IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000 621

MDARTS: A Multiprocessor Database
Architecture for Hard Real-Time Systems

Victor B. Lortz, Kang G. Shin, Fellow, IEEE, and Jinho Kim, Member, IEEE

Abstract—Complex real-time systems need databases to support concurrent data access and provide well-defined interfaces
between software modules. However, conventional database systems and prior real-time database systems do not provide the
performance or predictability needed by high-speed, hard real-time applications. To address this need, we have designed,
implemented, and evaluated an object-oriented database system called MDARTS (Multiprocessor Database Architecture for Real-
Time Systems). MDARTS avoids the client-server overhead of most prior real-time database systems and object-oriented, real-time
systems by moving transaction execution into application tasks. By eliminating these sources of overhead and focusing on basic data
management services for control systems (data sharing, serializable transactions, and multiprocessor support), our MDARTS
prototype provides hard real-time transaction times approximately three orders of magnitude faster than prior real-time database
systems. MDARTS ensures bounded locking delay by disabling preemption when a transaction is waiting for a lock and, hence, allows
for the estimation of worst-case transaction execution times. Another contribution of MDARTS is that it supports explicit declarations of
real-time requirements and semantic constraints within application code. The MDARTS library examines these declarations at
application initialization time and attempts to construct objects that are compatible with the requirements. Besides local shared-
memory transactions with hard real-time response time guarantees, MDARTS also supports remote transactions that use remote
procedure calls for data access with less stringent timing constraints. Our MDARTS prototype is implemented in C++ and it runs on

VME-based multiprocessors and Sun workstations.

Index Terms—Real-time databases, object-oriented systems, exemplar-based programming, semantic constraints, concurrency

control, shared memory, atomic data types.

1 INTRODUCTION

REAL-TIME systems are an increasingly important class of
computer applications. Examples of real-time systems
include advanced manufacturing systems, air traffic control
systems, telecommunications systems, nuclear reactor con-
trollers, and “smart” weapons systems. A computation is
considered real-time if its correctness depends, in part, on
the time at which it completes. In other words, the
computations have deadlines associated with them. Real-
time systems can be categorized as either hard or soft real-
time. In a soft real-time system, the value of the computa-
tions is sensitive to deadlines, but the system will not fail if
some deadlines are occasionally missed. In hard real-time
systems, catastrophic failure can occur even if one deadline
is missed. Although the techniques presented in this paper
could be used for soft real-time systems, we focus primarily
on hard real-time systems.

As real-time applications become more complex or need

to process large volumes of data, it becomes desirable to use

database systems to manage data shared between software

e V.B. Lortz is with the Intel Corporation, J[F3-206, 2111 N.E. 25th Ave.,
Hillsboro, OR 97124. E-mail: victor_lortz@intel.com.

o K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI 48109. E-mail: kgshin@eecs.umich.edu.

o |. Kim is with the Department of Computer Science, Kangwon National
University, Chunchon, Korea and with the Advanced Information
Technology Research Center (AITrc), KAIST, Taejon, Korea.

E-mail: jhkim@kangwon.ac.kr.

Manuscript received 18 Mar. 1997; accepted 26 Dec. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104679.

components (tasks, processes, modules). For example, in a
manufacturing system, a database can be used to store part
specifications, part programs, machine characteristics, con-
trol equation parameters, histories of performance data, and
the current state of the machine(s). If this information is
available in a database, it can be used to support both low-
level servo control and high-level supervisory control of
manufacturing machines. Furthermore, it becomes much
easier to integrate new sensors and software modules into
the controller because their interactions with other parts of
the controller can be defined in terms of operations on the
database.

The primary difficulty in using databases in real-time
systems is that most database systems are not designed to
provide the performance levels or real-time guarantees
needed by high-speed real-time systems. High-speed is a
relative term. We consider a real-time system to be high-
speed if it typically requires worst-case database transaction
times of less than a millisecond. This definition of high-
speed is somewhat arbitrary, but it is motivated by the hard
deadline constraints of machine tool controllers that have
control tasks with periods of about one millisecond.

It is possible to improve database performance by
keeping the database in memory and avoiding disk 1I/O
during transaction processing [11]. However, conventional
main memory databases are designed to maximize average
throughput, not to minimize individual transaction times.
Typical average response times for simple transactions in
main memory databases (600 milliseconds for TPK [25],
about 69 milliseconds for the main memory version of
Starburst with concurrency control disabled [22], over 100

1041-4347/00/$10.00 © 2000 IEEE

622 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

milliseconds for PRISMA /DB [3]) are much too slow for
high-speed hard real-time systems. Furthermore, these
main memory database systems do not provide worst-case
guarantees for their transactions. Hard real-time systems
need worst-case guarantees to ensure that all deadlines will
be met.

Of the prior real-time database prototypes or simulations
reported in [2], [5], [7], [14], [21], [23], [36], [40], [47], [51],
none provides hard real-time guarantees and none has
average transaction times of database systems that are
suitable for high-speed hard real-time systems such as
machine tool controllers. Because suitable database man-
agement systems have been unavailable, hard real-time
systems have traditionally used ad hoc methods for data
management. However, ad hoc methods do not provide the
flexibility needed for the complex, evolving software
architectures of next-generation hard real-time systems.
To provide greater flexibility and to manage the complexity
of future hard real-time applications, better real-time data
management technology is needed.

To meet this need, we have designed and implemented a
hard real-time database system called MDARTS (Multi-
processor Database Architecture for Real-Time Systems).
MDARTS is a framework for developing object-oriented
data management services suitable for high-speed hard
real-time applications on uniprocessor or multiprocessor
computing platforms. Our MDARTS prototype is an
extensible library of data management classes written in
C++ [45]. The MDARTS library does not use a client-server
architecture, but permits application tasks to directly access
databases in shared memory. By eliminating the IPC (Inter
Process Communication) overhead of client-server archi-
tecture, MDARTS can provide high-speed real-time trans-
action response times (of microsecond order) required in,
for example, manufacturing applications. Applications
using MDARTS can specify hard real-time transaction
response requirements in the declarations of their database
objects. MDARTS checks, prior to executing transactions, if
these hard real-time requirements can be met or not in
order to provide a hard real-time guarantee for every
transaction.

MDARTS is not intended to duplicate the services of a
traditional database system, since many of these features
are expensive to provide and are not necessary in the
context of most hard real-time systems [26], [37]. For
example, most database systems provide interpreters for
ad hoc queries expressed in database languages such as
SQL. In hard real-time application domains, the raw
performance of the database is much more important than
user-friendly interfaces. Furthermore, some of transaction
management features (e.g., concurrency control and recov-
ery mechanisms) supported by conventional database
systems can be too expensive for some high-speed real-
time systems. Thus, MDARTS does not require that all
transactions preserve a single set of transaction properties
(i.e., all ACID properties). Instead, MDARTS permits
transactions to choose their own implementation of transac-
tion management features suitable for applications.
MDARTS does address an important problem domain that
has not been adequately addressed before. Specifically,

MDARTS provides flexible data management services that
are compatible with the extremely demanding performance
requirements of high-speed hard real-time systems. To
achieve this goal, MDARTS employs a new transaction
model registering transaction properties on a per-object
basis. MDARTS also provides a new concurrency control
mechanism that bounds locking delay by disabling pre-
emption of each transaction waiting for a lock. With these
features, MDARTS can estimate the worst-case transaction
time by using the execution time of each transaction
calibrated automatically, in advance, and its bounded
locking delay.

Our prototype, MDARTS, has been implemented on a
shared-memory multiprocessor and a commercial real-time
operating system kernel (20 MHz 68030 processors running
VxWorks). On this platform, MDARTS can guarantee
transaction times of less than 100 microseconds for simple
local transactions typical of machine tool controllers. Local
transactions directly access databases in shared memory
through the multiprocessor bus (i.e., VME bus), which can
provide hard real-time predictability by eliminating IPC
overhead of client-server architecture. Moreover, MDARTS
also supports remote transactions over a network via
remote procedure calls (RPC). Due to the less predictable
latency of RPC, remote transactions cannot provide hard
real-time guarantees, but these can be used to support
remote users accessing database objects across a network.
These relatively slow RPC transactions do not delay the fast
local transactions executed by application tasks on the
multiprocessor. Except for variations in transaction time
guarantees, the locations and implementations of MDARTS
objects are transparent to applications.

The remainder of this paper is organized as follows:
Section 2 reviews real-time scheduling theory and discusses
prior real-time database work. Section 3 discusses the
MDARTS transaction model. Section 4 presents the
MDARTS architecture and discusses implementation is-
sues. Section 5 describes the techniques used to automati-
cally calibrate MDARTS database objects on a computing
platform. Section 6 describes our implementation platform
and strategy for conducting performance evaluation of our
MDARTS prototype. Section 7 presents the timing results of
our experiments and discusses the worst-case transaction
times. The paper concludes with Section 8.

2 BACKGROUND

The fundamental goal of a real-time database system is to
facilitate the development of real-time applications. When
developing a real-time application, particularly a hard real-
time application, it is necessary to analyze the tasks that
comprise the application to verify that all (or as many as
possible) task deadlines will be met. Verifying that task
deadlines will be met is called schedulability analysis and this
problem has been extensively studied in the literature. Rate
monotonic scheduling is an optimal algorithm for static
(fixed) task priorities; if any static priorities can meet all the
deadlines for a given task set, then so can rate monotonic
priorities [27], [32]. Various dynamic priority scheduling
protocols have also been studied (earliest due date, least
slack time, etc. [8]).

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS 623

To make schedulability guarantees in a hard real-time
scheduling algorithm, it is necessary to know in advance the
computation times, periods, and blocking times of all
application tasks. For example, the rate monotonic schedul-
ing algorithm defines a set of inequalities (2.1) that, when
satisfied, guarantee the schedulability of a set of n tasks.
Here, C;, P, and B, represent the computation time, period,
and blocking time of task 7;, respectively, and these all must
be determined in advance.

Vi, 1<i<n %+%’+ +% +%‘ <i(2Y1—1). (2.1)

However, the worst-case computation times of tasks are
sometimes difficult to determine. Furthermore, unless
resource-sharing protocols can bound the blocking time B;,
it is impossible to guarantee task deadlines. When a
database transaction is performed by a real-time task, the
delays and execution time uncertainties associated with
concurrency control and recovery can make schedulability
analysis impossible. MDARTS addresses this problem by
making transaction times short and predictable and, hence,
can support hard real-time schedulability.

We characterize the real-time performance of MDARTS
with the term transaction time. An MDARTS transaction time
consists of two components. The first component represents
the worst-case execution time C; required to perform
transaction ¢. The second component represents worst-case
blocking delays B; caused by transaction ¢, either for
concurrency control, I/O, or communication with other
processes. The two components of an MDARTS transaction
time correspond to the parameters needed to perform real-
time schedulability analysis of tasks that use MDARTS. For
simplicity, we sometimes refer to a transaction time as a
single number. In those cases, we mean the sum of the two
components.

2.1 Related Work

2.1.1 Real-Time Database Systems

Several researchers have recently investigated real-time
database systems (RTDBSs). For a database system to be
suitable for a real-time system, it must have fast and
predictable transaction times. In other words, the C; and B;
components of the database transactions must be small and
bounded, as tightly as possible so that the inequalities of
(2.1) are satisfied. Prior RTDBS research investigated three
primary strategies for improving the performance and
predictability of database transactions:

1. Use memory-based databases [9], [11], [37], [41],
Schedule transactions according to task priorities or
deadlines [1], [6], [33], [42], [43],

3. Reduce delays and uncertainties associated with
concurrency control [6], [9], [13], [15], [20], [30], [31],
[35], [36], [39], [48].

To this list, we add:

1. Avoid the overhead associated with a client-server
architecture and

2. Run transactions in parallel on shared-memory
multiprocessors.

Some real-time database systems have been developed
for main memory which can dramatically enhance perfor-
mance and predictability by avoiding disk I/O delays [37],
[40]. Garcia-Molina and Salem presented a nice overview of
main memory database research in [11]. STRIP
(STanford Real-time Information Processor) [2] and Star-
Base [23] are the examples of main-memory real-time
database systems. These prior systems use client-server
architectures, thus incurring significant IPC overhead.
Thus, they can’t provide high-speed (of microsecond order)
real-time response and a hard real-time guarantee for each
and every transaction.

More recently, Dali [17], RTSORAC [51], and RTDM
(Real-time Data Manager) [5] have been developed as main-
memory object-oriented database systems. Like MDARTS,
they all maintain databases in shared memory and don’t
use a client-server architecture in order to provide high
performance required in real-time systems. Dali [17] is a
main memory storage manager incorporating two phase
locking protocol and a new elegant mechanism for write-
ahead logging. In addition to the unpredictability caused by
the recovery manager that invokes disk 1/O’s to write log
records, the two phase locking protocol can cause un-
bounded delays for transactions to acquire a lock.

The RTSORAC system [51] has been developed using the
object-oriented model, RTSORAC, for soft real-time data-
bases. The model representing objects, relationships, and
transactions has constructs similar to those in MDARTS.
But, the semantic locking concurrency control of the
RTSORAC system cannot guarantee bounded locking
delays. RTDM [5] is a main-memory object-oriented
database system supporting time-constrained transactions
for real-time command and control systems. Even though
RTDM employs a new concurrency control algorithm
extending Priority Ceiling Protocol [32], it does not prevent
transactions from uncertain blocking in acquiring a lock. By
contrast, MDARTS proposes a new concurrency control
mechanism providing bounded locking delays, thus en-
abling hard real-time predictability.

2.1.2 Real-Time Object-Oriented Systems

Several prior systems have applied object-oriented techni-
ques to real-time systems. CHAOS [12], [34], Maruti [24],
[28], and ARTS [46] provide support for real-time objects at
the kernel level of an operating system. MO2 is an object-
oriented model with features of database systems and real-
time systems [4]. MO2 supports distributed active objects
with per-object read and write servers that execute client
requests at the client priorities. Ishikawa et al. [16] describe
a real-time extension of C++ called RTC++.

Each of these systems supports specification of timing
information for the object methods. However, the timing
information in all of these systems is expressed in seconds
(i.e., time units) and hard-coded in the class definitions.
This approach does not accommodate variations in hard-
ware performance. MDARTS has a more flexible approach
to timing specification that provides support for automati-
cally benchmarking execution times and scaling timing
estimates to the performance of the execution platform at
runtime (see Section 5).

624 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Furthermore, all object sharing across multiple proces-
sors in these systems is accomplished using client-server
interactions. Therefore, these systems incur the overhead
associated with RPC. For example, best-case CHAOS
method invocation overhead on the client side alone ranges
from one to five milliseconds and ARTS overhead ranges
from one millisecond for local objects to about 11 milli-
seconds for objects on other processors.

Stewart et al. describes an object-oriented approach to
developing hard real-time applications in [44]. The objects,
called port-based objects, share information by copying
data between a global state table and local caches. Tasks run
asynchronously to compute their results, which are copied
out to the global table at the end of the cycle. The entire
global table is locked when copies to or from it are made.
The port-based object approach is appropriate for some
problem domains, but the data sharing mechanism lacks
flexibility and provides no support for serializing concur-
rent transactions. Furthermore, if applications share large
amounts of data, it is expensive to copy it between the local
and global state tables each cycle.

2.1.3 Client-Server Overhead

Fig. 1 illustrates the types of overhead implicit in client-
server architectures. We show both multiprocessor and
uniprocessor examples. Fig. 1 reflects the simple transaction
model of MDARTS in which each transaction is bundled
into a single request and sent to the database server. The
database transactions themselves are highlighted with the
bold dashed lines. Each transaction is decomposed into a
start-up region S, a critical section CS (in which mutual
exclusion is required), and an end region E. The relative
lengths of these regions depend on the particular transac-
tion. The client-server overhead is labeled as follows: C-IPC
represents client-side interprocess communication, which
includes RPC stub procedure call overhead, data conver-
sion and marshalling, copying overhead, and transmission
latencies (if the RPC is not local), Switch represents context-
switch overhead (we assume, for simplicity, that the server
task requires only one context switch to service both client
requests), S-IPC represents server-side, interprocess com-
munication, and Q represents time required to enqueue
client requests in the server.

The relative sizes of overhead components depend on
the characteristics of the target hardware and operating
system. Usually, the context-switch and interprocess com-
munication overhead is on the order of a few milliseconds,
whereas the transaction execution time could be only a few
microseconds. Furthermore, the client-server architecture
implies a serial bottleneck in the server processes. This is
not a problem on a uniprocessor, but, on a multiprocessor, it
limits parallelism when multiple simultaneous transactions
use the same object (i.e., use the same server). On a
uniprocessor, more context switches are generated as the
CPU switches execution from clients to servers. Note that
real-time scheduling algorithms can only rearrange the
order in which these operations are performed. Far better
performance can be achieved if the overhead itself can be
reduced or eliminated.

Fig. 2 illustrates the approach taken in MDARTS. Rather
than client tasks submitting requests to servers, the client

tasks use MDARTS objects that point directly to shared
memory. The client tasks can thus perform the transactions
themselves using the MDARTS object transaction methods.
In the multiprocessor case, critical sections are guarded by
spinlock queues (variants of spinlocks with fair scheduling
policies). The locking protocols are implemented within the
MDARTS transaction code, so applications need not
concern themselves with these low-level issues. Note that
contention to enter the spinlock queue runs in parallel with
the critical section of the lock holder. Therefore, this
approach makes excellent use of the parallelism available
on a multiprocessor. In a uniprocessor, the critical sections
are guarded by locking task preemptions. This approach is
viable for short critical sections that perform memory-based
operations.

Because context-switch and interprocess communication
overhead is often much larger than the actual execution
times of transactions, the performance gains achievable by
avoiding client-server interactions—this can be very sig-
nificant. This is especially true when individual transaction
times, rather than transaction throughput, are considered.
On our implementation platform, RPC overhead was
typically three orders of magnitude greater than the basic
transaction execution time. By avoiding the client-server
model, we were able to achieve much better performance
and predictability in our database transactions.

3 MDARTS TRANSACTIONS

3.1 Transaction Model

In this section, we introduce basic definitions and notation
of MDARTS transactions. MDARTS uses an object-oriented
approach which models database entities as objects. In an
object-oriented programming paradigm, objects consist of
data and methods which are interfaces accessing the data.
In MDARTS, transactions are modeled as object methods.
All application tasks access databases by invoking transac-
tion methods simply registered in each object.

Definition 1. Each MDARTS object consists of object identifier,
data, and transaction methods: (OID, D, T). Each transaction
method (T') is a sequence of operations on data (D). T is
defined as (TID,O, Arg), where TID is the transaction
method identifier, O a set of operations, and Arg a set of
arguments. MDARTS objects can be accessed only through
transaction methods.

In ordinary database systems, applications are permitted
to explicitly control the scope and duration of transactions.
An application defines a transaction by executing a
Begin_Transaction() operation, performing a set of arbitrary
database operations and computations, and executing a
End_Transaction() operation. Clearly, this type of transac-
tion support is extremely powerful and useful from an
application’s perspective. However, we believe that this
level of transaction support is fundamentally incompatible
with the absolute transaction-time guarantees needed by
hard real-time systems.

Consider a typical scenario in which an application
begins a transaction, reads some portion of the database,
and then begins an extensive computation to determine
derived values with which to update the database. During
this extensive computation, the portions of the database that

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE

Multiprocessor Case

FOR HARD REAL-TIME SYSTEMS 625

Transaction time for client 1 on CPU-1

CPU-1 C-IPC
client 1

CPU-2 [switth[a [s Tcs [E]s-Ic]
client 2

CPU-3 C-IPC

A

[afsTcs[ET s rc]

Transaction time for client 2 on CPU-3

Uniprocessor Case

el

Transaction time for client 2

h

C-IPC | Switc

.
.

client 1 client 2

C-IPC] switch] @ | 8 J CS | E | s-IPC

aJs]cs|E] s-IPC Switch

Fig. 1. Real-time performance implications of the client-server architectu

Multiprocessor Case

Transaction time for client 1

re.

Uniprocessor Case

__S'J!

Transaction time

cPu-1 jslajcs[E]
cPU-2 [s]a Fer[CcSE]
CPU-3 Is] Q [spin |CS|

-

Worst Transaction time
Fig. 2. Transaction times if clients perform transaction execution.

will be affected by the transaction must remain locked.
Because the length of time the lock is held is not under the
control of the database, there is no way the database system
can provide any real-time guarantees for other transactions
that need to access the locked data. The database system
might be able to abort the first transaction if a higher-
priority transaction came along, but this would waste
resources and make it more difficult to guarantee that
lower-priority transactions will meet their deadlines.

Unconstrained application-defined transactions may or
may not be acceptable in the context of soft real-time
systems such as those considered in [15], but to provide
hard real-time guarantees, a database system must tightly
control transaction execution. Therefore, MDARTS transac-
tions are modeled as object method invocations. An
application can provide parameters to the transactions,
and a transaction can perform relatively complex
computations.

Definition 2. Let O be an MDARTS database object and
Ty, Ts,...,T, transaction methods registered in the object O.
We denote T; € O if T; is a transaction method of O. Er, is the

F_EJ

execution time of a transaction method T;,. We define the
maximum access time of an object O, denoted as Wo:

Wo = max {Er,, where T; € O}.

The execution time of each transaction method, E7;, and
the maximum access time of an object, W, are calibrated in
advance, when an object is declared. E7; and Wy are stored
into shared memory and are used to estimate the worst-case
transaction execution time.

Definition 3. Application tasks can issue MDARTS transac-
tions by invoking transaction methods. An MDARTS
transaction invocation consists of (T'ID,Arg,TC), where
TID transaction method identifier, Arg arquments for the
transaction method, and T'C the deadline.

Application tasks can initiate transactions with a
transaction method invocation specifying their arguments
and deadlines. The deadline is the timing constraint that the
transaction method invocation must be completed. In this

626 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

paper, we will use the term “transaction” to specify
transaction method or its invocation if the context of its
use is clear or the distinction between the two is not
important.

3.2 Concurrency Control and Transaction
Scheduling

A major source of performance unpredictability in conven-
tional databases is the transaction delays or aborts when
concurrent tasks try to acquire locks. Unpredictable locking
delays in transaction processing make it impossible to
estimate the worst-case execution time of each transaction.
In order to provide hard real-time guarantees for transac-
tions, it is essential to determine their worst-case execution
times and to bound locking delays.

MDARTS provides a new locking protocol, spinlock
protocol, to bound locking delays as follows:

1. Transaction methods registered in an object are
protected as critical sections by acquiring (releasing)
the same lock at the beginning (end) of transactions.
The object will be accessed in a mutually exclusive
manner by these transactions. (We may achieve
better performance if both shared and exclusive
locks are supported, but, for simplicity, MDARTS
uses only exclusive lock mode.)

2. When a transaction tries to acquire a lock held by
another transaction, it does not block but spins at a
spinlock queue. Each transaction running on a
processor is not preempted until its completion.

3. Lock requests in a spinlock queue are processed in a
FIFO order. The maximum length of spinlock queues
is equal to the number (n) of processors. The locking
delay will then be bounded by the time to complete
the other (n — 1) transactions.

Under this protocol, if a transaction starts to run on a
processor, no other transactions can be initiated on the same
processor until the first transaction is completed. Note that
each processor executes transactions sequentially, one at a
time. So, a transaction may encounter lock conflicts with
only those transactions running on different processors.
Because a transaction holds a lock until its completion,
priority inversion can occur in this protocol. However, the
priority inversion can be bounded by using the FIFO policy.

Notation. The hardware platform is assumed to consist of n
processors, denoted as a set {pi1,...,p,}. T;; is the ith
transaction to be executed on p;. (We will use 7; if we
don’t need to identify the running processor.)

Lemma 1. The maximum length of a spinlock queue is n — 1,
where n is the number of processors.

Proof. A transaction T;; does not have any lock conflict
with the other transactions, T} ;, to be executed on the
same processor p;, j#k=1,2,3,..., because each
processor executes transactions sequentially. Each trans-
action T ; on p; can have lock conflict with at most (n —
1) transactions running on the other processors, py,
1 <k <n, k+#j. In the worst case, all n transactions try
to access the same object O. While one of them is
accessing O, the other (n — 1) transactions must wait in

the spinlock queue for the object O. Thus, the maximum
spinlock queue length is n — 1. O

Theorem 1. The worst-case execution time Wr of a transaction T
is bounded to Ep + (n — 1) - Wy, where Eyp is the execution
time of T’s method and Wy the maximum execution time of
the transaction methods registered in the object O.

Proof. Wr is determined with the execution time Er of the
transaction 7' and its worst-case blocking time (B) as
Wr = Er 4+ B. By eliminating task preemptions, the
blocking time of T" includes the locking delay only. As
stated in Lemma 1, the maximum length of a spinlock
queue is n — 1 and the spinlock queue is processed in a
FIFO order. To acquire a lock, therefore, a transaction has
to wait until the completion of the other (n—1)
transactions. Let T;i,...,T;, be the transactions cur-
rently running on processor pi, 1 < k < n, respectively,
and let T;; = T Then,

Wr=Wr, = Er, + Y Er,.
k=2

The worst case occurs when all n transactions try to access
the same object O. Because Wy, is the maximum execution
time of the transaction methods registered in the object O,
Er, <Wp, 2 <k <n.So, the worst-case execution time
of a transaction T, Wy =Wy, < Ep, +(n—1)-Wp. O

Under the spinlock protocol, MDARTS transactions are
executed in a very simple way, so MDARTS does not need
any scheduling server that can manage multiple concurrent
transactions. Instead, each task performing transactions
participates in the transaction scheduling. MDARTS
achieves this by embedding scheduling logic in tasks. The
tasks themselves execute database transactions. The trans-
actions are automatically performed at the priority levels of
the corresponding application tasks and no system over-
head incurs to dynamically modify the task priorities.

In MDARTS, the application tasks that have already been
assigned and scheduled on processors perform the transac-
tions. If 10 tasks on 10 processors execute transactions on 10
different database objects, all of these transactions can
proceed in parallel with minimal transaction scheduling
overhead. If some of these transactions attempt to use the
same object, the locking protocol of that object’s methods
guarantees the serializability of the concurrent operations
with a simple FIFO policy.

3.3 Real-Time Guarantees for Transactions

Prior real-time database systems either make deadline
guarantees a priori with off-line static analysis of applica-
tions [38] or use dynamic transaction scheduling to try to
meet deadlines at runtime [6]. Off-line static analysis has
the advantage of providing early feedback if requirements
cannot be met. However, off-line analysis of transactions is
not always feasible, especially for complex, distributed
applications. Dynamic transaction scheduling is a viable
alternative for soft real-time systems. However, if deadline
information is processed during transaction execution,
overload conditions might cause some deadlines to be
missed.

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS 627

MDARTS is unique in registering real-time requirements
on a per-object basis during application initialization. Each
application task includes transaction invocations inside its
code. As stated in Definition 3, transaction invocations
specify transaction methods, arguments, and deadlines.
These transaction invocations are checked at the time of task
initialization to see if their deadlines can be met. The worst-
case execution time of each transaction method is calculated
a priori, as described in Theorem 1 in Section 3.2, and is
stored in shared memory. For example, a task 7 invokes m
transaction methods 7Ti,75,...,T,, with deadlines
D1, Ds,...,D,, respectively. At the time of task initializa-
tion, MDARTS identifies the m invocations and checks their
deadlines. If every D; > Wp,1<i<m, the task can
provide hard real-time guarantees for its transactions,
where Wr, is T;’s worst-case execution time. This approach
maintains most of the flexibility advantages of dynamic
deadline guarantees while making guarantees before the
transactions are actually performed. Furthermore, transac-
tion execution performance is enhanced since the overhead
of checking these requirements and constructing the data
access objects is incurred only once per task before the real-
time processing begins.

An RTDBS for hard real-time applications must be able
to provide real-time guarantees for each transaction. Alter-
natively, and just as importantly, if no guarantee can be
made, the RTDBS should reflect this as well. The emphasis
on per transaction real-time guarantees is one of the
fundamental principles of MDARTS.

To implement a database service within the MDARTS
framework and to provide transaction-time guarantees, it is
necessary that the computational environment also be
predictable. Therefore, a suitable platform for MDARTS
(or indeed any hard real-time application) must provide
consistent processor performance and bounded latency for
bus and memory access. Furthermore, any transactions that
require network communication must either be non-real-
time transactions (without hard real-time guarantees) or be
based on networking protocols that provide end-to-end
response-time guarantees, like the one described in [19]. In
a shared-memory multiprocessor, it is necessary to char-
acterize delays associated with using the shared intercon-
nection network that provides access to the global memory.
MDARTS transactions that use the multiprocessor bus must
account for network access latency in their real-time
guarantees. This is a factor over which MDARTS has no
control and it is highly implementation-dependent. Some
interconnection buses, such as the VME bus, support DMA
operations that can seize control of the bus for extended
periods of time. Any computing platform with components
that monopolize the bus, e.g., by performing uninterrup-
tible DMA transfers, will severely limit the timing guaran-
tees MDARTS can make for shared-memory transactions.
However, if DMA operations are interruptible, and the bus
master is configured to support a deterministic scheduling
protocol (such as round-robin scheduling), it is possible to
determine worst-case latencies to access the bus. Given
these worst-case latencies, MDARTS can guarantee its
transaction times.

3.4 Transaction Recovery

Some of the ACID (atomicity, consistency preservation,
isolation, and durability) properties [10] required by
traditional transactions may be too expensive or infeasible
to provide in the context of a hard real-time database [26],
[37]. Durability can be particularly expensive as it usually
implies keeping the database on a disk, thus incurring all of
the overhead and execution time uncertainties associated
with disk I/O. The transaction processing speed of main
memory databases will then be bounded by disk I/O speed
and, hence, we can’t take full advantage of the speed of
main memory. Furthermore, disk I/O causes the blocking
of a process, thus making it impossible to estimate
transaction execution time. Despite all of these difficulties,
durability is not always needed for real-time applications
which require external consistency.

MDARTS has been implemented for a hard real-time
database system with microsecond-order response times,
but it does not implement crash recovery (that makes
databases durable even in the presence of a system crash or
shutdown). System crash recovery inherently requires
saving all log records of committed transactions into a disk,
while, in a hard real-time system, each task must complete
its execution before its deadline. Hence, no transaction is
allowed to miss its deadline in order to avoid system
failure. System crash recovery can be handled by augment-
ing MDARTS with such fault-tolerant approaches as
replication of hardware or software.

Because all MDARTS transactions must be finished
within their deadlines, each transaction is not aborted by
the system or by the other transactions. Every transaction
has to be committed successfully or rolled back inten-
tionally by itself within its deadline. No other states are
allowed in MDARTS. As described in Section 3.2,
MDARTS transactions can access each object sequentially.
Under such transaction model of MDARTS, transaction
rollback can be achieved by using shadow objects.
Transactions may copy each object into its shadow object.
When a transaction should stop its execution, it can be
undone by overwriting the shadow object over the
corresponding partially-updated object.

4 MDARTS ARCHITECTURE

MDARTS consists primarily of a library of object-oriented
database service classes. Fig. 3 shows the overall architec-
ture of the MDARTS system. As shown in the figure, tasks
needing to share data with other tasks declare objects
belonging to the MDARTS database classes. These objects
are automatically registered with an MDARTS Shared Data
Manager (SDM) server that allocates shared memory,
performs object lookup, and supports remote data access.
Real-time constraints are specified by applications in the
declarations of the MDARTS objects. The MDARTS object
creation process examines the constraints during applica-
tion initialization and constructs data objects that satisfy the
constraints. By registering application needs during initi-
alization, MDARTS objects are able to track resource
allocation at runtime and guarantee transaction times
before transactions using them are actually performed.

628

Remote appl. task Remote appl. task

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Local appl. task Local appl. task

Local bus-based Local bus-based
transactions transactions
MDARTS API MDARTS API
local bus dccess

MDARTS Concurrency

Objects

Control Manager

Remote Remote
transactions | transactions
MDARTS API MDARTS API
RPC RPC
declar:
SDM
Object Benchmark
Creation transactions
Deadline Remote tr.
guarantees processing

Fig. 3. Overall architecture of MDARTS.

MDARTS also fully exploits the hardware capabilities of
shared-memory multiprocessors by supporting both remote
network-based transactions and local bus-based transac-
tions. Local transactions access MDARTS objects in shared
memory directly without interprocess communications,
while remote transactions forward their requests to SDM
via remote procedure calls (RPCs). In this section, we
present the MDARTS architecture and discuss implementa-
tion issues.

4.1 MDARTS Application Programming Interface
An important consideration in any database is how
applications access the database. The most popular
approach is to provide an interpreter for the language
SQL. This language was originally created to support ad hoc
queries on relational databases. Although popular, this
language is awkward to use in the context of a compiled
language like C or C++. Most relational database vendors
provide C preprocessors that permit SQL statements to be
mixed with ordinary C code. Mixing query languages and
compiled languages creates the well-known “impedance
mismatch” problem of database applications. The query
language code that results from this awkward mixture is
often inconvenient to write and inefficient to execute.
Furthermore, debugging the hybrid code can be difficult.
We believe that a query language interface is totally
inappropriate for high-speed hard real-time databases. The
entire relational data model upon which SQL is based, with
its tables, foreign keys, joins, and index searches, implies far
too much overhead for this domain. In MDARTS, each
object supplies the context and identity of its particular
data. Therefore, it is unnecessary to perform index searches
on keys to locate the data needed for each transaction.

Shared memory

Instead, the methods of an object can follow direct memory
pointers to perform transactions.

Fig. 4 illustrates the MDARTS C++ application program-
ming interface (API). Two MDARTS classes corresponding
to the same database object are shown in Fig. 4: Array<T>
and ReadOnlyArray<T>. These are C++ template classes,
where <T> indicates an arbitrary class or structure T. In this
case, T is an application-defined class called “Point,” which
represents a three-dimensional Cartesian coordinate. An
array of Points might be used to store the positions of each
joint in a robot arm. The same MDARTS template classes
that manage arrays of Point objects in Fig. 4 can also
manage arrays of other types of data objects. Thus, with
template instantiation, new data structures designed by
application programmers can be added to the MDARTS
database library very easily.

MDARTS object declarations include two string para-
meters that are passed to the object constructors. The first
parameter is a unique identifier for that object in the
database. The second parameter is a “contract” composed
of a set of semantic and timing constraints. These con-
straints are used during initialization to configure the
database object and to verify that timing requirements will
be met when transactions are performed. The timing
constraint in this case refers to a bound on the magnitude
of the sum of the two MDARTS transaction time compo-
nents (local execution time and blocking time).

The “exclusive_update” constraint specified by the
sensor task in Fig. 4 causes MDARTS to reject subsequent
attempts to construct objects that could modify the data.
This constraint allows the Array<T> class to use efficient
concurrency control algorithms and provides protection
from unauthorized data access. By alternating updates to
two copies of the data as described by Vidyasankar [49],

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS 629

*/

/* Sensor task updates the data:
¥/

* Declaration of MDARTS object in sensor task that will be updating it:

Array<Point> position_sensors("position_sensors",
"exclusive_update; size = 6; write(element) <= S0usec”, CREATE);

position_sensors[S] = Point(1.2, 0.866, 3.4);

*/
"read(element) <= 80usec");
/* Control task reads the data:

*/
int i = position_sensors("size") — 1;

Fig. 4. MDARTS C++ application programming interface.

MDARTS can perform concurrent read and write transac-
tions without locking the data. This technique relies on
the restriction that only one write transaction will be
active at a given time. The “exclusive_update” constraint
guarantees that this will be the case. It is important to
note that constraints such as “exclusive_update” are
checked only during initialization of the data objects.
Subsequent database access using the objects is not
burdened with the overhead of checking access permis-
sions. In Fig. 4, the control task declaration specifies its
object as a ReadOnlyArray<Point>. This class cannot
update the data, so it satisfies the “exclusive_update”
constraint. If the application programmer mistakenly tries
to modify data with a ReadOnly object, an error is
reported at compile time.

We implemented the ReadOnly semantic restriction as a
separate class so that access violations can be detected by
the compiler and during the application initialization
process. With this technique, it is not necessary to check
access permissions during real-time transaction processing.
Note that the ReadOnly class used by the application is an
interface class that delegates the actual transaction perfor-
mance to another class (the database service class). The
database service class for a given object is always the same
across different application tasks, but different (compatible)
interface classes can be used to access the same service
object.

4.2 MDARTS Class Hierarchy

Fig. 5 illustrates the structure of the MDARTS class
hierarchy. The service classes in the hierarchy, such as
“Multiple Writer Array<T>,” all provide the same data
access operations, but each is specialized to support different
constraints. It is important to determine which levels of the
database class hierarchy will be visible in the application
programming interface. Some object-oriented databases
require applications to specify data semantics by choosing

* Corresponding declaration of MDARTS object in control task:

ReadOnlyArray<Point> position_sensors("position_sensors",

Point end_effector_position = position_sensors[i];

the class that supports those semantics. This approach leads
to a proliferation of similar classes that the application
programmer must know about. For instance, a persistent
object that supports only one writer might be declared as
“DbPersistentExclusiveUpdatelnteger my_object.” This
name might be deemed too long and be converted to
something cryptic like “DbPEUInt my_object.” In either
case, applications are exposed to the leaf classes in the
database library’s class hierarchy. Clearly, this approach to
semantic specification becomes unmanageable as the num-
ber of semantic constraints grows. Furthermore, attributes
that correspond to continuous variables, such as transaction
times, cannot be encoded into class names.

In MDARTS, semantic attributes like “persistent” and
“exclusive_update” are passed as strings to the library’s
object construction methods instead of being encoded into
the database class names. MDARTS thus dramatically
reduces the number of different database classes to which
applications are exposed and thereby reduces dependencies
between applications and the internal organization of the
database library. Applications are only exposed to classes in
the database hierarchy that correspond to different data
interfaces (e.g., a floating point array vs. a linked list of
strings).

Applications use abstract interfaces in MDARTS by
creating objects from the classes in the application interface
layers. The constructors for these interface classes forward
the constraints specified by the application to the con-
structors of the specialized database classes derived from
the interface classes. Once an acceptable specialized
database service object is constructed, the interface object
used by the application forwards transaction requests to
that service object. This forwarding of transaction methods
is a form of delegation. With C++ in-line functions and an
optimizing compiler, very little runtime overhead is added
through transaction forwarding.

630

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Class Base implements
exemplar—based object construction,
constraint checking framework

application
interface
layer

specialized database service
classes implement operations
defined in application interface

Persistent Concurrent layer
Array<T> Array<T>
Single Multiple
Writer Writer
Array<T> Array<T>

Fig. 5. MDARTS database class hierarchy.

The database service classes in the MDARTS library
function like populations of individual contractors. Each
MDARTS class is free to specialize services, such as
concurrency control, to match particular application needs.
Application-specified real-time and semantic constraints
constitute the contracts and each database class recognizes
and implements its own set of constraints. For example, a
fundamental constraint type is the transaction times for
concurrent read or write transactions. There are many
algorithms that support concurrent data access. Faster
algorithms generally require semantic restrictions such as
allowing only a single writer at a given time [49], [50]. If
multiple concurrent writers are allowed, additional over-
head is required to lock and unlock the data and to wait if
another task is updating it. The MDARTS library contains
data management classes optimized for restricted concur-
rency semantics, as well as classes that support more
general semantics. Each database class guarantees transac-
tion times according to its own implementation.

4.3 Exemplar-Based Object Construction

Fig. 6 illustrates the object creation sequence in an MDARTS
shared data manager. The application declares an object
and the constructor for that object forwards the type
information of its class (the application interface class)
and the object’s name and contract string to a Shared Data
Manager server. The SDM uses exemplar-based object
construction to select and instantiate a service object that
meets the application needs. In exemplar-based object
construction, each class has associated with it a unique
instance of that class called the “exemplar.” The exemplar is
used to determine if a given class can meet all of the
constraints specified by the application. During object
construction, the MDARTS SDM submits the application
contract to the list of exemplars attached to the interface
class used by the application. An exemplar from this list is
chosen in this contract checking stage and the SDM clones
the chosen exemplar to create a new object of that type. The

SDM also allocates the shared memory needed for that
object and returns the type of the object and the shared
memory address to the application task in its RPC reply.
After the RPC returns, the application task completes the
construction of its local instance of the object. One of the key
advantages of the exemplar-based approach is that it
facilitates the integration of new classes into the database
library. The exemplars of the new classes are simply added
to their exemplar list and the library functions that
construct MDARTS objects require no modification or
recompilation.

4.4 Shared-Memory Objects

Hard real-time systems often share data among different
tasks by directly using the physical memory addresses of
shared data objects. This approach has a danger that some
of the tasks will inadvertently misuse and possibly corrupt
the common data areas. To resolve this problem, MDARTS
encapsulates access to the common shared memory using
object-oriented techniques. Since all manipulation of the
data is performed by the object methods, application code
never uses the raw memory addresses. The object methods
can thus ensure that the shared data is accessed consistently
by all tasks. Using shared objects rather than raw shared
memory is appealing, but many complexities arise in its
implementation. MDARTS provides applications with the
convenience of shared objects without exposing them to the
complexity of their implementation.

Fig. 7 shows an MDARTS Shared Data Manager and
three application tasks sharing a common object on a
shared-memory multiprocessor. The shaded boxes in each
task on the multiprocessor represent local MDARTS objects
that contain internal pointers to a common data structure in
shared memory. The arrows in the figure represent data
flow to and from the shared memory or across the network.
In this example, an exclusive update constraint has been
declared by the sensor task, so only it is allowed to write
updates into the shared memory (hence, the direction of its

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS

/* declaration of MDARTS object */

MdartsArray<Point> obj("obj",

2. SDM finds exemplar list for MdartsArray<Point>,

passes conslraints (0 exemplars

constraints");

631

1. constructor makes RPC request

Shared Data
Manager process

5. rewrn service object
type and shared memory location

Exemplar list for MdartsArray<Point>

fail

MdartsArray<Point> obj

| server I

4. set pointer to service object
in interface object "obj" in the
Shared Data Manager, add "obj"

fail 3. success, create clone of service
object exemplar, allocate shared
service memory for it.
object
o > shared
memory

Lo object registry.

Fig. 6. MDARTS object construction using exemplars.

Remote Workstation

VME-based Multiprocessor

pIoxy hared
factory 1 Shared Data .
monitor task b Manager shared
object
Shared Memory > D control task
shared

object
Coom B3

Fig. 7. Access to shared memory data.

arrow vs. those of the other tasks in Fig. 7). One of the
application tasks (the factory monitor task) is running on a
remote computer, so it uses a proxy MDARTS object that
uses remote procedure calls to forward transactions to the
Shared Data Manager. The Shared Data Manager uses its
instance of the MDARTS object to perform the actual
transaction for the remote task. The object instances used by
the SDM and the two application tasks on the multi-
processor point to the same shared-memory region, so data
consistency is guaranteed across the tasks.

Note that once the MDARTS object is constructed on the
multiprocessor, transactions performed by local tasks
require no interprocess communication. In this case, the
MDARTS transactions are ordinary C++ function calls
performed by the application tasks. This avoidance of
interprocess communication is extremely important and it
is the primary reason MDARTS can achieve such high
performance on multiprocessors.

One might think that it would be trivial to place C++
objects in shared memory and then use pointers to access
them from different tasks. However, because of address

CPU-1 CPU-2

space differences across tasks on different processors,
shared memory cannot be used as easily as ordinary
process memory for instantiating C++ objects. The fund-
mental reason for this is that pointers embedded in objects
cannot be shared easily across different processes. In C++,
objects usually contain pointers to functions (most often in
the form of a pointer to a virtual function table). In general,
these functions will be loaded at different addresses in each
process, so no single function pointer will be valid for all
processes. Jordan [18] discusses this problem and presents
an approach to instantiating C++ objects in shared memory.
Unfortunately, Jordan’s methods rely on virtual memory
and will not work for real-time operating systems, such as
VME-based VxWorks, that do not support virtual memory.
One portable solution to this problem is to establish a policy
that forbids objects from using virtual functions or other-
wise containing function pointers. However, without
virtual functions, C++ loses one of its most powerful
features.

Therefore, MDARTS places only the shared data parts of
objects in shared memory. The rest of the MDARTS objects,

632 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

including the virtual function pointers, are instantiated as
ordinary C++ objects in local process memory. This permits
the portable use of C++ object-oriented features together
with shared memory. Each local MDARTS object corre-
sponding to a particular database object has an internal
pointer to the same region of shared memory. A given
application may consist of many separate tasks, each of
which shares the same data objects through their local
MDARTS object instances. Concurrent access to the shared
memory region is managed by the implementations of the
MDARTS transaction methods of each object.

5 BENCHMARKING EXECUTION TIMES

We have discussed the basic mechanisms in MDARTS for
expressing and checking timing constraints, but we have
yet to consider how a database class can know its own
performance so that it will make accurate transaction-time
guarantees. A similar problem is addressed in the RTC++
language [16]. In RTC++, the designer of a real-time class
specifies the worst-case execution time bound of each
method in the class definition. An example given in [16] is:
int m33(float f) bound(0t30m);. This declaration specifies a
30 millisecond bound for the method m33. This method of
determining performance has three serious limitations.
First, it requires the class developer to determine the
execution time bound “by hand” using some unspecified
method. Second, it ignores the possibility of heterogeneous
computing platforms and hardware evolution. The execu-
tion times of methods will vary over hardware platforms.
The specification of worst-case execution times is useless in
different hardware platforms. Third, the timing specifica-
tion method in RTC++ does not account for blocking delays
associated with synchronization. Analysis of “nonpreemp-
tive objects” that can cause blocking must be performed
manually.

In this research, we prefer to empirically measure the
execution times of MDARTS object methods. Given a clock
with sufficient resolution and transaction methods that
exhibit predictable performance in the absence of conten-
tion, an empirical approach is sufficient to characterize
execution times. We believe that most database transactions
will consist of simple code sequences that, apart from
concurrency control delays, have highly predictable perfor-
mance. By benchmarking execution times, we can auto-
matically factor in the CPU speed and other attributes of the
execution platform. Benchmarking addresses the first two
drawbacks of the RTC++ approach. Combining the bench-
marking results with runtime lock information addresses
the third.

5.1 Benchmark Design

Transaction-time guarantees in MDARTS are derived from
benchmarking of method execution times, runtime estima-
tion of worst-case locking delays, and estimation of worst-
case bus access times. An MDARTS database service class
includes a virtual function called calibrate() that performs a
set of timing experiments on its methods. These timing
experiments can be performed in a separate calibration run.
The results of the calibration can be output in a form that is
included in the class source code, which is then recompiled.

With calibration runs, MDARTS could be vulnerable to
the RTC++ problem with respect to a heterogeneous
computing platform (e.g., a mixture of 68030 and 68040
processors). There are two approaches to this problem in
MDARTS. The first is to perform multiple calibration runs,
one on each platform. The second approach is to scale
execution times in units of the execution time of a standard
function. This permits automatic scaling of transaction
times to the execution speed of the CPU. For example,
suppose the standard function is timed at 40 microseconds
on a 68030. If a calibration run on that CPU measures
method M at 20 microseconds, it could output the execution
time as 0.5 benchmark units (which we abbreviate bms).
Suppose this code is then run on a 68040 on which the
standard function requires only 10 microseconds (four
times as fast). Then, the MDARTS library on the 68040
would infer that method M will require 5 microseconds.

MDARTS performs two experiments for each benchmark
in a calibrate() function. The first experiment times the
overall execution of the method in the absence of con-
currency control delays. The second experiment measures
the maximum critical section time C'STime and the number
of critical sections entered by the method. The critical
section information is collected by the lock objects used to
control access to the critical sections. When critical section
timing is enabled, the getLock() method of each lock reads a
hardware timer and the releaseLock() method reads it
again to measure the length of the critical section. GetLock()
also increments the critical section counter.

The local execution transaction time for a database
transaction is the time required for its execution plus the
time spent busy waiting in the spinlock. If the execution
time is EXtime, the number of critical sections is NC'S, and
the wait time to acquire a lock (to enter a critical section) is
bounded by D, then the overall transaction time is bounded
by EXtime+ (NCS x D). Included in EXtime is a bus
access factor that accounts for worst-case latencies to
perform whatever bus operations are required by the
transaction. The lock delay bound D depends on the
locking protocol. In our spinlock implementation, D is
bounded by Q + (MaxzCSTime x N), where (@ is a fixed
queuing overhead, MaxzCSTime is the maximum critical
section time, N —1(???) is the number of CPUs running
tasks that share the object. Fig. 2 in our discussion of client-
server overhead illustrates the bound on D provided by
spinlock queues.

The examples of timing constraints presented thus far,
such as “read<=30msec,” have implied a rather coarse view
of object transaction methods. Suppose the transaction time
of an MDARTS object depends upon which member is
accessed. If an application can only specify a single timing
constraint for all read or write transactions for an object, the
object must make the pessimistic assumption that the most
time-consuming transaction will be performed. This may
cause an unwarranted rejection of a timing constraint that
could actually be met if it were known which transaction
would be performed. Thus, MDARTS permits each transac-
tion method to have as many parameter-specific timing
records as the class implementer deems worthwhile. With
this mechanism, the MDARTS benchmarking approach

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS

633

char + MDclass:: Timep[] = {

"read(delay) ;20usecs;1;0usecs;0",

"read(name) ;40usecs;10;0usecs;0",

"read(sum) ;0.5bms;1x;0.1bms;1",
"write(start_motors);10msecs + 3bms;2;50usecs;2",
"write(increment) ;0.4bms;2x;0.1bms;1",

0}

Fig. 8. Example of MDARTS benchmark data.

allows applications to specify timing constraints of very fine
granularity, such as “read(update)<imsec;
read(sum)<50usec; write(increment)<imsec.”

5.2 Benchmark Implementation

Benchmarks in MDARTS are stored as sets of records that
contain the name of the transaction, the execution time, the
bus operations and size scale factor, the maximum critical
section time, and the number of critical sections entered by
that benchmark. When output by a calibration is run, this
information is encoded into an array of character strings
associated with that database class. Fig. 8 illustrates a set of
benchmarks for a hypothetical MDARTS class. Each bench-
mark record is composed of five fields delimited by
semicolons. At application initialization time, the array of
strings is processed and converted into an internal format
that efficiently supports retrieval of transaction times by
name. The first field is the name of the transaction. By
convention, this name is prefixed by either “read” or
“write” and it includes parameters such as the name of the
data field being accessed. The second field is the execution
time for the transaction in the absence of concurrency
control delays.

The third field contains the number of bus operations
and an optional scale modifier for the transaction. The scale
modifier indicates a scale factor for execution time and bus
operations. A constant scale modifier is used to adjust the
time bound to some constant factor of the time measured
during calibration. This technique can be used to make the
guaranteed times more conservative. Modifiers with the
letter “x” in them correspond to size scaling. For example, a
“sum” transaction will access all of the elements in an array,
thus its number of bus operations will be proportionate to
the size of the array. The fourth field in the benchmark
record is the execution time of the longest critical section
entered by the transaction. The last field is the number of
critical sections entered by that transaction.

Fig. 9 shows the implementation of a calibration function
corresponding to Fig. 8. Notice that some of the benchmarks
are in terms of microseconds or milliseconds, while others
are in terms of “bms,” which is the execution time required
to execute a standard benchmark function. An application
will generally express its transaction time requirements in
ordinary time units such as microseconds or milliseconds,
so MDARTS automatically converts benchmark units to
time units when the calibration data is processed at
application initialization time. The “write(start_motors)”
benchmark string is actually generated by the DECLARE
macro. DECLARE allows the class programmer to generate
a hard-coded benchmark during calibration without actu-
ally executing the operation. This capability can be useful in
some contexts, especially if there is some side effect of
executing the operation that would be undesirable during
calibration.

The macros used in Fig. 9 are defined in Fig. 10. These
macros are the ones used to generate output during a
calibration run for an MDARTS class. The RUN macro is
complex enough to merit detailed explanation. Run takes as
parameters the name of the benchmark, the method call
corresponding to it, and the units in which to specify the
timing results. It first determines the execution time of the
units by calling an MDARTS function called
ConvertToTimeUnits(). This function returns an unsigned
32-bit integer corresponding to the time values passed to it.

RUN next turns off critical section timing in the
MDARTS Lock classes. RUN then executes and times call.
Now that the overall timing of the call is completed, RUN
resets the bus operation counter and the scale factor,
instructs the Lock class to prepare for critical section timing,
and executes call once more. The transaction methods in call
count bus operations and set the scale factor. The MDARTS
Lock classes used in call automatically determine the
number of critical sections entered and the worst-case
critical section time. Finally, RUN prints the timing results

static void MDclass::calibrate() {
int J;
char buf[80];
CALIBRATE_START(MDclass)

CALIBRATE_END

——

RUN("read(delay)" j = getlValue(delay f,"",0),"usecs")
RUN("read(name)", getSValue(name f,"",0,0,buf,80), "usecs"
RUN("read(sum)",j = getlValue(sum f,"",0),"bms")
DECLARE("write(start_motors);10msecs + 3bms;2;50usecs;2")
RUN("write(increment)" setValue(increment f,"",0,j),"bms")

Fig. 9. Example of MDARTS calibrate function.

634

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

#ifdef CALIBRATE

#define CALIBRATE_START(c) printf("'char * c::Timep[] = {\n");

#define CALIBRATE_END printf("0 };\n");

#tdefine DECLARE(dec) printf(""\"%s\",\n",dec)

#define RUN(name,call,units) \
{ int tot; double cs; \
Time unit_time = TimelList::Convert ToTimeUnits(1.0,units); \
Lock:: TurnOffMonitoring(); GET_COUNTER(tot); call; DELTA_TO _TIME(tot); \
resetBenchmark(); Lock::PrepareMonitoring(); call; Lock:: TurnOffMonitoring(); \
printf("Ychs; h6ghs ; hdks; h6ghs; hdhe, \n", ' "' ,;name,(double)tot /unit_time, units,
busOperations(),scaleFactor(),\
(double) Lock::CsectionTime()/unit_time,units,Lock::CsectionCount(),""'); }

VOL. 12, NO. 4, JULY/AUGUST 2000

#else
// declare null versions of these macros
#define RUN(name,call,units)

#tdefine CALIBRATE_START (<)
#define CALIBRATE_END

#define DECLARE(dec)

#endif

/[non-calibration version of the code

Fig. 10. Macros used in MDARTS calibration functions.

VME
Bus

68030 CPU, 4MB memory

Bus controller

68030 CPU, 4MB memory

2 MB Memory Board et

Fig. 11. Platform used for MDARTS evaluation.

in a form that is ready for inclusion into the source code of
the class that is being calibrated. Note that the time values
output by RUN are scaled to correspond to the units
specified in the calibrate() method. To do execution timing,
RUN uses two other macros, GET_COUNTER and
DELTA_TO_TIME. On the 68030 boards of our multi-
processor, these macros use a hardware timer with
resolution of 6.25 microseconds.

The MDARTS approach to determining object method
performance has significant advantages over the approach
of RTC++. Our method requires less effort on the part of the
database class developer and it permits the specification of
very fine-grained timing constraints. For example, in
RTC++, only one time bound may be associated with a
method. In MDARTS, multiple benchmarks can be per-
formed for the same method using different parameters.
Applications can then specify detailed timing constraints
such as: “read(update) <1msec; read(sum) <50 usec;
write(increment)<1msec.” Furthermore, by counting bus
operations invoked by methods and including scale factors
for execution times that depend on the data structure size,
MDARTS provides much better estimates of performance
than can be expressed in RTC++.

In addition to calibrate()) MDARTS supplies a function
called Time QueryTiming(char*transaction_name) which

- 68030 CPU, 4MB memory

returns the guaranteed execution time of the specified
transaction. This function first retrieves the benchmarked
timing values for that transaction. Next, it queries the
object’s lock for D, the worst-case spin delay for that lock.
Finally, QueryTiming() computes and returns a worst-case
execution time for that transaction based on the nominal
execution time, bus latency, and bounded synchronization
delay. QueryTiming() is used by MDARTS during constraint
checking to determine if transaction-time constraints can be
satisfied. Applications can also call QueryTiming() directly
after the object is created. This permits applications to
perform more sophisticated timing analysis and to specify
their minimum timing requirements.

6 MDARTS PERFORMANCE EVALUATION

To evaluate the performance of our MDARTS prototype, we
conducted a series of experiments designed to create worst-
case contention and transaction loads. Fig. 11 depicts the
hardware platform we used for our experiments. The
experimental platform was a standard VME-based multi-
processor with a bus controller, three Motorola 68030
processor boards, and one stand-alone memory board with
two megabytes of RAM. Each of the processor boards was
running the VxWorks real-time operating system. VxWorks

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS 635

provides a UNIX-like environment with networking sup-
port and an efficient kernel that performs fixed-priority,
preemptive scheduling of user tasks. Each 68030 board has
its own Ethernet interface. The VME chips on the 68030
boards also provided support for interprocessor interrupts
across the VME bus. Note that this is a commercially
available multiprocessor system. No specialized hardware
was purchased or developed to support our MDARTS
implementation.

The VME bus on our platform is clocked at 16 MHz, so
there are 16 bus cycles per microsecond. The maximum
throughput of this bus is 40 megabytes/second, although
typical throughput is more like 20 megabytes/second.
Therefore, five 32-bit bus operations can typically be
performed in a microsecond. Two of the 68030 processor
boards have a 20 MHz clock rate. The other 68030 has a 25
MHz clock rate. Clearly, any VME bus access is limited by
the bus bandwidth, so one cannot gauge system perfor-
mance solely by the processor speeds.

Since MDARTS transactions on multiprocessors use
global shared memory, the latency to access that memory
is an important component in any transaction-time guar-
antees. Therefore, it is necessary to bound this latency as
tightly as possible. To this end, we took two steps. First, we
configured the VME bus controller to grant bus requests in
round-robin order. That way, given n processors, a given
processor board would at most wait for n — 1 other VME
operations before it was able to use the bus. Second, we
allocated memory for the shared data structures of
MDARTS objects on the auxiliary memory board. This
eliminated the contention for the local bus of a remote
processor that occurs when remote processor memory was
accessed.

6.1 Experiment Design

Clearly, the worst-case transaction load condition is when
tasks on all of the CPUs try to perform conflicting
transactions on the same object simultaneously. To create
this maximum load condition, it is necessary to synchronize
the execution of tasks on different CPUs and to perform
multiple transactions in a tight loop. We decided to use
interprocessor “mailbox” interrupts available on the 68030
boards to synchronize execution of competing transactions
on multiple CPUs.

Conventional database benchmarking measures average
transaction throughput in transactions per second. Most
prior real-time database research compares different trans-
action scheduling algorithms in terms of the fraction of
transactions that meet their deadlines as the load increases.
The former metric is suitable for non-real-time applications
and the latter is suitable for soft real-time applications, but
neither is appropriate for hard real-time applications. In a
hard real-time environment, every transaction must meet its
deadline. Therefore, we decided to measure the elapsed
time of every MDARTS transaction in our experiments.
Each of our processor boards has a hardware timer chip
with a resolution of 6.25 microseconds. With this timer, we
were able to measure individual transaction times.

Since each MDARTS class encapsulates its concurrency
control and transaction implementations, each must be
individually tested. Therefore, our strategy for testing the

MDARTS objects was to simultaneously perform identical
transactions on the same object from tasks on different
CPUs. We needed to develop techniques for constructing
the objects, synchronizing their transactions, and collecting
the resulting timing information. We also wanted to have a
flexible means of conducting multiple timing tests without
compiling separate programs for each test.

6.2 Experiment Implementation

Fig. 12 illustrates the approach we used to perform our
experiments. We first created a special-purpose MDARTS
class called Experiment (objects of class Experiment are
labeled E in Fig. 12). Each Experiment object contains a
pointer to another MDARTS object (labeled O). The shared-
memory part of an Experiment object contains fields that
specify which experiment to run and which parameters to
use to construct new O objects or perform transactions
using the O objects. One of the CPUs ran a task called the
experiment driver task. This task contained an interpreter
for a very simple experiment specification language. With
this language, we defined a set of experiments in an input
file. As the experiment driver task read this input file, it
used its Experiment object to store experiment parameters
in the database. The other two CPUs ran slave tasks that
also shared the Experiment object E. These slave tasks
waited for a signal from the experiment driver task to
perform their transactions.

Once the parameters for a given experiment were in
place, the experiment driver task signaled the slave tasks on
the other CPUs using a mailbox interrupt across the VME
bus. When the signal was given, the three tasks performed
their experiments in parallel and recorded their transaction
response times (storing them in the Experiment object).

Note that these experiments measured wall clock time
rather than true MDARTS transaction times (pure execution
time plus blocking time, if any). Unfortunately, some
transactions were occasionally preempted by other tasks
or by the operating system scheduler. These preemptions
inflated the apparent execution time of those transactions. It
is crucial to understand that these outlier measurements are
not worst-case MDARTS transaction times. In addition to
the transaction execution time, they include execution times
of higher-priority tasks on the local CPU. The scheduler
interrupts and preemptions were rare, so they did not
greatly affect the average transaction times. Nevertheless,
their presence prevented us from empirically measuring the
worst-case MDARTS transaction times.

The code segment in the Experiment object that performs
getlValue transactions is shown in Fig. 13. GetlValue is the
MDARTS transaction method that retrieves integer values
from an MDARTS object. We multiplex all integer reads
through getlValue to simplify the application programming
interface and to reduce the number of RPC functions
exported by the Shared Data Manager. Once all
repeat_count experiments were run by each CPU, the
overall worst, best, and largest sum of execution times for
all CPUs was updated in the Experiment object. The
experiment driver task waited until it and the slave tasks
finished the experiment (this was detected by watching a
counter in the Experiment object), and then it printed the
overall timing results. The object used to perform transac-

636

processor P1

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

MVME-147SA .
experiment
experiment file
driver task

on processor pl p2 p3
creats foo type=0

set i 100 0 value 0 20
set i 1000 2 value O 1C
gel 1 102 0 value O

get i 1030 3 value 0

creats bar type-MyArray;size-50
set i 100 0 value 10 2%
get i 100 0 sum 0

intferprocesdor
processor P3 JinEeriRTsy processor P2
MVME—147S1 / fg];;e(ﬂy N o [VVNESTaTSA
slave task slave task
E E
tHHO

Fig. 12. MDARTS experiments.

tions (labeled O in Fig. 12) could be changed many times
within the input file processed by the experiment driver
task, so a large number of experiments covering as many
different MDARTS classes as desired could be performed
without recompiling the test programs.

7 EXPERIMENTAL RESULTS
7.1 The Mdartsint Class

Our first experiments used a very simple MDARTS class
called MdartsInt. Mdartsint contains a single shared integer
variable, and its getlValue() and setValue(..., int val)
methods get and set the shared integer with no locking.
Since the get and set methods of MdartsiInt are so trivial, the
timing experiments on this class essentially reflect the
execution time overhead associated with performing
transactions using the MDARTS methods. Table 1 sum-
marizes the results of our initial experiments with
Mdartsint.

Each row of Table 1 corresponds to 1,000 transactions per
CPU. The first column indicates how many CPUs were used
in the experiment (the first two experiments used only one
CPU, the next two used two CPUs, etc.). Thus, the first two
experiments performed 1,000 transactions, the next two
performed 2,000, and the last two performed 3,000.

With a single CPU, all of the transactions completed
within 18 microseconds (three 6.25 microsecond ticks of the
timer). However, when multiple CPUs were added, some of
the transactions appeared to take several hundred micro-
seconds. The get and set methods of MdartsInt contain no
loops or branches. They simply issue VME read or write
operations which, on our platform, usually required less
than a microsecond. The bus controller was configured to
grant requests using round-robin scheduling, so bus access
was not a problem. It is impossible for the Mdartsint

B o

transactions themselves to vary this much in execution time
(VxWorks does not use virtual memory, so we are not
seeing page fault effects). Therefore, we conclude that the
apparent transaction time variations are actually due to task
preemption. Since we were not running any other applica-
tion tasks, the preempting tasks were operating system
tasks, probably related to ethernet activity. We measured
wall clock time (using a hardware timer) from the start to
the end of each transaction. If the VxWorks scheduler
suspended the experiment task to run some other task, the
timer kept running until the experiment task resumed
execution and read the timer. The last column in Table 1
counts the number of transactions measured at more than
100 microseconds. Only two of the 2,000 two-CPU transac-
tions and two or three of the 3,000 three-CPU transactions
were outliers by this definition. Most likely, one transaction
per CPU was preempted while the timer was running.

These outliers do not completely characterize the
execution time variance, but it does help distinguish rare
events such as task preemption from true transaction
execution time variance. The average-case measurement in
Table 1 are inflated somewhat by the inclusion of outliers
caused by task preemption. Therefore, the true best-case
times and average-case times are even closer than our data
indicate. If best-case times are close to average-case times,
this implies that worst-case times are also close to the
average-case times. Furthermore, we deliberately created
worst-case contention conditions in our experiments, thus
the average-case transaction times are fairly close to the true
worst-case times. This is a very desirable property for hard
real-time systems.

If locks are used to enforce serializability, the problem of
preemption or interruption becomes more significant
because remote preemptions of lock holders can affect the
execution times of local transactions. A compromised

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS

637

void

// ... code deleted

for (i = 0; i < repeat_count; i++) {
GET_COUNTER(time);

if (time > the_worst)
the_worst = time;

if (time < the_best)
the_best = time:

the_sum += time;

}
// ... code deleted

Experiment::setValue(int itag, const char +tag, int index, int val) {

/] perform get!Value experiments (got here from switch on command type)

int v = obj_ptr—get|Value(the_itag,the tag,the_index); // experiment
DELTA_TO_MICROSECONDS(time);

// save results of this experiment

Fig. 13. Experiment class method for getlValue() transactions.

approach we have taken in our implementation of locks in
MDARTS is to disable task switching during critical
sections. This prevents long delays due to preemption of a
lock-holding transaction, but still allows interrupts to
service critical system functions.

The MdartsiInt class is so simple that it is easy to analyze
its execution time. If an MdartsiInt transaction is allowed to
run uninterrupted, the most significant execution time
variance is due to VME bus latency. The other sources of
variance, CPU caching and local bus access latency, are
much smaller than the VME bus latency. In our system, the
VME bus controller is configured to do round-robin bus
scheduling, so, in the worst case, an MdartsInt transaction
will have to wait for the two other 68030 CPUs to finish
using the VME bus. The VME bus access delay is slightly
unpredictable, but, under almost all cases, it will be no more
than a microsecond.

7.2 An MDARTS Array

Because the MdartsiInt class does not use any locking for
concurrency control, we performed another set of experi-
ments on an array class that uses locks. As with the
MdartsiInt experiments, each experiment performed 1,000
transactions per CPU. In addition to range-checked get and
set transactions on individual elements, these array classes
support “size,” “sum,” and “increment” transactions. In all

TABLE 1
Read and Write Wall Clock Times (in Microseconds) for
Mdartsint Object

CPUs | operation | best | average | worst | outliers
1 gel 12 13.6 181 0 > 100
sot 12 13.9 1810 > 100

2 get 12 14.6 700 | 2 > 100
set 12 15.7 706 | 2 > 100

3 get 12 14.8 | 1018 | 3 > 100
set 12 15.1 850 | 2 > 100

of our experiments, the arrays contained 10 integers.
Although locking is not strictly necessary for read and
write of integers across the VME bus, we locked the “get”
and “set” operations. Arrays of more complex structures
would need to do locking on individual element operations
and doing so, in our integer arrays, helps characterize the
locking overhead in our various lock implementations. The
“size” transaction returns the number of elements in the
array. No locking is used for “size” transactions. The “sum”
transaction locks the array, sums the values in all array
elements, and returns the sum. The “increment” transaction
adds an application-specified value to each element in the
array. We used exclusive locks even on read-only transac-
tions. Our objective here was to experiment with different
critical section lengths, rather than trying to develop
realistic transaction semantics. Fig. 14 shows the getlValue()
method for the MdartsArray class.

Table 2 summarizes our experiments on the MdartsArray
class. This class uses a spinlock queue that is designed to
minimize bus traffic generated by tasks in the queue. This
spinlock also disables task switching when tasks request the
lock. This prevents unbounded priority inversion due to
remote lock-holding tasks being preempted and blocking
tasks on other CPUs. Note that the “size” transaction does
not acquire a lock since there is no critical section for this
read-only transaction.

The best case performance in the three CPU case were
substantially better than in the one or two CPU cases. This is
because the third CPU board was a 25MHZ machine,
whereas the other two CPUs were 20 MHz machines. This
explains the best-case performance jump for three CPUs. It
really just corresponds to the performance of CPU 3 when it
ran a transaction with no contention. We synchronized our
experiments to maximize contention, but it is not surprising
that some of the 1,000 experiments run on CPU 3
encountered no contention from the other CPUs.

Although task switching is disabled in the critical
sections, interrupts are not disabled. Therefore, some jitter
appears in the transaction time measurements due to tasks
being interrupted while the timer is running. Careful
examination of the data shows two levels of granularity:

638

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

int

{

MdartsArray::getlValue(int itag, const char * tag, int index)

int tid;
if (itag <= 0) { // an unspecified field number, examine the tag string.
if (itag < 0) // if a query for the field number of that tag.
return getFieldNum(tag);

itag = getFieldNum(tag); // convert tag to field number
switch (itag) { // note: shared points to the shared memory region.
case value_f: // get the value of array element[index]

if (index >= 0 && index < shared—lsize) {
tid = shared—lock.getLock();
int retval = theArray[index]|; // theArray points into *shared
shared—lock.releaseLock(tid);
return retval;

else {
cerr < '"out of range read: " <« index < endl;
return —1;

case size f: // get size of array
return shared—lsize;

case sum_f: // get sum of array elements

int thesum = 0;
int the_size = shared—lsize;
tid = shared—lock.getLock();
for (int i = 0; i < the_size; i++)
thesum += theArray][i];
shared—lock.releaselLock(tid);

return

return thesum;
default:

cerr < '"invalid field for getIValue: " < itag< ','<« tag < endl;

1

// default clause could throw an exception and never reach here

Fig. 14. GetlValue() method for MdartsArray.

TABLE 2
Wall Clock Times (in Microsends)
for MdartsArray with Spinlocks

The small jitter granularity was about 70 microseconds; the
large jitter granularity was about 800 microseconds. The 70
microsecond jitter was due to interrupt processing for the
operating system task scheduler. The system task scheduler

CPUs | operation | best | average | worst outliers is triggered by a clock interrupt every 16 milliseconds. If
- - one examines the top two rows in Table 2, one can see that,

1 get 75 76 193 | 5> 100 . . .
_ ' on average, the transactions required about 75 microse-
set 68 75 362 | 5> 100 conds, but five transactions measured more than 100
size 18 23 931 0> 100 microseconds. Since we executed 1,000 transactions in these
increment | 100 105 331 | 5> 170 experiments, the total wall clock execution time was about
- X 75 milliseconds. In 80 milliseconds, five scheduler inter-

sum 93 q 168 | 5> 150 . .
, i — rupts will occur, so we conclude that scheduler interrupts
2 get 75 33 12121 9> 150 caused this jitter. The “size” transaction worst-case time
set 68 82 | 1787 | 9> 150 was 93 microseconds, compared with 23 microseconds on
size 18 25 718 | 2> 150 average. The 70-microsecond difference indicates the
erement 100 115 993 | & > 200 .grar}ularity of the scheduler interrupt when no task switch-
ing is performed.

sum 93 111 | 1756 | 13 > 200 If one examines the “size” transaction in the two-CPU
3 get 56 90 | 2075 | 23 > 150 case, one can see that one of the transactions was timed at
sot 56 s6 1 1256 | 16 > 150 718 microseconds. Clearly, this was a task preemption while
X 3 the timer was running. It appears that 800 microseconds is a
S1z€ 12 25 8621 3> 150 typical execution time for tasks that preempted our
increment 87 167 | 1831 | 26 > 300 transactions. Most probably, the preempting task in this
sum 81 199 | 1893 | 24 > 300 case was an ethernet servicing task run by the operating

system. One might wonder why we are encountering

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS

639

TABLE 3
Throughput (in Transactions per Second) for MdartsArray Transactions
CPUs get set size | increment sum
1 13,000 | 13,000 | 43,000 9,500 | 10,000
2 24,000 | 24,000 | 80,000 17,000 | 18,000
3 33,000 | 35,000 | 120,000 18,000 | 23,000

preemption delays in transactions that disable preemption
during critical sections. The answer is that parts of the
transaction outside of the critical section can still be
preempted.

We disable preemption (task switching) in critical
sections for two primary reasons. First, we want to tightly
bound the number of tasks that can enter a spinlock queue
for a particular object. If preemption is disabled when tasks
enter the queue, no more than one task per CPU can be in
the queue. By bounding the queue lengths, the lock objects
can make real-time guarantees regarding the maximum
delays to acquire the lock. Second, we wish to disable
preemption to avoid remote processor blocking if a task
ahead of it in the queue is preempted. In general, we are
willing to be preempted by high-priority local tasks (such as
the ethernet servicing task), but we want to avoid delays
caused by preemptions on a remote processor. By disabling
preemption but not disabling interrupts during critical
sections, we are exposing transactions to the possibility of
being delayed by remote interrupt processing. However,
the total interrupt processing utilization for the task
scheduler on our system is about 70 microseconds per 16
milliseconds, or 0.0044 utilization. In fact, the scheduler
utilization is probably even less when task switching is
disabled, but, for the sake of discussion, assume that it is
0.0044. If scheduler interrupts are permitted during critical
sections on our three processors, in the worst case, this will
result in utilization loss of 0.0088 for each processor (each
processor may have to delay the amount of time required
for handling scheduling interrupts on the other two
processors). Although this is a very pessimistic assumption,
the utilization loss is still very low.

7.2.1 Transaction Throughput

It is interesting to examine the raw transaction throughput
of the array transactions. With one CPU, getting a lock,
reading or writing one integer in the array, releasing the
lock, and returning the result requires about 75 micro-
seconds. This corresponds to over 13,000 transactions per
second. The “sum” transaction (which gets a lock, sums the
10 array elements, releases the lock, and returns the result)
requires about 97 microseconds, about 10,000 transactions
per second. The “increment” transaction is roughly as fast
as the “sum” transaction. The “size” transaction, because it
requires no locking, can perform about 40,000 transactions
per second per CPU. Table 3 summarizes the average
throughputs of Table 2. To put these performance numbers
in perspective, prior RTDBSs typically achieve 10 to 100
transactions per second. Furthermore, the MDARTS per-

formance numbers reported here correspond to worst-case
contention and transaction load conditions.

Table 3 shows that, for transactions with short critical
sections, we achieve nearly linear speedup as processors are
added. The “increment” and “sum” transactions do not
show as much speedup since they have longer critical
sections and time spent waiting to enter a critical section is
unproductive.

The linear speedup of the “size” transactions shows that
bus bandwidth is not a limiting factor in these experiments.
This is not surprising since our platform’s VME bus can
support about five bus operations per microsecond. The
“size” transaction requires 23 microseconds to complete
and it issues only one VME request. Therefore, a CPU
running thousands of “size” transactions in a tight loop will
consume only one percent of the VME bandwidth. Similar
observations apply to the other transactions supported by
MdartsArray. The primary factor that limits speedup in our
experiments is the mutual exclusion enforced by the locks,
not the bus bandwidth. However, on systems with large
numbers of CPUs, the bus may become a bottleneck.

“Increment” has a longer critical section since it gen-
erates two VME operations per array element (for read/
add/write), whereas “sum” generates only one (read/add).
Since the critical section of “increment” is one third of its
overall execution time, we can never achieve better than a
threefold speedup through parallelism. Similarly, the
“sum” transaction can be speeded up only by a factor of
four. Table 3 supports this conclusion since the speedup is
greater for “sum” than “increment” when a third CPU is
used.

7.2.2 Worst-Case Transaction Times

We have discussed the throughput of our MdartsArray
transactions in terms of total transactions per second
because this metric is commonly used to evaluate database
system performance. However, hard real-time systems
must be designed for worst-case conditions, not average-
case. Therefore, it is important to consider the worst-case
transaction performance. Clearly, it is difficult to measure
the true worst-case transaction performance because system
interrupts and task preemptions greatly increase the wall
clock uncertainty of any given transaction. (Note that we
measured wall clock times of transactions in Table 2.)
However, the true measure of transaction performance is
actual execution time, not wall clock time. It is execution
time that directly affects the utilization and, hence, the
schedulability of tasks that perform transactions (provided
priority inversion is bounded). In other words, it is wrong
to attribute preempted time to the operation that was
preempted. However, time spent spinning in a spinlock

640

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

TABLE 4
Estimated Worst-Case Performance for Mdarts Array Transactions

CPUs get set ‘ size ‘ increment sum
worst-case transaction times in microseconds
74+ 6C | 75 4+ 6C 25 75 4+ 35C | 75 4+ 25C
1 81 81 25 110 100
2 37 87 25 145 125
93 93 25 180 150
worst-case throughput in transactions-per-second
12,000 12,000 10,000 9,000 10,000
2 23,000 23,000 30,000 14,000 16,000
32,000 32,000 | 120,000 17,000 20,000

queue is execution time that should be attributed to that
transaction.

Therefore, spin wait delays attributable to remote system
interrupt processing (e.g., when a remote lock holder is
interrupted by its CPU scheduler) should be factored into
an overall utilization reduction, not charged to each
transaction that might encounter such a delay. This is
because the maximum cumulative delay associated with
waiting during remote interrupts is bounded for a given
period of time (assuming interrupt rate and service times
are bounded, which is true of any properly-designed real-
time system). For example, if 100 transactions are per-
formed during a short period of time in which only one
remote interrupt can occur (because the interrupt rate is
bounded), then it is unnecessarily pessimistic to charge an
interrupt service time to each of the 100 transactions when
calculating worst-case database performance. Instead, one
remote interrupt service time should be charged to the
entire set of 100 transactions. The most straightforward way
to accomplish this is to reduce the available processor
utilization on each CPU that uses the database by the sum
of interrupt servicing utilizations on other CPUs with which
it shares database objects. If this results in too severe a
utilization penalty (as may be the case if average interrupt
service times are long or interrupt rates are high), then the
lock objects should disable interrupts during critical
sections. If remote interrupts are accounted for with a
utilization deduction, delays due to remote interrupts can
be discounted when considering worst-case MDARTS
transaction time guarantees.

Since we have eliminated interrupt and preemption-
related delays from our worst-case transaction time
analysis, the worst-case transaction time becomes a function
of the transaction code implementation, characteristics of
the hardware platform (e.g., bus bandwidth), the level of
concurrency, and the locking protocol used for that
transaction. In the single CPU case, the worst-case execution
time in our experiments is almost identical to the average-
case execution time. This is because, without concurrency
control delays (with only one CPU, the transaction always
acquires the lock), the only significant source of execution
time uncertainties is VME bus access time. With three CPUs

performing simultaneous bus operations and round-robin
scheduling, the delay to access the bus will be less than one
microsecond per bus operation (assuming five bus opera-
tions per microsecond).

It is important to note that, while a CPU is waiting in the
spinlock queue, it generates no VME bus operations (it spins
on a local control/status register in its VME chip). There-
fore, as lock contention increases, bus contention decreases.
This effect reduces the worst-case latency attributable to the
bus as queue lengths increase. If each CPU performs
transactions on different objects, the bus contention is
maximized, but none of the transactions will be delayed in
the spinlock queues. The net result of these two alternatives
is that worst-case transaction performance remains high,
even under heavy loads.

Table 4 summarizes the worst-case transaction times for
our MdartsArray objects. These are estimates, rather than
actual measurements, since preemptions and remote inter-
rupts prevented us from directly measuring worst-case
transaction times (as we have defined them). Nevertheless,
these estimates should be quite close to the actual worst-
case (given round-robin bus scheduling and no uninterrup-
tible DMA activity).

Table 4 assumes critical section lengths of 6 micro-
seconds for “get” and “set” transactions, 35 microseconds
for “increment,” and 25 microseconds for “sum.” For
example, the “get” and “set” transactions’” worst-case
execution times are 75 microseconds plus 6 microseconds
per CPU. (We assume that the locking overhead of each
transaction is 75 microseconds.) If Table 4 is compared with
Table 2 and Table 3, one can see that the average-case
transaction times under the high transaction loads gener-
ated by our experiments correlate well with these worst-
case estimates.

Note that these worst-case transaction times assume
maximum transaction load conditions. Under normal con-
ditions, much less contention would be observed for a given
MDARTS object. However, since we are targeting hard real-
time systems, we must ensure that our transaction-time
guarantees will be valid even under heavy load conditions. It
is very significant that the worst-case transaction times are so
short. This makes MDARTS suitable for high-speed hard

LORTZ ET AL.:

MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS

641

processor P1

remote rocedure -~
p -

call s

e

MVME-147SA

experiment
driver task

experiment
file

oIl processor plo p2 p3

creale [ou Lype=0jcccess=emole
1C0 0 value 0 10

1C00 2 value 0 10

1C0 0 value C

1C00 2 value O

sel L
sel L
get
gel 1
creale bar Lype=MyAr-ay;slze=50
sel . 1C0 0 value 10 29

gel 1 1C0 0 sum O

~
-

~
/ ()
Ve in;erprccesépr
// processor P3 /lntenmts\\ processor P2
hared
// MVME-14781 | /7 mermory o [MvmE-1478A
slave task L&~
II C slave task
c -
\
\ RO e}
\ > ///////,J’ﬁ¢&n.
\ | /SDM server

—— —

—

remote procedure

call
Fig. 15. MDARTS experiments with remote objects.

real-time applications. We are able to achieve this high
performance under extreme load conditions because of our
locking protocols and our approach to concurrent
transaction processing across the multiprocessor.

7.3 Remote Access

We have presented the performance of direct shared-
memory access by two MDARTS classes in the above
subsections. However, MDARTS also supports remote
access through RPC calls to the Shared Data Manager
server. Although we cannot analyze the worst-case perfor-
mance of our RPC-based transactions (because the network-
ing protocols we use do not provide guarantees), we can
measure typical performance of RPC-based MDARTS
transactions on our platform. As we shall see, the commu-
nication delays completely dominate the transaction times
for short transactions such as supported by MdartsArray.
Fig. 15 illustrates the tasks and communication involved in
our remote experiments. In this case, the MDARTS objects
used by the Experiment objects (labeled RO) are
RemoteMdarts objects that use RPC to forward transaction
requests on to the SDM server. The SDM performs the
transactions and returns the results to the application tasks.
When the SDM processes a transaction request, it performs
that transaction using the same shared memory transaction
methods that the local object supports. Therefore, each
“get” or “set” transaction requires only about 15
microseconds of execution time in the SDM. However, the
overhead implicit in the client-server architecture reduces
performance by three orders of magnitude.

The CPU boards we used in our experiments could use
two networks. One was the campus-wide ethernet. The
other was a separate network implemented by the VxWorks
operating system across the VME bus backplane. We ran

“

experiments with remote objects on both of these networks.
Our first set of experiments used the campus ethernet. In
these experiments, we ran the SDM on only one of the three
CPUs. Experiments involving one or two CPUs did not run
experiment tasks on the CPU that hosted the SDM.
However, experiments with three CPUs necessarily ran
one of the experiment tasks on the same CPU as the SDM.
Table 5 presents the results of running the remote
experiments across the campus ethernet. The transaction
times for “get” and “set” transactions were equal, so the
transaction type is not labeled in Table 5. Note that the
average throughput increases nearly linearly as the CPU
number increases. However, the average transaction times
are about 32,000 microseconds for transactions across the
ethernet, whereas the average transaction times were only
about 15 microseconds when direct shared-memory access
was used.

Interestingly, the average performance is actually better
when there are two clients (the two-CPU case). This is
probably due to the server task on CPU 3 being, more often,
ready to service requests when they are more frequent. If
requests are relatively infrequent, the SDM server will block
between requests. Each request is then delayed by the time
required to schedule and start the server task running
again. If the server task has just finished serving a request
from CPU 1 when a request from CPU 2 arrives, it can
immediately service the new request, thus reducing the
blocking and task switching overhead.

One would think that substantial performance improve-
ment could be gained by using the VME backplane network
rather than the ethernet wire. To investigate this, we ran an
additional set of experiments using this alternative network
and our remote access objects. The results of these
experiments are reported in Table 6. With one and two

642 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

TABLE 5
Remote Wall Clock Times (in Microseconds) for MdartsInt across Ethernet

CPUs best | average worst | average throughput (TPS)
1 31,400 | 33,000 | 80,000 30.3
2 9,000 | 31,000 | 83,000 64.5
3 14,900 | 34,800 | 100,000 86.2

CPUs, the average throughput using the backplane network
is approximately twice that of the campus ethernet.
Furthermore, the worst-case times are very close to the
average-case. On the campus ethernet, worst-case times
were two to three times the average case.

However, when the third CPU is used, the overall
throughput actually declines. This is because the third CPU
was the host of the SDM server task. When the experiment
task on that CPU was invoked, the VxWorks task scheduler
began context switching between the experiment task and
the SDM. This caused a significant decrease in the overall
transaction throughput. To investigate this effect further,
we ran an additional experiment using only the CPU with
the SDM task. The result of this experiment is the 1* row of
Table 6. Running the client and server on the same CPU
yielded approximately the same throughput as using the
campus ethernet, about half of the throughput when the
client and server were on different CPUs.

We did not observe this large throughput decline when
we added a client to CPU 3 using the campus ethernet (in
Table 5). This is probably due to the hardware support of
the LANCE ethernet chip. This chip could perform many of
the duties that were delegated to the CPU when the
backplane was used. Therefore, in the ethernet case,
response times were limited by communication latencies
and, in the backplane case, response times were limited by
CPU power. When three client tasks were used, neither
method showed a clear advantage over the other.

8 CoNcLuUsIONS AND FUTURE WORK

8.1 Research Contributions

MDARTS makes many important contributions to the fields
of RTDBS and real-time object-oriented systems. First and
foremost, MDARTS is an actual implementation of a hard
real-time database system with very high performance.
Prior RTDBS prototypes are designed only for soft real-time
systems and their performance is insufficient for applica-

tions with sub-millisecond transaction deadlines. By mov-
ing transaction processing into application tasks, using
spinlock queues for concurrency control, MDARTS achieves
high predictability and two to three orders of magnitude
performance improvement over prior RTDBSs for memory-
based transactions typical of machine controllers.

Database systems and distributed object-oriented sys-
tems are almost universally implemented using a client-
server architecture. We have shown why this architecture
implies system-related overhead that can drastically de-
grade real-time performance, especially when individual
transaction times rather than aggregate throughput are
considered. The primary reason MDARTS is so much faster
than prior RTDBSs is that we avoid the client-server
architecture for hard real-time transactions. Note that if
high-performance remote procedure calls are available with
worst-case latency bounds, the client-server architecture
becomes more competitive with the direct shared-memory
approach. MDARTS defines a framework for expressing
performance characteristics and requirements and the
database class designer is free to implement MDARTS
objects using whatever techniques are appropriate.

MDARTS can run on both uniprocessors and multi-
processors. On shared-memory multiprocessors, MDARTS
is able to fully exploit the parallelism available in the
hardware with minimal overhead. Prior RTDBSs and
object-oriented systems for multiprocessors either incur
serial bottlenecks in server processes, or they duplicate data
across the processors and incur substantial overhead
maintaining data consistency.

Another key contribution of MDARTS is the way it uses
application-specified timing and semantic constraints to
customize the selection of data management classes.
MDARTS allows applications to make their requirements
explicit in the contracts processed by the object construc-
tors. By providing a mechanism for customizing object
creation according to application needs, MDARTS can

TABLE 6
Remote Wall Clock Times (in Microseconds) for MdartsInt across VME Backplane

CPUs best | average | worst | average throughput (TPS)
1 14,700 | 16,700 | 17,000 39.9
2 9,600 | 16,600 | 18,000 120
3 14,900 | 33,300 | 77,300 90

| 1* 27,700 | 33.300 | 83.300 | 30

LORTZ ET AL.: MDARTS: A MULTIPROCESSOR DATABASE ARCHITECTURE FOR HARD REAL-TIME SYSTEMS

enhance performance without requiring application pro-
grammers to know exactly which database class to use.
MDARTS also provides finer granularity of method
timing specification than prior real-time object-oriented
systems since each transaction method can have multiple
timing records corresponding to different parameters.
Furthermore, MDARTS includes support for automatically
measuring method execution times, scaling performance to
benchmarks performed on the computing platform, and
estimating worst-case resource sharing delays at runtime.
Prior real-time object-oriented systems require application
developers to specify method execution times by hand.

8.2 Future Directions

There are many areas in which MDARTS could be
enhanced. First, it would be very useful to develop
interfaces to file-based database systems. Real-time transac-
tions could prefetch and cache persistent information in
memory to avoid long I/O delays during transaction
execution. Main-memory database researchers have inves-
tigated many algorithms for transaction logging and
recovery in memory-based systems. It would be interesting
to determine which, if any, of these methods could be used
in MDARTS to make its memory-based objects persistent.

It would be interesting to experiment with multiversion
concurrency control techniques to eliminate blocking delays
for MDARTS transactions. Our spinlock queues limit
multiprocessor speedups in proportion to the number of
processors and the lengths of the critical sections (assuming
that all processors access the same object simultaneously).
Multiversion concurrency control can improve transaction
time guarantees for database objects that are likely to be
used by many tasks across large numbers of CPUs. Since
MDARTS permits each database class to use its own
concurrency control strategy, the multiversion technique
could be applied judiciously to those objects that are good
candidates for that approach.

Finally, it would be very useful to develop a set of basic
data management classes for real-time control systems and
make MDARTS available to industrial and academic
developers of machine controllers.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the National Science Foundation under Grants DDM-
9313222 and IRI-9504412.

REFERENCES

[1] R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transac-
tions,” SIGMOD Record, vol. 17, no. 1, pp. 71-81, Mar. 1988.

[2] B. Adelberg, B. Kao, and H. Garcia-Molina, “Overview of the
STanford Real-time Information Processor (STRIP),” SIGMOD
Record, vol. 25, no. 1, pp- 34-37, Mar. 1996.

[3] P.M.G. Apers, C.A. van den Berg, J. Flokstra, P.W.P.]J. Grefen, M.L.
Kersten, and A.N. Wilschut, “Prisma/db: A Parallel, Main
Memory Relational Dbms,” IEEE Trans. Knowledge and Data Eng.,
vol. 4, no. 6, pp. 541-554, Dec. 1992.

[4] A. Attoui and M. Schneider, “An Object-Oriented Model for
Parallel and Reactive Systems,” Proc. Real-Time Systems Symp.,
pp- 84-93, Dec. 1991.

[5] E.Bensley, P. Krupp, R.A. Sigel, M. Squadrito, B. Thuraisingham ,
and T. Wheeler, “Object-Oriented Implementation of an

o]

[

(8]

&)

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(23]

[26]

[27]

(28]

[29]

643

Infrastructure and Data Manager for Real-Time Command and
Control Systems,” Proc. Workshop Object-Oriented Real-Time De-
pendable Systems, pp. 201-209, Feb. 1996.

A.P. Buchmann, D.R. McCarthy, M. Hsu, and U. Dayal, “Time-
Critical Database Scheduling: A Framework for Integrating Real-
Time Scheduling and Concurrency Control,” Proc. IEEE Int’l Conf.
Data Eng., pp. 470-480, Feb. 1989.

M.J. Carey, R. Jauhari, and M. Livny, “Priority in Dbms Resource
Scheduling,” Proc. Int’l Conf. Very Large Data Bases, pp. 397-410,
1989.

S.C. Cheng and].A. Stankovic, “Scheduling Algorithms for Hard
Real-Time Systems: A Brief Survey,” IEEE Tutorial: Hard Real-Time
Systems,]. Stankovic and K. Ramamritham, eds., IEEE Press, 1988.
L.B.C. DiPippo and V.F. Wolfe, “Object-Based Semantic Real-Time
Concurrency Control,” Proc. Real-Time Systems Symp., pp. 87-96,
Dec. 1993.

R. Elmasri and S.B. Navathe, Fundamentals of Database Systems,
second ed., Addison-Wesley, 1994.

H. Garcia-Molina and K. Salem, “Main Memory Database
Systems: An Overview,” IEEE Trans. Knowledge and Data Eng.,
vol. 4, no. 6, pp. 509-516, Dec. 1992.

P. Gopinath, R. Ramnath, and K. Schwan, “Data Base Design for
Real-Time Adaptations,”]. Systems Software, vol. 17, no. 1, pp. 155—
167, 1992.

J.R. Haritsa, MLJ. Carey, and M. Livny, “Data Access Scheduling in
Firm Real-Time Database Systems,”]. Real-Time Systems, vol. 4,
no. 3, pp. 203241, Sept. 1992.

J. Huang, J.A. Stankovic, K. Ramamritham, and D. Towsley,
“Experimental Evaluation of Real-Time Optimistic Concurrency
Control Schemes,” Proc. Int’l Conf. Very Large Data Bases, pp. 35-46,
Sept. 1991.

J. Huang, J.A. Stankovic, K. Ramamritham, D. Towsley, and B.
Purimetla, “Priority Inheritance in Soft Real-Time Databases,” J.
Real-Time Systems, vol. 4, no. 3, pp. 243-268, Sept. 1992.

Y. Ishikawa, H. Tokuda, and C.W. Mercer, “An Object-Oriented
Real-Time Programming Language,” Computer, vol. 25, no. 10,
pp- 66-73, Oct. 1992.

H.V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S.
Sudarshan, “Dali: A High Performance Main Memory Storage
Manager,” Proc. Int’l Conf. Very Large Databases, 1994.

D. Jordan, “Instantiation of C++ Objects in Shared Memory,” J.
Object-Oriented Programming, pp. 21-28, Mar./Apr. 1991.

D.D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communica-
tion in Multihop Networks,” Proc. 11th Int’l Conf. Distributed
Computer Systems, pp. 300-307, May 1991. An improved version
appeared in the IEEE Trans. Parallel and Distributed Systems, vol. 5,
no. 10 pp. 1,044-1,056, Oct. 1994.

T.-W. Kuo and A.K. Mok, “Ssp: A Semantics-Based Protocol for
Real-Time Data Access,” Proc. Real-Time Systems Symp., pp. 76-86,
Dec. 1993.

J. Lee and S.H. Son, “Using Dynamic Adjustment of Serialization
Order for Real-Time Database Systems,” Proc. Real-Time Systems
Symp., pp. 66-75, Dec. 1993.

T.J. Lehman, E.J. Shekita, and L.-F. Cabrera, “An Evaluation of
Starburst’'s Memory Resident Storage Component,” IEEE Trans.
Knowledge and Data Eng., vol. 4, no. 6, pp. 555-565, Dec. 1992.

M. Lehr, Y. Kim, and S.H. Son, “StarBase: A Firm Real-Time
Database Manager for Time-Critical Applications,” Proc. Seventh
Euromicro Workshop Real-Time Systems, pp. 317-322, 1995.

S.T. Levi, SK. Tripathi, S.D. Carson, and A.K. Agrawala, “The
MARUTI Hard Real-Time Operating System,” ACM Operating
System Review, vol. 23, no. 3, June 1989.

K. Li and J.F. Naughton, “Multiprocessor Main Memory Transac-
tion Processing,” Proc. IEEE Int’l Symp. Databases in Parallel and
Distributed Systems, pp. 177-187, Dec. 1988.

K.-J. Lin, “Consistency Issues in Real-Time Database Systems,”
Proc 22nd Int’l Conf. System Sciences, Jan. 1989.

C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” |. ACM, vol. 20,
no. 1, pp. 46-61, Jan. 1973.

V.M. Nirkhe, SK. Tripathi, and A.K. Agrawala, “Language
Support for the MARUTI Real-Time System,” Proc. Real-Time
Systems Symp., pp. 257-266, Dec. 1990.

S. Nishio, K.F. Li, and E.G. Manning, “A Time-Out Based Resilient
Token Transfer Algorithm for Mutual Exclusion in Computer
Networks,” Proc. Int’l Conf. Distributed Computing Systems, pp.
386-393, June 1989.

644 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

[30] S. Nishio, S. Taniguchi, and T. Ibaraki, “On the Efficiency of
Cautious Schedulers for Database Concurrency Control—Why
Insist on Two-Phase Locking?,”]. Real-Time Systems, vol. 1,
pp. 177-195, 1989.

[31] R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-Time Synchroniza-
tion Protocols for Multiprocessors,” Proc. Real-Time Systems Symp.,
pp- 259-269, Dec. 1988.

[32] R. Rajkumar, SYNCHRONIZATION IN REAL-TIME SYSTEMS: A
Priority Inheritance Approach. Kluwer Academic, 1991.

[33] K. Ramamritham, “Real-Time Databases,” Int’l |. Distributed and
Parallel Databases, 1992. (Invited Paper).

[34] K. Schwan, P. Gopinath, and W. Bo, “CHAOS-Kernel Support for
Objects in the Real-Time Domain,” IEEE Trans. Computers, vol. 36,
no. 8, pp. 904-916, Aug. 1987.

[35] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Concurrency Control for
Distributed Real-Time Databases,” SIGMOD Record, vol. 17, no. 1,
pp- 82-98, Mar. 1988.

[36] M. Singhal, “A Fully-Distributed Approach to Concurrency
Control in Replicated Database Systems,” Proc. IEEE Int'l.
Computer Software and Applications Conf., pp. 353-360, 1988.

[37] M. Singhal, “Issues and Approaches to Design of Real-Time
Database Systems,” SIGMOD Record, vol. 17, no. 1, pp. 19-33, Mar.
1988.

[38] P. Sleat and P. Osmon, “A Methodology for Real-Time Database
System Construction,” Proc. Int’l Conf. Software Eng. for Real Time
Systems, pp. 233-238, Sept. 1991.

[39] S.H. Son, “Semantic Information and Consistency in Distributed
Real-Time Systems,” Information and Software Technology, vol. 30,
no. 7, pp. 443-449, Sept. 1988.

[40] S.H. Son and Y. Kim, “A Software Prototyping Environment and
Its Use in Developing a Multiversion Distributed Database
System,” Proc. Int’l Conf. Parallel Processing, vol. 2 pp. 81-88,
Aug. 1989.

[41] S. H. Son, “Recovery in Main Memory Database Systems for
Engineering Design Applications,” Information and Software
Technology, vol. 31, no. 2, pp. 85-90, Mar. 1989.

[42] S.H. Son, “Scheduling Real-Time Transactions,” Proc. EuroMicro
90 Workshop Real Time, pp. 25-32, 1990.

[43] J.A. Stankovic and W. Zhao, “On Real-Time Transactions,”
SIGMOD Record, vol. 17, no. 1, pp. 4-18, Mar. 1988.

[44] D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design of Dynami-
cally Reconfigurable Real-Time Software Using Port-Based Ob-
jects,” Technical Report CMU-RI-TR-93-11, Carnegie Mellon
Univ., July 1993.

[45] B. Stroustrup, The C++ Programming Language, second edition,
Addison Wesley, 1991.

[46] H. Tokuda and C. Mercer, “Arts: A Distributed Real-Time
Kernel,” SIGOPS, vol. 23, no. 3, 1989.

[47] O. Ulusoy and G.G. Belford, “Real-Time Lock-Based Concurrency
Control in Distributed Database Systems,” Proc. Int’l Conf.
Distributed Computer Systems, pp. 136-143, 1992.

[48] O. Ulusoy and A. Buchmann, “Exploiting Main Memory DBMS
Features to Improve Real-Time Concurrency Control Protocols,”
SIGMOD Record, vol. 25, no. 1, pp. 23-25, Mar. 1996.

[49] K. Vidyasankar, “An Elegant One-Writer Multireader Multi-
valued Atomic Register,” Information Processing Letters, pp. 221
223, Mar. 1989.

[50] K. Vidyasankar, “Concurrent Reading while Writing Revisited,”
Distributed Computing, pp. 81-85, 1990.

[51] V.F. Wolfe, L.C. DiPippo, JJ. Prichard, .M. Peckham, and P.
Fortier, “The Design of Real-Time Extensions to the Open Object-
Oriented Database System,” Proc. Workshop Object-Oriented Real-
Time Dependable Systems, Oct. 1994.

Victor B. Lortz received the BA degree in
physics from Whitman College in 1985 and the
MS and PhD degree, in computer science from
the University of Michigan in 1991 and 1994,
respectively. His dissertation included the de-
sign and implementation of a hard real-time
database system for shared-memory multipro-
cessors. Dr. Lortz is currently a staff software
engineer at Intel Architecture Labs in Hillsboro,
Oregon. His most recent project involves devel-
oping software interfaces and protocol stacks for
device control in the emerging areas of in-home networks and PC
interoperability with digital A/V devices.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Seoul, Korea in 1970, and both the
MS and PhD degrees in electrical engineering
from Cornell University, Ithaca, New York, in
1976 and 1978, respectively. From 1978 to
1982, he was on the faculty of Rensselaer
Polytechnic Institute, Troy, New York. He has
held visiting positions at the U.S. Airforce Flight
Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department of Electrical En-
gineering and Computer Science at the University of California at
Berkeley, International Computer Science Institute, Berkeley, California,
IBM T.J. Watson Research Center, and Software Engineering Institute
at Carnegie Mellon University. He also chaired the Computer Science
and Engineering Division, Electrical Engineering and Computer Science
Department, The University of Michigan for three years beginning
January 1991. He is a professor and director of the Real-Time
Computing Laboratory, Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor.

He has authored/coauthored about 600 technical papers and
numerous book chapters in the areas of distributed real-time computing
and control, computer networking, fault-tolerant computing, and
intelligent manufacturing. He has co-authored (jointly with C.M. Krishna)
a textbook, Real-Time Systems (McGraw-Hill, 1997). In 1987, he
received the Outstanding IEEE Transactions on Automatic Control
Paper Award and, in 1989, the Research Excellence Award from The
University of Michigan. In 1985, he founded the Real-Time Computing
Laboratory, where he and his colleagues are investigating various
issues related to real-time and fault-tolerant computing.

His current research focuses on Quality of Service (QoS) sensitive
computing and networking with emphasis on timeliness and depend-
ability. He has also been applying the basic research results to
telecommunication and multimedia systems, intelligent transportation
systems, embedded systems, and manufacturing applications.

He was the program chairman of the 1986 IEEE Real-Time Systems
Symposium (RTSS), the general chairman of the 1987 RTSS, the guest
editor of the August 1987 special issue of IEEE Transactions on
Computers on Real-Time Systems, a program co-chair for the 1992
International Conference on Parallel Processing, and served on
numerous technical program committees. He also chaired the |IEEE
Technical Committee on Real-Time Systems during 1991-1993, was a
Distinguished Visitor of the IEEE Computer Society, an editor of /EEE
Trans. on Parallel and Distributed Computing, and an area editor of
International Journal of Time-Critical Computing Systems. He is a fellow
of the |IEEE.

Jinho Kim received the BS degree in computer
engineering from Kyungpook National Univer-
sity, Korea, in 1982, and the MS and PhD
degrees in computer science from Korea Ad-
vanced Institute of Science and Technology,
Korea, in 1985 and 1990, respectively.

He is currently an associate professor in the
Department of Computer Science, Kangwon
National University, Chunchon, Korea. He has
also served as a researcher at the Advanced
Information Technology Research Center(AlTrc), Korea Advanced
Institute of Science and Technology since 1999. From August 1995 to
July 1996, he was a visiting scholar with the Real-Time Computing
Laboratory, Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor. His research Interests
include real-time transaction scheduling, main-memory databases,
temporal databases, and active databases. He is a member of the
IEEE and the ACM.

