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Effects of Electromagnetic Interference on Controller-Computer Upsets and
System Stability

Hagbae Kim, Allan L. White, and Kang G. Shin

Abstract—Electromagnetic interference (EMI) causes con-
troller upsetsmanifested as errors in control-law computation on
a controller computer, or as disturbances in data transmission
between sensors/actuators and the controller computer, which
may be critical to system stability. In this paper, we compute the
probability of these EMI-induced upsets in terms of the param-
eters governing EMI behaviors and the conditional probabilities
of upsets in the presence of EMI, which is useful for the design
and verification of the integrity of reliable controllers. The results
are used to modify a system dynamic equation to examine asymp-
totical stability with probability one for the random sequences
of the system states evolving according to the resultant dynamic
equation, which are validated via a simple EMI experiment in a
reverberation chamber.

Index Terms—Burst failure, controller upset, electromagnetic
interference (EMI), stability, susceptibility.

NOMENCLATURE

State of EMI Absence, EMI Existence, No
failure, Failure.

and Parameters of exponential distributions gov-
erning EMI occurrences and durations.

and Transition probabilities and
.

Conditional probability of upset(s) given that
EMI exists (in state ).

and Conditional probability of upset(s) in states
and .
Stationary probability of upset/failure occur-
rences.
Stationary probabilities of states .

and Total numbers of samples for the run lengths
of and .

and Mean values of the samples for the run lengths
of and .
Diagonal disturbance matrices (like).

and Upset indicator and the mean of, i.e.,
.

and Desired system matrix with feedback control
and the actual one.
Maximum eigenvalue of .
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I. INTRODUCTION

A DIGITAL computer has been increasingly used for mon-
itoring and controlling real-time applications due to its

high performance and reliability. It usually resides in the feed-
back loop of the system not only to periodically receive sen-
sory data from the controlled plant but also to execute pro-
grammed tasks (e.g., control-law computation) using the data
while correctly updating the control input at regular time in-
tervals . This controller computer may be susceptible to
an environmental disruption like electromagnetic interference
(EMI) inducing external faults without damaging internal com-
ponents. Unlike most internal faults that are permanent or in-
termittent due to physical defects (e.g., broken, short, or loose
connections), external faults are likely to be transient and cause
primarily functional error modes in a digital system, calledup-
setssuch as 1) changes in data values of the input–output (I/O)
circuitry; 2) logic changes on the bus and control lines of the mi-
croprocessors; 3) logic changes in registers and/or ALU of the
CPU, which consequently prevent the controller computer from
generating correct control inputs.1 The outcomes of these upsets
induce computer failures such as missing the update of control
inputs or generating erroneous control inputs during one or more
sampling periods. Stationary occurrences of these upsets may
lead to the loss of system stability either if their active duration
exceeds a certain limit [3] or if they occur too frequently.

In [9], EMI effects on modern digital systems were reported
to be substantial according to the answers to a questionnaire dis-
tributed to experts. In [1], a methodology for performing an upset
test ina laboratoryenvironmentonamultichannelcontrol system
waspresentedwithacasestudyof fault-tolerantelectronicengine
control systems, where EMI effects were primarily assessed
but the work lacked analytic models or tools for interpreting the
results. In [3] and [8], we previously analyzed the effects of the
duration of computer failures on system stability by deriving
the hard deadlines. However, the work could not capture direct
effects of stationary occurrences of environmental disruptions on
the control system(computer failure and thus systemstability).

We thus investigate the effects of EMI on the controller
computer as well as on the controlled plant at the same time.
Specifically, we build a Markov-chain model for EMI behavior,
and derive the stationary probability of controller upsets, which
represents not only the level ofsusceptibilityof the system to
EMI, but also the occurrence rate of computer failures due to
EMI. To analyze the direct effects of EMI on the controlled
process, we modify the system dynamic equation by accounting
for input disturbances caused by the upsets, and examine system

1We deal with the theoretic aspects of investigating the effects of the upsets,
whereas only the first case of upsets on interfaces is verified through experi-
ments.
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stability. This information is invaluable to the design and ver-
ification of the integrity of reliable fault-tolerant controllers,
because the probability of controller upsets can capture the
relationships between the occurrence/recovery of computer
failures and the level of fault-avoidance/fault-tolerance of the
computers. Note that the occurrence of computer failure(s)
induced by EMI depends on the electrical shielding and
filtering properties of the structural materials against various
intensities and frequencies of EMI, which prevent an exterior
electromagnetic field from penetrating into the controller
computer, as well as on the underlying error-/failure-handling
scheme. The fact that EMI induces data changes in the digital
circuitry is validated through laboratory experiments in a re-
verberation chamber coupling EM fields at various frequencies
and voltages directly into data transmission lines (emulating
the actuator or sensor lines), through which we estimate the
parameters necessary to compute the stationary probability of
controller upsets. We finally present an example of long-term
control for the altitude of a spinning satellite showing the risk
of frequent controller upsets, where the optimal control input
may be corrupted by EMI and system stability may be lost if
the stationary probability of controller upsets exceeds a certain
limit.

II. PROBLEM STATEMENT

In such an adverse operating environment as high intensity
radiated field (HIRF), EM field may cause an analog electrical
signal/noise to be induced and propagated to on-board digital
electronic systems, and some digital micro-electronic devices
are more susceptible to these unwanted noises due to shrinking
device size, lower switching energy, and higher speed opera-
tions. Thus, evaluating the susceptibility of digital controller-
computers to EMI is essential to the development and verifica-
tion of life-, safety-, and mission-critical systems like aircraft,
nuclear reactors, and certain military systems. As mentioned
earlier, the upsets due to EMI primarily result in temporary/tran-
sient functional error modes leading to control-law computation
errors on the closed loop [1], [6]. Moreover, an EMI-rich harsh
environment generally affects the entire system, regardless of
the degree of redundancy used, thereby making the behaviors
of external faults in different modules correlated with one an-
other [2]. Unlike permanent faults caused by physical defects
and manifested as stuck-at, bridging, or stuck-open faults, the
faults resulting from EMI may not require any repair because
there is usually no physical damage to the H/W. However, the
computational tasks in the presence of these faults are contam-
inated and need to be recovered. Since a controller computer
generally executes predefined control tasks with the sensed data
and provides actuators with the control inputs periodically, once
every units of time, such transient faults can cause erroneous
control inputs or input disturbances as a result of erroneous/no
computations in the presence of EMI. (Note that in case the
computer does not produce any output within, the previous
outputs may be used by the latch circuit.) It is also noteworthy
that the computer sometimes operates normally in spite of the
presence of EMI. Considering the above, we assume that all
the effects of EMI on the controller are functional error modes,

changing only some data values temporarily in control-law cal-
culation (without any permanent damage) and that the controller
returns normal in a certain time without special recovery action.2

In addition, we assume that no upset occurs in the absence of
EMI—although some internal faults due to manufacturing de-
fects or wearing effects can still occur/persist, they are far from
our concern to analyze the effects of EMI. EMI is generally
characterized by a long latent period followed by a relatively
short period of presence, whose occurrence rates were investi-
gated in [7], [9]. However, for convenience we assume that EMI
occurrences follow a time-invariant Poisson process with rate

and its active duration has an exponential distribution with
rate —the results can be modified for difference probability
models of EMI behaviors if needed.

III. EFFECTS OFEMI ON STABILITY

We now evaluate the controller's susceptibility to EMI by
computing the stationary probability of controller upsets (com-
puter failures) caused by EMI, from which one can obtain infor-
mation about the rate of EMI causing upsets to controller com-
puters. We then derive the maximum probability of controller
upsets due to EMI to maintain asymptotic stability of the con-
trolled plant.

A. Probability of Controller Upsets Induced by EMI

The EMI susceptibility model can be constructed in two parts.
The first is to characterize the EMI behaviors using field data to
be validated and estimated through EMI experiments, whereas
the second is to build a model capturing the occurrences of con-
troller upsets in the presence of EMI, whose parameters can also
be measured experimentally. We specially focus on the second
part and investigate the effects of controller upsets on the sta-
bility of the controlled plant. We begin with a simple model as-
suming that the probability of upset(s) during one time frame
in the presence of EMI is a constant,(conditional probability
of upset(s) given the occurrence of EMI), regardless whether the
previous state is faulty or not—a more realistic model will be
considered later covering bursty upsets in the presence of EMI.
A Markov chain with two states is used to describe these aspects
because each transition time is already assumed to have an ex-
ponential distribution. The two states will be called(for EMI
Absence) and (for EMI Existence). In state no upset oc-
curs, whereas in state an upset occurs with probabilitylike
tossing a biased coin. The event in state(upset or no upset)
is not affected by the prior events (occurred during the previous
time periods) at all. The Markov chain makes a transition de-
pending on whether or not EMI occurs or disappears. The tran-
sition probabilities and
are thus derived by the probability models of EMI behaviors as-
sumed in Section II, that is,

and

(1)

2Without this assumption, we should consider methods for detecting
faults/failures and providing safe recovery from permanent faults as well as
quick recovery even from transient faults.
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Fig. 1. A Markov-chain model representing EMI presence.

Fig. 1 is a transition diagram of the Markov chain, where runs
of will alternate with runs of and the run lengths in a row
have geometric distributions with mean for the -runs and
mean for the -runs. (Geometric distributions under the as-
sumption of independent events among different time frames
are used for these runs due to its mathematical simplicity. How-
ever, one may consider more accurate models that are not only
complicated but also useless without appropriate (vast) statis-
tical data, which are difficult to collect.) Let be the sta-
tionary probability of upset occurrences. Since the stationary
probability of state , i.e., the fraction of time spent in , is
simply and an upset occurs only in state
with probability is equal to

(2)

We next consider a more realistic model generating a burst of
controller upsets in the presence of EMI, for which state
should be classified into (for No upset/failure) and (for
Failure/upset) depending on whether or not an upset occurs
during the previous time frame. Before dealing with this model,
we need to consider the event of EMI occurrences in detail, as
depicted in Fig. 2(a). If an EMI occurs, the state moves from
to . However, in the case is a dummy state, whose holding
time is zero, i.e., the state changes to eitheror instan-
taneously passing through depending on whether or not an
upset occurs due to EMI. Thus, stateis no longer necessary,
and the diagram of Fig. 2(b) can capture all these phenomena.
This Markov chain with three states can describe a burst of up-
sets in the presence of EMI. Instead of usingfor the condi-
tional probability of upset(s) in state, two states and
have different conditional probabilities of upset(s), defined by

and , respectively. State must persist to simulate a burst
of upsets with large , which should also be much larger than

, because an upset is more likely to occur in an upset state
during the previous time frame than in no upset state. In Fig. 2,

where is the probability that EMI is present
and is the probability of an upset given that EMI is present.
Similarly, . From this model, we can also
derive the stationary probability of each state. Let , and

be the stationary probabilities (i.e., the fractions of time
spent) of , and , respectively. Then, these probabilities

are obtained by solving

(3)

Fig. 2. Markov-chain models: (a) with an instant stateE and (b) with three
states.

In reality, , the stationary probability of EMI presence, is
equal to

and (4)

Hence, the probability of state is computed by combining (3)
and (4)

By solving the above equation for , we obtain

(5)

Consequently, we obtain the stationary probability of EMI-in-
duced upset occurrences by (5), whereand (equivalently,

and ) can be estimated using field data on EMI behaviors
[9]. Although and are not directly observable, they can be
deduced from statistical measurements using other easily mea-
sured parameters like the mean values of the samples for the
run lengths of and . We designed an experiment emulating
EMI and coupling EM fields directly into computer systems,
where we observe the upset duration (measured in time frames)
in the presence of EMI and counted the number of frames during
which incorrect outputs are produced. This corresponds to the
special case ( and ) of the diagram of Fig. 2(b),
implying that EMI always exists. We then collect the samples
for the number of consecutive frames during which no upset
occurs (runs of in a row) and the numbers of consecutive
frames during which upsets persist (runs ofin a row). For ex-
ample, if we obtain the sets of the samples for both cases, we get

and where are are the
total numbers of samples for both cases. When
and are defined as the sums of these samples,
the total number of frames becomes . Let and be
the mean values of the samples for the run lengths ofand ,
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respectively, then and Also, we an-
alytically derive these parameters from the case of and

in the diagram of Fig. 2(b). The mean length of-runs is

(6)

From and , we can obtain the estima-
tors (denoted by and ) for and in terms of and

(7)

B. Features and Effects of Upsets on System Stability

A controller computer calculates the control input at each
sampling period for a linear time-invariant controlled process
that is described by the vector difference equation

(8)

where indicates each time frame (e.g.,) measured from an
initial time . Here, is the system state,
the applied control, and the matrices and are bounded,
which can be obtained from the corresponding continuous-time
model [8]. We start our analysis by formally defining system
stability in terms of the concept of exponential convergence of
a sequence . That is, converges exponentially to
zero if there exist positive constantsand such that

for all , where is a vector norm.
The system is defined as “stable-in-the-mean” if , which
is the mean of the state at theth time frame, converges expo-
nentially to a certain equilibrium state of the system (say).
Also, the system is defined as asymptotically stable with prob-
ability one if, for each only finitely
often, that is, the random sequence converges to for all
sets of events except possibly on a set of events having prob-
ability zero. Note that some recent and future systems such as
highly fuel-efficient “fly-by-wire” aircraft demand the reliable
control actions to maintain stability (stabilizable) because those
are likely to be intrinsically unstable to achieve other purposes
or go through the edge of stability. Thus, frequent upsets of the
controller induced by EMI may affect more seriously system
stability in those systems. We specifically attend to a system
using a certain feedback control input, , for sta-
bilizing the system matrix while optimizing a certain per-
formance index. As described earlier, during an upset the con-
troller computer fails to provide the physical actuator with cor-
rect control inputs due to either 1) control-law calculation er-

rors resulting from logic changes inside processors or 2) trans-
mission disturbances caused by data changes on sensor/actuator
lines or on I/O circuitry containing the interfaces such as A/D
and D/A converters. In other words, the control input during an
upset becomes , where , and are
an identity matrix, a vector , and a diagonal matrix with
random-sequence elements, , modeled by the
bounded outputs of certain dynamic systems with white-noise
sequences, respectively. Let be an actual control input,
which becomes a desirable one or a disturbed one, de-
pending on whether or not an upset occurs. The disturbed one
can also be described in detail as follows:

• in case of control-law calculation errors,
;

• in case of transmission errors on the sensor line,
;

• in case of transmission errors on the actuator line,
;

where are diagonal disturbance matrices (like
) which are independent of one another. The mean and the

variance of each disturbance matrix (random sequence) is given
as and for , and for , and and for ,
measurable through experiments or modeled by the outputs of
dynamic systems with white-noise inputs. To modify the system
dynamic equation (8) accounting for the upset effects, we rep-
resent affected by an upset as

(9)

which covers all three features described above. If the system
has an ideal scheme detecting failures perfectly and instanta-
neously, one can suggest better control strategies to hold the
control inputs at the previous values or to set (i.e.,

) during the computer failures, which was used to de-
rive the control system deadline in the presence of computer
failures and perfect detection coverage in [8]. However, we con-
sider general and practical cases of random (arbitrary) control
inputs generated as a result of controller-computer failures. Let

be an upset indicator, which will be zero or one depending
on the occurrence of an upset during each time frame, then the
mean of is equal to as derived before, i.e., .
By using this sequence of binary upset digits, we can rewrite the
system dynamic equation as follows:

(10)

As a result of stationary-occurring controller upsets, the system
matrix , which was changed from to make
the system stable while minimizing a certain cost index (e.g.,
optimizing a quadratic performance index given by (14)), is now
changed to arandom matrix

(11)
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1) Test of Stability-in-the-Mean:Using this system matrix
to account for the effects of EMI as well as controller upsets,
we examine the system stability. As a simplest case, we compute
the mean of the system matrix from this stochastic equation (11)

(12)

This computation clearly depends on the probability model of
disturbances , which are assumed to be indepen-
dent of one another. Although one can simply examine the sta-
bility condition for the mean of state trajectories, it has little
physical sense because there may be some sample trajectories
(events) losing system stability in spite of meeting the stability
condition of (12), that is, having all eigenvalues smaller than one
(inside the unit circle).

2) Test of Asymptotical Stability with Probability One:We
now develop a method to examine a stronger condition guaran-
teeing asymptotic stability—associated to (infinitely long) tra-
jectory of the system composed of all possible sequences of ma-
trices—with probability one (w.p. 1). The probability distribu-
tion of the matrices induces a (rather complicated) probability
distribution on the trajectory space. Thus, the results of the paper
handle the properties about the trajectory space in terms of pa-
rameters describing the distribution of the matrices. One prop-
erty of random variables is that if is a random sequence and

, then w.p. 1, which is treated in the
Borel-Cantelli lemma [4]. This gives conditions for stability in
terms of the first moments of a scalar function, the matrix norm

. The classical result for deterministic systems is that if the
norm is less than one then the system is geometrically asymp-
totically stable, whereas the stochastic result is represented by
the following theorem.

Theorem 1: If , 1) the system is asymptotically
stablew.p. 1; 2) converges to zero geometrically. If

; and 3) the system is geometrically asymptoti-
cally stable in the mean square sense.

Proof: By the strong law of large numbers,
converges to the averagew.p. 1. Since the

geometric mean is less than or equal to the arithmetic mean

The right-hand side goes to zerow.p. 1as , proving part
1). The proofs of 2) and 3) are straightforward.

In general, neither convergencew.p. 1 nor convergence in
mean square implies each other. For the above criterion, the con-
dition for convergence in mean square implies the condition for
convergencew.p. 1because of the Cauchy–Schwartz inequality,

. Next we consider an eigenvalue condi-
tion for the sufficient condition of stabilityw.p. 1. To this end, we
present the following lemma about the exponential stability of
random sequences (see [4] for proof). Let be a Lyapunov
function, which is a nonnegative real-valued function with con-
tinuous derivatives and , such that as

.

Lemma 1: If for all , and
for some , then

and w.p. 1.
Based on this lemma, we propose the following theorem.
Theorem 2: Let the state evolve according to a system

matrix , which is a random matrix having some random se-
quences as its elements. If all eigenvalues of are
smaller than zero, then w.p. 1.

Proof: Let . Recall , and
consider Lemma 1

Since is symmetric,
, where is the maximum eigenvalue of

. Hence, if all eigenvalues of are
smaller than zero, by Lemma 1 (by assigning ),

w.p. 1. Therefore, w.p. 1.
Let be an eigenvalue of , then we have the following

proposition.
Proposition 1: Since a symmetric matrix can be diagonal-

ized by an orthogonal transformation

Consequently, we can examine asymptotic stabilityw.p. 1
by obtaining the eigenvalues of , where is the
random matrix of (11) modified to account for the EMI effects.
When there is some correlation between the disturbances

, the computation of becomes more
complicated due to nonzero covariances of the disturbances.
However, if we assume independence among the disturbances
like (12), this computation needs only the variance of each
disturbance and its mean value. Applying these results, we can
derive the maximum value of maintaining system stability
for certain disturbances with given mean and variance. Intu-
itively, we expect that as the probability of upset occurrences
increases the stability property is less likely to be preserved by
comparing the maximum eigenvalues for various values of.
From the requirements of , we can consequently obtain the
conditions of and , which are determined by the electrical
shielding properties against various intensities and frequencies
of EMI.

IV. EXPERIMENTS AND AN EXAMPLE

The EMI experiment aims at emulating the physical effects of
EMI on the digital systems and determining how the EMI cor-
rupted the signals. Since we analytically derived the mean of the
run lengths for states and using the necessary parameters
and the property of a geometric distribution, the sample mean
obtained through this EMI experiment will enable us to estimate
the necessary parameters using (7). This procedure corresponds
to the second part of constructing the EMI susceptibility model,
i.e., to model the occurrences of controller upsets in the presence
of certain EMI. In the experiment, EMI affecting only trans-
mission lines and (avionics) interfaces is considered, where all
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Fig. 3. The experimental setup: (a) signal transmission test set-up; (b) inside the cable tray.

other experiment equipments like an electric/optic (E/O) con-
verter should be completely shielded against EMI, examined
via pre-experimental tests. Specifically, the experiment is de-
signed to generate upsets on the communication loop due to
noise induced by the radiating radio frequency (RF) field in the
reverberation chamber, as depicted in Fig. 3. Although there are
two modes of EMI coupling, radiated, and conducted, E/O con-
verters can avoid propagating EMI effects outside the chamber
through the conducted mode of coupling. (Note that the con-
ducted path may be resistive, or some inductance and capaci-
tance, or combination thereof.) The multilink transceiver (MLT)
is placed within an isolated cable tray located under the floor of
chamber. Eighteen feet of twisted pair shielded cable3 is con-
nected to the MLT transmitter terminal, draped in free-space
within the HIRF chamber, and returned to the receive terminal
connection. The cable shields are connected to an earth ground,
as shown in Fig. 3, inside of the tray with an EM-field sensor.
Once these devices are secure, the chamber is closed and the
stirrer rotates with a certain speed (e.g., 5 r/min) and the signal
having a certain frequency and power level, which are control-
lable, is radiated from the antenna into the chamber. An oscil-
loscope is also connected to the transmit and receive terminal
strip, of the up-stream MLT to observe any false signal trans-
mission in the communication loop. Four-byte streams were
sent through the chamber under EMI having stirred- and con-
tinuous-wave power.

• Stream 1: 2 K, each of auniformdistribution,normaldis-
tribution, asawtooth, and aramp.

• Stream 2: 8 K oframp from 0 to 255
• Stream 3: 2 K, each oframp, sawtooth, normaldistribu-

tion, anduniformdistribution.
• Stream 4: 8 K oframp from 255 to 0.

At each frequency and power, streams 1 and 2 were each sent
five times. If there was no disturbance, the next frequency or
power level was selected. If there was a disturbance, streams 3
and 4 were each sent five times. There was no upset on the trans-

3The transmission type is RS422 with 12.5 Kbytes per second. There is a
check to see if anything is received and a parity check. If nothing was received
or if an incorrect result was detected (by parity), then the controller gave the
zero (or neutral response) as if no corrective action was needed.

TABLE I
( �n ; �n ) OBTAINED BY THE EXPERIMENT,

( �p ; �p ) AND � DERIVED BY EQS.(3.7)AND (3.5), RESPECTIVELY

mission under the frequencies 475, 500, and 575 MHz, but we
observed some upsets under 525 and 550 MHz. Table I shows
the estimated and in the presence of EMI having these
two frequencies for various power levels, to which transmission
upsets are most sensitive. We expect that there are critical fre-
quencies4 of EMI contributing more significantly to upsets, de-
pending upon the frequency of the carrier signal and the type/ge-
ometry of placement of the transmission lines in the chamber.
The results showing and sup-
port our model covering bursty upsets. Suppose that the param-
eters of EMI behaviors are given by and

. For example, if is one second, the mean rate
of EMI occurrences is 3 h and the mean duration is 30 s. We then
estimate for various frequencies and power levels, as given
in Table I. If the transmission lines used in this experiment are
assumed as the sensor or the actuator lines, the effects of EMI
on system stability or performance can be analyzed using the
estimated .

We now present a simple example5 to determine the sta-
tionary probability of controller upsets leading to loss of
asymptotical stabilityw.p. 1 as well as stability-in-the-mean.
The dynamic behavior of the altitude of a spinning satellite is

4Dividing the speed of electromagnetic wave (3� 10 m/s) by the length
of the wire (5.54 m) gives 5.4� 10 s. Hence, 540 MHz is a multiple of the
resonant frequency of the wire. We believe this accounts for being able to disturb
the system at very low power levels of 525 and 550 MHz.

5Extracted from [5] but with modified coefficients.
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TABLE II
� (E[W W]) FOR VARIOUS VALUES OF THE FIRST AND

SECOND MOMENTS OF� AND � WHILE VARYING � ; CASE1:
f�2I; 2I; 20I; 20Ig, CASE2-a: f�5I; 5I; 20I;20Ig, CASE2-b:
f�5I;5I; 50I;50Ig, CASE 2-c: f�5I;5I; 100I;100Ig, CASE

3: f�10I;10I;100I;100Ig, FOR f� ; � ; � ; � g AND � = 0,
RESPECTIVELY

described in terms of the long-term control of the roll and
yaw angles, which is based on the dynamic coupling re-
sulting from the rotation of the satellite around the earth

(13)

where the coefficients depend upon the orbital frequency, i.e.,
the angular velocity of the satellite with respect to the inertial
frame, and and are control signals. The goal of the control
is to maintain a desired orientation of the satellite in the orbit
around the earth (the stabilization problem) with the minimum-
control effort, which results in the optimal (feedback) control
gain matrix by minimizing a quadratic performance index

(14)
Suppose that and are determined by the control
objective of interest and . The corresponding coefficient
matrices are then

This feedback control changes the eigenvalues from
to , thus stabilizing the

satellite. When we introduce some EMI effects generating
upsets in the controller, the eigenvalues are changed by varying
the frequency in stationary occurrences of upsets. In Table II,
the maximum eigenvalues of are shown for various
values of the mean and the variance of each disturbance
(assumed to occur only on the sensor and/or the actuator lines),
while varying . Using Theorem 2 and these values, we can

examine asymptotic stabilityw.p. 1 in the usual sense of sta-
bility properties for random sequences. We see that the stability
property is less preserved as increases. When becomes
equal to or greater than a certain threshold probability, which is

for case 1, for case 2-a,
for case 2-b, for case 2-c, and for
case 3, the system has at least one eigenvalue greater than or
equal to one, implying the loss of system stability in the sense
of asymptotical stability withw.p. 1. Obviously from case
2- , the system becomes unstable with a larger variance
of disturbance, implying that the occurrences of upsets should
be kept below a smaller rate to maintain system stability when
information about disturbance magnitudes is more uncertain.
As a result, one should design the controller sufficiently tolerant
of EMI to have the corresponding and , or equivalently to
meet the condition thus retaining system stability.

V. CONCLUSION

We investigated the effects of EMI both on the controller
computer and on the control plant simultaneously. First, we de-
rived the stationary probability of upsets induced due to EMI,
which represents the level of susceptibility of the controller to
EMI depending upon the EMI behaviors and the shielding prop-
erties of the materials and structures of the controller against
EMI. We also examined system stability by using a stochastic
dynamic equation modified to account for the effects of upsets.
The results showed the effects on EMI on the control plant indi-
rectly through the probability of upsets in the controller. We pre-
sented an example examining system stability and the EMI ex-
periment, in a HIRF chamber that was constructed at the NASA
Langley Research Center, estimating the necessary parameters
to demonstrate our theoretical work.
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