
On Load Balancing in Multicomputer/Distributed
Systems Equipped with Circuit or Cut-Through

Switching Capability
Ching-Chih Han, Member, IEEE Computer Society, Kang G. Shin, Fellow, IEEE, and

Sang Kyun Yun, Member, IEEE Computer Society

AbstractÐFor multicomputer or distributed systems that use circuit switching, wormhole routing, or virtual cut-through (the last two are

collectively called the cut-through switching), the communication overhead and the message delivery time depend largely upon link

contention rather than upon the distance between the source and the destination. That is, a larger communication overhead or a longer

delivery delay occurs to a message when it traverses a route with heavier traffic than the one with a longer distance and lesser traffic.

This characteristic greatly affects the selection of routes for interprocessor communication and/or load balancing. We consider the

load-balancing problem in these types of systems. Our objective is to find the maximum load imbalance that can be eliminated without

violating the (traffic) capacity constraint and the route to eliminate the imbalance while keeping the maximum link traffic as low as

possible. We investigate the load-balancing problem under various conditions. First, we consider the case in which the excess load on

each overloaded node is divisible. We devise a network flow algorithm to solve this type of load balancing problem optimally in

polynomial time. Next, we impose the realistic assumption that the system uses a specific routing scheme so that the excess load

transferred from an overloaded node to an underloaded node must use the route found by the routing scheme. For this case, we use a

graph transformation technique to transform the system graph to another graph to which the same network flow algorithm can be

applied to solve the load balancing problem optimally. Finally, we consider the case in which the excess load on each overloaded node

is indivisible, i.e., the excess load must be transferred as an entity. We show that the load-balancing problem of this type becomes

NP-complete and propose a heuristic algorithm as a solution.

Index TermsÐLoad balancing, minimax flow problem, excess/deficit load, overloaded/underloaded nodes, link traffic.

æ

1 INTRODUCTION

IN distributed/multicomputer systems, the storage of each
computer/node may have been overloaded or under-

loaded as data and/or files are created and deleted. This is
more likely to occur as large files for such applications as
multimedia are frequently created/deleted and transferred.
Since there is usually limited storage space at a node,
uneven data/file distribution may result in inefficient use of
storage and affect the ability of future data/file creation. For
example, some nodes may not have sufficient space to store
new data/files even if the overall system has sufficient
space for all the data/files. Load balancing in this respect is
thus to transfer the excess (data) load on overloaded nodes
to underloaded ones to balance the (data) load among all
the nodes in the system. For this load balancing, we need to
efficiently transfer the excess load without affecting com-
munications within and/among the existing applications.

For distributed/multicomputer systems that use circuit
switching, wormhole routing [1], or virtual cut-through [2],
the communication overhead and the message delivery
time depend largely upon link contention rather than upon
the distance between the message's source and destination.
That is, a larger communication overhead or a longer
delivery delay results when a message traverses a route
with heavier traffic than the one with a longer distance and
less traffic. System performance depends largely upon how
evenly the traffic is distributed in wormhole routing [3].
This characteristic greatly affects the selection of routes for
interprocessor communication (IPC) or load balancing. The
objective of selecting a route for IPC or load balancing is
thus to balance the network load among all links and
reduce the probability of link contention.

The major difference between IPC and load balancing is
that, in the former, we must select a route or routes for each
pair of communicating processors, while, in the latter, we
can select a route or routes from an overloaded node to one
or more underloaded nodes. Note that the excess load on an
overloaded node can be transferred to any underloaded
node or nodes, instead of a particular one. Because of this
difference, most, if not all, of the variations of the IPC
routing problem are NP-hard, while optimal algorithms of
polynomial-time complexity exist for several variations of
the load-balancing problem. Bianchini and Shen [4] pre-
sented a traffic scheduling algorithm that yields optimal
network traffic patterns in multiprocessor networks.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000 947

. C.-C. Han is with CreOSys, Inc., 39560 Stevenson Pl., Suite 221, Fremont,
CA 94539. E-mail: cchan@creosys.com.

. K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

. S.K. Yun is with the Department of Computer Science, Seowon University,
Cheongju, Chungbuk, 361-742, Korea. E-mail: skyun@seowon.ac.kr.

Manuscript received 27 Aug. 1996; revised 12 Aug. 1999; accepted 8 Dec.
1999.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 102090.

0018-9340/00/$10.00 ß 2000 IEEE

Kandlur and Shin [5] studied the route-selection problem
for interprocessor communication in multicomputer net-
works equipped with virtual cut-through switching cap-
ability. Bokhari [6] solved the load-balancing problem in
circuit-switched multicomputers. He found the largest
amount of load imbalance that can be eliminated without
contention under several restricted assumptions: 1) There is
ªunitº load imbalance; 2) there is a fixed routing algorithm;
3) no more than one unit of excess load can be transferred
via any link. Moreover, his solution does not take into
account the other IPC traffic.

This paper deals with the route-selection problem for
balancing the load in multicomputer/distributed systems
that use circuit switching, wormhole routing, or virtual cut-
through. We assume that load imbalance on each node can
be any arbitrary value, instead of one unit only, and each
link has a capacity constraint. Our main concern is to find
the maximum load imbalance that can be eliminated
without violating the capacity constraint on each link and
to select routes to eliminate the imbalance while keeping
maximum link traffic flow as low as possible. While
transferring the excess load from overloaded nodes to
underloaded ones balances the storage load among all
nodes, minimizing the maximum link traffic among all links
balances the communication load among all links. More-
over, the remaining link capacities can be used for other
communications. Two cases of loads are studied. First, we
consider the case in which the excess load on each
overloaded node is divisible, i.e., can be arbitrarily
divided and transferred to one or more underloaded
nodes. Second, we consider the case in which there may
be one or more entities of excess load on each node and
each of them is indivisible and must be transferred to an
underloaded node as a single entity. We also take into
account the effect of existing IPC traffic on route selection
for transferring excess load.

In [6], Bokhari considered multicomputer systems that
use some specific routing schemes such as row-column
routing in meshes and e-cube routing in hypercubes. He
used a graph transformation technique and a network flow
algorithm to solve the load-balancing problem in these
systems. The graph transformation schemes used for
meshes and hypercubes are different. In contrast, we
consider multicomputer/distributed systems with and
without specific routing schemes and propose a simple,
unified graph transformation scheme which transforms a
graph with a specific routing scheme into a graph without
the specific routing scheme. We solve the load-balancing
problem using a network flow algorithm in the graph
without the specific routing scheme.

With the proposed graph transformation scheme and the
network flow algorithm, we show that, for the case of
divisible excess load, the load-balancing problem with or
without specific routing schemes can be solved optimally in
polynomial time, i.e., we can find the maximum load
imbalance that can be eliminated without violating the
traffic capacity constraint on each link while minimizing the
maximum contention among all links. For the case of
indivisible excess load, we first prove that the load-balancing

problem is NP-complete and then propose a heuristic
algorithm for it.

The rest of the paper is organized as follows: In Section 2,
we formally define the load-balancing problem considered
in this paper, transform it into a network flow problem, and
briefly review a network flow algorithm to solve our load-
balancing problem. In Section 3, we solve the load-
balancing problem under the assumptions that excess load
is divisible and there is no specific routing scheme in the
system under consideration. Section 4 shows how to
transform the graph representing a system with a specific
routing scheme to another graph so that the technique
described in Section 3 can be used to find an optimal
solution for the load balancing in the system. In Section 5,
we give an NP-complete proof and a heuristic algorithm for
the load-balancing problem with indivisible excess load.
The paper concludes with Section 6.

2 PROBLEM FORMULATION AND A NETWORK FLOW

ALGORITHM

2.1 Problem Formulation

The system under consideration is either a distributed
point-to-point network or a multicomputer with an inter-
connection structure, such as a mesh or a hypercube. We
will use a directed graph G � �V ;E� to represent the
system, where the vertex set V represents the set of nodes/
processors in the system and the edge set E represents the
set of communication links.

When the system needs to perform load balancing, each
node is either overloaded, underloaded, or neutral. The
excess and deficit loads can be any arbitrary values, as
opposed to only one unit as assumed in [6]. Let si; 1 � i � p,
be overloaded nodes and tj; 1 � j � q be underloaded
nodes. The excess load on an overloaded node si 2 V is
denoted by ei and the deficit load on an underloaded node
tj 2 V is denoted by dj. As in [6], we assume that the global
state of the system and the degree of load imbalance on
each node are known to the load balancing controller. We
require at most ei units of load to be transferred from an
overloaded node si to underloaded nodes and at most dj
units of load to be transferred to an underloaded node tj
from overloaded nodes. We call this requirement the load
transfer constraint. A traffic capacitor function C is defined
on the edge set E, i.e., each link �vi; vj� 2 E is associated
with a traffic capacity C�vi; vj�, which is the maximum
communication volume that can be transferred along the
link �vi; vj� during load balancing. The link capacity
constraint restricts the total communication volume on a
link �vi; vj� from exceeding the link traffic capacity C�vi; vj�
during load balancing.

The load-balancing problem we consider is to find the
maximum load imbalance that can be eliminated without
violating any link capacity constraint and to select the
routes to eliminate the load imbalance, while keeping
maximum link traffic flow as low as possible. During load
balancing, minimizing the maximum link traffic balances
the communication load among all links.

This load-balancing problem can be transformed into a
network flow problem if we construct a new graph G0 as

948 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

follows: G0 � �V 0; E0�, where V 0 � V [fs; tg, E0 � E [
f�s; si� j si is an overloaded node, 1 � i � pg [f�tj; t� j tj is
an underloaded node, 1 � j � qg as shown in Fig. 1. In other
words, a new graph G0 is constructed by adding to a graph
G a new source node s, a new sink node t, new edges

connecting from the source node s to each overloaded node
si, and new edges connecting from each underloaded node
tj to the sink node t. The traffic capacity C0�s; si� on a new
edge �s; si� is the excess load value ei, C

0�tj; t� on a new edge
�tj; t� is the deficit load value dj, and C0�vi; vj� for a edge
�vi; vj� 2 E is C�vi; vj�. The maximum load imbalance that

can be eliminated in a graph G is the maximum flow from
the source node s to the sink node t in a new graph G0 and
can be obtained by running a maximum flow algorithm [7].
However, we also want to keep the maximum of link traffic
as low as possible and this can be solved not by a maximum
flow algorithm, but by the minimax flow algorithm [8].

The minimax flow problem is to find a maximum flow

for a network that also minimizes the maximum edge cost,
where the cost of an edge is defined to be the weight times
the flow of the edge. The minimax flow problem with 0/1
weights is a special case of the minimax flow problem in
which the weight of each edge is either 0 or 1. The edge cost
is the link traffic during load balancing. Since new edges in

the new graph G0 do not correspond to communication
links, their traffic need not be kept as low as possible and
their edge cost is zero and, thus, their weights are zero. The
cost of an edge corresponding to a communication link is its
link traffic and, thus, its weight is one. Therefore, the load-
balancing problem in this paper can be transformed into a

minimax flow problem with 0/1 weights. Its solution
algorithm was proposed in [8].

The system may or may not use a specific routing
scheme. The system with a specific routing scheme must be
transformed into the system without specific routing
schemes as network flow algorithms including a minimax
flow algorithm do not consider specific routing schemes.

2.2 The Minimax Flow Algorithm

Before describing our solution for the load-balancing
problem, we first give a brief review on the minimax flow
problem and algorithm. Details on the network flow
problem and the minimax flow problem/algorithm can be

found in [9] and [8], respectively. The minimax transportation

problem, similar to the minimax flow problem, can also be
found in [10].

Let N � �V ;E; s; t; C� be a network with node set V ,
edge set E, source s, sink t, and capacity function
C : E ! R� [f0g, where G � �V ;E� is the underlying
directed graph with jV j � n and jEj � m, and R� is the
set of positive real numbers. Each edge �u; v� 2 E is also
associated with a nonnegative real-valued weight w�u; v�. If
w�u; v� is either 0 or 1 for all edges �u; v� 2 E, we say that the
network has a 0/1 weight function w.

For convenience, we extend the capacity function and
weight function to all vertex pairs by defining C�u; v� � 0
and w�u; v� � 0 for all �u; v� 62 E. A flow in a network N is a
function f : V � V ! R� [f0g that satisfies the following
properties:

1. Capacity constraint: 0 � f�u; v� � C�u; v�, for all
u; v 2 V .

2. Conservation condition:
P

v2V f�v; u� �
P

v2V f�u; v�,
for all u 2 V ÿ fs; tg.

For each edge �u; v� 2 E, f�u; v� is called the flow in �u; v�.
For each �u; v� 2 V � V , f�u; v� ÿ f�v; u� is called the net flow
from u to v. The capacity constraint states that the flow in
�u; v� is bounded by the capacity C�u; v� and the conserva-
tion condition states that the net flow going into a node,
except the source and the sink, is equal to the net flow going
out of the node. The value of a flow f , denoted as jf j, is the
net flow going out of the source, i.e.,

P
v2V �f�s; v� ÿ f�v; s��.

If �u; v� 2 E and f�u; v� � C�u; v�, we say that flow f
saturates edge �u; v� and call �u; v� an f-saturated edge in
N . The cost (with respect to flow f) of each edge �u; v� 2
E is defined to be w�u; v� � f�u; v�. The minimax flow
problem is to find a maximum flow f which minimizes
max�u;v�2E w�u; v� � f�u; v�. Since our load-balancing problem
can be transformed to the minimax flow problem with a 0/1
weight function, we shall henceforth concentrate on net-
works with 0/1 weight functions.

Definition. Given a network N � �V ;E; s; t; C� with a 0/1
weight function w, define N��� � �V ;E�; s; t; C�� to be a new
network with E� � E and C��u; v� � C�u; v� if w�u; v� � 0
and C��u; v� � min�C�u; v�; �� if w�u; v� � 1, for each edge
�u; v� 2 E. An edge �u; v� 2 E� is called a critical edge if
w�u; v� � 1 and C��u; v� � � < C�u; v�.

The maximum edge cost allowed for the network N��� is
�. Let f� be a maximum flow in N and f� a maximum flow
in N���. Since C��u; v� � C�u; v� for all �u; v� 2 E, we have
jf�j � jf�j for all � � 0 and, thus, jf�j is the maximum value
of all jf�j. Therefore, the minimum value of the maximum
edge cost for a maximum flow in N , �� is the minimum
value of � such that jf�j � jf�j.
Definition. �� � minf� j � � 0 and jf�j � jf�jg, where f� is a

maximum flow in N���.

We proposed in [8] a minimax flow algorithm, MMC01,
as a solution to the minimax flow problem with a 0/1
weight function. MMC01 simply finds �� and constructs a
maximum flow f�

�
for the network N����. For complete-

ness, we list Algorithm MMC01 in Fig. 2 and summarize it
below. However, for the sake of conciseness, we omit the
proofs of the correctness and time complexity of the
algorithm. The interested reader is referred to [8] for details.

HAN ET AL.: ON LOAD BALANCING IN MULTICOMPUTER/DISTRIBUTED SYSTEMS EQUIPPED WITH CIRCUIT OR CUT-THROUGH... 949

Fig. 1. Graph construction for load balancing.

The idea behind Algorithm MMC01 is that, in each
iteration, variable � of the constructed network N��� is set
to the maximum edge cost allowed in that iteration. With
this maximum edge cost, the capacity of an edge �u; v� with
w�u; v� � 1 is set to min�C�u; v�; ��, i.e., the flow allowed to
go through edge �u; v� is restricted to min�C�u; v�; ��. The
algorithm repeatedly constructs maximum flows for net-
works N��� with increasing values of �. Initially, � :� 0
(Step 2). If jf0j � jf�j, there is a maximum flow with zero
cost. Otherwise, if jf�j � jf�j and jf�0 j < jf�j for all
0 � �0 < �, the optimal value of � (i.e., the minimum value
of the maximum edge cost, ��) is found.

In Step 3, if jf�j < jf�j, the optimal value of � has not
been found. For each �u; v� 2 E� � E, if w�u; v� � 1 and
f��u; v� � C��u; v� � � < C�u; v�, �u; v� is an f�-saturated
critical edge in N���. Therefore, to get a larger flow, we
need to increase the capacities of critical edges. Let � and �
be defined as in the algorithm (Step 4). It has been shown in
[8] that � ��=� � ��. Hence, we set � :� � ��=� and
repeat the process. This assignment guarantees that the
value of � is always less than or equal to the optimal value
�� and, upon termination, jf�j � jf�j and, hence, � � ��.

The time complexity of Algorithm MMC01 is shown in
the following theorem.

Theorem 1. Algorithm MMC01 terminates in at most ` iterations
and, hence, has a time complexity ofO�` �M�n;m��, where ` is
the number of edges with nonzero weight and M�n;m� is the
time complexity of the algorithm to find a maximum flow in a
network with jV j � n vertices and jEj � m edges and
1 � ` � m.

Proof. See [8]. tu

If the capacity C and flow f in N are not nonnegative real

numbers but nonnegative integers, Algorithm MMC01 can

still be applied to find a (integral) minimax flow for the

network N except that the statement � :� � ��=� in Step 4

should be changed to � :� � � d�=�e.

3 SYSTEMS WITHOUT SPECIFIC ROUTING SCHEMES

In this section, we discuss the load-balancing problem for

systems without being constrained by any specific routing

scheme, i.e., the excess load to be transferred from an

overloaded node to an underloaded node can use any path

between them.
We first consider the case in which the excess load on

each overloaded node can be arbitrarily divided and

transferred to one or more underloaded nodes along

different routes. In the case where excess load is indivisible,

i.e., each overloaded node may have one or more entities of

excess load each of which can only be transferred to an

underloaded node as an entity, the load-balancing problem

becomes more difficult. We will discuss this case in

Section 5.
For the case that excess load is arbitrarily divisible,

Algorithm MMC01, described in Section 2.2, can be easily

applied to find the maximum amount of load imbalance

that can be eliminated and to select the routes for load

balancing, minimizing the maximum link traffic. An

algorithm for load balancing of divisible excess loads

consists of two steps. In Step 1, we construct a new graph

as described in Section 2.1. In Step 2, we use the MMC01

algorithm described in Fig. 2 to find a minimax flow f . This

algorithm is listed in Fig. 3.

950 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 2. Algorithm for minimax flow problem with a 0/1 weight function.

When there is additional communication traffic gener-

ated by existing applications, Algorithm DIV-MMC01

should be modified. Let F �u; v� be the estimated commu-

nication traffic volume by current applications during load

balancing. Since the capacity of link �u; v� that the load-

balancing traffic can use is reduced from C�u; v� to

C�u; v� ÿ F �u; v�, the network N��� in Algorithm MMC01

of Phase II should be redefined as follows:

Definition. Let N � �V 0; E0; s; t; C0�, w, and F be defined as

above. Define N��� � �V 0; E�; s; t; C�� to be a new network

with E� � E0 and C��u; v� � C0�u; v� ÿ F �u; v� if w�u; v� �
0 and C��u; v� � min�C0�u; v� ÿ F �u; v�; � ÿ F �u; v�� i f

w�u; v� � 1, for each edge �u; v� 2 E. An edge �u; v� 2 E� is

called a critical edge if w�u; v� � 1 and

C��u; v� � min�C0�u; v� ÿ F �u; v�; � ÿ F �u; v��
< C0�u; v� ÿ F �u; v�:

Moreover, the initial value of � in Step 2 of MMC01 should

be changed to max�u;v�2E F �u; v�. In this case, the value of �

in each iteration of MMC01 is the maximum link traffic

allowed for that iteration, where link traffic include both

existing communication traffic and load balancing traffic,

F �u; v� � f�u; v�.

Our algorithm is compared with the algorithm that uses
a maximum flow algorithm instead of MMC01 in Step 2 of
Algorithm DIV-MMC01. We applied the two algorithms to
an 8� 8 mesh network. It is assumed that the capacity of
every link is 1,000 and there are four overloaded nodes and
four underloaded nodes. Every underloaded node has a
deficit load of 2,000 and the excess loads of all overloaded
nodes have the same size. The size of excess load was
varied from 0 to 1,300. The maximum amount of load
imbalance that can be eliminated by our algorithm is the
same as that by the maximum flow algorithm. However, the
maximum link flow in our algorithm is much lower than
that in maximum flow algorithm except in cases of large
excess loads, as shown in Fig. 4.

4 SYSTEMS WITH SPECIFIC ROUTING SCHEMES

In this section, we discuss the load-balancing problem for
systems with specific routing schemes. In a deterministic
routing algorithm or a partially adaptive routing algorithm,
selection of the routing path is restricted to a subset of
possible paths and selection of an output link can be
restricted by the input link. For example, the row-column
(or XY) algorithm in meshes routes a packet first along the
X dimension and then along the Y dimension. In this
algorithm, a packet input along the Y dimension cannot be

HAN ET AL.: ON LOAD BALANCING IN MULTICOMPUTER/DISTRIBUTED SYSTEMS EQUIPPED WITH CIRCUIT OR CUT-THROUGH... 951

Fig. 3. Algorithm for balancing divisible excess loads.

Fig. 4. Maximum link flows when excess load is divisible.

forwarded along the X dimension. The e-cube routing
algorithm in hypercubes routes a packet first along the
lowest dimension and then along the higher dimensions,
and cannot forward a packet along lower dimension than its
input dimension. The west-first routing algorithm in
meshes based on the turn model [11] routes a packet first
west, if necessary, and then adaptively south, east, north. In
the west-first algorithm, a packet input along a dimension
other than west cannot be transferred along west. We need
to transform a graph with a specific routing scheme into a
graph with no specific routing scheme in order to prevent
flow from being forwarded along a path that is impossible
under a specific routing when a network flow algorithm is
executed.

Given a system graph G � �V ;E� with a specific routing
scheme, we can transform G into another graph G0 �
�V 0; E0� without a specific routing scheme according to the
following rules (see Fig. 5):

R1. Each node vx 2 V is split into d�vx� nodes in G0, where
d�vx� is the total degree of node vx. If �vi; vx� 2 E, there is
a node vIix 2 V 0, which is called an input splitting node of
vx, and if �vx; vj� 2 E, there is a node vOxj 2 V 0, which is
called an output splitting node of vx.

R2. For each edge �vi; vx� 2 E, there is a corresponding edge
�vOix; vIix� 2 E0 with the capacity C0�vOix; vIix� � C�vi; vx� and
the weight of 1. (This edge corresponds to a real
communication link.)

R3. If the path along two consecutive edges �vi; vx� and
�vx; vj� is possible, there is an edge �vIix; vOxj� 2 E0 with the
capacity C�vIix; vOxj� � 1 and the weight of 0. We call this
edge an internal edge.

R4. There is a source node s 2 V 0. For each overloaded
node vi 2 V , there are a node si 2 V 0 and an edge
�s; si� with the capacity C�s; si� � ei and the weight of
0, where ei is the excess load on vi. For each output
splitting node vOix 2 V 0 of a node vi, there is an edge
�si; vOix� 2 E0 with the capacity C�si; vOix� � ei and the
weight of 0.

R5. There is a sink node t 2 V 0. For each underloaded
node vj 2 V , there are a node tj 2 V 0 and an edge �tj; t�

with the capacity C�tj; t� � dj and the weight of 0,
where dj is the deficit load on vj. For each input
splitting node vIxj 2 V 0 of a node vj, there is an edge
�vIxj; tj� 2 E0 with the capacity C�vIxj; tj� � dj and the
weight of 0.

After the system graph G is transformed into G0, we can
treat the system represented by G0 as one without any
specific routing scheme and solve the load-balancing
problem by finding a minimax flow for the network N �
�V 0; E0; s; t; C0� with the weight function w as described in
Section 3, where G � �V 0; E0� and C0 and w are the capacity
and weight functions defined in rules R1-R5.

The transformed graphs (obtained by applying only
rules R1-R3) of a 3� 3 mesh that uses the row-column
routing scheme are shown in Fig. 6. Each node in three-
dimensional hypercubes with the e-cube routing and each
node in meshes with the west-first routing are transformed
as shown in Fig. 7. Note that we assume each link between
two adjacent nodes u and v in a mesh or a hypercube is a
bidirectional communication link and, thus, there are two
directed edges �u; v� and �v; u� corresponding to this link in
the graph representation of the mesh or the hypercube.

5 SYSTEMS WITH INDIVISIBLE EXCESS LOADS

In this section, we discuss the case in which the excess load
is indivisible. We assume that there is no specific routing
scheme in the system. For systems that use certain specific
routing schemes, one can first apply the graph transforma-
tion rules described in Section 4 to the representing graph

952 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 5. Illustration of graph transformation.

Fig. 6. The transformed graph of a 3� 3 mesh that uses the row-column

routing scheme.

Fig. 7. The transformation of nodes. (a) A node in a 3-cube with e-cube

routing. (b) A node is a mesh with west-first routing.

and then treat the transformed graph as a system with no
specific routing scheme.

As discussed in Section 3, in a system with indivisible
excess load, each overloaded node si has one or more
indivisible entities of excess load ei1; ei2; . . . ; eiki , for some
ki � 1, each of which can only be transferred to an
underloaded node as an entity. Without loss of generality,
we assume that each overloaded node si has exactly one
entity of indivisible excess load ei since if si has ki > 1
entities of excess load, we can add a new overloaded node
sij with one entity of indivisible excess load eij and a new
edge �sij; si� for each entity of excess load eij, 1 � j � ki, of
si and treat si as a neutral node.

We first show that the load-balancing problem with
indivisible excess load is NP-hard in the strong sense [12]
(in fact, we show that the problem of finding the maximum
load imbalance that can be eliminated without considering
the link contention is already NP-hard in the strong sense if
the excess load is indivisible). We then propose a heuristic
algorithm as a solution to the NP-hard case of the load-
balancing problem. The decision version of the load-
balancing problem of finding the maximum load imbalance
that can be eliminated is to ask, given a number B, whether
or not it is possible to eliminate at least B units of load
imbalance (without violating the link capacity and load
transfer constraints).

Theorem 2. The decision version of the load-balancing problem of
finding the maximum load imbalance that can be eliminated is
NP-complete in the strong sense if the excess load is
indivisible.

Proof. It is easy to see that the decision version of the load-
balancing problem is in NP. To complete the proof, we
reduce to it the multiprocessor scheduling problem [12]:
Given a set A � fa1; a2; . . . ; ang of n tasks, a length l�ai�
for each 1 � i � n, a number p of processors, and a
deadline D, is there a partition A � A1 [A2 [� � � [Ap of
A such that max1�i�p�

P
a2Ai

l�a�� � D?
Given an instance of the multiprocessor scheduling

problem, we construct an instance of the load-balancing
problem (shown in Fig. 8) in which 1) each si, 1 � i � n,
is an overloaded node with indivisible excess load of
l�ai� units, and t is an underloaded node with deficit load
of
Pn

i�1 l�ai� units; 2) there are p node-disjoint paths from
u to v, all the edges on these paths have a capacity D, all
the other edges have an infinite capacity, and
B �Pn

i�1 l�ai�. Note that the construction can be done
in polynomial time.

It is easy to see that at least B units of load imbalance
can be eliminated without violating the link capacity and
load transfer constraints if and only if there exists a

solution for the multiprocessor scheduling problem.
Since the multiprocessor scheduling problem is
NP-complete in the strong sense, the decision version
of the load-balancing problem with indivisible excess
load is also NP-complete in the strong sense. tu

Since it is unlikely to find a polynomial time optimal
algorithm for the load-balancing problem with indivisible
excess load, we propose below a heuristic algorithm for the
problem. Let G � �V ;E� be the graph representation of the
multicomputer or distributed system under consideration
and C�u; v� be the capacity (for load transferring purpose)
of edge �u; v�, for all �u; v� 2 E. Let si, 1 � i � p, be the
overloaded nodes and ti, 1 � i � q, be the underloaded
nodes. Each overloaded node si has indivisible excess
load ei, which must be routed to an underloaded node as
an entity, and each underloaded node ti has deficit load
di, which is the maximum amount of load it can receive
from overloaded nodes. Without loss of generality, we
assume that eis are sorted in nonincreasing order, i.e.,
e1 � e2 � � � � � ep.

The heuristic algorithm (see Fig. 9) consists of two
phases. In Phase I, we treat the excess load as if it were
divisible and use the network flow technique described in
Section 3 to find a minimax flow f . If the excess load was
indeed divisible, f would be an optimal solution in which
the value jfj is the maximum load imbalance that can be
eliminated with the maximum link flow minimized. In
Phase II, we use the minimax flow f found in Phase I as a
ªtemplateº and route the entities of excess load one by one
in such a way that the resulting flow on each link will be as
close to the corresponding minimax flow as possible, i.e.,
the value f�u; v� found in Phase I serves as the target flow
for edge �u; v� to be achieved in Phase II. Since, in general,
larger amounts of excess load are more difficult to route
than smaller amounts, we will route the excess load in
nonincreasing order of load amount.

We use ei to refer to either the entity of excess load or its
amount. During the execution of Phase II, f 0�u; v� is the total
load currently routed through edge �u; v�. When the excess
load ei is currently being routed, we say that an edge �u; v�
is feasible if C0�u; v� ÿ f 0�u; v� � ei and a path from si to t is
feasible if all edges on the path are feasible. We will route
excess load ei from the overloaded node si to an under-
loaded node tj (actually, to node t) only via a feasible path,
i.e., excess load can only be routed via a path in which each
edge has enough (remaining) capacity. Note that, in Phase II,
vertex s and edges �s; si�, 1 � i � p, are, in fact, not used,
i.e., the underlying graph is G00 � �V 00; E00� , where V 00 �
V [ftg and E00 � E [f�ti; t� j 1 � i � qg.

The excess load ei is routed using a greedy type
algorithm, called ordered depth-first search (O-DFS). Note
that f�u; v� ÿ f 0�u; v� is the difference between the target
flow f�u; v� and the total load f 0�u; v� currently routed
through edge �u; v�. A large f�u; v� ÿ f 0�u; v� value implies
that the current load routed through edge �u; v� is still far
from the target value (note that f�u; v� ÿ f 0�u; v� may be
negative). Therefore, at each vertex u, we always choose
to traverse next the edge �u; v� that has the largest
f�u; �� ÿ f 0�u; �� value among all feasible outgoing edges at

HAN ET AL.: ON LOAD BALANCING IN MULTICOMPUTER/DISTRIBUTED SYSTEMS EQUIPPED WITH CIRCUIT OR CUT-THROUGH... 953

Fig. 8. Instance construction in the NP-completeness proof.

u and, hence, reduce the maximum f�u; �� ÿ f 0�u; �� value

at node u.
We use the following example to further illustrate the

heuristic algorithm INDIV-MMC01.

Example 1. Suppose the constructed network N �
�V 0; E0; s; t; C0� of a system graph G � �V ;E� and the

capacity C0 and minimax flow f found at the end of

Phase I are shown in Fig. 10a. The maximum edge cost

(link traffic) shown in the figure is 4 (note that only edges

in E are considered).
In Phase II, we initially set f 0�u; v� � 0 for all �u; v� 2 E0.

We first route excess load e1�� 7�. Starting from vertex s1,
since f�s1; v2� ÿ f 0�s1; v2� � 4 > f�s1; v1� ÿ f 0�s1; v1� � 3,
the O-DFS algorithm will first visit vertex v2. Since
�v2; t2� is the only feasible outgoing edge at vertex v2, the
next vertex visited is t2. Then, vertex t is visited and a
feasible path from s1 to t is found for e1, i.e. the path

s1; v2; t2; t. For each edge �u; v� on that path, we reset
f 0�u; v� � f 0�u; v� � e1 as shown in Fig. 10b.

We next route excess load e2�� 5�. Using the
O-DFS algorithm, we find the feasible path
s2; v1; t1; t for e2. Note that, at vertex s2, although
f�s2; t1� ÿ f 0�s2; t1� � 4 > f�s2; v1� ÿ f 0�s2; v1� � 1, w e
still choose edge �s2; v1� since edge �s2; t1� is not feasible
(C0�s2; t1� ÿ f 0�s2; t1� � 4 < e2 � 5). For each edge �u; v�
on the path found for e2, we reset f 0�u; v� � f 0�u; v� � e2,
as shown in Fig. 10c. The next excess load to be routed is
e3�� 3� and the path found for e3 is s3; v2; t3; t and, for
each edge �u; v� on the path, we reset f 0�u; v� �
f 0�u; v� � e3 as shown in Fig. 10d.

Finally, we route excess load e4�� 2�. Starting from s4,
O-DFS first traverses edge �s4; t3�. At vertex t3, since
there is no feasible outgoing edge, O-DFS backtracks to
vertex s4 and then traverses edge �s4; v2�. At vertex v2,
since t3 has been visited, O-DFS next traverses �v2; t1�. At
vertex t1, both �t1; t� and �t1; t2� are feasible. Since

954 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 9. A heuristic algorithm for the case that excess load is indivisible.

f�t1; t� ÿ f 0�t1; t� � 3 > f�t1; t2� ÿ f 0�t1; t2� � 2, the next
edge traversed is �t1; t� and the path found for e4 is
s4; v2; t1; t. For each edge �u; v� on the path, we reset
f 0�u; v� � f 0�u; v� � e4 as shown in Fig. 10e.

The amount of load imbalance that can be eliminated
in this example is 7� 5� 3� 2 � 17, and the maximum
link traffic during load balancing is 7.

Note that the heuristic algorithm INDIV-MMC01 is not

an optimal algorithm. It may not find the maximum load

imbalance that can be eliminated and, in cases in which it

does find the maximum load imbalance, it may not

minimize the maximum link traffic.
It is difficult to implement an optimal algorithm for the

load balancing problem with indivisible excess loads.

However, the result of an optimal algorithm for indivisible

excess loads cannot be better than that of Algorithm DIV-

MMC01 for divisible excess loads. Our heuristic algorithm

INDIV-MMC01 is compared against Algorithm DIV-

MMC01 and two other heuristic algorithms, INDIV-Max-

flow and INDIV-Simple by applying to an 8� 8 mesh

network used in Section 3 instead of comparing with an

optimal algorithm. Algorithm INDIV-Maxflow is an algo-

rithm using a maximum flow algorithm instead of MMC01

in Phase I of algorithm INDIV-MMC01. Algorithm INDIV-

Simple has no Phase I and chooses the edge with largest

C0�u; :� ÿ f�u; :� instead of that with largest f�u; :� ÿ f 0�u; :�
as the next traversing edge of node u in Phase II of

Algorithm INDIV-MMC01.
In the mesh, every overloaded node has a total excess

load of 800, which is divided into several entities. The

number of entities in each overloaded node was varied

from one to 16 and we experimented with three algorithms.

Fig. 11 shows the average maximum link flows obtained

from three algorithms. The maximum link flows obtained in

two other heuristic algorithms get closer to the link capacity

(= 1,000) as the number of entities in each overloaded node

increases. By contrast, the maximum link flow in our

heuristic algorithm INDIV-MMC01 is much smaller than

the link capacity and gets closer to the optimal maximum

link flow (= 640) obtained by DIV-MMC01 as the number of

entities increases; in other words, the average size of entities

decreases.
The time complexity of the heuristic algorithm is shown

in the following theorem.

Theorem 3. Phase II of Algorithm INDIV-MMC01 has a worst-

case time complexity ofO�p �m � logm�, where p is the number

of excess load entities. Algorithm Indiv-MMC01 has a worst-

case time complexity of O�m �M�n;m� � p �m � logm�.
Proof. As mentioned earlier, the underlying graph in

finding paths from overloaded nodes to underloaded

nodes in Phase II is G00 � �V 00; E00�, where V 00 � V [ftg,
and E00 � E [f�ti; t� j 1 � i � qg, where q is the number

of underloaded nodes. The well-known DFS algorithm

can be done in O�x� y� time [13], [14], where x is the

number of vertices and y is the number of edges of the

graph traversed. For our O-DFS algorithm, each time

when we first visit or backtrack to a vertex, we always

traverse an untraversed edge with the maximum f��; �� ÿ
f 0��; �� value. Therefore, traversing all outgoing edges at a

vertex u takes at most O�do�u� � log do�u�� time, where

do�u� is the out-degree of u and the logarithm is to the

base 2. Thus, the total time to route excess load entities is

at most [13], [14]

HAN ET AL.: ON LOAD BALANCING IN MULTICOMPUTER/DISTRIBUTED SYSTEMS EQUIPPED WITH CIRCUIT OR CUT-THROUGH... 955

Fig. 10. An example that shows how the heuristic algorithm works. (a)

After Phase I C0=f. (b) s1 (e1 � 7) C0=f=f 0. (c) s2 (e2 � 5) C0=f=f 0. (d) s3

(e3 � 3) C0=f=f 0. (e) s4 (e4 � 2) C0=f=f 0.

jV 00j �
X
v2V 00

do�v� � log do�v� � jV 00j � log�m� q�
X
v2V 00

do�v�

� n� 1� �m� q� � log�m� q�:
Since we need to route p excess load entities, ei, 1 � i � p,
the worst-case time complexity of Phase II is

O�p � �n� 1� �m� q� � log�m� q��� � O�p �m � logm�:
(Note that since we assume there is only one entity of
indivisible excess load on each overloaded node and
there is at least one directed path from a vertex to any
other vertex in G, we have m � n > p; q.)

Phase I of Algorithm INDIV-MMC01 has a worst-case
time complexity of O�m �M�n;m�� since it is Algorithm
DIV-MMC01 and its time complexity is O�` �M�n;m��
and 1 � ` � m, i.e., ` � O�m� in Section 2.2. Therefore,
algorithm INDIV-MMC01 has a worst time complexity of
O�m �M�n;m� � p �m � logm�. tu

6 CONCLUSION

In this paper, we have considered the load-balancing
problem in multicomputer/distributed systems that use
circuit switching, wormhole routing, or virtual cut-through,
with the objective of finding the maximum load imbalance
that can be eliminated and the route to eliminate the load
imbalance without violating the (traffic) capacity constraint
on any link while minimizing the maximum link traffic
among all links. Minimizing the maximum link traffic
balances the network load among all links and reduces the
probability of link contention.

We assume that load imbalances of each node can have
arbitrary values, each link has a link traffic capacity, and the
maximum traffic volume that can be transferred over it
during load balancing. We also considered the effect of
existing IPC traffic. We have solved the problem under
various conditions. The solution approach is based on the
minimax flow algorithm with a 0/1 weight function,
MMC01. We gave an optimal algorithm DIV-MMC01 for
the load-balancing problem with divisible excess loads with
the time complexity of O�m �M�n;m��, where n is the

number of nodes/processors and m is the number of links

in the system, and M�x; y� is the time complexity of finding

a maximum flow in a network of x vertices and y edges.

Our algorithm assumes that the system does not have any

specific routing schemes. We proposed a simple and unified

graph transformation technique which transforms systems

with specific routing schemes to systems without specific

routing schemes, thus making our algorithm applicable to

systems without specific routing schemes. We also con-

sidered the load-balancing problem for the case in which

excess load is indivisible. We proved that the problem is

NP-hard and proposed heuristic algorithm INDIV-MMC01

as a solution to the problem based on the DIV-MMC01

algorithm, with a time complexity O�m �M�n;m� � p �m �
logm� heuristic algorithm as a solution to the problem,

where p is the number of excess load entities.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by

the US Office of Naval Research under Grant N00014-99-1-

0465 and by the US National Science Foundation under

Grant MIP-9203895 and by the KOSEF under the post-

doctoral fellowship. Any opinions, findings, and conclu-

sions or recommendations expressed in this paper are those

of the authors and do not necessarily reflect the views of the

funding agencies.

REFERENCES

[1] L.M. Ni and P.K. McKinley, ªA Survey of Wormhole Routing
Techniques in Direct Networks,º Computer, pp. 62-76, Feb. 1993.

[2] P. Kermani and L. Kleinrock, ªVirtual Cut-Through: A New
Computer Communication Switching Technique,º Computer Net-
works, vol. 3, pp. 267-286, 1979.

[3] J. Upadhyay, V. Varavithya, and P. Mohapatra, ªA Traffic-
Balanced Adaptive Wormhole Routing Scheme for Two-Dimen-
sional Meshes,º IEEE Trans. Computers, vol. 46, no. 2, pp. 190-197,
Feb. 1997.

[4] R.P. Bianchini and J.P. Shen, ªInterprocessor Traffic Scheduling
Algorithm for Multiple-Processor Networks,º IEEE Trans. Com-
puters, vol. 36, no. 4, pp. 396-409, Apr. 1987.

956 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 9, SEPTEMBER 2000

Fig. 11. Maximum link flows when excess load is indivisible.

[5] D.D. Kandlur and K.G. Shin, ªTraffic Routing for Multicomputer
Networks with Virtual Cut-Through Capability,º IEEE Trans.
Computers, vol. 41, no. 10, pp. 1,257-1,270, Oct. 1992.

[6] S.H. Bokhari, ªA Network Flow Model for Load Balancing in
Circuit-Switched Multicomputers,º IEEE Trans. Parallel and Dis-
tributed Systems, vol. 4, no. 6, pp. 649-657, June 1993.

[7] A.V. Goldberg and R.E. Tarjan, ªA New Approach to the
Maximum-Flow Problem,º J. ACM, vol. 35, pp. 921-940, Oct. 1988.

[8] C.-C. Han, ªA Fast Algorithm for the Minimax Flow Problem with
0/1 Weights,º Applied Math. Letters, vol. 10, no. 2, pp. 11-16, 1997.

[9] R.E. Tarjan, Data Structures and Network Algorithms. Philadelphia:
SIAM, 1983.

[10] R.K. Ahuja, ªAlgorithms for the Minimax Transportation Pro-
blem,º Naval Research Logistics Quarterly, vol. 33, pp. 725-739, 1986.

[11] C. Glass and L.M. Ni, ªThe Turn Model for Adaptive Routing,º
J. ACM, vol. 41, pp. 874-902, Sept. 1994.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: W.H. Freeman,
1979.

[13] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. Cambridge, Mass.: The MIT Press, 1990.

[14] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis
of Computer Algorithms. Reading, Mass.: Addison-Wesley, 1974.

Ching-Chih (Jason) Han received the BS
degree in electrical engineering from National
Taiwan University, Taiwan, Republic of China, in
1984, the MS degree in computer science from
Purdue University, West Lafayette, Indiana, in
1988, and the PhD degree in computer science
from the University of Illinois at Urbana-Cham-
paign, in 1992. From August 1992 to January
1994, he was an associate professor in the
Department of Applied Mathematics at National

Sun Yat-sen University, Kaohsiung, Taiwan. From February 1994 to July
1996, he was a visiting associate research scientist in the Real-Time
Computing Laboratory at the University of Michigan, Ann Arbor. From
August 1996 to July 1997, he was an assistant professor in the
Department of Electrical Engineering at The Ohio State University. From
August 1997 to February 1999, he worked as a senior software engineer
at BroadVision, Inc, Redwood City, California. Since February 1999, he
has been CTO and cofounder of CreOsys, Inc, Fremont, California, a
leading Internet solution provider which integrates real-time, Web-
based, distributed graphic information services for the engineering
world. His current research interests include Internet applications, real-
time communications, parallel and distributed computing, and multi-
media applications. He is a member of the IEEE Computer Society.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Seoul, Korea in 1970, and the MS
and PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively. He is a professor and
director of the Real-Time Computing Laboratory,
Department of Electrical Engineering and Com-
puter Science, The University of Michigan, Ann
Arbor.

He has authored/coauthored about 600 technical papers and
numerous book chapters in the areas of distributed real-time computing
and control, computer networking, fault-tolerant computing, and
intelligent manufacturing. He coauthored (with C.M. Krishna) a textbook
Real-Time Systems (McGraw-Hill, 1997). In 1987, he received the
Outstanding IEEE Transactions on Automatic Control Paper Award and,
in 1989, the Research Excellence Award from The University of
Michigan. In 1985, he founded the Real-Time Computing Laboratory,
where he and his colleagues are investigating various issues related to
real-time and fault-tolerant computing.

His current research focuses on Quality of Service (QoS) sensitive
computing and networking with emphases on timeliness and depend-
ability. He has also been applying the basic research results to
telecommunication and multimedia systems, intelligent transportation
systems, embedded systems, and manufacturing applications.

From 1978 to 1982, he was on the faculty of Rensselaer Polytechnic
Institute, Troy, New York. He has held visiting positions at the US
Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories, Computer
Science Division within the Department of Electrical Engineering and
Computer Science at the University of California at Berkeley, and
International Computer Science Institute, Berkeley, California, IBM T.J.
Watson Research Center, and Software Engineering Institute at
Carnegie Mellon University. He also chaired the Computer Science
and Engineering Division, Eletrical Engineering and Computer Science
Department, The University of Michigan, for three years beginning in
January 1991.

He is an IEEE fellow, was the program chairman of the 1986 IEEE
Real-Time Systems Symposium (RTSS), the general chairman of the
1987 RTSS, the guest editor of the August 1987 special issue of IEEE
Transactions on Computers on real-time systems, a program cochair for
the 1992 International Conference on Parallel Processing, and served
on numerous technical program committees. He also chaired the IEEE
Technical Committee on Real-Time Systems during 1991-1993, was a
distinguished visitor of the Computer Society of the IEEE, an editor of
the IEEE Transactions on Parallel and Distributed Computing, and an
area editor of the International Journal of Time-Critical Computing
Systems.

Sang Kyun Yun received the BS degree in
electronics engineering from Seoul National
University, Korea, in 1984 and the MS and
PhD degrees in electrical engineering from the
Korea Advanced Institute of Science and Tech-
nology (KAIST) in 1986 and 1995, respectively.
He is currently an associate professor in the
Department of Computer Science, Seowon
University, Cheongju, Korea. He worked at
Hyundai Electronics Industries, Korea, from

1986 to 1990. He was a visiting researcher in the Real-Time Computing
Laboratory, the Department of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor, during 1998. His
interests include interconnection network, parallel processing, computer
architecture, computer network, and internet/web application. He is a
member of the IEEE Computer Society.

HAN ET AL.: ON LOAD BALANCING IN MULTICOMPUTER/DISTRIBUTED SYSTEMS EQUIPPED WITH CIRCUIT OR CUT-THROUGH... 957

