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Abstract
In mobile applications, the energy consumed by OS and
application tasks primarily comes from limited DC battery
source, which imposes an upper bound to the amount of
time available for execution of tasks. To achieve the best
Energy-aware Quality-of-Service (EQoS), it is important to
prioritize the scheduling of critical tasks over non-critical
tasks to improve overall performance while extending the
battery life. Using the Combined Static/Dynamic
scheduler (CSD) in the EMERALDS operating system [9,
10] as a basis, we developed the Energy-Adaptive CSD

(EA-CSD) with an energy-aware scheduling algorithm1

that executes tasks to achieve effective use of limited
energy by favoring low-energy and critical tasks. Our
simulation of the EA-CSD shows that battery life can be
extended up to about 100% with varying degrees of
performance degradation of up to about 40%, and the
actual values of both are fully customizable by the user
through parametric adjustment.

1  Introduction
The Combined Static/Dynamic (CSD) scheduler

proposed by Zuberiet al. [9, 10] minimizes scheduling
overheads without considering the energy requirement and
criticality of tasks. In CSD, all tasks to be scheduled are
queued in one of the two queues:Static-Priority (SP)
queue, which adopts mainly Rate-Monotonic (RM)
scheduling, andDynamic-Priority (DP) queue, which
utilizes mainly Earliest-Deadline-First (EDF) scheduling.
The assignment of each task to one of these queues is
decided by the relative period of that task to other tasks,
which, in turn, determines the task priority. Typically, the
DP queue contains tasks whose periods are shorter and
therefore, priorities are higher than those in the SP queue.
Once tasks are in the DP queue, they are scheduled based
only on the EDF policy. EDF prioritizes tasks with earlier
deadlines over those with later deadlines and does not take
into account such factors as energy demand and criticality

of individual tasks in calculation of priorities.
There are mainly two undesirable effects from this no

energy-aware version of CSD. First, some of the importa
tasks with later deadlines may not be able to me
deadlines in a multi-task environment consisting mainly
short-period yet relatively less important tasks. Secon
due to the lack of energy-awareness of CSD, it is possib
that most energy-demanding tasks dominate the CPU o
the less energy-demanding tasks with their shorter perio
thereby reducing the battery life substantially.

In this paper, we propose a scheduling algorith
implemented on theEnergy-Adaptive CSD(EA-CSD) to
achieve the dual goals of maximizing the battery life o
portable applications while prioritizing critical tasks ove
non-critical ones as energy becomes scarce. We will fi
present the semantics and motivation of the parameters
it. We will then simulate a typical example scenario havin
a mixed workload of tasks with varying levels of energ
consumption and criticality. This will be followed by an
analysis of the simulation results, which basicall
demonstrate two important characteristics of EA-CSD: (
the EA-CSD outperforms the non-EA-CSD in its ability to
extend battery life; (2) the EA-CSD is capable o
scheduling and completing more critical tasks befo
deadlines than non-EA-CSD in a bounded power-o
period. Moreover, we will also study how the variation o
some of the customizable parameters in the EA-CSD alt
the outcomes of simulation and how they compare to th
expected behaviors under the design goal of EA-CSD.

2  The Energy-Adaptive CSD (EA-CSD)
2.1  Assumptions

Before discussing the design details of EA-CSD, w
would like to point out many of the assumptions that app
to the non-EA-CSD presented in [9, 10] still apply here
A1 - A5 are the original assumptions of the non-EA-CS
either explicitly stated or implied in [9, 10].A6 - A9 are
new assumptions made specifically for simulating the EA
CSD.

A1. All tasks are periodic. This is not a limiting
assumption since non-periodic tasks can be handled

1. The work reported in this paper was supported in part by
the Airforce Office of Scientific Research.
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introducing periodic servers.
A2. All tasks have deadlines equal to the end of the period
in which they are released.
A3. CPU time is the only resource considered for each
periodic task as in most scheduling theories.
A4. No precedence constraints exist between tasks. One
can relax this assumption as done for non-energy-aware
algorithms, but we will instead focus on energy
conservation.
A5. Tasks are fully preemptable by other tasks ready to be
scheduled and executed.
A6. The scheduler deals with a fixed periodic task set in the
entire duration when there is still energy available. No new
task is introduced in the middle of task execution.
A7. Tasks consume energy at constant rates during
execution in the entire scheduling period.
A8. Task execution is governed by a reward function such
that only tasks completed before deadlines have utility to
the users.
A9. No energy replenishment is assumed in the middle of
scheduling. (See Section 2.2.6 for the case of energy
replenishment midway through scheduling)

2.2  The energy-adaptive scheduling algorithm
2.2.1  Energy-Adaptive Dynamic Priority (EADP)

Each periodic task under EA-CSD is assigned an EADP
to represent its scheduling priority relative to other tasks in
the system. All periodic tasks currently running, waiting in
the queues and even those which still have not been
released into the system at any instant, are assigned an
EADP each. The EADP associated with a periodic task
basically serves as a “mega-priority” in that it determines
the task period which, in turn, decides the priority of the
task in the system as seen by the original non-EA-CSD.

In what follows, we describe the calculation of EADP
for each task and define some non-standard parameters
used in the calculation.

EADPi(t) of a taski in a set ofn periodic tasks at timet
is a dimensionless quantity that can be calculated by:

where
r = user-defined ratio between weights of energy-oriented

 and criticality-oriented objectives

Ii = criticality-oriented priority (COP)

E = total estimated energy budget available (Unit: Joule)
e(t) = residual energy at timet (Unit: Joule)
ci = execution time of taski in each period (Unit: ms)
Pi = period length of taski (Unit: ms)

Ui = ci/Pi = utilization of taski in a period
wi = power rating of taski (Unit: mW)

      = energy-oriented priority (EOP)

2.2.2  Energy-Oriented Priority (EOP)
EA-CSD can schedule tasks in an energy-efficie

manner that extends the battery life. This is accomplish
by favoring tasks that have a lower energy utilization a
compared to other periodic tasks in the system. EO
evaluates a task’s expected proportion in consuming t
system energy among all the tasks in the system a
assigns a task priority based on this proportion. The mo
energy expected to be consumed by a task, the lower
EOP is, and vice versa. First, each task must have its o
power rating (w), which can be measured by a powe
gauging tool like the PowerScope [3]. However, thi
power rating for the task alone is not enough to represe
how power-hungry a task is. If a task only executes for
negligible amount of time in each period, its contributio
to energy consumption of the system would be minima
So, the utilization (U) of the task is included to reflect its
actual share of energy in the system. The productUw of
this task divided by the sum ofUw’s of all tasks represents
the energy proportion consumed by this particular ta
among all the tasks in the system. One minus this ener
proportion results in higher EOPs for tasks consuming le
energy and lower EOPs for tasks expected to have h
energy demand.

2.2.3  Criticality-Oriented Priority (COP)
COP associates each task with a priority between 0 a

1 indicating the importance of meeting its deadline. Tas
that are highly critical and whose deadline misses m
result in catastrophe are assigned COPs close to 1. Ta
that are optional and do not result in visible degradation
performance if they execute less frequently or even m
deadlines are given COPs close to 0. For an applicatio
COP of a task at any given time can be determine
dynamically by a preprogrammed formula which takes in
account all the periodic tasks presently in the system a
evaluates the relative importance of each of them. If a ne
task is introduced into the system in the middle of
scheduling process, an interrupt is issued to the OS ker
and the COPs of all tasks are re-computed. However, t
is assumed not to occur frequently as stated earli
Besides, another way to determine COP is to have the us
specify the COP of each task currently running themselve

EADPi t( ) 1 r–( )εi
e t( )

E
----------- rI i

E e t( )–
E

-------------------- 
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However, this is more difficult to implement and any
erroneous criticality specification by the users may result
in a disastrous consequence.

2.2.4  User-defined ratior
The user-defined ratior provides the means of

communication between the user and the EA-CSD.
Through this ratio, the user can instruct the EA-CSD
whether it should place more emphasis in energy
consumption or criticality of a task in deciding on the
EADP of the task at any given instant. Whenr = 0,
criticality is not a concern for the user and the EA-CSD
does not take that into account when computing EADPs for
all the tasks. The resulting schedule will purely favor tasks
with low energy consumption, but not those with high
criticality, generally leading to long battery life with low
performance. Whenr = 1, energy is not so much an
important issue to the user, so it is disregarded by the EA-
CSD. The resulting schedule will have more critical tasks
running than non-critical ones, even if the latter have low
energy consumption. This typically leads to shorter battery
life, but performance is enhanced since more critical tasks
are executed.

One can adjustr to an intermediate value between 0 and
1. Forr [0, 0.5), the energy consumption of a task plays
a more crucial part in calculation of EADP and we saythe
energy-oriented objective is favoredas tasks with low
energy demand are preferred by EA-CSD. But, forr

(0.5, 1], the criticality of a task dominates in the
resulting EADP, andthe criticality-oriented objective is
favoredas EA-CSD tends to schedule more critical tasks
than low-energy tasks.

2.2.5 Weights of EOP and COP in EADP as energy
wanes

The formula for computing EADP is composed of the
sum of two terms. Theenergy consumption term

encapsulates the EOP and the

criticality term includes the COPIi.

These two terms are proportional to and

, respectively, and the EOP and COP are
therefore weighted differently ase changes over timet. At
the begining when the energy level isE, the criticality term
vanishes and the energy consumption term dominates in
the calculation of EADP. Sincee decreases as time
elapses, one can expect that the weight of the EOP is
gradually decreasing while COP is weighted more and
more heavily. This demonstrates that as the energy level
wanes, EA-CSD places a heavier weight on the criticality
of tasks in its schedule and tends to schedule them more
often, taking less into account the tasks’ energy

consumption. So, EA-CSD biases more toward critic
tasks as energy becomes scarce. It ensures more crit
tasks’ deadlines to be met, and reduces the depende
between meeting critical tasks’ deadlines and the resid
energy level in the application.

2.2.6 When the EADPs are computed and updated
When the mobile application begins executing a ta

set, the EADPs of all tasks are computed using informati
about energy consumption and criticality for individua
tasks. Then, during the scheduling of tasks in EA-CSD
the EADPs of tasks are regularly updated and the interv
between two successive updates is directly controlled

the user through the adjustment of update factor
Suppose an update occurs now and the residual energ
the system ise. Then, when the residual energy reaches t
next update energyeu, the EADPs will be updated for all
tasks, whereeu is computed by:

The first update occurs ateu = E - E/f instead ofeu = E.
The updates will contine with the next update energ

calculated using the above formula at each update until
remaining energye is lower than a threshold energyet

calculated by:

whereE is the total energy estimated in the system initiall
andFt is the low threshold factor, which is usually decide
by the application developer based on the usu
characteristics of tasks in the system. This thresho
prevents the system from infinitely updating the EADPs
tasks since the formula for calculating the update ener
will be executed without any stopping condition.

For example, ifE = 2500,f = 2, Ft = 0.1, the updates
will occur ate = 1250, 625, 312.5. The next update poin
after 312.5 (156.25) is smaller than
and therefore EADPs will not get updated, starting frome
= 156.25 and on.

If the energy is replenished in the middle of schedulin
an interrupt is issued to the OS and the total amount
energy after replenishment is assigned toE. The EADPs
for all tasks are re-computed with the system’s remainin
energyenow reset back toE. Using the update factorf and
low threshold factorFt, eu andet are re-computed and the
scheduling session progresses in the usual way using
updated values of the above parameters after return
from interrupt routine, starting with energy levelE and
original task periods (or modified task periods based
amount of energy replenishment). This kind o
replenishment is assumed to occur infrequently durin
scheduling since frequent interrupts involve costly conte

∈

∈

1 r–( )εie t( ) E⁄ εi
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switches undesirable for real-time applications.

2.2.7   Stretching of task period
In CSD, task period is the pivotal factor in determining

how often a task is scheduled. It decides whether a task
should be in the DP or SP queue and, if it is in the latter,
what priority the task should assume. The EADP of a task
is utilized to determine whether a task’s period should be
stretched for less frequent execution and if so, how much it
needs to be stretched. A task which has an EADP lower
than the maximum EADP among all tasks at any given
time is considered to be less eligible to run than the
maximum-EADP task. Its period needs to be stretched
based on the difference between its own EADP and the
maximum EADP so that its actual priority is lowered than
before (assuming it is in the SP queue). If the stretch is
sufficiently large enough for a task originally in the DP
queue, a task can be demoted from the DP queue to the SP
queue and be scheduled based on their periods only after
all the tasks in DP queue complete execution. By
stretching the correct tasks, EA-CSD attempts to
dynamically adjust the relative priorities of tasks in the
system reflective of the user-specified goals, be it the
energy-oriented objective or the criticality-oriented
objective.

The amount of period stretch for a task at any update
point is directly proportional to the difference between the
task’s own EADP and the maximum EADP among all
tasks at that time. For example, suppose at the updating
time of EADP, taski has EADP equal toEADPi and the
maximum EADP among all the tasks isEADPmax. Then,
the period stretchedSi for taski is calculated by: :

wherek is called thestretch constantand is application-
dependent, and the new period for task i (Pi,new) is:

However, tasks cannot be infinitely stretched in their
periods. An upper bound on task period as compared to
the initial unstretched period is necessary because if tasks
are infinitely stretched in their periods, they are invoked
less frequently to an extent that causes the task to fail
achieving their minimum required real-time performance.
Audio and video applications are examples that need an
upper bound for period in order to ensure a minimum,
acceptable throughput. Thus, every task has an upper
bound in task period calculated based on a maximum
stretch factorFs for the application. This factor can be
individually assigned on a per-task basis or one factor can
be applied to all tasks in a certain application. The

resulting upper-bound period of a taskPmax having initial
period Po scaled by maximum stretch factorFs is
calculated as:

2.2.8  Addition of “Best-Effort Queue”
A third queue, called “Best-Effort queue”, is added t

EA-CSD. It accommodates tasks whose periods have be
significantly stretched beyond the maximum-period task
the SP queue. Tasks in Best-Effort queue have the low
priority in the task set and are not executed unless all t
tasks in both the DP queue and SP queue have comple
finished. Besides, there is no guarantee that these task
Best-Effort queue will ever be executed at all before th
battery runs out of energy (hence the name “Best-Effor
due to its lack of guarantee).

3  A case study - The PalmPilot
3.1  Selection of periodic task set for simulation

We developed an EA-CSD simulator (written in C++
that fully models the EMERALDS OS environment an
performs all the scheduling activities starting from the tim
when energy source is renewed to the point when energy
completely exhausted. It also displays statistics about t
number of invocations and timely completions for eac
task at the end of the run, as well as the final battery li
and the quality index as a measurement of over
performance of the system in the entire power-on perio
Interesting conclusions are then drawn from these resu
including how EA-CSD outperforms non-EA-CSD and
how variation of parameters affects the performance
EA-CSD. Such a simulation offers much more flexibility
to study the tradeoffs between different design paramet
than actual implementation on EMERALDS OS.

The simulation of the EA-CSD is run on a typical tas
set consisting of a mixed workload with varying degrees
energy consumption rate and criticality. To this end, w
have chosen several tasks in a PalmPilot Professio
running PalmOS version 2.0.4 with energy consumptio
rates reported by Ellis [2]. The task set is selected from t
application Hiker’s Buddy, which takes NMEA protoco
strings sent by a Global Positioning System (GPS) receiv
and plots the hiker’s current location on a map download
from the server.

The task set running under EA-CSD consists of a tot
of 7 periodic tasks. The first 4 tasks include primaril
critical tasks integral to the running of the Hiker’s Buddy
The other 3 tasks are less critical, with the first two tas
being some background batch jobs consisting of regist
based computation loops and the last one being a perio
task for keeping the LCD display of the PalmPilot on.

Si
EADPmax EADPi–

EADPi
--------------------------------------------------- k×=

Pi new, Si Pi old,+=

Pmax PoFs=
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Task
ID#

Description
Execution Time

(ms)
Period
(ms)

Criticality
(COP)

Power Rating
(mW)

1 Parsing NMEA sentences + receiving
from GPS

5 100 0.80 90

2 Keeping serial line open to GPS 7 40 0.95 60

3 Downloading map from serial line 10 100 0.90 150

4 Searching map with memory-
intensive computation

10 30 0.80 140

5 Background looping register-based
computation job #1

6 50 0.30 125

6 Background looping register-based
computation job #2

3 20 0.20 125

7 Keeping LCD display on 10 150 0.10 40

Table 1.  Profiles of the 7 selected periodic tasks in simulation of EA-CSD running on PalmPilot.
Table 1 shows the profiles of the 7 selected periodic
tasks in different aspects including task execution time and
period, as well as power rating and criticality. All the
power ratings are directly extracted from the corresponding
measurements in [2] for higher accuracy. All the
remaining parameters are values closely approximating the
actual situation while the Hiker’s Buddy is concurrently
running with some background jobs.

3.2  Time trace of task set
Figure 1 shows the time trace of the 7 periodic tasks

running under EA-CSD in PalmPilot under the conditions:
r = 0.9, f = 10, Ft = 0.1 andk = 10. The task queues are
polled every 5000s and the length of the numbered bar is
proportional to the period of the task with that ID number.
Initially at time t = 0s, EADP is first computed. Att =
5000s, we observe a conspicuous change in the task period
and priority position (assuming all tasks are in SP queue,
which in reality is not necessarily true) for Task 6. Task 6
(COP = 0.2,w = 125) can be classified as a non-critical
task with high energy consumption and is the kind of task
biased against most by EA-CSD. Therefore, it is the first
task which has its period stretched substantially from the
outset. As a result of the stretch, its priority position goes
down from 1st to 3rd in a period of 5000s. Att = 15000s,
while Task 6 continues to have its period stretched as it
becomes less eligible for scheduling, the period of another
less critical and power-hungry Task 5 (COP = 0.3,w = 125)
also gets stretched enough that it is demoted from 4th to
6th. At t = 20000s, Task 6 declines to 4th in priority. So,
up to this point, the effect of EA-CSD in favoring tasks
with high criticality and low energy consumption speaks
for its ability to schedule tasks to satisfy both energy- and
criticality-oriented objectives.

With r = 0.9, the criticality of tasks is of utmost
importance in making scheduling decisions. Task 2 (CO
= 0.95) and Task 3 (COP = 0.9) are the 2 most importa
tasks in the system as judged by the user. As a result, T
2 and Task 3 do not suffer from any period stretch at all a
remain two of the tasks cared most by EA-CSD. As Task
and Task 6 have their periods stretched past those of Tas
and Task 3, Task 2 and Task 3 climb to 1st and 3rd fro
3rd and 5th, respectively.
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Figure 1. Time trace of task periods for the 7 periodic tasks
running under EA-CSD in PalmPilot. Numbers inside (or on
top of) bars indicate task ID# and tasks are arranged i
ascending order of task period. The numbers under eac
diagram reflect task priorities if all tasks are in SP queue with
“1” being the highest priority.
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As energy becomes seriously scarce at the end of the
power-on period, Task 5 and Task 6 basically have their
periods constant and their priority positions fixed since
they have reached the upper bounds of their periods.
However, at this point, the periods of all tasks are already
very indicative of the actual priority that each task deserves
under energy-adaptive and criticality-aware scheduling.
Least critical Task 7 (COP = 0.1) remains the task having
the longest period all the way, which is just a manifestation
that low criticality asks for more period stretching.

3.3  Task invocation and execution profiles
The bar chart in Figure 2 compares the numbers of tasks

invoked and completed within deadlines over the entire
duration when energy is still available on the PalmPilot,
using the same parameters as that in Section 3.2. As we
can see, task criticality dominates in the EA-CSD’s
decision to stretch task periods. So, two of the least critical
tasks, Task 5 and Task 6, have a lower number of tasks
invoked and completed in a timely manner in the EA
version than in the non-EA version. The difference
between the non-EA and EA versions is particularly
pronounced for Task 6, which has a marginally lower COP
than Task 5 and has dropped more than 50% in the number
of invocations and timely completions. Task 7 has more
invocations in the non-EA version, but its invocation is
stifled in the EA version since it is the least critical task
among all 7 tasks and its period gets stretched enough that
it remains at the bottom of priority ranking throughout. On
the other hand, the two most important tasks in the system,
Task 2 and Task 3, both have a substantially larger number
of invocations and completions before deadlines in EA
version than in non-EA version. Particularly, Task 2 has

the highest COP and lowest energy consumption among
tasks and is therefore heavily favored by EA-CSD. I
numbers of invocations and timely completions both ha
jumped up by more than 45%. Task 1 (COP = 0.8) an
Task 4 (COP = 0.8) have slightly lower COPs and are n
as heavily favored by EA-CSD as Task 2 and Task 3.

3.4  Non-EA-CSD vs. EA-CSD
In order to compare the performances of non-EA-CS

and EA-CSD and see the value of incorporating energ
adaptivity in the latter, it is necessary to define certa
performance metrics for comparison. We will use sever
performance metrics (M1 - M3 ) to compare the difference
between the two versions of CSD as follows.

M1. Battery lifeprovides a concrete measurement of ho
capable the two versions of CSD are in conserving ener
by executing tasks that have lower energy consumpti
first.
M2. The total sum of COPs of all instances of tasks th
have completed before their deadlines in the whole pow
on periodprovides an idea of the total level of criticality of
tasks executed and how the two versions fare against e
other in favoring more critical tasks as energy wanes.
M3. The total sum of COPs (M2) divided by the battery life
(M1) provides a quality index which is decided by th
amount of COP obtained per time unit in the entire powe
on period. This is necessary because the total sum of CO
in M2 does not take into account the battery life ove
which the COPs are accumulated. As a result, the qua
index is a metric indicative of the average performance f
the application over time.

In all of the following simulation experiments, the effec
of varying one parameter at a time in the EADP equation
analyzed to see the sensitivity of the above performan
metrics.

3.4.1  Effect of variation of user-defined ratior
This part of simulation involves varying the user

defined ratior to see if it can achieve the effect that we
expect.  The simulation usesFt = 0.1,k = 10.

Figure 3 gives a comprehensive picture that is ve
close to our expectation. For the curves labelled withf =
10, f = 50, f = 100 in Figure 3(a), we see a general tren
that the curves remain pretty much constant (or go
somewhat) and then undergo an abrupt slump asr
increases from 0 to 1. Whenr is near 0, the energy
consumption term dominates in deciding period stretc
and more energy is conserved than whenr is large, where
the energy consumption term is pretty much ignore
Therefore, more critical tasks are scheduled to me
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Figure 2. Number of tasks released and meeting deadlines
during the entire power-on duration of the PalmPilot for non-
EA- and EA-CSD.
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deadlines (as demonstrated in Figure 2 withr = 0.9) at the
expense of energy-ignorant scheduling by EA-CSD asr
approaches 1. Energy-ignorant scheduling simply leads to
shorter battery life since some power-hungry tasks can use
up more CPU cycles.

The near-constant slope in the intermediate range of
these curves can be explained by the lingering dominance
of the energy consumption term over the criticality term in
EADP computation in the early stage of scheduling. In this
range ofr, since the weight of energy consumption term is
more important than the criticality term in calculating
EADP when energy is still near full, some high-energy
tasks get their periods stretched early, saving much of the
energy. The period stretching of primarily less critical
tasks when energy is near exhausted occurs late or not
frequently enough (due to relatively low update factor) so
that the energy sacrificed in energy-ignorant scheduling is
not sufficient to offset the energy savings earlier. This
explains why the battery life improvement remains at a

near-constant level in the intermediate range ofr.
For the curves labelled withf = 10, f = 50, f = 100 in

Figure 3(b), we see the reverse trend of the curves
compared to Figure 3(a) which reveals the complementa
relationship between battery life and quality index. It als
demonstrates the tradeoff between them and one can
easily achieve both with a fixed amount of energ
resources. Asr nears 1, more critical tasks get complete
before deadlines, adding to the total COP which transla
to a higher quality index (less deterioration) within
shorter battery life.

In both Figures 3(a) and 3(b), for the curves withf lower
than 10, the relatively low update factors do not provid
sufficient number of updates of EADPs of tasks an
therefore task periods are stretched less often. As a res
the energy consumption term still dominates in scheduli
decisions. This explains why the curves are not as conca
as those with higher update factors.

3.4.2 EA-CSD extends battery life at expense of
performance degradation

From Figure 3(a), whenf is greater than 1, the battery
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Figure 3. Battery life improvement and quality index
deterioration with varying user-defined ratior for EA-CSD.
Curves only begin to look concave in both areas whenf is
greater than or equal to 10. Battery life improvement tops
out 100% with 40% deterioration of performance whenf =
100.
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Figure 4. Battery life improvement and quality index
deterioration with varying update factorf for EA-CSD. Battery
life extends more and quality index declines as update fact
increases starting from 1.
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life is extended over the non-EA version no matter what
the user-defined ratio is. However, an accompanying
undesirable effect is the corresponding deterioration
(negative percentage indicates deterioration in Figure 3(b))
of quality index, which represents a performance
degradation over the non-EA version. The key point for
the design of EA-CSD is to be able to let the users to
determine the particular level of battery life and
performance desired themselves through a set of user-
adjustable parameters.

3.4.3  Effect of variation of update factor f
A.  Battery life extension and performance deterioration

Next we will see the effect of changingf on battery life
and quality index. Whenf = 1, from the formula of
calculating the next update energyeu, the EA-CSD does
not update the EADPs of individual tasks in the system at
all and hence tasks are scheduled in the same way as non-
EA-CSD without energy-adaptive updates. Therefore, asf
gets closer to 1, EA-CSD does not provide any significant
extension of battery life and it basically degenerates to
non-EA-CSD. This is demonstrated in Figure 4 where
there is 0% improvement on battery life and 0% decline in
quality index as compared to non-EA-CSD whenf = 1.

As f increases from 1 to 10, battery life gets longer with
a corresponding deterioration in performance. This can
basically be attributed to the fact that more updates mean
periods of tasks of high energy consumption are more often
stretched, allowing those less power-hungry tasks to take
over the CPU more frequently. As a result, battery life can
be extended by as much as 40% with a moderate update
factor of 10. The corresponding decline in quality index
can be explained by the fact that the total amount of COP
earned during the power-on period does not grow as fast as
the rate of extension in battery life. A smaller amount of
COP is achieved per time unit. Quality level declines by
around 20% asf increases to 10.

B.  Update overhead analysis

One may wonder from Figure 4 whetherf can be
infinitely increased to extend the battery life without
bounds at the expense of a relatively less significant
decline in performance. The answer to this question is
“No”. As exhibited in Figure 5(a) withr = 0.9, Ft = 0.1
and k = 10, as the update factor gets larger and larger to
around 100, the battery life extension percentage starts to
tail off until it more or less becomes flat or even rebounds
back. This is due to the substantially larger overheads
involved in calculating the EADP and updating task
periods as the update factor rises. Similar situations also
happen for performance deterioration in Figure 5(a) and
increase percentage in total amount of COP earned in

Figure 5(b).
The action of calculating the EADPs requires th

parsing of all the tasks in all queues in the system a
updating EADPs, which typically incur O(n) overheads for
a total of n tasks in system. The check for maximum
EADP among alln tasks can be done simultaneously b
keeping track of the maximum EADP up to a point as EA
CSD calculates each EADP and only updates t
maximum EADP in case there is a higher-EADP tas
Then the EA-CSD parses through each task again in
queues and stretches the periods of tasks based on
maximum EADP just found, which incurs O(n) overheads
again. The dominating factor in processing overhea
comes from the final step in each update - sorting tasks
SP and Best-Effort queues based on the updated peri
and demoting tasks from one queue to another if necess
Assuming there arem tasks in the unsorted DP queue, ther
are (n - m) tasks in the sorted SP queue and Best-Effo
queue. Using a simple sorting algorithm like an insertio
sort, the average case sorting overhead is in the order

O((n-m)2). The demotion of tasks takes only negligible
overheads compared to the sorting since it happe
infrequently and not for each task in the queues. Any cos
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Figure 5. Battery life improvement, quality index
deterioration and total COP improvement with varying update
factor f for EA-CSD. Notice that all the curves tail off and
even rebound back as update becomes more frequent due
large overheads involved in updating.
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Update Step
Number

Description Order of Overhead Costs

1 Calculation of EADPs and keeping track of maximum EADP thus far
as EA-CSD goes through each task in queues

O(n)  *

2 Update (stretching) of periods for all tasks in queues based on
maximum EADP found in Step 1

O(n)  *

3 Sorting of tasks based on updated periods in SP queue and Best-
Effort queue and demotion of tasks between queues

O((n-m)2)  **

* Assuming there are totallyn tasks in the system.
** Assuming there arem tasks in the DP queue and totallyn tasks in the system.

Note: Total overhead is in order of O((n-m)2) overall since Step 3 dominates over Step 1, 2.

Table 2. Steps in updating EADPs and periods of tasks and the ensuing sorting along with their associated orders of overhead
costs.
associated with demotion are also amortized over a long
period between successive updates. Table 2 summarizes
all the essential steps in updating of tasks and their
associated overhead costs.

For an update factor of lower than 100, total update
overhead is small compared to the sum of the execution
times of tasks and so, the overheads generated typically
can be amortized over a long period of time between
successive updates. However, as the update factor begins
to exceed 100, the update overheads start to become
comparable to the execution times of the tasks themselves,
virtually overloading the system with extra energy-
consuming tasks with useless values (of zero criticality).
Therefore, the battery life extension percentage,
performance deterioration percentage and COP increase
percentage all gradually tail off or even rebound back as
update factor increases beyond a certain threshold.

C. f vs. r for customization

As introduced in Sections 2.2.4 and 2.2.6, both the
update factorf and user-defined ratior are user-adjustable
parameters of the EA-CSD. Comparing Figures 3 and 4,
we can easily detect the difference of magnitudes of impact
on battery life and performance off and r. Generally
speaking,f is a more sensitive user-adjustable parameter
which produces relatively drastic changes in battery life
and performance whiler impacts slightly on those two,
usually within only a limited range of values given a fixed
f. For example, withr = 0.9, battery life improvement
jumps surprisingly fast from 0% to about 45% asf
increases from 1 to 10. On the other hand, withf = 10, the
battery life improvement is 40% atr = 0 and drops to 30%
at r = 1. It is therefore reasonable to usef as a coarse-
grained adjustment parameter andr as a fine-grained
parameter for fine-tuning the metrics given a coarse level
achieved byf. After all, r still has the additional capability
over f to decide the bias toward either energy-oriented or
criticality-oriented objective.

3.4.4  Effect of variation of stretch constantk
Another customizable parameter for applicatio

developers, but not users, is the stretch constantk. k can be
used to determine the extent to which the task periods
stretched during each update for those tasks that ha
lower EADPs than the maximum EADP. The larger th
value ofk, the more the periods of tasks get stretched, a
vice versa. In general, whenk gets larger, it will take
smaller number of updates for the EA-CSD to figure o
the final convergent priority order (that does not chang
from a certain point on) of tasks based on the ener
consumption and criticality of tasks in the system. Usual
this implies a more substantial battery life improvement
k is increased. Since the increase in total amount of CO
cannot keep pace with the rapidly improving battery life
there is a corresponding degradation of performance ak
gets larger. These two phenomena are demonstrated
Figure 6(a), where the simulation is performed withr =
0.9,f = 10,Ft = 0.1.

In Figure 6(a), battery life lengthens and performanc
declines ask continues to increase from 0 to 90. From 9
to 100, the curves tail off and rebound back since each ta
is assocated with an upper-bound period lengthPmax as
described in Section 2.2.7. Further increasingk does not
effectively change the task periods as most long-peri
tasks have already reached their maximum periods. Fig
6(b) shows the increase percentage in the total amoun
COP earned during the power-on period ask varies. It
follows a similar trend as battery life improvement for th
same reason.

4  Related work
Unlike EA-CSD, the majority of research efforts on

energy conservation for mobile applications have rare
considered individual characteristics of application task
such as energy consumption and criticality, to distinguis
between the different eligibilities of tasks for energ
resources.
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Some researchers analyze the reduction in energy
consumption by powering down unused components [1, 6,
8] or switching the system into sleeping mode in predicted
idle periods [5, 7]. However, the former saves energy only
on a few specific power-hungry hardware components
while the latter relies too much on predictions in order to
decide the mode of operation, which decreases the
system’s predictability and reliability in handling hard real-
time tasks.

One of the more closely related work is Odyssey [4],
which provides an API that supports energy conservation
over multiple concurrent applications. However, even
though it monitors energy usage for each individual
application based on energy availability, it does not
distinguish the difference between the criticalities of
applications and assign them priorities for energy usage.

5  Conclusion
The EA-CSD in this paper is not aimed at providing an

optimal algorithm for assigning task priority based on
energy consumption and criticality of tasks. Rather, it
represents a good approach that takes into account both the
energy consumption and criticality of tasks in making
scheduling decisions to accomplish the user-specified goals

in conserving energy and favoring the execution of critic
tasks. To our best knowledge, there are no know
scheduler-based approaches that deal with the problem
energy conservation in mobile applications, let alone th
problem of criticality maximization of tasks executed. EA
CSD does not advocate system-wide energy conservat
by globally restricting energy usage of all tasks. Instead
provides a built-in, automatic approach that assig
priorities based on intrinsic power and criticality
characteristics of individual tasks to increase ener
savings and ensure critical tasks are timely executed. U
variability is realized when users have complete freedo
and ease of choosing the level of performance desired
the above areas without constant manual monitoring a
caring about internal details of implementation. EA-CS
is therefore a good starting point for further research a
development in energy-adaptive scheduler.
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Figure 6.  Battery life improvement, quality index deterioration
and total COP improvement with varying stretch constantk for
EA-CSD. Note that the curves tail off and even rebound back as
k gets larger due to the upper bound imposed on period length.
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