
Scalable Hardware Priority Queue Architectures
for High-Speed Packet Switches

Sung-Whan Moon, Student Member, IEEE,

Jennifer Rexford, Member, IEEE, and Kang G. Shin, Fellow, IEEE

AbstractÐWith effective packet-scheduling mechanisms, modern integrated networks can support the diverse quality-of-service

requirements of emerging applications. However, arbitrating between a large number of small packets on a high-speed link requires an

efficient hardware implementation of a priority queue. To highlight the challenges of building scalable priority queue architectures, this

paper includes a detailed comparison of four existing approaches: a binary tree of comparators, priority encoder with multiple first-in-

first-out lists, shift register, and systolic array. Based on these comparison results, we propose two new architectures that scale to the

large number of packets (N) and large number of priority levels (P) necessary in modern switch designs. The first architecture

combines the faster clock speed of a systolic array with the lower memory requirements of a shift register, resulting in a hybrid design;

a tunable parameter allows switch designers to carefully balance the trade-off between bus loading and chip area. We then extend this

architecture to serve multiple output ports in a shared-memory switch. This significantly decreases complexity over the traditional

approach of dedicating a separate priority queue to each outgoing link. Using the Verilog hardware description language and the Epoch

silicon compiler, we have designed and simulated these two new architectures, as well as the four existing approaches. The simulation

experiments compare the designs across a range of priority queue sizes and performance metrics, including enqueue/dequeue speed,

chip area, and number of transistors.

Index TermsÐPriority queue, packet switch, link scheduling, VLSI, real-time communications.

æ

1 INTRODUCTION

APPLICATIONS with real-time traffic, such as video and
audio, need more than just good average performance

from the network. Such real-time communication [1], [13]
requires quality-of-service (QoS) guarantees, such as
bounded end-to-end delay, bounded cell-loss rates, and
guaranteed bandwidth from the network. Emerging packet-
switched networks employ a variety of methods to provide
the QoS guarantees for each connection. At each node of the
network, an admission control algorithm grants a request
for a new connection when the QoS requirements can be
met. Once established, traffic shaping and link scheduling
algorithms [1], [13], [14] ensure that the QoS requirements
are satisfied for all of the connections that pass through the
node. Traffic shapers monitor and control connections so
that they abide by their connection traffic parameters (e.g.,
maximum packet rate). Link schedulers coordinate the
transmission of packets between several connections on a
given link. Since a link can only send one packet at a time,
other packets trying to use that link must be queued. The
link scheduler typically assigns some priority number to
each packet (or group of packets) in the queue to determine
which one gets access to the link once it becomes available.

The simplest link-scheduling algorithm is first-in-first-
out (FIFO). The problem with this approach is that it is
characterized by poor utilization of resources and poor
performance. In particular, a FIFO scheduler cannot admit
many new connections, especially when the link services
connections with a wide range of traffic parameters and
QoS requirements. Other link-scheduling algorithms
achieve better performance by assigning a priority number
to connections or individual packets. This priority field can
represent a traffic class, a deadline, a virtual finishing time,
or a sequence number, depending on the link-scheduling
algorithm. Once the priority number is determined, a
priority queue ranks packets based on the priority assign-
ment. The net effect of the link-scheduling algorithm and
the priority queue is to interleave the packet transmission
from the various connections such that each connection's
QoS requirements are satisfied.

The priority queue is essential in implementing the link-
scheduling algorithm. Due to the high-speed at which the
networks operate, a hardware priority queue [10] is needed
to transmit packets at link rates. For example, in a 155 Mbps
(2.5 Gbps) Asynchronous Transfer Mode (ATM) network,
an ATM cell can be transmitted every 2.7 microsecs
(0.17 microsecs). In a worst-case scenario, the priority
queue must determine the next highest priority cell
(dequeue operation) every 2.7 microsecs (0.17 microsecs),
while being able to accept new cells (enqueue operation)
from all incoming links within the same 2.7 microsecs
(0.17 microsecs). Software solutions, which are logarithmic
in time complexity, are typically not fast enough to keep up
with the packet transmission rate due to the associated
overhead (i.e., in requesting service from the processor,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000 1215

. S.-W. Moon and K.G. Shin are with the Real-Time Computing Laboratory,
Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109-2122.
E-mail: {swmoon, kgshin}@eecs.umich.edu.

. J. Rexford is with AT&T Labs Research, 180 Park Ave., Room A169,
Florham Park, NJ 07932. E-mail: jrex@research.att.com.

Manuscript received 12 Aug. 1997; accepted 5 Apr. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 112759.

0018-9340/00/$10.00 ß 2000 IEEE

sending and retrieving data from the processor). On the
other hand, a hardware solution can operate close to the
operating speeds of the link. Also, a hardware solution can
overlap enqueue and dequeue operations with packet
transmission to avoid wasting link bandwidth.

Each node in the network provides a switching function
by forwarding incoming packets to their correct outgoing
links. For all priority queue architectures discussed in this
paper, we consider a common switch model, as shown in
Fig. 1. The switch is characterized by a shared buffer space
and output queueing [5], with a separate priority queue
servicing each output link. Although there are other
possible memory configurations [11], output buffering
offers better performance than input buffering, while a
shared buffer configuration has better memory utilization.
When a packet's output link is busy, the packet is queued
and an entry for that packet is created. The entry is inserted
into the priority queue corresponding to the correct output
link. This entry consists of a valid/invalid bit, an address
(log2 N bits), and a priority (log2 P bits). Here, N is the total
storage capacity of the shared buffer measured in number
of packets, while P is the number of priority levels
supported in the link-scheduling algorithm. The address
can be interpreted as a page number, indicating where the
packet resides in the shared memory. The page numbers are
obtained from an idle address pool, which holds page
numbers corresponding to idle spaces in the memory. Each
arriving packet obtains a page number before being written
into the shared memory; the page number is then returned
to the pool after the corresponding packet has been
transmitted. The priority queue is responsible for storing
the entries and calculating the highest-priority entry when
the output link is ready to transmit another packet. So,
regardless of internal architecture, the priority queue must
provide for the storage of packet tags, initialization (clear
contents of the priority queue), enqueue of new tags, and
dequeue of the highest priority tag.

Since a switch's buffer size (N) and the number of
priority levels (P) needed by the link scheduler can both be
very large, the priority queue must be easily scalable to
these two parameters. That is, the total entry capacity of the
priority queue must match the total packet capacity of the
shared buffer and it must support a large number of
priority levels. At the same time, the priority queue's
performance must not fall behind link rates as it is scaled to
N and P. If this were to happen, then a link would remain
idle even though there are packets to be transmitted.

Finally, the priority queue design should scale well with the
number of output ports in the shared-memory switch,
instead of requiring completely separate logic for each
outgoing link, as in existing architectures.

We present two new priority queue architectures which
were designed to minimize the effects of scaling (with
respect to N and P). The first new architecture reduces and
controls the performance loss due to increasing the queue
capacity without adding a large amount of extra hardware.
This was done by combining the salient features of two
existing priority queue architectures, the shift register [3],
[4], [12] and systolic array [6], [7]. We then extend this
architecture to service multiple links instead of just one.
Both of the new architectures perform well enough to
support very high-speed links and both provide constant-
time (in terms of number of clock cycles) enqueue and
dequeue operations. But, before describing our new
architectures, we first describe four priority queue architec-
turesÐbinary tree, FIFO, shift register, systolic arrayÐfrom
the current literature in Section 2. A brief description of
each architecture and operation is given, followed by a
discussion on limitations to their scalability. Two new
architectures are then proposed and evaluated in Section 3
(hybrid systolic/shift) and in Section 4 (multiple link). Each
of these two sections also gives a detailed explanation of the
new architecture's operations. Section 5 presents the results
of some implementations of the various priority queues for
several switch parameters. The implementations were done
using the Verilog hardware description language and the
Epoch silicon compiler for several combinations of P (up to
256) and N (up to 1,024). These results show limitations of
the existing architectures when scaled to large N and P and
are compared to implementations of the new architectures.
Section 6 concludes with a summary of our contributions
and a brief list of future directions.

2 PRIORITY QUEUE ARCHITECTURES

This section presents four priority queue (PQ) architectures
from the current literature. The FIFO and the binary tree
architectures are the more intuitive approaches to the
priority queue problem. However, these two architectures
do not scale well with increasing N and P. The shift register
and the systolic array architectures take a different
approach and scale much better than the FIFO and binary
tree. The following subsections describe each of these
architectures and discuss the effects of scaling on architec-
tural complexity and implementation.

2.1 Binary Tree of Comparators

A binary tree comparator architecture [8], [9], shown in
Fig. 2, consists of an N-entry storage block and a
comparator tree of depth log2 N, whose output is the
highest-priority entry among those in storage. A feedback
mechanism is used to remove the output of the tree from
storage. An advantage of this architecture is that the
comparator tree logic can be shared among several storage
blocks, reducing hardware costs. A disadvantage is that
FIFO ordering is not maintained among entries with the
same priority. Such FIFO ordering is important when
applications assume that packets at the same priority level

1216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 1. Simplified block diagram of a single shared buffer switch

architecture with link scheduling.

will arrive in the same order in which they were sent.
Increasing N results in more leaf nodes (i.e., comparators)
being added to the tree and increasing the capacity of the
storage block. Problems with such scaling include bus
loading problems with distributing the new entry to each
storage element in the storage block and increased dequeue
time resulting from an increase in depth (log2 N) of the
comparator tree. A possible solution to the increased
dequeue time is to pipeline the comparator tree operation
to reduce the clock period and increase performance; this
can be useful if the comparator tree is shared among several
outgoing links [9]. Another solution is to initiate the
comparator tree only after dequeue operations and use
extra logic to handle entries that arrive during and in
between dequeue operations. This takes advantage of the
fact that packet transmission time is longer than the
comparator tree operation [8].

2.2 FIFO Priority

Like the bucket sorting algorithm, the FIFO PQ architecture
[2], [3], shown in Fig. 3, inserts entries into one of the
P FIFOs based on the entry's priority. Since each FIFO
corresponds to a particular priority level, the queue does
not need to store a priority field with each entry. During a

dequeue operation, a priority encoder scans the head of the
FIFOs in decreasing priority order and removes an entry
from the first nonempty FIFO. Increasing P requires adding
more FIFOs, which results in added hardware costs and
increased complexity of the priority encoder. Using
logically linked lists [3], [15] instead of physical FIFOs can
reduce hardware costs. But, this approach still suffers from
the complexity problem of the priority encoder for large P.

2.3 Shift Register

The shift register PQ [3], [4], [12], as shown in Fig. 4,
consists of an array of blocks that store the entries in sorted
order. Each block stores a single entry and communicates
with the blocks immediately to its right and left. Higher-
priority entries are stored to the right of lower-priority
entries, with the zeroth block containing the current
highest-priority entry. On an enqueue operation, the new
entry is broadcast to all the blocks via the new_entry_bus.
Each block makes a local decision as to what action to take,
with only one of the blocks latching the new entry. The
others will either keep their current entry or latch the right
neighbor's entry. The net effect is to have the new entry
force all entries with lower priority to shift one block to the
left, while the new entry places itself to the left of the entries
with higher and equal priority. The lowest priority entry is
discarded during an enqueue if the queue is full. A dequeue
operation in the shift register simply reads the zeroth
block's entry while all other entries shift one block to the
right.

As shown in Fig. 4, each block consists of a holding
register which stores the entry, a comparator which
compares the priorities of the entry on the new_entry_bus
and the holding register, a multiplexor (to choose from
the left, right or new entry), and decision logic [3], [4].
Since each block stores one entry, the queue's capacity
can be increased by adding more blocks to the existing
queue. Because each block makes decisions based on just
local information, increasing queue capacity does not
require modifications to the block's decision logic nor any
central control logic for the queue. This makes scaling for
large N very simple. As P increases, additional bits are
added to the priority field in the entry's tag. This simply
requires modifying each block's storage requirement and
its comparator.

Unfortunately, implementation problems limit the scal-
ability of this architecture. As seen in Fig. 4, before any
decision can be made by each block during an enqueue
operation, the new entry must be present at the inputs of all
the blocks. At the VLSI level, the new_entry_bus must be
routed to the inputs of all the blocks in the array. As we saw
with the binary tree architecture, this creates a bus loading
problem, which adds to the hardware costs (buffers) and
decreases the maximum operating speed of the queue.
Thus, the shift register architecture's scalability with respect
to N is limited by performance, not by architectural
complexity. Performance also decreases as P increases due
to the added delay in the comparator logic. This is because
the comparator's time complexity grows linearly (for a
serial comparator) with the number of bits in the priority
field.

MOON ET AL.: SCALABLE HARDWARE PRIORITY QUEUE ARCHITECTURES FOR HIGH-SPEED PACKET SWITCHES 1217

Fig. 2. Binary tree of comparators priority queue.

Fig. 3. FIFO priority queue.

2.4 Systolic Array

The systolic array PQ [6], [7] is shown in Fig. 5. Similar to
the shift register architecture, the systolic array architecture
consists of an array of identical blocks, with each block
holding a single entry. On an enqueue operation, only the
zeroth block compares priorities of its entry and that of the
new entry. On the next cycle, the lower-priority entry is
inserted into the left neighbor's block, which repeats the
same process of comparing and sending the lower-priority
entry to the next block. So, the systolic array does not
become fully sorted until several cycles after the new
insertion. Despite this feature, both insertion and removal
still remain constant-time operations from the outgoing
link's point of view. Because each block passes the lower-
priority entry to the next block, the zeroth block always
holds the highest-priority entry in the queue. Once an entry
is removed from a block, it gets the entry from its left
neighboring block, creating a right shift operation on the
entire queue.

Each systolic array block consists of a holding register,
which stores the entries in sorted order, as well as a
temporary register, which holds passing entries enroute to
the next block to the left. The passing entry is the lower-
priority entry in a block during an enqueue operation.
Multiplexors, a comparator, and decision logic also make
up the rest of the block. A block diagram is shown in Fig. 5.
Queue capacity is increased by adding more blocks to the
end of the queue without worrying about a central
controller. Also, there is no bus loading problem, as was

the case with the shift register PQ. Increasing P requires
extra storage and a wider comparator, as in the shift register
priority queue. Unfortunately, the one main drawback is
that the systolic array PQ requires twice as much storage as
the shift register architecture. Considering the simplicity of
each block, the temporary register adds considerable
hardware cost to each block compared to the shift register
block. Also, the cost and delay of the comparator increases
linearly with each extra bit in the priority field, which
decreases the maximum operating clock frequency.

3 MODIFIED SYSTOLIC ARRAY PRIORITY QUEUE

This section presents a new priority-queue architecture that
combines the salient features of the systolic array and the
shift register. The architecture has a tunable parameter
which enables us to balance the trade-off between bus
loading and hardware costs. We then extend this hybrid
architecture to guarantee FIFO transmission of packets
within the same priority level.

3.1 Hybrid Shift/Systolic

Of the four PQ architectures discussed in Section 2, the shift
register architecture and the systolic array architecture have
better properties in terms of supporting very large N and P.
The FIFO architecture is limited to a small number of
priority levels, while the binary tree comparator's complex-
ity makes it difficult to scale with increasing N. On the other
hand, the shift register and systolic array are more favorable

1218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 4. Shift register priority queue and shift register block.

Fig. 5. Systolic array priority queue and systolic array block.

because they have no centralized logic and each block can
be replicated as many times as necessary without any
modifications. Also, a large number of priority levels can be
easily supported by simply using more bits in the priority
encoding. Unfortunately, the shift register's bus loading
problem limits the maximum clock frequency, while the
systolic array block's double storage requirement makes it
considerably more hardware-intensive than the shift
register.

The systolic array architecture scales well with N and its
maximum operating clock frequency does not decrease as N
increases. But, because 50 percent of all the registers are
used as temporary registers, the systolic array uses much
more hardware than the shift register. To reduce this
overhead, we propose a modified systolic architecture,
where each block consists of a length c shift register. So,
instead of one temporary register for every holding register
in each block, the ratio decreases by a factor of 1/c. Also,
because scaling the modified systolic architecture for larger
N does not involve changing c, the bus loading problem
associated with the shift register stays constants as N grows.

Each modified systolic block holds c entries by replacing
the single holding register with a length c shift register PQ,
as shown in Fig. 6. The interface of the modified systolic
block is the same as that of the systolic block. Enqueue and
dequeue requests are received from the right neighboring
block and the results of those requests are sent to the right
neighboring block. The right-most block receives requests
and sends results to the link. During a new entry insertion
into the modified systolic block, the new entry is placed in
one of the blocks of the shift register PQ. If there is an
overflow of the shift register PQ, either the new entry or the
entry in the cth shift block (whichever has lower priority) is
placed into the temporary register and inserted into the left
neighboring modified systolic block during the next cycle.
Since the shift register PQ stores all the entries in sorted
order with the highest-priority entry in the first block, the
removal request is satisfied by moving all the entries one
block to the right. The entry in the right-most block is sent
to the neighboring right modified systolic block. During the
next cycle, a removal request is made to the neighboring left
modified block and the resulting entry is stored in the shift
register PQ.

3.2 FIFO Ordering

Without any further modifications, the modified systolic
array PQ will not maintain FIFO ordering among entries of
equal priority, as illustrated in Fig. 7. Here, the number
represents the priority and the subindex (not part of the
entry) represents the arrival order among entries with the
same priority. Insertion of a new entry with priority 9
pushes the 121 entry to the next modified systolic block and
is placed behind the 122 entry. The problem here is that the
second shift block cannot determine if the 121 entry
corresponds to a new entry (which should go after 122) or
an old entry (which should stay ahead of 122). This is solved
by adding a one bit field (new/old) to the end (least
significant bit) of the priority field and is included as part of
the priority number when priority comparisons are done.
The new/old bit is added as the entry enters the priority
queue and is stripped off when the entry leaves the queue.
New entries that are inserted into the queue have this bit
set. Likewise, all entries that are stored in a shift block have
this bit set. The bit is cleared when an entry that was
already in a shift block is pushed into the temporary
register and sent to the neighboring left modified systolic
block.

The modified systolic architecture improves on the
systolic architecture by lowering the percentage of total
registers used for temporary storage. This reduction in
hardware is accomplished without losing any of the
advantages of the systolic architectureÐsimple block
architecture (easily scaled for increasing N by adding new
blocks to the end of the existing queue), no performance
loss as more blocks are added to the queue, and constant-
time (cycles) enqueue and dequeue operations. Also,
because the bus driving the shift register blocks is broken
up into small length-c parts, the bus load within each
modified systolic block is not affected by the additional
modified systolic blocks. So, once a value for c is
determined, only one modified systolic block must be
designed and optimized for performance and area. This
block is then replicated as many times as necessary without
any modifications.

4 MULTIPLE OUTPUT LINK PRIORITY QUEUE

To further reduce the hardware complexity of packet
switches, we extend the architecture from Section 3 to
service multiple output links. For simplicity, we first present
a multiple-link priority queue based on the shift-register
architecture before generalizing the technique to the hybrid
systolic/shift design. We then discuss how the architecture
can provide a constant-time dequeue operation, while still

MOON ET AL.: SCALABLE HARDWARE PRIORITY QUEUE ARCHITECTURES FOR HIGH-SPEED PACKET SWITCHES 1219

Fig. 6. Modified systolic array priority queue.

Fig. 7. Data movement in the modified systolic array PQ showing a

potential ordering problem.

differentiating between packets destined for different out-

put links. To avoid overlapping multiple operations in a

single systolic array block, the design includes a small,

constant number of ªwait states.º

4.1 Multiple Shift Register Priority Queue

Given that a switch has a separate priority queue for each of

its M (> 1) output links, the total queue capacity is MN

entries. Since the shared buffer can only hold N packets,

most of the blocks in the priority are unused at any given

moment, as shown in Fig. 8a. An N-entry priority queue

which services M (< N) output links can potentially save a

maximum of 50 percent in hardware for M = 2 and up to
75 percent for M = 4. Here, we present a multiple output

link priority queue architecture, which has good scaling

properties and constant-time enqueue and dequeue opera-

tions which are independent of M and N.
We first extend the shift register architecture to support

multiple links. This requires modifications to the entries

and shift register block. The packet's entry is augmented

such that the priority field consists of the output link

number, priority number, and new/old bit. The shift

register stores entries such that those corresponding to

higher output link numbers come after those corresponding

to lower output link numbers, as shown in Fig. 8b.
The blocks in the shift register architecture require

several modifications to support multiple output links.

First, each block receives another control signal (outnum)

which indicates the requested output link number. The

value on outnum is latched along with the new entry

during an enqueue operation while it is used to determine

which entry to output during a dequeue operation. Second,

each block has a tristate buffer, which drives an output bus.

This tristate buffer is needed because the highest-priority

entry for a given output link can be in any of the blocks in

the shift register. On a dequeue operation, a block will drive

the output bus with the value in its holding register if the

block decides it has the highest-priority entry for the

requested output link. Fig. 9 shows the block diagram of the

multiple shift register queue with just the added control

signals.

Within each multiple shift register block, no extra control

logic is required for the enqueue operation. But, during the
dequeue operation, each block needs to decide if it must
drive the output bus. As seen from Fig. 8b, the highest-

priority entry of any output link is always to the right of all
other entries with the same output link number. Once the

output bus has been read, all entries to the left of the one
just read move one block to the right. The decision-making
process for this dequeue operation is shown in Fig. 10a. A

similar operation can also remove the lowest-priority entry
for an outgoing link, as shown in Fig. 10b. This operation is
useful when extending the modified systolic architecture to

support multiple outgoing links, as explained in the next
subsection.

4.2 Multiple Systolic Array Priority Queue

Due to the bus loading problem in the shift register

architecture, the PQ described in Section 4.1 does not scale
well with respect to N. Besides the new entry bus, shown in

Fig. 4, the multiple shift register architecture also has the
problem of each shift register block driving the output
bus and the associated delay and hardware costs of

having to drive a very large bus. Despite this problem,
the multiple shift register can be used as a building block
to support multiple outgoing links in the modified

systolic architecture. By using the same ideas as in
Section 3, the multiple systolic array architecture replaces

the single holding register with the multiple shift register.
By choosing a value for c which minimizes the total
number of temporary registers without introducing

significant bus loading problems, a single c-entry multiple
shift register can be designed and used in the multiple

systolic array architecture.
As seen in Fig. 11, the external interface to the multiple

systolic array block remains the same, with the addition of
the outnum control signals. Besides the temporary register

(left_out_reg), there is also another register (onum_out_reg)
which indicates the link number of the entry in the

temporary register. The right out register (right_out_reg)
stores the output from the output bus, while a multiplexor
chooses among three sources to drive the new entry bus.

Also, instead of the read and write control signals directly
feeding the shift register, the controller uses them to
generate its own internal read and write control signals,

which are then fed to the shift register.

1220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 8. (a) Sorted entries in separate priority queue showing wasted

resources. (b) Same entries in the multiple shift register priority queue.

Fig. 9. Multiple shift register priority queue.

4.3 Constant-Time Dequeue/Enqueue

Without further modifications to the architecture described

in Section 4.2, a situation as shown in Fig. 12a can occur. If

there are more than c entries in the queue for any output

link, a dequeue request can result in extra remove requests

being sent from the one systolic block to the next systolic

block. In the worst case, the requests can propagate to the

last block, in which case the result will need to propagate all

the way back up. In order to avoid this problem and have a

constant-time dequeue operation, each systolic block uses

counter to maintain an ªatleast-1-entry-per-output-linkº

property whenever possible. This assumes that c � M. A

counter is used for each output link to keep track of the

number of packets queued at that link. The counter is

incremented (decremented) whenever an entry correspond-

ing to the counter's output link is inserted (removed) from

the systolic block.
After an enqueue operation, entries start to propagate

through the array of systolic blocks in the left direction.

Writing another entry into a systolic block that is full will

result in either the right_in entry or the entry in the shift

register queue's c block (whichever has lower priority) to be
written into the left_out register. But, before the entry in the
left_out register is sent to the left systolic block, the
controller makes sure that doing so does not violate the
ªatleast-1-entry-per-output-linkº property. If it does, an-
other entry is chosen to be sent to the left systolic block,
while the entry from the left_out register is reinserted into
the shift register queue. Here, the other entry that is chosen
is the lowest-priority entry corresponding to an output link
with more than one entry in the systolic block. The
controller obtains this replacement entry by checking all
the counters and then issues a read_low command to the
shift register queue. Also, following a dequeue operation,
the zeroth systolic block requests an entry with the same
output link number from the first systolic block which, after
sending the result, requests an entry with the same output
link number from the second systolic block, and so on. This
is done to maintain the property for all systolic blocks.
Details of these systolic block operations are shown in
Fig. 13. Note that the state transitions are not shown there.

4.4 Nonoverlapping Operations

Since the systolic block must finish one request before
processing another request, wait states are needed to
prevent overlapping of operations. The insertion operation
takes five clock cycles, while the remove operation takes
four clock cycles (these are independent of c and M).
Without any wait states, a block can make an insertion
request to its left neighbor on the fifth cycle while servicing

MOON ET AL.: SCALABLE HARDWARE PRIORITY QUEUE ARCHITECTURES FOR HIGH-SPEED PACKET SWITCHES 1221

Fig. 10. Pseudocode for read and write operations in multiple shift register block. (a) Remove highest-priority entry. (b) Remove lowest-priority entry.

Fig. 11. Multiple systolic array priority queue and block.

Fig. 12. Storage of entries in the multiple systolic array queue (a) before

and (b) after ªatleast-1-entry-per-ouputlinkº property.

an insertion request. Similarly, a remove request can be

made to the left block on the second cycle while servicing a

remove request. Doing this will result in the overlapping of

request service, as shown in Fig. 14. This overlap is avoided

by delaying the remove request till the fifth cycle, instead of

the second cycle. Since two cycles are needed to get the

result, a total of seven cycles are needed for the remove

request. Although the insert operation still takes just

five cycles, consecutive requests can only be made every

seven cycles to the multiple systolic block.
Despite the added complexity of the state machine and

extra hardware needed to support multiple output links,

the multiple systolic array is still much cheaper to

implement than individual priority queues for each output

link. Also, the time (cycles) required to service the dequeue

and enqueue operations is constant for any output link and

remains unchanged, regardless of how large N becomes.

Like the modified systolic architecture, each block is self-

contained and no outside controller is required. As N

increases, more blocks are added to the existing chain

without modifications to the existing blocks. Also, since the

priority number is encoded within each entry, a large

number of priority levels can be supported without

requiring a large amount of hardware. Thus, scaling does

not involve modifying the architecture, implementation for

large N is simplified since only one systolic block needs to

be designed, and there is no loss in performance due to

scaling.

5 PERFORMANCE AND IMPLEMENTATION

To compare the various priority queue architectures

discussed thus far, each architecture was implemented

using the Verilog hardware description language and the

Epoch silicon compiler, an automatic layout generator. This

provides a common framework which makes the cost and

performance comparisons more meaningful. The imple-

mentation results showed that both new architectures had

better scaling properties in terms of performance and

hardware costs than the four existing architectures. Also,

the multiple-link architecture was shown to scale well with

M, provide good performance, and offered considerable

hardware savings in comparison to using a priority queue

per-link approach.

1222 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 13. Pseudocode for write and read operations in systolic block. (a)

Write. (b) Read.

Fig. 14. Time line of operation for multiple systolic block (a) with wait

states and (b) without wait states.

5.1 Evaluation Methodology

Costs were measured in terms of amount of silicon area and
the number of transistors used by the design, while
performance was measured by the maximum clock speed
and throughput (number of enqueue/dequeue operations
completed per second). Throughput can be easily calculated
by using the maximum clock speed and number of clock
cycles needed by each operation. Maximum clock speed
was calculated by doing a critical path analysis of the
design, and determining the delay through these critical
paths using Epoch's timing analyzer. All designs were
structurally specified using parts from Epoch's Verilog
library, while state machines and control logic were
described in behavioral Verilog. Each of the layouts was
compiled by Epoch, which uses standard cells to generate a
layout, using a 1.2 micron CMOS technology. Although
custom layout would give better results, we are more
interested in comparing the scaling effects than in raw
numbers. In other words, we want to look at the relative
costs and performance of the various architectures as N and
P increase. Also, note that our implementations were
limited to a maximum of 1,024 for N. This was due to
insufficient workstation memory for performing the various
simulations.

One final note regarding the implementations concerns
the use of registers for storage of priority queue tags.
Although other storage devices could have been used in the
designs, we chose to use registers because they allowed us
to quickly implement, scale, and compare the various
designs. Since the main goal of this paper was to study the
relative scaling effects of the various designs, other storage
alternatives were not studied. For example, in the shift and
systolic architectures, the single holding register per block
can be replaced with an SRAM module with the capacity to
hold several priority queue tags. This will reduce hardware
costs since the comparison and other logic are shared
among several tags instead of one. But, doing so increases

the time required for dequeue and enqueue operations
since these need to be serialized due to accesses to SRAM.
So, choosing the size of the SRAM becomes a problem of
sacrificing performance for smaller hardware costs.
Although this paper does not consider the trade-off
between serial SRAMs and parallel registers, we have
evaluated the associated cost and performance implications
in the priority queue architectures in [9].

5.2 Existing Architectures

Fig. 15 compares the four existing priority queue architec-
tures in terms of VLSI hardware costs as a function of N,
with P fixed at 16. Here, we chose a small value of P for two
reasons. It allowed for implementations with large N and
made the scaling effects associated with large N more
pronounced. As expected, we see the systolic array
architecture's hardware cost is much larger than that of
the shift register due to the extra register used for
temporary storage. Also, despite having similar transistor
counts, the binary tree architecture occupies more area than
the shift register architecture. This is mainly because of the
routing required from the storage to the priority comparator
tree and routing within the comparator tree.

As expected, performance degrades with increasing N,
as shown in Fig. 16. Here, we see the throughput is highest
for the shift register architecture. But, as N increases, the
performance degradation is much steeper for the shift and
binary tree architectures than that of the systolic and FIFO
architectures. This is due to the bus loading problem in the
shift register and binary tree architecture and the increase in
depth of the comparator tree in the binary tree architecture.
The gradual decrease in performance in the systolic and
FIFO architectures can be attributed mainly to the extra bits
in the registers and multiplexors, which add delay to the
control signals which must drive these components.
Although Fig. 16 shows the shift register architecture with
better throughput than the systolic array architecture, for

MOON ET AL.: SCALABLE HARDWARE PRIORITY QUEUE ARCHITECTURES FOR HIGH-SPEED PACKET SWITCHES 1223

Fig. 15. Implementation results for existing priority queue architectures (P = 16). (a) N = 16. (b) N = 64. (c) N = 256. (d) N = 1,024. (e) N = 16. (f) N =
64. (g) N = 256. (h) N = 1,024.

larger values of N, we can predict the throughput of the
systolic to be higher than the shift. Due to insufficient
workstation memory, we could not obtain data for larger
values of N other than the ones shown in Fig. 16. But, by
extrapolating the curves for the shift and systolic in Fig. 16,
we can see the two curves should cross at a point
somewhere between N = 1,024 and N = 2,048. At this
point, throughput of the systolic should be higher, while the
performance of the shift architecture should continue to
degrade at a much faster rate than that of the systolic due to
the dominating effect of the bus loading problem. For much
larger values of N, this bus problem should make the shift
register architecture an ineffective solution due to the
associated hardware costs and performance loss.

Each bit added to the priority field adds delay to the
priority comparator, which in turn slows down the
operation of the priority queue for the shift register, systolic
array, and binary tree architectures. Since a large number of
priority levels can be supported with relatively few bits,
and because the delay associated with the extra bit is small
compared to the total delay, scaling for large P is feasible
and the resulting implementations can be effective. With a
nonpipelined binary tree though, the delay is multiplied by
the depth of the tree. In the FIFO case, the bottleneck is in
the priority encoder, which must scan each FIFO to select
the next highest priority entry. This can be seen in Fig. 17.
Note also that the depth of the physical FIFO (due to
increasing N) does not affect performance, but adds to the
FIFO fall-through time. So, it is possible that an entry might
not be available immediately after it is inserted into the
queue. The logical FIFO architecture avoids this problem by
using linked lists instead.

5.3 Modified Systolic Array Architecture

The motivation for the modified systolic array architecture
was to take advantage of the shift register and systolic array
architecture's features and, at the same time, reduce the
negative side-effects due to scaling with respect to N. The
shift register architecture suffered from the bus loading
problem, while the systolic array architecture used a
significant amount of extra hardware for the extra register.
The solution that was proposed was to use a separate shift
register queue inside each systolic array block. Each shift

register queue stores c entries, where c is determined by
hardware and performance requirements. When c = 1, this
is the same as the original systolic architecture, whereas if
c = N, then we get the original shift register queue. So, for
small c, hardware costs and performance are close to those
of the systolic architecture and, as c increases, the hardware
costs steadily approach those of the shift register architec-
ture. Also, as c increases, the performance of the modified
decreases due to extra bus loading, as is the case with the
shift architecture. This point is shown in Fig. 18. Here, P = 16
and two values of c are used. Initially, for small values of N,
the shift architecture has the best performance, mainly
because of negligible bus loading and also because the
operations in the shift architecture require one cycle, as
opposed to two in the systolic and modified. But, as N
increases, the rate at which performance decreases is much
sharper in the shift register case due to the bus loading
problem. With the systolic and modified systolic, the
performance curve is relatively horizontal. For larger N,
performance for the modified systolic should be higher than
that of the shift register due to this very gradual decrease in
performance in the modified systolic architecture. Con-
sidering the amount of hardware used in the modified
systolic is only slightly more than that of the shift, and
considering the aggressive buffering strategies required in
the shift architecture to get these performance numbers, the
modified systolic is a much more effective solution, despite
the performance difference. So, once a value for c is
determined based on the performance requirements, the
design can be scaled to very large N without worrying
about severe performance degradation from bus loading or
buffering strategies.

5.4 Multiple Systolic Array Architecture

Despite added hardware costs (due to extra registers, added
complexity of control logic, tristate buffers, and counters),
we see that there is still a substantial amount of hardware
saved by using the multiple queue. Based on implementa-
tions with a 16-entry multiple systolic array block, we
observed the following. For M = 4, the multiple architecture
occupied 32 percent less area and used 55 percent less
transistors versus the shift and 46 percent less area and
72 percent less transistors versus the systolic. For M = 8, the

1224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Fig. 16. Scaling effects on performance as N increases (P = 16).
Fig. 17. Scaling effects on FIFO architecture as P increases.

multiple architecture occupied 67 percent less area and
used 75 percent less transistors versus the shift and
73 percent less area and 85 percent less transistors versus
the systolic. Here, we multiplied the costs for a single shift
or systolic queue by M to account for one queue per output
link. Some results are shown in Fig. 19. We also observed
that adding support for more output links in the multiple
systolic block increased the costs only slightly. This is
because most of the multiple link support already exists and
all that is needed are extra counters and minor additions in
the controller. This can be seen by the extra line inside the

bars for the multiple systolic architecture in the M = 8
graphs. The top line indicates the value for M = 8, while the
lower line shows the value for M = 4. As seen, the difference
in the two lines is very small indicating a small increase in
cost for extra output link support.

For c = 16, N = 64, and P = 256, the maximum clock
speeds for the multiple systolic architecture are 40 MHz
(M = 4) and 38 MHz (M = 8). This drop in speed is due to
the extra bits in the priority field used to encode the output
link number. Considering each enqueue and dequeue
operation requires seven cycles, this translates into

MOON ET AL.: SCALABLE HARDWARE PRIORITY QUEUE ARCHITECTURES FOR HIGH-SPEED PACKET SWITCHES 1225

Fig. 18. Modified systolic architecture results compared to that of the shift and systolic (P = 16).

Fig. 19. Implementation comparison with multiple systolic architecture (P = 256). (a) N = 256, M = 4. (b) N = 256, M = 4. (c) N = 256, M = 8. (d) N = 256,

M = 8.

5.71 mops (millions of operations per second) for M = 4 and
5.43 mops for M = 8. If we consider each switch as having M
inputs and M outputs, with all input and output links
getting round-robin access to the queue, the queue can
support link speeds up to 303 Mbps for M = 4 and 144 Mbps
for M = 8 (assuming 53 byte packets). At current ATM
standards of 155 Mbps, a multiple systolic priority queue
can be designed and implemented to support such
switches. For switches with a larger number of links, by
grouping four to eight outgoing links together, hardware
costs can still be significantly reduced while being able to
support very high-speed links.

6 CONCLUSION

In this paper, we proposed and evaluated two new
hardware priority queue architectures for link scheduling
in high-speed switches. Based on Verilog and Epoch
designs and simulations, we showed that the four existing
architectures were limited by scalability (with respect to
either N or P or both). For small N and P, all four existing
architectures had comparable hardware costs and perfor-
mance. But, as they were scaled to support large N and P,
each architecture's limitations became more pronounced.
Of the four architectures, the shift register architecture and
the systolic array architecture had better scalability. By
combining the two architectures, the modified systolic
architecture reduced the negative effects of scaling suffered
by the two architectures. In particular, hardware costs were
significantly reduced by decreasing the number of total
temporary storage registers; performance loss due to the
bus loading problem in the shift register could be controlled
and isolated from N by using several length-c shift register
queues. Here, c was chosen by considering hardware and
performance requirements. The multiple systolic architec-
ture added multiple link support to the modified systolic
architecture, without sacrificing scalability. Although extra
cycles were added to the dequeue and enqueue operations,
both these operations could be done in constant time
(cycles), regardless of N or M, the number of output links
supported by the architecture. We have also observed that
scaling with respect to M was possible with very little
added hardware. Verilog and Epoch simulations have
confirmed the salient features of the new architectures.

We showed that the two new hardware priority queue
architectures scale well to increasing N and P. Both offer
good performance and are easy to implement and, hence,
can be used in guaranteeing QoS requirements in high-
speed networks. Such effective priority queue implementa-
tions allow switches to use more aggressive link-scheduling
algorithms that can admit more connections with diverse
traffic patterns and QoS requirements. A possible future
investigation in this area can involve implementing various
link scheduling algorithms and using the hardware priority
queue to compare implementation complexity and perfor-
mance. Also, since all the priority queue architectures have
a common interface, this facilitates their use in other
applications which require priority queuing. It would be
interesting to look at the priority queue in such applications
as a linear-time sorting engine or even task scheduling in a
uniprocessor or multiprocessor environment.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the US National Science Foundation (NSF) under Grant
MIP-9203895. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the view of the NSF.

REFERENCES

[1] C.M. Aras, J.F. Kurose, D.S. Reeves, and H. Schulzrinne, ªReal-
Time Communication in Packet-Switched Networks,º Proc. IEEE,
vol. 82, no. 1, pp. 122-139, Jan. 1994.

[2] R. Brown, ªCalendar Queues: A Fast O(1) Priority Queue
Implementation for the Simulation Event Set Problem,º Comm.
ACM, vol. 31, no. 10, pp. 1,220-1,227, Oct. 1988.

[3] J. Chao, ªA Novel Architecture for Queue Management in the
ATM Network,º IEEE J. Selected Areas in Comm., vol. 9, no. 7,
pp. 1,110-1,118, Sept. 1991.

[4] J. Chao and N. Uzun, ªA VLSI Sequencer Chip for ATM Traffic
Shaper and Queue Management,º IEEE J. Solid-State Circuits,
vol. 27, no. 11, pp. 1,634-1,643, Nov. 1992.

[5] M.G. Hluchyj and M.J. Karol, ªQueueing in High-Performance
Packet Switching,º IEEE J. Selected Areas in Comm., vol. 6, no 9,
pp. 1,587-1,597, Dec. 1988.

[6] P. Lavoie and Y. Savaria, ªA Systolic Architecture for Fast Stack
Sequential Decoders,º IEEE Trans. Comm., vol. 42, nos. 2/3/4,
pp. 324-334, Feb./Mar/Apr. 1994.

[7] C.E. Leiserson, ªSystolic Priority Queues,º Proc. Caltech Conf. VLSI,
pp. 200-214, Jan. 1979.

[8] D. Picker and R. Fellman, ªA VLSI Priority Packet Queue with
Inheritance and Overwrite,º IEEE Trans. Very Large Scale Integra-
tion Systems, vol. 3, no. 2, pp. 245-252, June 1995.

[9] J. Rexford, J. Hall, and K.G. Shin, ªA Router Architecture for Real-
Time Point-to-Point Networks,º IEEE Trans. Computers, vol. 47,
no. 10, pp. 1,088-1,101, Oct. 1998.

[10] J. Rexford, A.G. Greenberg, and F.G. Bonomi, ªHardware-Efficient
Fair Queueing Architectures for High-Speed Networks,º Proc.
IEEE INFOCOM, pp. 638-646, Mar. 1996.

[11] F.A. Tobagi, ªFast Packet Switch Architectures for Broadband
Integrated Services Digital Network,º Proc. IEEE, vol. 78, no. 1,
pp. 133-167, Jan. 1990.

[12] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Yamaguchi,
ªDesign and Implementation of a Priority Forwarding Router
Chip for Real-Time Interconnection Networks,º Int'l J. Mini and
Microcomputers, vol. 17, no. 1, pp. 42-51, 1995.

[13] D. Towsley, ªProviding Quality of Service in Packet Switched
Networks,º Performance Evaluation of Computer and Comm. Systems,
L. Donatiello and R. Nelson, eds., pp. 560-586, Springer-Verlag,
1993.

[14] H. Zhang, ªService Disciplines For Guaranteed Performance
Service in Packet-Switching Networks,º Proc. IEEE, vol. 83,
no. 10, pp. 1,374-1,396, Oct. 1995.

[15] H. Zhang and D. Ferrari, ªRate-Controlled Service Disciplines,º
J. High Speed Networks, vol. 3, no. 4, pp. 389-412, 1994.

Sung-Whan Moon received his BS degree in
electrical engineering from Cornell University,
Ithaca, New York, in 1994 and his MS degree in
computer science and engineering from the
University of Michigan, Ann Arbor, in 1996. He
is currently working toward his PhD degree at
the University of Michigan. He is a student
member of the IEEE.

1226 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Jennifer Rexford received her BSE degree in
electrical engineering from Princeton University
in 1991, and her MSE and PhD degrees in
computer science and electrical engineering
from the University of Michigan in 1993 and
1996, respectively. She is now a member of the
Internet and Networking Systems group at AT&T
Labs-Research in Florham Park, New Jersey.
Her research interests include routing protocols,
Internet traffic characterization, and multimedia

proxy services. She is a member of the IEEE.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Seoul, Korea, in 1970, and both the
MS and PhD degrees in electrical engineering
from Cornell University, Ithaca, New York, in
1976 and 1978, respectively. He is a professor
and founding director of the Real-Time Comput-
ing Laboratory, Department of Electrical Engi-
neering and Computer Science, The University
of Michigan, Ann Arbor, Michigan. He has

supervised the completion of 40 PhD theses and authored/coauthored
more than 600 technical papers and numerous book chapters in the
areas of distributed real-time computing and control, computer
networking, fault-tolerant computing, and intelligent manufacturing. He
has coauthored (jointly with C.M. Krishna) a textbook Real-Time
Systems (McGraw-Hill, 1997). In 1987, he received the Outstanding
IEEE Transactions on Automatic Control Paper Award, and Research
Excellence Award in 1989, Outstanding Achievement Award in 1999,
and Service Excellence Award in 2000 from The University of Michigan.
In 1985, he founded the Real-Time Computing Laboratory, where he
and his colleagues are investigating various issues related to real-time
and fault-tolerant computing.

His current research focuses on Quality of Service (QoS) sensitive
computing and networking with emphases on timeliness and depend-
ability. He has also been applying the basic research results to
telecommunication and multimedia systems, embedded systems, and
manufacturing applications.

From 1978 to 1982, he was on the faculty of Rensselaer Polytechnic
Institute, Troy, New York. He has held visiting positions at the US
Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories, Computer
Science Division within the Department of Electrical Engineering and
Computer Science at the University of California at Berkeley, and
International Computer Science Institute, Berkeley, California, IBM T.J.
Watson Research Center, and Software Engineering Institute at
Carnegie Mellon University. He also chaired the Computer Science
and Engineering Division, EECS Department, The University of
Michigan for three years beginning in January 1991.

He is an IEEE fellow and member of the Korean Academy of
Engineering, was the general chair of the 2000 IEEE Real-Time
Technlogy and Applications Symposium, the program chairman of the
1986 IEEE Real-Time Systems Symposium (RTSS), the general
chairman of the 1987 RTSS, the guest editor of the August 1987
special issue of IEEE Transactions on Computers on real-time systems,
a program cochair for the 1992 International Conference on Parallel
Processing, and served on numerous technical program committees. He
also chaired the IEEE Technical Committee on Real-Time Systems
during 1991-1993, was a distinguished visitor of the IEEE Computer
Society, an editor of the IEEE Transactions on Parallel and Distributed
Systems, and an area editor of the International Journal of Time-Critical
Computing Systems and Computer Networks.

MOON ET AL.: SCALABLE HARDWARE PRIORITY QUEUE ARCHITECTURES FOR HIGH-SPEED PACKET SWITCHES 1227

