlineÐis the channel's MWRT of that link plus

�Dÿ da�=hops. Since this sum is stored in the table of

existing channels (d field in TEC) and used for run-time

scheduling, �Dÿ da�=hops is included in the channel

establishment confirmation message (by procedure

send reply�accept�) from the destination to the source via

the same path the corresponding request message had

traveled (but in the opposite direction). Let Reply denote a

confirmation message which consists of four fields: ID, flag

(accept or reject), diff �� �Dÿ da�=hops� and path (the

remaining path back to the source node). Fig. 4 shows how

a positive confirmation message is constructed

(send reply�accept�), and the operations the intermediate

nodes will perform when receiving a (positive or negative)

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 323

Fig. 4. Procedure for handling reply messages.

Fig. 3. Procedure for processing a channel establishment request at the

destination.

Fig. 2. Procedures for inserting and forwarding a request.

reply message (forward reply). Note that head�list� repre-

sents the first element of list, and tail�list� represents the

remaining list after head�list� is removed from list.

The operations necessary to keep these route selection

tables (mainly TECs) up-to-date during the channel-

disconnect phase are very simple. We require one of the

two communicating peers to send a disconnect message

through the route of the real-time channel to the other

communicating peer. In this disconnect message, only the

channel ID needs to be included. All the intermediate

nodes will delete the corresponding entries in their TECs

upon receiving the disconnection message. Thus, we do not

consider the load of this real-time channel in all subsequent

MWRT estimations.

3.3 Performance and Overhead Analysis

The first goodness measure we are interested in is the

ªcompletenessº of the proposed scheme, i.e., whether the

scheme is capable of finding a qualified route, if any. For a

single request, the Bellman-Ford (shortest-delay path) [11],

[12] algorithm ensures that the least MWRT path will be

found, although other larger-delay routes may be found

first when the number of hops of these routes are smaller

than that of the least MWRT path. If the least MWRT path is

not ªqualifiedº for the requested channel, then there is no

qualified route available for the channel. Since the least

MWRT path can always be found with the Bellman-Ford

algorithm, the proposed scheme is complete for the single-

request case. However, due to the overestimation of

MWRTs when there are multiple simultaneous requests,

the proposed scheme may not be complete, especially when

the network has a high percentage of real-time traffic so that

the overestimation of MWRTs will make the end-to-end

MWRT delay larger than the user-specified end-to-end

delay bound. (As we discussed in the delay estimation

procedure, however, the overestimation problem is usually

not serious in practice. In the Appendix, we will provide an

example to illustrate an overestimation situation.)

Another performance measure is the time to establish a

channel. For a single request, the worst-case time needed to

accept an establishment request is the time for the request

message to travel from the source to the destination then

back to the source node via the least MWRT path. This is a

round trip delay between the source and destination via the

least MWRT path. In general, if a qualified path can be

found (may not necessarily be the least MWRT path), the

time to complete the corresponding channel establishment

request is the time for the request message to travel from

the source to the destination then back to the source via the

qualified route found first.

The primary overhead incurred in the proposed channel

establishment procedure is the number of times (copies) a

request message has to be transmitted for each channel

establishment request. Note that ªone time (copy)º is

defined as ªsending a message across one link,º e.g., a

message is said to be transmitted n times if the message is

sent n hops. For more accurate estimation, the request

message is assumed to travel faster through a lightly loaded

link (considering only real-time traffic). This assumption

generally holds as the priority of the request message is

lower than real-time traffic but higher than non-real-time

traffic. Under this assumption, each node is likely to send a

request message to its neighbors only once, since the

request message will be forwarded only when the condi-

tional statement �Req:da � TPR�Req:ID�:da� in Fig. 1 is

false. A node will likely receive the copy of a request

message which travels through the route with the smallest

value of Req:da first, and thus, it will discard all subse-

quently arriving copies of the same request message. A

request message will therefore be transmitted at most

2K times in this case, i.e., each node sends a copy of the

request message to all its neighbors once, where K is the

number of links in the network.

In some cases, however, depending on network traffic

condition, multiple requests can arrive at a node from

different routes. This happens when a request message with

a larger Req:da arrives earlier at a node along a route which

was momentarily lightly loaded even though large number

of real-time channels are already established over some

links of the route. In that case, the number of messages that

must be received in the entire network could be greater

than 2K. Although it is a rare case, the overhead can

be quite large in the worst case. We may be able to

prevent the overhead from increasing absurdly in the

worst-case by imposing an upper limit to the number of

request messages for a real-time channel that can be

transmitted through a link or by controlling the

Req:timeout field of a request message.

A more fundamental way to reduce the overhead in our

approach is the pruning function. That is, the conditional

statement �Req:da � r < Req:D� in Fig. 1 is used to

terminate the unnecessary propagation of a request to a

region where no qualified routes exist. Since a request will

be inserted in TPR and forwarded through an outgoing link

only when the sum of Req:da and the MWRT over the

outgoing link is smaller than D�� Req:D�, the request

message will not propagate too far, i.e., the nodes whose

distance from the source (in terms of the worst-case

delivery delay for this new channel) is greater than D will

not receive the request message. Although this fact may not

improve the worst-case overhead, for most of the time it

makes a significant reduction of overhead.

We may also put a restriction on hops to reduce the

overhead; stop forwarding a request if the number of hops

the message has traveled so far is more than a predefined

limit. Nodes which are located too far (in terms of hop

count) from the source N will not receive the requests

324 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

sent by N . If the predefined limit can be chosen appro-

priately, this method may also significantly improve both

the worst-case overhead and the actual performance.

However, since this method will also reduce the chance of

finding a qualified route, it is not included in the proposed

solution and only mentioned as a possible way to reduce

the overhead.

Although we argued that our approach has a potential to

accompany large overhead and presented ways to reduce it,

we still believe that the size of the overhead is justifiable

due to the following reasons. First, the number of request

messages which are transmitted for establishing a real-time

channel is very small compared to the number of messages

which are transmitted through the established real-time

since, in general, the lifetime of the real-time is much longer

than the channel establishment time. Second, although the

overhead is quite large in our approach, it is much smaller

than that of the distributed version of the centralized

approach mentioned in Section 1. In the distributed version

based on the Link-State Routing, the exchange information

must include all the details of all the real-time channels at

every node in the entire network, i.e., local delay bound, the

minimum message interarrival time and the maximum

message size, and this information must be broadcast to all

the nodes whenever a new channel is established and an

old channel is disconnected. In addition, each node must

manage a huge database in order to keep track of all this

information. Moreover, the consistency problem must be

dealt with in order to enable all the nodes to share the

identical data. On the other hand, in our approach, each

node only has to keep the information on the real-time

channels going through the node, and the information

contained in the request message is only on the new real-

time channel concerned and hence, much smaller than

that required in the distributed version. In terms of

reliability, our approach is more robust than the distributed

version, since a failed node or a lost link-status message will

worsen the consistency problem in the distributed version

unlike ours.

Although the sequential approach mentioned in Section 2

possibly has a smaller overhead, it is less robust than our

approach in terms of reliability and has the consistency

problem because every node is required to maintain the

network topology information.

4 EXAMPLE

In this section and the Appendix, we will present several

examples to illustrate the operations and utility of the

proposed route selection scheme under various conditions.

Example 1. Fig. 5 shows a small network with five nodes.

Each link is labeled with a number representing its

transmission bandwidth in million bits per second

(Mbps); for example, the link between N1 and N2 is a

100 Mbps full-duplex link. We will illustrate all the

operations in the network for establishing the first

channel with Smax � 50Kb (maximum message size), p �
50 ms (minimum interarrival time), and D � 100 ms

(end-to-end delay bound). The source of this channel is

N1 and its destination is N5. We thus assign 1:1 as the

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 325

Fig. 5. Example 1: a simple five-node network.

channel's ID. The first ª1º represents the source node,

and the second ª1º represents a number which is unique

to the source node N1. Since no real-time channel exists

at this time, all TECs, TPRs, and LPRs are empty.

Upon reception of a channel establishment request,

the maximum service time (C) for the messages of this

channel can be computed by dividing the maximum

message size by the link bandwidth. C � 0:5 ms for link

1! 2 and C � 1 ms for link 1! 3. Since there is no

other real-time channel, the MWRT on a link equals its C

value. N1 stores this request in its TPR:1! 2 and

TPR:1! 3. In Fig. 5, we omit C and p fields because

C � r and p are the same in all TPRs. Timeout is also

omitted for clarity of presentation.
N1 sends two request messages (Req1 and Req2) to

N2 and N3, respectively. Although there are nine fields
in a request message, only ID, destination, hops,
path, and da�ms� (in this order) are shown in Fig. 5,
since other fields are the same for all request messages.
For example, Req1(1:1,N5,1,N1,0.5) represents ID � 1:1,
destination � N5, hops � 1, path � N1, and da � 0:5 ms.

After N2 and N3 receive Req1 and Req2, respectively,

these messages will be stored and the C field for link

2! 4, link 3! 4, and link 3! 5 will be computed. Since

there is no other channel, each C is equal to the MWRT

on the corresponding link. Thus, the entries for this

message in TPR:2! 4, TPR:3! 4, and TPR:3! 5 can be

inserted and the corresponding request messages can

also be sent. As can be seen in Fig. 5, path ªgrowsº to

N2N1, hops increments by 1, and da becomes 1.5 in Req3,

which is sent to N4 by N2. Req4 (N3 ! N4) and Req6

(N3 ! N5) can also be generated in the same manner.

Due to the randomness of network traffic, it is not

certain whether Req3 or Req4 will arrive at N4 first.

However, since the path N1N2N4 has a smaller MWRT

and channel establishment requests are given priority

over non-real-time traffic, Req3 will very likely arrive at

N4 first. So, in Fig. 5, we assume Req3 arrives at N4

before Req4. N4 will thus process the request based on

Req3 and the entries in TPR:4! 5 and TPR:4! 3 can be

obtained (as shown in Fig. 5) and the corresponding

request messages (Req5 and Req7) can be sent.

When Req4 arrives at N4, the da carried in Req4 will

be compared with the da value stored in N4's TPRs. Since

the da (� 3:5) carried by Req4 is greater than that (� 1:5)

of N4's TPRs, Req4 will be discarded.

At N5, a similar situation will occur. We assume that

Req5 will arrive at N5 before Req6, because Req5

travels through a path of a smaller MWRT. (We would

like to stress, however, Req6 may possibly arrive at

N5 before Req5.) Since N5 is the destination of the

requested channel and the ID carried by Req5 is not

in N5's LPR, the channel's ID will be inserted into

N5's LPR and a confirmation/reject message is sent

back via the path carried in the request message

(N4N2N1). If the reply is a confirmation, we need to

compute diff � �100ÿ 2:5�=3 � 32:5. In Fig. 5, Reply1

shows a confirmation sent to N4 by N5 with ID � 1:1,

flag � 1, diff � 32:5 and path � N2N1.

After receiving Reply1, N4 inserts an entry with

ID � 1:1, C � 1 ms, p � 50 ms, and d � 33:5 (=32.5+1)

into TEC:4! 5. Then all the corresponding entries

(with ID � 1:1) in N4's TPRs are deleted and Reply2

(with path � tail�path�) is sent to the next node speci±

fied in Reply1's head�path�. Operations in N2 and N1

are similar.

See the Appendix for more complex examples.

5 SIMULATION AND DISCUSSION

In order to comparatively evaluate the proposed scheme,

we have conducted an in-depth simulation study. In this

study, we measured and compared the probability of

successfully establishing channels under various load

conditions using 1) the proposed (parallel-search) approach

and 2) sequential-search approaches based on the Shortest-

Path-First (SPF) algorithm. All the hops are assumed to

have the same weight/cost, and thus, SPF practically finds

the route with the minimum number of hops. We also

evaluated their operational overhead and time to establish a

real-time channel. We first describe the simulation model

then the simulation results.

5.1 The Simulation Model

We used a part of the MBONE network in the North

America region in Fig. 6 as the network topology in order to

evaluate the performance of the proposed scheme in the

WAN environment. All T3 links and those nodes connected

via T3 links are included in the simulation. We also used

two additional network topologies in our simulation in

order to emphasize the usefulness of our approach in

networks with better connectivity (e.g., backbone net-

works). Fig. 7 shows these two additional network

topologies used in our simulation. Fig. 7a is an ordinary

rectangular (unwrapped) mesh and Fig. 7b is a wrapped

rectangular mesh, both consisting of 25 nodes each. We

assume that the links connecting nodes in all three

topologies consist of two unidirectional links (running in

opposite directions), each with 100 Mbps transmission

bandwidth. Among these three, the wrapped rectangular

mesh is the best in terms of connectivity, and the

unwrapped one is the second.

We established real-time channels over these three

networks. For the sake of simplicity, we used real-time

channels with identical input traffic specification and

performance requirements. Thus, the real-time channels to

be established are specified by �Cmax; p; d� � (3 msec, 33

msec, 100 msec). According to the admission test described

326 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

in Section 4, up to 10 real-time channels can be established

over each link. In order to evaluate the probability of

successful channel establishment, we have set load condi-

tions as follows. First, we selected source±destination pairs

randomly, and established a real-time channel between

each pair using the proposed scheme. The lifetimes of these

channels are set infinite, and thus, the number of channels

monotonically increases with time. After a certain amount

of time elapsed, we counted the number of real-time

channels established over each link, added them up, and

divided the sum by the number of links of the network. The

resulting number was treated as the average load of the

network. Under this setting, we 1) generated channel

establishment requests whose interarrival times are expo-

nentially-distributed, 2) executed the proposed scheme, and

3) measured the success probability. In order to calculate

the success probability under a constant load condition,

we disconnected the newly established channels in a very

short time. Without this process, the load will not be

constant but increase continually because of the new

channels added. For the purpose of comparison, we applied

the SPF algorithm to the same source-destination pairs and

measured the success probability. That is, we first find the

minimum-hop route between source and destination, then

send a channel establishment request along the chosen

route. If the channel-admission tests succeed at every node

along the path, the destination sends a channel-acceptance

message backward to the source. Then, the source considers

the establishment successful. If channel-admission test fails

at a particular link, we consider the link disconnected in the

topology and initiate another search for a new minimum-

hop route and send a request message along the new path.

We repeat this process up to five times until the channel

establishment succeeds.

During this experiment, we also counted the number of

messages needed to establish a real-time channel using both

approaches in order to evaluate their operational over-

heads. Finally, we measured the time to establish each

channel for both approaches.

The above process was executed while varying the

given network load and the entire procedure was executed

100 times.

5.2 The Simulation Results

Fig. 8a shows the establishment success rate under various

loads in the MBONE topology using both our approach and

the sequential search based on SPF. SPF-n denotes a scheme

that allows up to n trials of SPF. In Fig. 8a, when the

network is lightly loaded (i.e., the network load is under

30 percent), both approaches achieve an almost 100 percent

channel establishment success rate. That is, abundant

resources are available in such a case and hence, most of

channel establishment requests are accepted. When the

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 327

Fig. 6. The proposed MBONE topology in North America.

Fig. 7. Network topologies used for the simulation.

network load is in the mid-range (i.e., 40-70 percent), the

success rate of our scheme is comparable to that of SPF-3. In

fact, SPF-5 shows little improvement over SPF-3. Compared

to SPF-1, our scheme shows a much higher success rate in

this range. Ideally, our approach must outperform any

sequential search method as our parallel search is guaran-

teed to find a qualified route, if any. In practice, however,

due to the reservation of link bandwidths by pending real-

time channels which had been requested almost simulta-

neously, its rejection rate of channel establishment requests

is a little higher as seen in Fig. 8a. When the network is

heavily loaded (e.g., over 80 percent), our approach and the

sequential approaches, irrespective of the number of trials,

both show low success ratios. This is mainly due to the

limited connectivity of the MBONE network topology. In

fact, we could not obtain any meaningful results when the

network load is 90 percent, because the number of real-time

channels established was very small.

Fig. 8b shows the establishment success rate for the

unwrapped mesh. Compared to the MBONE topology, the

success rate is higher. In particular, our scheme's success

rate is comparable to that of SPF-3. Fig. 8c shows the

establishment success rate for the wrapped rectangular

mesh. Compared to the unwrapped mesh and the MBONE,

it shows much higher success rate. In particular, our

scheme's success rate is shown to have a larger increase

than SPFs; in fact, our scheme shows the highest success

rate under most loads. This clearly demonstrates the

superiority of our scheme for networks with better

connectivity.

In order to compare the operational overheads of our

scheme and the sequential SPF, we measured the number of

establishment-request messages sent over each link plus the

number of channel-acceptance messages for each channel

request, and averaged them over the entire network. Under

lightly loaded conditions, the number of messages sent in

our scheme is very large: approximately 28, 65, and 85 in the

MBONE, the unwrapped mesh, and the wrapped mesh,

respectively. This results from the fact that our scheme

employs a form of limited flooding and under a lightly

loaded condition, most links can accommodate a new

establishment request and relay request messages to their

neighbor nodes. Moreover, it is often the case that multiple

copies of the same request pass through a link. It is

important to note, however, that this larger message

overhead is ªharmless,º as the establishment request

messages use idle resources (likely to exist in lightly loaded

networks).

As the network gets more loaded, the operational

overhead decreases, demonstrating that the pruning effect

of our scheme works well as the network load gets higher.

328 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

Fig. 8. Channel-establishment success rate.

That is, as the network load gets higher, some links reject a

new establishment request due to their insufficient available

bandwidth, and hence, do not propagate the request to their

neighbors, thus decreasing the number of request messages.

In particular, when the load is 90 percent, the number of

messages was approximately five in the unwrapped mesh;

the average number of hops of newly-accepted real-time

channels is approximately one. This also confirms that our

scheme can keep the operational overhead under a highly-

congested condition low enough to save link bandwidth for

other best-effort traffic.

Fig. 9 shows the operational overheads for our scheme

and SPF-5 for all three topologies. Compared to our scheme,

SPF-5 generates a considerably smaller number of request

messages, because under lightly loaded conditions, the first

establishment trial succeeds in most cases. While the

operational overhead of our scheme decreases with the

load, the overhead of SPF-5 increases in the mid-range load.

This demonstrates that, as the network load gets heavier,

the success probability of the first trial decreases and the

second and third trials are required, thus increasing the

number of request messages. Under an extremely-con-

gested condition (e.g., 80 percent load for MBONE and

90 percent load for unwrapped and wrapped meshes), the

operational overhead of SPF-5 decreases again for a reason

similar to what happened to our scheme. Very few request

messages propagate through the network, because there

aren't many links with sufficient available bandwidth.

Interestingly, our scheme generated smaller overhead than

SPF-5 in this case, because we included both failure-

notification and channel-acceptance messages in the calcu-

lation of overhead. Unlike our scheme, SPF-5 requires a

node which cannot forward the request to the next node

because of insufficient network resources to send a failure

notification message back to the source.

The overhead analysis in Fig. 9 may indicate our scheme

to be disadvantageous compared to the sequential search,

but it isn't so for two reasons. First, the large number of

request messages in a lightly loaded network doesn't do

any harm; since the links are not used often for transmitting

normal traffic when the network is lightly loaded, request

messages can be transmitted without significantly delaying

or dropping regular packets. Considering the existence of

non-real-time packets, we need to introduce an appropriate

measure so that the number of channel establishment

request messages may be reduced. This can be achieved

by limiting the number of hops that the request messages

can be relayed from the source, as mentioned earlier.

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 329

Fig. 9. Comparison of overheads.

Second, our scheme takes much less time in establishing a

real-time channel than the sequential search. The channel

establishment time is defined as the time measured from the

issuance of a request to the notification of its acceptance.

Fig. 10 shows the channel establishment times of both our

scheme and SPF-5, where the time unit is a packet-

transmission time over a single link. We assumed that the

packet size is constant throughout the network. In this

figure we showed the establishment time for only success-

ful requests. As can be seen in Fig. 10, our scheme is

considerably better than the SPF-5.

In addition to its larger channel establishment time, the

sequential search based on SPF requires to find the shortest

path for each trial using an appropriate algorithm such as

Dijkstra's [11], which is itself time-consuming. By contrast,

our scheme does not require execution of such an

algorithm. In order to assess the effect of SPF algorithm

execution on the channel establishment time, let's consider

the following simple example, and assume that Fig. 7b is an

ATM network, each link with 155 Mbps bandwidth, and

that the size of a channel establishment request message is

the same as a single ATM cell (53 bytes). Since the

information which must be carried in a request message is

minimal as discussed in Section 3, this assumption is

justifiable. In this network, the transmission time of a

request is approximately 2:735� 10ÿ6. When a benchmark

test of the SPF algorithm used in our simulation was

performed on SUN SPARC 20, the average execution time

was approximately 1.7 msec when the source and destina-

tion pairs were randomly generated. Considering only this

fact, one can easily observe the large overhead of executing

the SPF algorithm. Specifically, in the unwrapped rectan-

gular mesh, the average number of trials of SPF-3 whose

success rate is comparable to that of our scheme is

approximately 1.4 in the case of a 70 percent load, and

thus, the execution time of the SPF algorithm is 2.36 msec.3

Compared to the transmission time of request messages,

this execution time is an order of magnitude larger,

demonstrating the superiority of our scheme to the

sequential SPF algorithm. Moreover, by eliminating the

need for an SPF routine, our approach becomes very

attractive to embedded real-time systems with low-cost,

low-power CPUs.

6 CONCLUSION

In this paper, we have proposed and evaluated an efficient

distributed route selection scheme which is guaranteed to

find a qualified route, if any, for each real-time channel

330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

3. One may employ a k-shortest-path-finding algorithm [18] to save time
in calculating shortest paths in each trial. However, the success ration of this
approach is lower than the one used in this simulation since the identical
topology is used in calculating all the shortest paths while the serial search
used in this simulation removed the disconnected link during each trial.

Fig. 10. Comparison of channel establishment times.

establishment request. By equipping two simple tables with

each node, the proposed scheme can not only eliminate the

common reliability and performance bottlenecks of centra-

lized route selection, but also keep the operational overhead

sufficiently low for practical use. The proposed scheme is

presented in procedure form, and its correctness and

completeness are discussed. Several examples are presented

to illustrate how the proposed scheme works. Our simula-

tion results have also shown this scheme to make significant

performance improvements over the sequential search

based on SPF, especially in terms of channel establishment

time at a reasonable cost.

APPENDIX

ADDITIONAL EXAMPLES

Before proceeding to the examples, we first describe an

environment in which such examples will be derived. The

same network in Example 1 will be used for Example 2

(Fig. 11), but TECs are no longer empty, i.e., there already

exist many real-time channels when a new channel

establishment request is made. Table 2 shows the content

of all TECs at some time instant. The entries of these tables

had been inserted for establishing the following 21 channels.

Each channel is described as a 5-tuple �ID; Smax; p;D; path�.
Table 3 presents the 21 channels in the order of their

establishment. Note that the TECs in Table 2 are only one of

many possible situations after these 21 channel establishment

requests have been processed and accepted. As discussed

earlier, due to the randomness of network traffic, there may

be many other possible sets of TECs. We also illustrate such

situations in the following examples.

Example 2. We want to establish a real-time channel with

ID � 1 : 8, Smax � 200Kb, and p � 20 ms in the network

of Fig. 11 under the environment as specified in Table 2.

The source of the requested channel is N1 and its

destination is N5. We will first let D � 19 to show that

only the path N1N2N4N5 is a qualified route for this

request. D will then be changed so as to illustrate other

cases.

N1's operations: The MWRTs (r values in TPR) and C

values of N1s outgoing links are computed first. For link

1! 3, C � 200=50 � 4. To compute a channel's MWRT

on a link, we need to assign highest possible priority to

this channel without violating the link deadlines (d in

TEC : 1! 3) of other existing channels. We start with

assigning the requested channel top priority, then check

if any of the existing channels' link deadlines will be

violated. Recall that the existing channels are placed in a

TEC in ascending order of their d values. By giving the

newly-requested channel top priority on link 1! 3, the

w o r s t - c a s e d e l a y o f c h a n n e l 2 : 4 w i l l b e

4� d5:520e � 2 � 6 > 5:5. So, we lower the priority of this

new request below channel 2 : 4 but above channel 1:3.

With this priority assignment, no existing guarantees

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 331

TABLE 3
The Table of Previously-Accepted Requests for Example 2

TABLE 2
TECs for Example 2

will be violated, because the following schedulability test

holds for any channel i whose priority is lower than the

requested channel [19], [2], [15]:

9t 2 Bi � fdig [kpj : j 2 Ai; 0 � k � di
pj

� �� �
;

Wi�t� �
X
j2Ai

Cj � d t
pj
e � Ci � t;

where Ai is the set of channels (including the requested

channel) whose priority is higher than that of channel i,

Ci is the maximum service time of channel i, di is the link

deadline of channel i, and pi is the minimum message

interarrival time of channel i. Given below is an

acceptable set of t and Wi�t� for channels on link 1! 3.

. channel 1:3, t � d1:3 � 8, W1:3�8� � 7 < 8.

. channel 1:2, t � d1:2 � 16:2; ,

W1:2�16:2� � 9:6 < 16:2:

. channel 1:5, t � d1:5 � 20, W1:5�20� � 11:6 < 20.

. channel 2:2, t � p1:3 � 20. W2:2�20� � 13:6 < 20:5.

As a result, the priority of the requested channel will be

placed between channel 2:4 and channel 1:3. So, the

MWRT of the requested channel on link 1! 3 is equal to

the smallest t such that W1:8�t� � t, i.e., the smallest t

such that 2� d t10e � 4 � t. This channel's MWRT on link

1! 3 is therefore 6. For link 1! 2, using the same

procedure, the MWRT is computed to be 2 by giving the

new channel the highest priority on this link.

Note that this priority assignment for the requested

channel is just for computing the MWRT. As discussed in

Section 3.1 and in [2], [15], the run-time priority in

transmitting the messages of the requested channel, if

accepted, is determined based on the channel's link-

delay deadline � the MWRT obtained here and will be

determined after the route is selected.

After computing MWRTs, N1 inserts appropriate

entries into TPR:1! 2 and TPR:1! 3 (as shown in

Fig. 11). Channel-establishment requests are sent to both

N2 and N3. Fig. 11 shows only five fields in the request

messages as in Example 1, because the other fields are

the same for all request messages.

Operations of N2 and N3: After receiving the request

message from N1 and determining that this request is

new (does not exist in any TPR and TEC), N2 and N3 will

perform similar operations as N1, i.e., compute C and

MWRT values for all of their outgoing links except for

the links to N1, and store this information in TPRs.

332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

Fig. 11. Example 2.

Using the same procedure as above, we get C � 4 and

MWRT� 4 on link 2! 4 by assigning the new channel

top priority. A request message (Req3 in Fig. 11) is sent to

N4 with da � 2� 4 � 6.

For link 3! 4, we get C � 10 and MWRT� 10 by

assigning the new channel top priority. A request

message (Req4 in Fig. 11) is sent to N4 with

da � 6� 10 � 16.

For link 3! 5, we get C � 20 and MWRT� 25 by

assigning the new channel the lowest priority. However,

in order to make the scheme work correctly, we require

d � p (� 20) on each link of the channel's route [2], [15].

So, this link cannot be part of a qualified route, and

hence, no request message is sent to N5 via this link and

no entry (corresponding to this request) will be inserted

into TPR:3! 5.

N4s operations: Since it is not certain which of Req3

or Req4 will arrive at N4 first, we will discuss both cases.

If Req3 arrives first, then N4 will compute C and

MWRT for links to both N3 and N5. For link 4! 3, we

get C � 10 and MWRT� 16 by assigning the requested

channel the priority lower than channel 5 : 1 but higher

than channel 4:2. So, the accumulated MWRT from

N1N2N4N3 is 6� 16 � 22 > D�� 19�, and hence, no

request message will be sent to N3 and no entry

(corresponding to this request) will be added to

TPR:4! 3.

For link 4! 5, we get C � 4 and MWRT� 4 by

assigning top priority to the requested channel. So, N4

stores this information in TPR:4! 5 and Req5 (with

da � 6� 4 � 10) is sent to N5. After N4 receives Req4,

since the da (� 16) carried in the message is greater than

that (� 10) in N4s TPRs, Req4 is discarded.

On the other hand, if Req4 arrives at N4 first, N4 will

compute C and MWRT for links to N2 and N5 based on

Req4. For link 4! 5, because MWRT� 4, the accumu-

lated MWRT, da, from N1 to N5 will be 16� 4 � 20

which is greater than the required end-to-end delay

bound 19, so no message will be sent to N5. A similar

situation occurs for link 4! 2, since C � 4 and

MWRT� 4 (top priority). Thus, when Req3 arrives, the

operations performed by N4 will be exactly the same as

those in the case when Req3 arrives at N4 first.

Reply operations: N5 will perform the same opera-

tions as in Example 1, but with diff � �19ÿ 10�=3 � 3.

The operations to be performed by N4, N2, and N1 when

the reply message arrives at these nodes are the same as

in Example 1.

If we increase D to 20, the path N1N3N4N5 with the

worst case accumulated delay 20 is a qualified route for

the requested channel. Thus, if Req4 arrives at N4 before

Req3 (Fig. 11), this route will be chosen instead of

N1N2N4N5.

On the other hand, if we let D � 15 in this example, as

can be seen in Fig. 11, Req4 will not be sent because its

da > 15. If we decrease D further to 9, then Req5 will not

be sent. In this case, no qualified route exists at that time,

so the channel establishment request will time out and

thus, will be rejected.

Example 3. In this example, we will use the same network

and environment in Example 2 to demonstrate the effects

of overestimating link delays in case of multiple pending

requests. In addition to the requested channel 1:8 in

Example 2, we assume another channel (ID � 2 : 5)

establishment request occurs at about the same time.

This channel is specified as Smax � 200Kb, p � 20 ms,

source � N2, and destination � N3. At first, we ignore

the end-to-end delay requirements (D) of both channels,

i.e., assume both Ds are sufficiently large.

If these two channel requests arrive sequentially with

a sufficiently large interarrival time between them

(regardless of the order of their arrival), the least MWRT

of channel 1:8 is equal to 10 (via path N1N2N4N5), and

that of channel 2:5 is equal to 8 (via path N2N1N3). Note

that as discussed in Section 3, due to the randomness of

the network traffic, the path with the least MWRT may

not always be chosen. So, the MWRT of a channel

depends on which path is chosen. Thus, the least MWRT

of a channel is defined to be the MWRT of the path with

the smallest MWRT. However, when the interarrival

time between them is not sufficiently large, i.e., TPRs

contain entries for both channels at the same time, the

MWRTs (including the least MWRT) may be over-

estimated. Table 4 shows the MWRTs of the two requests

via two (with the least and the second least MWRT) of

their possible routes for different arrival orders of

channels 1:8 and 2:5. The first column shows the MWRT

when channel 1:8 arrives first and channel 2:5 arrives

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 333

TABLE 5
MWRTs for Two Concurrent Requests with Smax � 50Kb

TABLE 4
MWRT for Two Concurrent Requests with Smax � 200Kb

before the deletion of channel 1:8s entries (in TPRs). The

third column shows the opposite, i.e., channel 2:5 arrives

first. The second column represents the situation when

channel 1:8 request arrives at N1 approximately at the

same time as channel 2:5 request arrives at N2. Note that

the second column is derived under the assumption that

request messages travel faster via links with smaller

MWRTs and the first-come-first-serve link scheduling

policy for messages of the same priority.

As can be seen from the first and third columns of

Table 5, the MWRT estimate for the channel which

arrives later is unnecessarily large. When two channels

arrive at about the same time, the MWRT estimates for

both channels are larger than their true value. Note,

however, we have not yet considered the end-to-end

delay requirement. When D is reasonably large, e.g.,

D1:8 � 26 and D2:5 � 17, qualified routes for both

channels can be found regardless of the overestimation

of link delays. In fact, most real-time applications do not

require such short end-to-end delays (at least 100 ms for

typical interactive applications) and do not generate such

high-volume data streams. For example, if we decrease

Smax to 50Kb, which is a typical size for multimedia

applications, the least MWRT for channel 1:8 is 2:5 ms,

and for channel 2:5 is 1:5 ms. Table 5 shows the MWRTs

of the same four paths (as in Table 4) in this case. As can

be seen from Table 5, channel 1 : 8s MWRT increases

only by 2 ms in the worst case due to the overestimation

of link delays and channel 2 : 5s MWRT only by 1 ms.

This example shows that, unless the requested channel

generates very large messages or it requires a very short

end-to-end delay, overestimation usually does not cause

unnecessary denial of channel establishment requests.

ACKNOWLEDGMENTS

The work described in this paper was supported in part by

the US Office of Naval Research under Grants N00014-J-94-

1-0229 and N00014-99-1-0465. Any opinions, findings, and

conclusions or recommendations expressed in this paper

are those of the authors and do not necessarily reflect the

view of the funding agency.

REFERENCES

[1] D. Ferrari and D.C. Verma, ªA Scheme for Real-Time Channel
Establishment in Wide Area Networks,º IEEE J. Selected Areas in
Comm., vol. 8, pp. 368±379, Apr. 1990.

[2] D.D. Kandlur, K.G. Shin, and D. Ferrari, ªReal-Time Communica-
tion in Multi-Hop Networks,º Proc. 11th Int'l Conf. Distributed
Computing Systems, pp. 300±307, 1991. An expanded version
appeared in IEEE Trans. Parallel and Distributed Systems, vol. 5,
no. 10, pp. 1,044±1,056, Oct. 1994.

[3] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala,
ªRSVP: A New Resource ReSerVation Protocol,º IEEE Network,
pp. 8±18, Sept. 1993.

[4] D.D. Kandlur and K.G. Shin, ªDesign of a Communication
Subsystem for HARTS,º Technical Report CSE-TR-109-91, CSE
Division, Dept. of Electrical Eng. and Computer Science, Univ. of
Michigan, 1991.

[5] K.G. Shin and C.-C. Chou, ªDesign and Evaluation of Real-Time
Communication for Field Bus Based Manufacturing Systems,º
Proc. 1992 IEEE Local Computer Network Symp., pp. 483±492, Sept.
1992.

[6] C.-C. Chou and K.G. Shin, ªStatistical Real-Time Channels on
Multiaccess Networks,º Proc. Int'l Conf. Computer Comm.,
pp. 29±34, Aug. 1995.

[7] C.-C. Chou and K.G. Shin, ªMultiplexing Statistical Real-Time
Channels on a Multiaccess Network,º Proc. 16th Int'l. Conf.
Distributed Computing Systems, pp. 133±140, May 1996.

[8] C.-C. Chou and K.G. Shin, ªStatistical Real-Time Video Channels
over a Multiaccess Network,º Proc. High-Speed Networking and
Multimedia Computing Symp., IS&T/SPIE Symp. Electronic Imaging
Science and Technology, pp. 86±96, Feb. 1994.

[9] D.E. Comer, Internetworking with TCP/IP, Volume I: Principles,
Protocols, and Architecture, third ed., Englewood Cliffs, N.J.:
Prentice Hall, 1995.

[10] PNNI Working Group, ªATM Forum 94-0471R13 PNNI
Draft Specification,º available at ftp://ftp. atmforum. com/pub/
contributions.

[11] D. Bertsekas and R. Gallager, Data Networks, second ed., Engle-
wood Cliffs, N.J.: Prentice Hall, 1992.

[12] J. Walrand, Communication Networks: A First Course. Irwin and
Aksen Assoc., 1991.

[13] R.L. Cruz, ªA Calculus for Network Delay and a Note on
Topologies of Interconnection Networks,º PhD thesis, Univ. of
Illinois at Urbana-Champaign, July 1987.

[14] D.P. Anderson, S.Y. Tzou, R. Wahbe, R. Govindan, and M.
Andrews, ªSupport for Continuous Media in the Dash System,º
Proc. 10th Int'l Conf. Distributed Computing Systems, pp. 54±61, May
1990.

[15] D.D. Kandlur, ªNetworking in Distributed Real-Time Systems,º
PhD thesis, Univ. of Michigan, 1991.

[16] D. C. Verma, ªGuaranteed Performance Communication in High
Speed Networks,º PhD thesis, Univ. of California, Berkeley, 1991.

[17] S. Daniel, K.G. Shin, and S. Yun, ªA Router Architecture for
Flexible Routing and Switching in Point-to-Point Networks,º IEEE
Trans. Parallel and Distributed Systems, vol. 10, no. 1, pp. 62±75, Jan.
1999.

[18] A. Weintraub, ªThe Shortest and the K-Shortest Routes as
Assignment Problems,º Networks, vol. 3, pp. 61±73, 1973.

[19] J. Lehoczky, L. Sha, and Y. Ding, ªThe Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,º
Proc. Real-time Systems Symp., pp. 166±171, 1989.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Seoul, Korea in 1970, and both the
MS and PhD degrees in electrical engineering
from Cornell University, Ithaca, New York, in
1976 and 1978, respectively. From 1978 to
1982, he was on the faculty of Rensselaer
Polytechnic Institute, Troy, New York. He has
held visiting positions at the U.S. Air Force Flight
Dynamics Laboratory, AT&T Bell Laboratories,

the Computer Science Division within the Department of Electrical
Engineering and Computer Science at the University of California,
Berkeley, the International Computer Science Institute, the IBM T.J.
Watson Research Center, and the Software Engineering Institute at
Carnegie Mellon University.

Currently, Dr. Shin is a professor and director of the Real-Time
Computing Laboratory, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor. He has
authored/coauthored approximately 600 technical papers and numerous
book chapters in the areas of distributed real-time computing and
control, computer networking, fault-tolerant computing, and intelligent
manufacturing. He has coauthored (jointly with C.M. Krishna) the
textbook Real-Time Systems, (McGraw Hill, 1997). His current research
focuses on Quality of Service (QoS) sensitive computing and network-
ing, with emphases on timeliness and dependability. He has also been
applying the basic research results to telecommunication and multi-
media systems, intelligent transportation systems, embedded systems,
and manufacturing applications. Dr. Shin is a fellow of the IEEE and a
previous editor of IEEE Transactions on Parallel and Distributed
Computing, as well as an area editor of the International Journal of
Time-Critical Computing Systems.

334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

C.-C. Chou (known as Chih-Che or Chris C.
Chou) received the BSEE degree in electrical
engineering from the National Taiwan Univer-
sity, Taipei, Taiwan, in 1988, and both the MS
and PhD degrees in computer science and
engineering from the University of Michigan,
Ann Arbor, in 1992 and 1994, respectively. He
joined AT&T Bell Laboratories (now Lucent
Technologies) in 1994 and he is currently a
key architect of the IP Exchange System. His

research interests include embedded systems, real-time operating
systems, real-time communications, multimedia applications, and
communication networks. He is also applying the basic research results
of real-time computing to commercial telecommunication systems. He is
a member of the IEEE Computer Society.

S.-K. Kweon received the BS and MS degree
in electronics from Seoul National University,
Korea, and the PhD degree in electrical
engineering and computer science from
the University of Michigan, Ann Arbor in
1998. Currently, he is working for General
Motors. His research interests are traffic
management, scheduling algorithms for high-
speed networks, statistical QoS provisioning,
QoS routing, and real-time communication for

manufacturing automation.

SHIN ET AL.: DISTRIBUTED ROUTE SELECTION FOR ESTABLISHING REAL-TIME CHANNELS 335

