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Abstract
Ethernet continues to be one of the most popular LAN

technologies. Due to the low price and robustness resulting
from its wide acceptance and deployment, there has been an
attempt to build Ethernet-based real-time control networks
for manufacturing automation. However, it is difficult to
build a real-time control network using the standard UDP
or TCP/IP and Ethernet, because the Ethernet MAC proto-
col, the 1-persistent CSMA/CD protocol, has unpredictable
delay characteristics. When both real-time (RT) and non-
real-time packets are transported over an ordinary Ether-
net, RT packets from a node may experience a large delay
due to (i) contention with non-RT packets in the originating
node and (ii) collision with RT and non-RT packets from the
other nodes. To resolve this problem, we designed, imple-
mented, and evaluated adaptive traffic smoothing. Specif-
ically, a traffic smoother is installed between the UDP or
TCP/IP layer and the Ethernet MAC layer, and works as
an interface between them. The traffic smoother first gives
RT packets priority over non-RT packets in order to elimi-
nate contention within each local node. Second, it smooths a
non-RT stream so as to reduce collision with RT packets from
the other nodes. This traffic smoothing can dramatically de-
crease the packet-collision ratio on the network. The traffic
smoother, installed at each node, regulates the node’s outgo-
ing non-RT stream to maintain a certain traffic-generation
rate. In order to provide a reasonable non-RT throughput,
the traffic-generation rate is allowed to adapt itself to the
underlying network load condition. This traffic smoother re-
quires only a minimal change in the OS kernel without any
modification to the current standard of Ethernet MAC proto-
col or the TCP or UDP/IP stack. We have implemented the
traffic smoother on both the Linux and the Windows NT plat-
forms, demonstrating significant reduction of the RT packet
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deadline-miss ratio when both RT and non-RT packets are
transported over the same Ethernet. More precisely, installa-
tion of the proposed traffic smoother on every node is shown
to reduce the RT message deadline-miss ratio by two orders
of magnitude under a heavily-loaded condition, while lower-
ing the non-RT throughput only by half.

Index Terms — 1-persistent CSMA/CD, Ethernet, real-time
communication, traffic smoothing.

1. Introduction
Advances in high-speed network technology have made

it possible to transport various application traffic over data
communication networks, resulting in an explosive growth
of the Internet. The growth of the Internet is creating
a huge market for numerous network products related to
ATM, FDDI, Ethernet, and so on. Such commercial off-the-
shelf (COTS) network products are expanding their appli-
cation domains. For example, the manufacturing automa-
tion industry has been pursuing the use of COTS network
products for transporting control messages between PLCs
(Programmable Logic Controllers). Traditionally, propri-
etary networks such as Allen-Bradley’s RIO (Remote In-
put/Output) Network have been used in factory automation
to meet the control applications’ stringent real-time require-
ments and deal with harsh working environments. However,
the low price and the proven stability of COTS networks
have made them attractive for automated manufacturing. Al-
though various high-speed networks like ATM and FDDI
are available, Ethernet has been drawing significant interests
because of its extremely low price, maturity, and stability
proven through its wide deployment andacceptance. Despite
its popularity and low-cost, Ethernet has a serious drawback
when carrying real-time control messages. In an Ethernet
LAN, packets transmitted from different nodes may collide
with each other. The medium access control (MAC) protocol
of Ethernet, CSMA/CD (Carrier Sense Multiple Access with
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Collision Detection), allows such collisions. These potential
collisions make it impossible to guarantee predictable delays
in delivering packets to the local nodes.

In [4], we showed the feasibility of building a real-
time control network using Ethernet by installing a traffic
smoother at each localnode. A traffic smoother regulates the
intrinsically bursty packet stream relayed from the UDP or
TCP/IP layer, making the packet stream as smooth as pos-
sible in order to reduce the chance of packet collisions. By
assuming that the smoothed traffic follows a Poisson arrival
process, we modeled the CSMA/CD protocol with an Expo-
nential Binary Backoff strategy as a semi-Markov process,
and derived the relationship between packet delay distribu-
tion and network utilization. Based on the results obtained,
we were able to provide a statistical bound on the deadline-
miss ratio over Ethernet by keeping the network utilization
under a certain limit, called thenetwork-wide input limit. To
keep network utilization under the network-wide input limit,
we assigned a portion of the network-wide input limit toeach
local node, and madeeach localnode limit its packet gener-
ation rate under its assigned portion. We called the node’s
portion of the network-wide input limit thestation input limit
and installed a traffic smoother at the node to enforce it.
Through an experimental study, we demonstrated the effec-
tiveness of the traffic smoothing approach in providing soft
real-time communication over Ethernet. This traffic smooth-
ing approach, however, was inflexible and hence unscalable
for the following reason. In that approach the network-wide
input limit is fixed once we are given packet deadline and
tolerable packet-loss (or deadline-miss) ratio. So, the station
input limits must be reduced as the number of local nodes
increases within the same LAN. The smaller the station in-
put limit gets, the smaller throughput provided to non-RT
traffic. (Note that real-time traffic is not affected, as only
non-RT traffic is smoothed [4].) Non-RT packets may expe-
rience very large delays when a very small station input limit
is assigned to a local node, as discussed in the next section.

In this paper, we propose anadaptive traffic smoothing
approach to overcome the scalability problem of the ap-
proach in [4]. By allowing each localnode to vary its max-
imum traffic-generation rate depending on the current net-
work load, the proposed approach improves its scalability
significantly. Apart from this modification, the proposed ap-
proach shares the same traffic-smoothing mechanism with
the approach in [4]. The traffic smoother is implemented
as an interface between the transport layer and the Ethernet
MAC layer. This implementation minimizes the modifica-
tion in the current standard network protocol. We imple-
mented this adaptive traffic smoother on both the Linux and
the Windows NT platforms, built testbeds, and conducted
extensive experimental studies. Through these experimental
studies, we show that the adaptive approach provides much
higher throughput for non-RT packets than the non-adaptive

scheme in [4], while still providing good delay characteris-
tics for RT packets.

Most earlier work in the area of supporting real-time com-
munication over Ethernet focused on modifying the Ethernet
MAC sub-layer so that a bounded channel-access time may
be achieved, thus making hard real-time communication pos-
sible [9, 7, 2]. These approaches are very costly compared
to the widely-used current Ethernet standard. Venkatramani
and Chiueh [10] proposed implementation of a virtual to-
ken ring over Ethernet in order to avoid packet collision. On
top of the CSMA/CD protocol, they implemented a token-
based medium access control protocol. Thus, their approach
does not require modifying any hardware but adds new pro-
tocol software. Specifically, it requires significant modifica-
tion of the OS kernel. Since token management requires a
number of functionalities,e.g., restoration of a lost token, it
may overload the OS. Our traffic smoothing approach does
not require any new MAC protocol but rather installs an in-
terface between the transport layer and the Ethernet MAC
layer. The only new function of the interface is to regulate
the packet stream, and thus, it is simple to implement.

Another way to bound the channel-access time is to use
full duplex Ethernet switches such as IEEE 802.1p or IEEE
802.12, known as Ethernet 100VG-AnyLAN [6], instead of
ordinary shared Ethernet hubs. They both avoid packet col-
lisions by eliminating the CSMA/CD MAC protocol, and
thus, can provide bounded packet-delivery delays while re-
taining compatibility with 10Base-T technology. In particu-
lar, 100VG-AnyLAN can provide prioritized service to real-
time packets by employing two priority queues. However,
both full duplex switched Ethernet and 100VG-AnyLAN are
far more expensive than shared Ethernet LANs. At present
their prices are an order of magnitude higher than shared Eth-
ernet LANs. In an automated factory, because the traffic-
generation rate of each station is, in general, quite low com-
pared to the link capacity, it is not economical to assign a
pair of ports of a full-duplex Ethernet switch toeach indi-
vidual control station. In most cases, an Ethernet switch is
likely to be used to partition a large-scale LAN into multi-
ple sub-LANs, each of which consists of a shared Ethernet
LAN. In this environment, one must still be able to control
the traffic arrival behavior of each sub-LAN in order to con-
trol end-to-end packet delays through the Ethernet switch.
By employing our traffic smoothing mechanism at each sub-
LAN, we can control the traffic arrival behavior at each indi-
vidual sub-LAN, and thus can control the end-to-end delay
characteristics in such a switched Ethernet.

The rest of the paper is organized as follows. Section 2
describes our previous traffic-smoothing approach in [4], dis-
cusses its scalability problem, and presents the adaptive traf-
fic smoothing approach in procedural forms which we use
to implement the traffic smoother on the Linux OS. Sections
3 details our experimental study with the Linux version of
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the traffic smoother. In Section 4, we describe the imple-
mentation of the traffic smoother on the Windows NT, and
present the result of its experimental evaluation. The paper
concludes with Section 5.

2. Problem Statement and Approach
In an automated manufacturing facility — a prototypical

real-time control system — real-time control messages need
to be generated and exchanged among the stations in the fac-
tory. Most proprietary control networks scan and send I/O
(Input/Output) continuously, even though the data changes
infrequently or slowly. An alternative approach is to send
data only when the data has changed. An event-driven ap-
proach for factory automation control messaging is accept-
able provided the underlying network can guarantee timely
delivery of the updated data. Although the former approach
is used in most proprietary control networks, the latter ap-
proach is drawing considerable interests since it reduces the
rate of generating real-time messages. In this paper, we as-
sume that control stations employ this event-driven approach
in generating real-time control messages. In this approach,
each control station generates at most one maximum-sized
(1500 bytes) IP datagram once every several seconds (or sev-
eral hundred milliseconds), and hence, its rate of generating
real-time control messages is very low relative to the Ether-
net link capacity. Moreover, control messages arrive pseudo-
periodically due to the characteristics of the underlying con-
trol system. For example, in an automated manufacturing
system, control messages notify the end of an operation and
the initiationof a new operation to a neighboring station, and
these operations are performed periodically.

Concurrently with RT control messages, bursts of non-
RT traffic are generated on an irregular basis by controllers
and the central server, mainly for the purpose of monitor-
ing production status and downloading programs or new
setup parameters. While per-message delay is an impor-
tant QoS (Quality-of-Service) parameter for real-time appli-
cations, average throughput is also important to non-RT traf-
fic. In other words, while a small delivery delay is desirable
for non-RT messages, it isnot a requirement. Because of its
burstiness, the arrival rate of non-RT traffic can be quite high
during the transmission even if its long-term average traffic
arrival rate is low. For example, when only a single station
transmits a large burst of non-RT traffic (e.g., a file trans-
fer) over an Ethernet LAN, the traffic arrival rate can reach
up to 8–9 Mbps. Such temporarily high network utilization
makes it very difficult to provide bounded delivery delays for
the other stations’ RT messages when both RT and non-RT
messages are concurrently transported over the same Ether-
net LAN. During the transmission of a large burst of non-RT
traffic from another station (node), RT messages may expe-
rience a large delay because of collisions and possibly due to
the capture effect [8].

Since our previous analysis [4] to resolve this problem

was based on the boundedness of network utilization and the
assumption that the arrival process is Poisson, it is crucial to
employ a traffic smoother at every local node. By making
each localnode keep its traffic-generation rate under its sta-
tion input limit, one can keep network utilization under the
network-wide input limit. We installed the traffic smoother
between the TCP/IP layer and the Ethernet MAC (Medium
Access Control) layer in order to minimize the changes in
the current standard protocol stack while achieving the good
smoothing effect. Although installing the traffic smoother on
top of the TCP/IP layer would be a simpler approach, the re-
sulting smoothed packet stream would be distorted (become
burstier) due to the un-smoothed TCP/IP protocol messages
in the packet stream that do not convey application data.

When a burst of non-RT messages arrive from the TCP/IP
layer, the traffic smoother spreads them out by enforcing
a minimum packet inter-arrival time at the Ethernet MAC
layer to meet the station input limit. More specifically, the
traffic smoother regulates the packet stream using a credit
bucket, which is the same as the well-known leaky-bucket
regulator [3]. The credit buffer has two parameters: credit
bucket depth (CBD) and refresh period (RP ). CBD lim-
its the maximum number of credits that can be stored in the
credit bucket. Up toCBD credits are added to the bucket
everyRP seconds. If the number of credits exceedsCBD,
overflow credits are discarded. When a packet (IP datagram)
arrives from the IP layer, if there is at least one credit in the
bucket, the traffic smoother forwards it to the Ethernet NIC
(Network Interface Card) and removes as many credits as the
size of the packet (in bytes). When the number of available
credits is smaller than the packet size, credits are allowed to
be “borrowed.” So, the balance of credits can be negative.
If there are no credits in the credit bucket, the packet is held
in the buffer until one or more credits become available. By
changingRP andCBD, one can control the burstiness of
a packet stream while keeping the same average throughput
guarantee. For example, if we setCBD

RP
to 312500, the aver-

age throughput guaranteed for a station is 312.5 Kbytes/sec
or 2.5 Mbps. Two possible pairs of (CBD, RP ) satisfy-
ing the ratio are (1500, 0.0048) and (150000, 0.48). When
(CBD,RP ) = (1500, 0.0048), the maximum amount of traf-
fic that can be transmitted consecutively is limited to 2999
bytes (1499 bytes plus 1500 bytes). In this case, traffic is
smoothed with a very fine time granularity and the worst-
case traffic arrival rate in a short period is the same as the
average traffic arrival rate. In the other case, up to 151499
bytes can be transmitted consecutively. Although the aver-
age traffic arrival rate is the same, this case generates a much
burstier output and the worst-case traffic arrival rate in a short
period is much higher than the average traffic arrival rate.
Our experimental study has shown that better real-time per-
formance can be achieved with finer-granularity smoothing.

In this approach, within a local node, RT packets are
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given priority over non-RT packets, and only non-RT pack-
ets are delayed to keep the station traffic-arrival rate (which
includes both RT and non-RT traffic) under the station in-
put limit. That is, transmission of extra RT packets causes
non-RT packets to experience additional delays. RT traffic
is assumed to arrive pseudo-periodically and thus, is already
smooth as discussed earlier.

The network-wide input limit can be either equally dis-
tributed among local nodes or disproportionately distributed
depending on each localnode’s needs. Once the station input
limit is assigned to a local node, the maximum traffic trans-
mission rate of the node is fixed at its station input limit by
the traffic smoother. We call this type of traffic smoothing
fixed-rate traffic smoothing and the traffic smoother is called
a fixed-rate traffic smoother. Since, however, the station in-
put limit is calculated based on the worst-case traffic arrival
scenario in which all the local nodes are generating traffic at
their maximum allowable rates, it depends on the number of
nodes, more precisely, the maximum number of nodes that
may generate non-RT traffic. This raises a scalability issue.
Especially, in a real-time control network in which all the
nodes do not always generate non-RT traffic concurrently,
non-RT IP datagrams may experience excessively large de-
lays even when overall network utilization is low. That is,
when only a few of the nodes are generating non-RT traffic
during a certain time period, the bandwidth assigned to the
rest of the nodes is wasted and non-RT IP datagrams experi-
ence unnecessarily large delays.

We propose a new traffic smoothing approach to resolve
the poor scalability of fixed-rate traffic smoothing while still
providing low delays for RT messages. In the next two sub-
sections, we describe the new traffic smoother. In particular,
in Section 2.2, we present the traffic smoother in procedural
forms which is used to implement the traffic smoother in the
Linux OS. The Windows NT version of the smoother will be
presented in Section 4.2.

2.1 Adaptive-Rate Traffic Smoothing

In order to meet the delay requirement of RT packets, we
still need to regulate non-RT traffic as smoothly as possi-
ble and keep network utilization under a certain limit. Un-
like a fixed-rate traffic smoother, however, our new traffic
smoother, called anadaptive-rate traffic smoother, changes
the station input limit ateach localnode depending on the
current network traffic arrival rate. That is, if network uti-
lization by non-RT traffic is low, those nodes generating non-
RT traffic are allowed to increase their station input limits
subject to the condition that the overall network utilization
does not cause RT packets to experience delays larger than
those in the fixed-rate traffic smoothing approach. Likewise,
as network utilization by non-RT traffic gets higher, those
nodes generating non-RT traffic lower their station input lim-
its. Figure 1 compares the arrival rate of traffic smoothed
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Figure 1. Traffic smoothing

by a fixed-rate traffic smoother and that by an adaptive-rate
traffic smoother. Let’s assume that a large burst of packets
generated by an application through the TCP/IP layer during
[t0; t1]. If the node had a large TCP window when the burst
has arrived from the application, the traffic arrival duration
may be very short and the arrival rate may be quite high as
shown in Figure 1(a). The arrival rate of the traffic smoothed
by a fixed-rate traffic smoother is shown in Figure 1(b). Here,
the station input limit is set toFmax, and thus, the arrival rate
is always kept underFmax. On the other hand, the arrival
rate of traffic smoothed by an adaptive-rate traffic smoother
is a piece-wise constant function of time as shown in Figure
1(c), and it depends on the traffic-generation statistics of the
other nodes. That is, the adaptive-rate traffic smoother regu-
lates the packet stream using the station input limit in order
to keep the stream as smooth as the fixed-rate one does, but
the station input limit changes with time.

In order to implement an adaptive-rate traffic smoother
which meets the delay requirement of RT packets while pro-
viding improved average throughput for non-RT packets, we
must resolve the following two problems: (1) how to detect a
change in network utilization and (2) how to adapt to the de-
tected change. An efficient detection mechanism is essential
for the adaptation to be fast enough to meet the delay require-
ment of RT packets. However, since unlike ATM or FDDI,
the CSMA/CD protocol is not a reservation-based medium
access control scheme, direct information on the current net-
work utilization is unavailable to local nodes. Therefore,
each localnode must depend on an indirect method of de-
termining network utilization such as detecting packet col-
lisions at its NIC or measuring the buffer-clearing rate at
its Ethernet device driver. Or, each localnode may use the
promiscuous mode to measure the network utilization for a
recent period of time. We have chosen the first option for
its good responsiveness. In particular, if the traffic smoother
is set to vacate the credit buffer immediatelyupon detection
of a collision, transmission of non-RT packets is suspended,
except for those packets already in NICs. This increases the
chance to deliver the RT packets generated from other nodes
sooner, as they do not suffer the “packet starvation” [11]
caused by the burst of non-RT packets generated from this
node. For this reason, we use packet collision as a trigger to
decrease throughout as well as to deplete the current credits.
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2.2 Harmonic-Increase and Multiplicative-
Decrease Adaptation

Next, let’s consider the adaptation mechanism. Two pa-
rameters,CBD andRP , can be used to change the station
input limit which is given asCBD

RP
. By changingCBD while

keepingRP constant, we can change the station input limit,
but this approach causes the size of a burst to fluctuate. Since
we want to keep the packet stream as smooth as possible, we
instead varyRP while keepingCBD constant. Especially,
by settingCBD to the Ethernet MTU (Maximum Transfer
Unit) (i.e., 1500 bytes), one can set the maximum amount of
traffic that can be transmitted up to 2999 bytes. In this ap-
proach, one can increase the station input limit by decreasing
RP , and vice versa.

There are many ways to change the station input limit. For
example, one may employ the “slow-start increase and mul-
tiplicative decrease” that is being used in the TCP/IP conges-
tion avoidance mechanism [1]. In this paper, we use a very
simple adaptation mechanism calledHarmonic-Increase and
Multiplicative-Decrease Adaptation (HIMD). HIMD is sim-
ilar to the slow-start increase and multiplicative-decrease al-
gorithm in decreasing the throughput butdiffers in increasing
the throughput. HIMD works as follows. First, HIMD peri-
odically increases the station input limit by decreasingRP
periodically in the absence of packet collisions. The size
of each decrement is fixed at a constant, and thus, the sta-
tion input limit is harmonically incremented. This harmonic
increment is conservative but easy to implement. When a
packet collision is detected, the traffic smoother immediately
depletes the current credits, delays the transfer of the non-RT
packet, and doublesRP . By choosing an appropriate size of
decrement forRP , one can adapt the station input limit very
fast.

Figures 2 and 3 describe the traffic smoother in a pro-
cedural form. First, the proceduresmoothing in Figure 2
smoothes the packet stream. To provide low delivery de-
lays to RT packets, the traffic smoother maintains a prior-
ity queue with two priority levels. The high-priority queue
is used for storing RT packets and the low-priority queue is
used for storing non-RT packets. When packets arrive from
the upper layer, they are inserted into the corresponding pri-
ority queue in the order of their arrivals. Whether a packet is
RT or non-RT is determined using the Type-of-Service (ToS)
field of an IP datagram. When the proceduresmoothing is
called by the kernel scheduler, it first checks whether there
is a packet waiting to be transferred to NIC in the queue,
starting from the high-priority queue. If there is a packet be-
longing to a real-time stream, it is immediately transferred
to NIC by a function call,send to NIC, and as many credits,
denoted byCurrentNetworkShare, as the size of the packet,
denoted byPacket.FrameSize, are removed from the credit

bucket. If the packet belongs to a non-RT session, the last
collision time, denoted byLastCollisionTime (which will be
described shortly), is checked. If the difference between the
current time and the last collision time falls within a certain
bound�, the traffic smoother assumes that another station is
trying to send a real-time or non-real-time packet. Therefore,
it returns the packet to the low-priority queue by making a
function call,send back to queue. In addition, it vacates the
credit bucket by settingCurrentNetworkShare to zero, and
doublesRP . RP is capped byRPmax. If the packet be-
longs to a non-RT session andCurrentNetworkShare is pos-
itive while there has been no recent collision, the packet is
transferred to NIC by a function call,send to NIC, andCur-
rentNetworkShare is decremented by the size of the packet.
If there is no credit in the credit bucket, i.e.,CurrentNetwork-
Share � 0, the packet is returned to its original location in the
low-priority queue. The packets sent back to the low-priority
queue are served the next time when this procedure is called
by the kernel scheduler.

Procedure smoothing

If (Packet:TypeOfService = RealT ime) then f

send to NIC;

CurrentNetworkShare := CurrentNetworkShare

�Packet:FrameSize; g

else if (LastCollisionTime � CurrentT ime� �) then f

send back to queue;

CurrentNetworkShare := 0;

RP = min(RPmax; 2�RP ); g

else if (CurrentNetworkShare > 0) then f

send to NIC;

CurrentNetworkShare := CurrentNetworkShare

�Packet:FrameSize; g

else send back to queue;

Figure 2. Procedure of traffic smoothing

Procedurerefresh in Figure 3 is called once every� where
� is a user-defined parameter, and Procedurerefresh decre-
mentsRP by � (harmonic decrease). The minimum value
of RP is set toRPmin. In addition, when the current time
reachesNextRefreshT ime, it increments the number of
credits byCBD, and sets the next credit bucket refreshing
time toCurrentT ime + RP . If the total number of credits
exceedsCBD, the number of credits is set toCBD.

In addition to the above two procedures, we need to
modify the Ethernet device driver to record the time when
a packet in NIC encounters a collision so that the proce-
dure smoothing may use it. Many available device drivers
request their Ethernet NICs to notify the number of colli-
sions that the recently-transmitted packet has experienced. If
this function is not provided by default, one should modify
the device driver to invoke it. When the device driver re-
ceives this collision information, it records the current time
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Procedure refresh

RP := max(RPmin; RP ��);

if (CurrentT ime = NextRefreshTime) then f

CurrentNetworkShare

:= min(CurrentNetworkShare+ CBD;CBD);

NextRefreshTime := CurrentT ime+RP ; g

Figure 3. Procedure of refreshing parameters

as LastCollisionT ime if the recently-transmitted packet
has experienced a collision.

In our traffic smoother,�, �, � , RPmax, andRPmin are
user-controllable parameters. By using different values, one
can obtain different delay and throughput characteristics.

The idea of adapting the traffic-generation rate has al-
ready been implemented in other protocols in order to avoid
network congestion and improve throughput. For example,
the TCP congestion avoidance algorithm and the Ethernet
collision resolution protocol (Exponential Binary Backoff)
have already been in use. Our scheme lies between them in
time scale, but shares the same basic idea and goal — avoid
network congestion — with them. One significant difference
is that our scheme works only on non-RT traffic to provide
better delay characteristics to RT traffic.

3. Experimental Evaluation on Linux

In this section, we present the experimental evaluation re-
sults on a testbed of Linux workstations. We installed the
adaptive-rate traffic smoother at all the local nodes, and mea-
sured the delay characteristics of RT messages while mea-
suring the throughput of non-RT messages. In addition,
we conducted similar experiments with the fixed-rate traf-
fic smoother and without employing any traffic smoothing
mechanism for the purpose of comparison.

3.1 The Environment

The Linux testbed consists of two 300 MHz Intel Pentium
II PCs, five 75 MHz Pentium laptop computers, and four 486
DX/4 laptop computers, and they are connected through a
10BASE-T Ethernet LAN. The collision domain diameter is
10 m. We configure the local nodes as PC-1 — PC-10 and
a monitoring station. Figure 4 shows the topology of our
testbed. One 300 MHz Intel Pentium II PC works as the
monitoring station, and since our target application is auto-
mated factory networking, the rest of the PCs simulate PLCs.
We use TCP sockets for transmitting RT control messages as
well as non-RT messages1. The PCs exchange real-time con-
trol information with RT messages. More specifically, PC-1

1We recognize that UDP sockets are generally preferred for transport-
ing RT control messages in order to avoid possible delays due to the TCP
data-loss recovery mechanisms. Although we employed TCP sockets for
transporting RT control messages, we did not observe any data-loss recov-
ery delays in our experiments.

sends a 100 byte long RT control information which is con-
tained in a high-priority IP datagram to PC-2. Then, PC-2
echos back to PC-1 with a high-priority IP datagram of the
same size. Likewise, PC-n and PC-(n + 1) exchange RT
control information of the same size wheren = 1; : : : ; 9.
PC-10 sends a RT control message to PC-1, and PC-1 echos
back to PC-10. We made the inter-arrival time of real-time
control messages at each simulated PLC follow an exponen-
tial distribution, and set the average message inter-arrival
time to 0.3 sec. Since we must count both RT control and
echo messages, the network load due to RT messages is
(2�100�8�10=0:3)bps, i.e., 53.3 kbps2. The traffic-generation
rate was chosen to reflect the low traffic condition observed
in most automated manufacturing facilities.
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NRT messages

RT messages

PC-1 PC-2 PC-3 PC-10

Figure 4. Experiment environment

In addition to RT messages, PCs generate non-RT mes-
sages when the monitoringstation requests them to send their
status information. The size of non-RT traffic generated by
an application is 1 Mbytes, and it is transmitted as a sequence
of low-priority IP datagrams. This results in a high instan-
taneous traffic-generation rate (i.e., a burst of non-RT mes-
sages) especially at the TCP/IP layer.

To investigate the effectiveness of the adaptive-rate traf-
fic smoother, we measured the roundtrip delay of every RT
control message and the time to transmit eachnon-RT burst
while transporting both types of traffic over the Ethernet and
varying the non-RT traffic-generation rate. From these mea-
surements, we calculated the deadline-miss ratio of RT mes-
sages and the average time to transmit a 1 Mbyte-long non-
RT burst. We set the roundtrip deadline of RT messages to
129.6 msec3. Since a real-time message is considered lost if

2This is the network load seen by the application layer. In the Ethernet
physical layer, the load is slightly higher than this value since the TCP/IP
header, the Ethernet MAC header and the framing field must be counted
towards the total data size. For non-RT traffic, we also measure the network
load from the standpoint of the application layer.

3This value was selected through an analysis shown in [4]. According to
[4], when 10 transmission trials are allowed before a messages is declared
lost, the worst-case delay is 64.8 msec. We simply doubled that value to
select a worst-case roundtrip delay of 129.6 msec as the roundtrip deadline.
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its deadline is missed, we treated the deadline-miss ratio as
the message-loss ratio.

We conducted two sets of experiments with different non-
RT traffic-generation scenarios. In the first set which we
call non-greedy mode, the non-RT burst inter-arrival time of
an activated4 PC was exponentially-distributed, and the av-
erage burst inter-arrival time was set to 25 sec. Then, the
average non-RT traffic-generation rate of an activated PC is
106 � 8=25 = 320 kbps. By changing the number of acti-
vated PCs, one can control the non-RT traffic load. When 10
PCs are activated, the network load of non-RT traffic is 3.2
Mbps, i.e., approximately5 32% of the Ethernet capacity.
In the second set which we callgreedy mode, an activated
PC was set to generate non-RT bursts in succession. That
is, once it had finished the transmission of a non-RT burst,
an activated PC starts transmission of the next burst immedi-
ately. In this scenario, the network can be overloaded even
with a single activated PC. In reality, however, the maximum
achievable network utilization is about 0.75 because of the
congestion-avoidance mechanism of the TCP flow control
and the Ethernet collision-resolution mechanism.

3.2 Results

In the non-greedy mode, we experimented with the
adaptive-rate traffic smoothing, the fixed-rate traffic smooth-
ing, and without any traffic smoothing at all. Ineach case,
we varied the number of activated PCs from 2 to 10, i.e.,
we changed the non-RT traffic load from 0.064 to 0.32, and
measured the loss ratio of RT messages and the average time
to transmit a 1 Mbyte-long non-RT burst. The total num-
ber of RT messages generated in each case was500,000,
which dictates the confidence interval of the deadline-miss
ratio of RT messages. The results are plotted in Figures 5
and 6. Figure 5 shows the RT message-loss ratio, i.e., the
deadline-miss ratio, and Figure 6 shows the average time to
transmit a 1 Mbyte-long non-RT burst. In the absence of
traffic smoothing, like in a conventional Ethernet LAN, the
measured deadline-miss ratio of RT messages ranged from
2:356� 10�3 to 1:682� 10�2, and the maximum length of
99 % confidence intervals was1:33�10�6. Compared to the
traffic-smoothing schemes, the case of no traffic smoothing
resulted in high deadline-miss ratios. On the other hand, it
showed the smallest average transmission times of non-RT
bursts among the three schemes as shown in Figure 6. They
ranged from 1.073 to 1.819 sec, meaning that the average
throughput provided toeach activated PC for transmitting
non-RT bursts ranged from 4.398 to 7.455 Mbps.

To evaluate the fixed-rate traffic smoothing, we installed
a fixed-rate traffic smoother at every PC.CBD was set to
1500 andRP was set to 3.6 msec. Thus, the minimum and

4A station/PC is said to beactivated if the monitoring station requested
its status information.

5since we should consider the headers and framing fields for the physical
layer’s traffic-generation rate
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Figure 6. Average transmission time of a 1
Mbyte non-RT burst in the non-greedy mode

maximum throughputs provided toeach PC for transmitting
non-RT bursts were 0.33 Mbps. As a result, it took about 25
sec for each activated PC to transmit anon-RT burst regard-
less of the number of activated PCs as shown in Figure 6.
The delay characteristics of RT messages were significantly
improved. As shown in Figure 5, the deadline-miss ratio of
RT messages6 was kept under10�3, although it increased
with the number of activated PCs.

To evaluate the effectiveness of adaptive-rate traffic
smoothing, we installed an adaptive-rate traffic smoother
at every PC. The parameters were chosen as: 10 msec for
�, 100�sec for�, 100 msec forRPmax, and 3 msec for
RPmin; and� was set to 1 msec. Thus, the decrement rate
of RP was 0.1, and the maximum throughput that can be
provided to each PC in a short-term was 4 Mbps. These val-
ues were selected empirically to achieve a low deadline-miss

6The lengths of the confidence intervals were smaller than10
�6. The

lengths of the confidence intervals in all the cases hereafter were kept
smaller than10�5.
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ratio of RT messages without sacrificing the throughput pro-
vided to non-RT bursts. Compared to the cases of no traf-
fic smoothing and fixed-rate traffic smoothing, adaptive-rate
traffic smoothing showed the smallest deadline-miss ratio,
except when only two PCs were activated. For the case of
two activated PCs, adaptive-rate traffic smoothing showed
a slightly larger value than fixed-rate traffic smoothing as
shown in Figure 5. The maximum deadline-miss ratio of
adaptive-rate traffic smoothing was2:48 � 10�4, which is
smaller than that (1=3) of fixed-rate traffic smoothing and
is attained when all the PCs were activated. The small
deadline-miss ratio of adaptive-rate traffic smoothing is pro-
nounced particularly when it is compared against the other
schemes in terms of the throughput provided to non-RT traf-
fic which is shown in Figure 6 as a form of delay. The av-
erage transmission time of a 1 Mbyte non-RT burst ranged
from 2.42 to 8.38 sec, and thus, the average throughput pro-
vided to an activated PC for non-RT traffic ranged between
0.955 and 3.36 Mbps which is much larger than 0.33 Mbps,
the throughput provided to non-RT traffic in the case of fixed-
rate traffic smoothing. In addition, the throughput provided
to non-RT traffic in the case of adaptive-rate traffic smooth-
ing increased as the number of activated PCs decreased, un-
like the result obtained in the fixed-rate traffic smoothing
case. This indicates that the adaptive-rate traffic smoothing
does not waste the bandwidth when a small number of PCs
are activated, thus overcoming the scalability problem, as we
argued in the previous section.

In addition to the three traffic smoothing schemes, we
conducted an experiment without activating any PC. In this
case, it does not matter what traffic smoothing scheme is en-
forced since there is no non-RT traffic to be smoothed. The
total traffic arrival rate which was due only to real-time traffic
sources, was 53.3 kbps as mentioned earlier. The deadline-
miss ratio thus obtained was7:15� 10�5. One can see that
the result of adaptive-rate traffic smoothing is very close to
this value. This indicates that the delay characteristics of
real-time messages is almost unaffected by the presence of
non-RT messages in the adaptive-rate traffic smoothing as
compared to the other two schemes. This is due to the fact
that the smoother stops transmitting non-RT traffic and dou-
bles itsRP as soon as it finds the on-going transmission ex-
periencing any collision with a real-time message or a non-
RT message transmitted by another PC.

Figure 7 illustrates the effectiveness of adaptive-rate traf-
fic smoothing in achieving soft RT guarantees over Ethernet.
Figures 7(a) and 7(b) show, respectively, the roundtrip delay
sequences of 50,000 RT messages when no traffic smoothing
was enforced and when the adaptive-rate traffic smoothing
was enforced. The number of activated nodes were 10, and
thus, the non-RT traffic load was 0.32. As shown in Figure
7(a), when no traffic smoothing was applied, a fair number
of real-time messages experienced roundtrip delays larger

than 1 sec while the roundtrip delays were kept below 300
msec when the adaptive-rate traffic smoothing was enforced.
When the fixed-rate traffic smoothing was enforced, the mea-
sured roundtrip delay sequence of real-time messages was
similar to that shown in Figure 7(b).
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Figure 7. Roundtrip delay sequences of real-
time messages: (a) no traffic smoothing (b)
adaptive-rate traffic smoothing

The greedy-mode experiments re-confirmed the effective-
ness of adaptive-rate traffic smoothing. In this case, an acti-
vated PC was allowed to transmit non-RT traffic at its max-
imum capacity without being restricted by an application-
level flow control. Since the worst-case network-wide non-
RT traffic arrival rate in this environment is deterministic
when the fixed-rate traffic smoothing is enforced, we only
compared the case without traffic smoothing with that with
adaptive-rate traffic smoothing.

When no traffic smoothing is enforced, the network can
be fully-loaded by only one activated PC, causing extremely
large delays to RT messages. Even though real-time IP
datagrams are given priority over non-RT ones within the
same PC, they may collide with non-RT datagrams transmit-
ted from the other PCs and experience large delays. Under
such an extreme traffic-arrival condition, adaptive-rate traf-
fic smoothing proved to work remarkably well. Figures 8
and 9 show the experimental results. Figure 8 shows the
deadline-miss ratios of RT messages for different numbers
of activated PCs when no traffic smoothing was enforced and
when adaptive-rate traffic smoothing was enforced. Figure 9
shows the throughput provided to all the activated PCs for
transmitting non-RT bursts. This was derived from the num-
ber of activated PCs and the average transmission time for
transmitting a single burst, considering that the throughput
provided to an activated PC is given by the burst size divided
by the transmission time.

When no traffic smoothing was enforced, the deadline-
miss ratios of RT messages were extremely high, i.e., in the
range of10�1 as shown in Figure 8, although the throughput
provided for non-RT traffic reached up to0:74 as shown in
Figure 9. Thanks to the flow controls mention above, we
could not overload the network.

On the other hand, when the adaptive-rate traffic smooth-
ing was enforced on every activated PC, the throughput for
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transmitting non-RT bursts was reduced, approximately by
half, but the RT message deadline-miss ratios dropped dra-
matically. They ranged from1:54 � 10�4 to 5:78 � 10�4,
and were much smaller than those achieved in the case of no
traffic smoothing. In this environment, the transmission ca-
pability of a TCP socket of an activated PC was restricted
not only by the TCP flow control and Ethernet collision-
resolution mechanism, but also by the adaptation mechanism
of the traffic smoother. This explains the lower throughput
achieved by the adaptive-rate traffic smoothing. These ex-
perimental results indicate that we can buildtwo virtual net-
works — a soft real-time control network and an Ethernet
LAN with 5 Mbps transmission capability — using a single
Ethernet LAN if the adaptive-rate traffic smoothing is em-
ployed.

In addition to HIMD, we experimented with various adap-
tation mechanism (e.g., Linear Increment and Multiplicative
Decrement), but HIMD yielded the best adaptation perfor-
mance, thus omitting their discussion.

4. Implementation and Experimental Evalua-
tion on Windows NT

We have also implemented the adaptive traffic smoother
on the Windows NT platforms, and conducted an indepth ex-
perimental evaluation. This implementation was motivated
by the fact that the Windows NT is widely deployed and used
but gives less leverages to software developers than the Linux
OS. Although we will compare the performance of both the
NT and the Linux implementations, our focus will be placed
on their qualitative aspects since their real-time performance
depends not only on the communication protocol stacks, but
also on the operating systems themselves. For this reason,
we built an NT testbed which is totally independent of the
Linux testbed.

4.1 The Traffic Smoother on the Windows NT

Unlike the Linux OS, we are not allowed to, nor do we
want to, modify the NT kernel. Moreover, the source codes
of Ethernet device drivers are not usually available to end
users. Fortunately, however, the Windows NT allows end
users to insert an intermediate driver — called theNDIS
(Network Driver Interface Specification) intermediate driver
[5] — between the extant transport protocol layers and net-
work device drivers. Since it is a standard interface between
protocol layers, we implemented the traffic smoother as an
NDIS intermediate driver without modifying the NT kernel.

The NT-version traffic smoother consists of two proce-
dures: packet classifer andprocess NRTQueue. Procedure
packet classifer simply checks the class7of a packet arriving
from the IP layer, and inserts it into one of two queues ac-
cording to its type, real-time or non-real-time queue. Packets
inserted into the RT queue are immediately transferred to the
Ethernet NIC.

Packets inserted into the non-RT queue are serviced by
a timer service routine,process NRTQueue, shown in Fig-
ure 10. When this routine is called, it checks whether the
non-RT queue is empty or not. If it is not empty, the function
Serve(CBD) is called, which transfers at mostCBD bytes
to the Ethernet NIC.

Upon completion of Serve(CBD), the function
CheckCollisions() is called, checking if the most recently-
transferred packet has successfully been transmitted over
the network without having experienced any collision. Most
Ethernet cards and drivers are designed to determine how
many packets have experienced collisions at least once
before their successful transmission, and this information is
made available to upper layersupon request in case of the
Windows NT. Using this information,CheckCollisions()

7In the Windows NT, the ToS field of an IP datagram cannot be changed
using the setsockopt() function like in the Linux. For this reason, we chose
the protocol name as a way of differentiating real-time from non-real-time
packets. We used UDP sockets for real-time connections and TCP sockets
for non-real-time connections.
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collects the most recently-transferred packet’s collision
statistics and indicates the current network congestion con-
dition. However, frequent collection of collision statistics by
the traffic smoother will introduce a high overhead on CPU,
and can even freeze the system in an extreme case. There-
fore,CheckCollisions() should not be called too often. As
a result, the NT-version traffic smoother is less responsive
than the Linux version which uses the most recent collision-
time information as described in Section 2.2. Upon detection
of a collision, the traffic smoother decreases its sending
rate by invoking the functionDecrease(CBD;RP ). In
contrast with the Linux version, the NT version allows
both CBD and RP to be changed, because the timing
granularity that can be used in the Windows NT is fixed at
10 msec. That is, ProcedureCheckCollisions() can be
called at most once every 10 msec. If we set the maximum
CBD to 1500 as we did in the Linux version, the maximum
throughput provided to a single node is 1.2 Mbps, which
leads to low network utilization. Therefore, we must allow
CBD to be larger than 1500. However, in order to avoid
the poor responsiveness of the traffic smoother due to large
bursts, we must set a reasonable maximum value onCBD.
Specifically, we set the maximumCBD to 4500. Now,
whenDecrease(CBD;RP ) is called, the traffic smoother
decrementsCBD by 1500 if CBD is greater than 1500.
Otherwise, it doublesRP as in the Linux version.

If CheckCollisions() indicates that there was no col-
lision, functionIncrease(CBD;RP ) is called. IfRP is
larger than 10 msec,RP is decremented by� as in the
Linux version. The minimum value ofRP is set to 10 msec.
If RP = 10 msec,CBD is incremented by 1500.RP is
capped byRPmax which was set to 1000 msec.� was set
to 10 msec in our implementation.

When the non-RT queue is empty upon invocation of
process NRTQueue, function Increase(CBD;RP ) is
called.

After finishing all the routines, procedure
process NRTQueue sets its next invocation time which is
given as the current time plusRP .

4.2 Experimental Evaluation

We built a testbed with 5 NT workstations, and conducted
the same experiment as we did on the Linux testbed. We now
present the results of the greedy-mode experiments.

The NT testbed consists of one 400 MHz Pentium II PC,
and four 133 MHz Pentium laptop computers, and they are
connected through a 10 BASE-T Ethernet LAN. The colli-
sion domain diameter is 10 m. We configured the NT testbed
similarly to the Linux testbed as shown Figure 4, except
that there are one monitor station (400 MHz Pentium II PC)
and four local stations denoted by PC-1, PC-2, PC-3, and
PC-4. RT control and echo messages were generated from
the local stations in exactly the same way as in the Linux

Procedure process NRTQueue

If (NonRealT imeQueue ! = Empty) then f

Serve(CBD);

if (CheckCollisions() == True) then f

Decrease(CBD;RP );

g

else f

Increase(CBD;RP );

g

g

else f

Increase(CBD;RP );

g

SetNextServiceT ime(RP );

Figure 10. Procedure of handling non-RT
queue

testbed. Therefore, the network load due to RT messages is
2�100�8�4=0:3 = 21:3 kbps. We set the roundtrip dead-
line of RT messages to 129.6 msec as in the Linux testbed.
The volume of non-RT traffic generated by an application
was set to 1 Mbytes, and activated stations generate non-RT
traffic in the greedy mode.

Figure 11 shows the RT message loss ratio in the greedy
mode. The NT testbed generated experimental results sim-

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

no. of activated nodes

m
es

sa
ge

 lo
ss

 ra
tio

smoothing case
no−smoothing case

Figure 11. RT message loss ratio in the greedy
mode observed in the NT testbed

ilar to the ones we obtained from the Linux testbed. When
the adaptive-rate traffic smoothing was enforced (labeled by
“smoothing case” in Figure 11), the RT message loss ratio
ranged from0 to 3:5 � 10�4 when the number of activated
nodes changes from 1 to 4. Especially, when a single node
was activated, no message was observed to miss its deadline
among 400,000 messages. When no traffic smoothing was
enforced, RT message loss ratios are two orders of magni-
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tude larger than those observed when the adaptive-rate traf-
fic smoothing was enforced. As the Linux-version (see Fig-
ure 8), the NT-version adaptive-rate traffic smoother dramat-
ically drops the RT messages loss ratio.

Figure 12 shows the throughput provided to the non-RT
traffic in the greedy mode. Compared to the Linux-version,
the NT-version traffic smoother has better non-RT through-
put characteristics. That is, when the traffic smoother was
enforced, the throughput provided to non-RT traffic drops
only by 25 %, approximately. This is possibly due to the
smaller number of nodes in the NT testbed, but we did not
experiment with a larger testbed yet to confirm this.
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Figure 12. Throughput of non-RT traffic in the
greedy mode observed in the NT testbed

Overall, the NT-version adaptive-rate traffic smoother
can provide reasonable RT message deadline-miss ratios
while providing an acceptable throughput for non-RT traffic.
In addition, NT implementation of the adaptive-rate traffic
smoother is relatively simple thanks to the NDIS intermedi-
ate driver.

5. Conclusion

In this paper, we developed a methodology for provid-
ing soft real-time communication services over an Ether-
net LAN which transports both real-time and non-real-time
packets. To provide faster and predictive delivery service for
real-time packets, in each localnode real-time packets are
given priority over non-real-time ones. In order to reduce
the collision with real-time packets transmitted from other
nodes,each localnode is required to smooth its non-real-
time packet stream. Specifically, we have installed a traffic
smoother at each localnode between the transport layer and
the Ethernet MAC layer. The packet stream arriving from
the TCP/IP layer is bursty by nature, and hence, the traffic
smoother regulates the stream to be as smooth as possible,
then relays the packets to the Ethernet MAC layer. Using
traffic smoothing, one can dramatically reduce the packet-
collision ratio on the network. Each traffic smoother regu-

lates its packet stream using a certain traffic-generation rate.
By allowing the traffic-generation rate to adapt to the cur-
rent network load condition, we were able to provide rea-
sonably good throughput to non-real-time traffic while meet-
ing the real-time requirement of each localnode. We imple-
mented the proposed traffic smoother on both the Linux and
the Windows NT platforms, and conducted extensive exper-
imental studies for various traffic-arrival patterns on the two
testbeds. The studies showed that the message deadline-miss
ratio can be kept well under10�3 for any non-real-time traf-
fic arrival rate if all the local nodes are equipped with the
proposed traffic smoothers. Moreover, the studies showed
that the proposed traffic smoother can provide a reasonable
average throughput to non-real-time traffic while still yield-
ing a remarkably low real-time message deadline-miss ratio.

We considered only the soft real-time communication part
of a real-time control system, but our traffic smoothing can
be extended to various other applications. In particular, we
would like to explore ways of transporting real-time video
over an Ethernet LAN using the proposed traffic smoother.
Our traffic smoothing approach can also be applied directly
to Fast Ethernet which is expected to replace 10 Mbps shared
Ethernet for multimedia support.
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