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AbstractÐReal-time middleware services must guarantee predictable performance under specified load and failure conditions, and

ensure graceful degradation when these conditions are violated. Guaranteed predictable performance typically entails reservation of

resources and use of admission control. Graceful degradation, on the other hand, requires dynamic reallocation of resources to

maximize the application-perceived system utility while coping with unanticipated overload and failures. We propose a model for

quality-of-service (QoS) negotiation in building real-time services to meet both of the above requirements. QoS negotiation is shown to

1) outperform ªbinaryº admission control schemes (either guaranteeing the required QoS or rejecting the service request), 2) achieve

higher application-perceived system utility, and 3) deal with violations of the load and failure hypotheses. We incorporated the

proposed QoS-negotiation model into an example real-time middleware service, called RTPOOL, which manages a distributed pool of

shared computing resources (processors) to guarantee timeliness QoS for real-time applications. In order to guarantee timeliness

QoS, the resource pool is encapsulated with its own schedulability analysis, admission control, and load-sharing support. This support

differs from others in that it adheres to the proposed QoS-negotiation model. The efficacy and power of QoS negotiation are

demonstrated for an automated flight control system implemented on a network of PCs running RTPOOL. This system is used to fly an

F-16 fighter aircraft modeled using the Aerial Combat (ACM) F-16 Flight Simulator. Experimental results indicate that QoS negotiation,

while maintaining real-time guarantees, enables graceful QoS degradation under conditions in which traditional schedulability analysis

and admission control schemes fail.

Index TermsÐQuality-of-service (QoS), QoS negotiation, QoS levels and rewards, schedulability analysis and admission control,

automated flight systems.

æ

1 INTRODUCTION

PREDICTABILITY in real-time applications is often achieved
by reserving resources and employing admission

control under a priori assumed load and failure conditions.
Graceful QoS degradation, on the other hand, requires
dynamic resource reallocation in order to cope with
changing load and failure conditions while maximizing
system utility. Both predictability and graceful QoS degra-
dation are necessary for real-time applications, but pose
conflicting requirements.

The main focus of this paper is on how to achieve

predictability and graceful degradation in long-lived real-

time services for embedded applications. By ªlong-livedº

we mean that a request, if granted, will hold its reserved

resources for a relatively long period of time. To control the

load imposed on system resources and, hence, guarantee a

certain level of QoS, the request must go through admission

control and resource reservation. Conventional admission

control schemes make ªbinaryº decisions on whether to

guarantee or reject each request. Future requests may be
rejected because resources have already been committed to
those that arrived earlier. In hard-real-time systems, a static
analysis may be performed to guarantee a priori that all
requests be honored under the assumption of the worst-
case request arrival behavior and service requirements. If
these assumptions are violated at run-time due to transient
overload or resource loss (failures), the guarantees may
become invalid, which may, in turn, lead to system failure.

We propose a mechanism for QoS (re)negotiation as a
way to ensure graceful degradation in cases of overload,
failures, or violation of pre-run-time assumptions. This
mechanism permits clients to express in their service
requests a spectrum of QoS levels they can accept from the
provider and perceived utility of receiving service at each of
these levels. As a result, the application designer will be
able to express acceptable compromises in QoS and their
relative cost/benefit as derived from application domain
knowledge.

We incorporate the proposed QoS negotiation into a
processing capacity management middleware service called
RTPOOL. The service is designed and implemented to
support timeliness guarantees for a flight control applica-
tion in which a set of flight control tasks, their QoS levels,
and the corresponding rewards are provided by the flight
mission planner and can be renegotiated, if necessary, using
RTPOOL's QoS-negotiation support. The mission planner
was developed in the context of the Cooperative Intelligent
Real-time Control Architecture (CIRCA) ([1], [2]), which
computes task execution trade-offs from application
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domain knowledge and alters the mission plan as
required during QoS negotiation.

In this paper, we begin with a review of related work
(Section 2), followed by a description of the proposed QoS-
negotiation model (Section 3). Next (Section 4), we describe
RTPOOL, a distributed processing resource management
service that follows the proposed QoS-negotiation model,
highlighting the synergy between RTPOOL components
and QoS-negotiation support. We present details of
RTPOOL implementation and negotiation API (Section 5),
then describe the use of RTPOOL in the context of
automated flight control (Section 6). Flight performance is
evaluated (Section 7), illustrating the efficacy of QoS-
negotiation support, followed by a brief paper summary
(Section 8).

2 RELATED WORK

Predictable performance of real-time services has tradition-
ally been achieved using resource reservation and admis-
sion control. In hard real-time systems, sufficient resources
are reserved a priori for the application. Off-line schedul-
ability analysis is used to verify that the reserved resources
are sufficient for meeting all timing constraints. Such an
analysis requires that the worst-case load/failure conditions
be known at design time. For example, the authors of [3]
described an optimal schedulability analysis algorithm for
uniprocessors, which considers precedence and resource
constraints. In [4] and [5], a similar optimal result is derived
for multiprocessors, while, in [6], the result is extended to
distributed systems. Pre-run-time resource allocation algo-
rithms have been reported for embedded applications such
as process control [7], [8], turbo engine control [9],
autonomous robotic systems [10], and avionics [11]. AI-
based approaches that utilize application domain knowl-
edge are described in [7], [10], [11]. Solutions to the offline
schedulability analysis problem have been presented for
specific hardware topologies such as hypercubes [12],
hexagonal architectures [13], and mesh-connected systems
[14]. Simulated annealing [15] has been proposed as an
optimization heuristic. Different flavors of using simulated
annealing in the context of real-time task assignment and
scheduling can be found in [16], [17], [18], [19]. In [20], [21],
[22], efficient methods are considered for offline allocation
of periodic tasks to computing resources where different
tasks may have different deadlines. The above algorithms
are static in nature in that they require an exact pre-run-time
characterization of worst-case offered load and processing
capacity. For some applications, the worst-case conditions
may be difficult to predict accurately at design time. This is
true, for example, of military applications, where it is
difficult to characterize and bound a priori the extent of
damage on the computing system at run-time. A mechan-
ism is therefore needed to ensure predictable graceful
degradation of system performance when the design-time
load or failure hypotheses are violated.

Predictability in dynamic real-time systems where load
patterns are not known in advance has often been achieved
via on-line admission control. Communication services with
end-to-end QoS guarantees are one example where on-line
admission control is used [23], [24]. Graceful degradation

has often been addressed in the context of communication
architectures to support QoS maintenance and negotiation
for multimedia applications. Examples include the QoS-A
framework [25], the Heidelberg QoS model [26], COMETS's
Extended Integrated Reference Model (XRM) [27], the
OMEGA end-point architecture [28], and the QoS Broker
[29]. A good survey of these and other communication
architectures is found in [30]. Our work is complementary
to these efforts in the sense that we consider a QoS
negotiation model suitable for embedded systems and not
focused on multimedia applications. While multimedia
applications are dominated by high volumes of commu-
nicated data whose source and destination are typically
fixed, in embedded systems (e.g., process control), compu-
tation is more dominant and dynamic task allocation for
better load sharing is an important concern.

Predictability in dynamic real-time systems has been
addressed outside the communication subsystem as well.
The concept of on-line admission control has been applied
to resource reservation for dynamically arriving real-time
tasks. Many such efforts appear in the context of real-time
operating system research. Temporal isolation of real-time
applications has been proposed via resource reservation
[31], [32], [33], proportional-share resource management
[34], and hierarchical CPU scheduling [35]. For hard real-
time tasks, the Spring Kernel [36] innovated a new form of
plan-based scheduling and on-line admission control
guarantees. The Dreams real-time system [37] extends the
notion of on-line guarantees further to accommodate
transient periodic processes which arrive dynamically and
request periodic service throughout a given interval of time.
The Rialto operating system [38], which targets multimedia
applications, takes the approach of dynamically maximiz-
ing aggregate system ªvalue.º Clients request their required
resources from a resource planner whose goal is to compute
a resource allocation that maximizes the user's perceived
utility of the system. The Nemesis operating system
designed in the context of the Pegasus project [39]
investigates support for adaptive multimedia applications.
Other real-time operating systems, such as Alpha [40] and
Mach [41], export a simple priority-based or value-based
interface to allow best effort maximization of overall
perceived utility of the system by serving the ªmost
importantº tasks first. A suitable run-time scheduling
policy [42], [43] can then be used to maximize the total
achieved utility/reward. Our work is different in that it
does not require changes to the operating system. We
consider the design of QoS adaptive middleware services
on top of best effort operating system support for
embedded applications, rather than investigating operating
system design for QoS adaptation. We believe that our
approach makes an implementation of our architecture
more portable, albeit potentially less efficient.

Compromises between resource reservation for irrevoc-
able service guarantees and best effort maximization of the
overall system utility have been addressed. Virtual clock-
based communication schemes [44], for example, delay
reserving resources for packet transmission until a virtual
arrival time, which results in increasing overall system
utility over simple FIFO transmission by enforcing a global
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priority order. A similar approach is applicable to dynamic
real-time tasks. To prevent rejecting important incoming
tasks because of lower priority ones holding necessary
resources, resource reservation for incoming tasks is delayed
to a ªvirtualº arrival time. The delay allows for ªmore
importantº tasks to arrive and be served first. Unfortu-
nately, this delay in making task guarantees may itself
waste processing bandwidth which may reduce schedul-
ability and increase the rate of task rejections. Instead, we
use service QoS as the dimension to trade. QoS negotiation
extends the typical real-time service interface in two
different ways. First, it offers QoS degradation as an
alternative to denial of service, thus enhancing the
percentage of accepted service requests and the total
perceived system utility. Second, it provides a generic
means of utilizing application-specific knowledge to control
QoS degradation.

Predictable graceful degradation has also been
addressed in the context of fault-tolerant real-time comput-
ing. For example, the imprecise computation technique [45]
prevents timing faults and achieves graceful degradation by
making sure that an approximate result of an acceptable
quality is available by the deadline if the exact result cannot
be obtained. The tolerance of real-time applications to QoS
violations has been exploited in several research efforts. For
example, in [46], an overload management technique is
discussed for real-time control applications that discards
selected task instances upon failures while maintaining
satisfactory control loop performance. An adaptable use of
redundancy in safety-critical applications is described in
[47] to optimize resource utilization and allow graceful
degradation of the system in case of failures. A scheduling
algorithm that satisfies timing and dependability con-
straints of mandatory tasks while maximizing system utility
by proper scheduling of optional tasks is described in [48].
Our scheme is more general in that we do not investigate a
particular application-dependent degradation policy. In-
stead, our QoS negotiation API allows defining QoS
parameters of arbitrary semantics, specifying how these
parameters may be degraded, and quantifying the effect of
degradation on system utility. We provide a generic
framework for achieving graceful degradation of embedded
real-time middleware, and describe an application of the
generic QoS-negotiation framework to automated flight
control for illustration.

3 QOS-NEGOTIATION MODEL

A simple yet expressive QoS-negotiation model is the key to
building predictable, gracefully degradable middleware
services for real-time applications. In this section, we
describe the application model, the proposed QoS-negotia-
tion model, and the model of a real-time middleware service
that supports QoS negotiation. We consider a class of
embedded real-time systems in which various software
components perform tasks to accomplish a single overall
ªmission.º We will henceforth call this mission an application.
Flight control, shipboard computing, automated manufac-
turing, and process control applications generally fall under
this category. The application is composed of a set of tasks,
each of which requires a set of resources/services. We are

concerned mainly with long-lived services that need to hold
reserved resources for an extended period of time, such as
processor capacity reservation [49] and communication
connection establishment services [24].

Our negotiation model is centered around three simple
abstractions: QoS levels, rewards, and rejection penalty. A
client requesting service specifies in its request a set of
negotiation options to the service provider and the penalty of
rejecting the request, derived from the expected utility of
the requested service. Each negotiation option consists of an
acceptable QoS level for the client to receive from the
provider and a reward value commensurate with this QoS
level. The QoS levels are expressed in terms of parameters
whose semantics need be known only to the client and the
service provider. For example, in establishing a real-time
communication connection, these parameters may specify
the client's traffic delay and jitter requirements. In processor
capacity reservation, they may express the required
processor bandwidth, while, in a multicast protocol, they
may represent the semantics of the requested multicast
service, such as reliable, ordered, causal, or atomic delivery.
The reward represents the ªdegree of satisfactionº to be
achieved from the QoS level (i.e., the application-perceived
utility of supplying the client with that level of service).
Thus, the client's negotiation options represent a set of
alternatives for ªacceptableº QoS and their ªutilityº. The
rejection penalty of a client's request is the penalty incurred
to the application if the request is rejected. Rejection penalty
plays no further role if the request is guaranteed. In
Section 6, we describe how QoS levels, negotiation options,
and rejection penalty are computed in the context of a flight
control application using a mission planner. The planner
computes QoS levels, rewards, and penalties from applica-
tion domain knowledge and a specification of system
failure probabilities.

To control system load in a way that ensures predictable
service, the service provider must subject the client's
request to on-line admission control, which determines
whether to guarantee or reject the request. We propose a
slightly different notion of guaranteeing a request, as
compared to the conventional notion of guarantee. In our
model, guaranteeing a client's request is the certification of
the request to receive service at one of the QoS levels listed
in its negotiation options. The selection of the QoS level it
will actually receive, however, is up to the service provider.
Furthermore, the service provider is free to switch this QoS
level to another level in the client's negotiation options if it
increases perceived utility. Note that specifying only one
negotiation option with default (e.g., infinite) rejection
penalty reduces this mechanism to traditional on-line
guarantee schemes. Thus, while the proposed mechanism
should perform no worse than these schemes in the special
case, it provides the means to express and take advantage of
more accurate semantic information about the application
whenever such information is available. In other words,
while we do not require the application designer to supply
more information than is necessary for traditional on-line
guarantee schemes, we offer the flexibility to take advantage
of additional semantic information when it is available. In
Section 6, we give an example application that benefits from
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our support. Shifting the authority in selecting clients' QoS

levels from the client to the service provider has two

important advantages.

. The application code is decoupled from the assump-
tions on underlying resource availability and capa-
city. Such assumptions are implied when a client
asks specifically for a certain QoS level. Instead, the
client supplies a set of QoS options, along with their
application-perceived utility. The service provider
then determines QoS levels that are feasible with the
resources available and selects the ones that opti-
mize the overall application-perceived utility. Note
that this optimization must consider all current
clients of the provider (and potentially adjust their
QoS levels in anticipation of new requests that may
arrive later). Thus, only the provider has the global
information required for this optimization. Decou-
pling application code from assumptions about the
underlying resource capacity and letting the service

provider optimize system utility subject to resource
constraints makes the application more adaptable to
variations in resource capacity/availability. Graceful
degradation comes naturally out of this property.

. Incoming requests are guaranteed in the order of
their arrival (i.e., FIFO), so resources are committed
to clients in FIFO order. However, requests from
high-priority clients to a service provider should be
able to force less important clients holding the
necessary resources to degrade their QoS, if possible.
Providing negotiation options and delegating QoS
level selection to the provider gives the flexibility to
adjust QoS levels, when necessary, thereby achiev-
ing higher overall system utility while maintaining
each client's QoS guarantee at one of the levels
specified in the negotiation options.

The QoS-negotiation architecture of the service provider
is given in Fig. 1. The provider runs on top of a pool of
resources whose size may vary dynamically and serves a
dynamic set of real-time clients. The underlying resources
available to the provider are monitored by the resource
monitoring module. The provider exports a QoS-negotia-
tion API to its clients based on QoS levels, rewards and
penalties. The QoS-negotiation module is responsible for
selecting the appropriate QoS level for each client so that
overall utility is maximized. The feasibility assessment
module is responsible for checking whether or not the
selected QoS levels of the respective clients can be sustained
using currently available resources. Assisted by the feasi-
bility assessment module, the QoS-negotiation module
performs admission control on incoming service requests.

4 RTPOOLÐREALIZING QOS NEGOTIATION

We designed and implemented an example middleware
service, RTPOOL, to support the proposed QoS-negotia-
tion model. This service is responsible for managing a
distributed pool of computing resources (processors) to
guarantee timeliness, as illustrated in Fig. 2. It employs a
processor membership protocol to keep track of processor pool
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membership and report processor failures. Schedulability

analysis is used to provide timliness guarantees. We assume
that, although task arrival patterns are not known a priori,
application code of an embedded system is available before

the system is deployed. Thus, task computing requirements
may be characterized off-line (e.g., using profiling tools or

compile-time support). Additionally, we integrated support
for QoS negotiation into RTPOOL. This support is split into

local and distributed algorithms and is the focus of this
section.

Clients of RTPOOL are application tasks. RTPOOL

service requests are used to guarantee the timeliness of new
incoming tasks. Our task execution model is influenced by
the requirements of the flight control application (see

Section 6), but it is still sufficiently general for use in other
applications. RTPOOL assumes periodic tasks and handles

aperiodic tasks as periodic servers. A task is composed of a
set of modules and has a deadline by which all of its

modules must be completed. The modules may have
arbitrary precedence constraints among themselves specify-
ing their execution sequence. We assume that task arrivals

are independent, so we do not support precedence
constraints among different tasks.

Each request for guaranteeing a task includes its rejection

penalty and the negotiation options of the client task that
specify different QoS levels and their respective rewards. A

client task's QoS level is specified by the parameters of its
execution model. For an independent periodic task, the

parameters consist of task period, deadline, and execution
time. We model period and deadline as negotiable para-
meters. This represents a significant departure from most

scheduling literature, although the authors of [50] articulate
on the alterability of task periods in real-time control

systems using system stability and performance index. Task
execution time, on the other hand, depends on the under-

lying machine speed and thus should not be hardcoded into
the client's request. Instead, each QoS level in the negotia-

tion options specifies which modules of the client task are to
be executed at that level. This allows the programmer to
define different versions of the task to be executed at

different QoS levels or to compose tasks with mandatory
and optional modules. The reward associated with each

QoS level tells RTPOOL the utility of executing the
specified modules of the task with the given period and

deadline. In Section 6, we present the task set of our
application, along with the negotiation options of each task

as an example of using RTPOOL's support for QoS
negotiation.

Requests for guaranteeing tasks may arrive dynamically
at any machine in the pool. Since, in the proposed QoS-
negotiation scheme, tasks normally receive higher QoS than
their minimum functionality QoS level, it is highly probable
for the new arrival to be guaranteed at the local machine. To
guarantee a request at the local machine, RTPOOL executes
a local QoS-optimization heuristic. The heuristic (re)computes
the set of QoS levels for all local clients (including the new
one just arrived) which maximizes the sum of their rewards.
Recomputing the QoS levels may involve degrading some
tasks to accommodate the new one. The task is rejected if
both 1) the new sum of rewards (including that of the newly
arrived task) is less than the existing sum prior to its arrival
and 2) the difference between the current and previous
sums is larger than the new task's rejection penalty.
Otherwise, the requested task is guaranteed. As a result,
task execution requests will be guaranteed unless the
penalty from resulting QoS degradation of other local
clients is larger than that from rejecting the request. When a
task execution request is rejected by the local machine, one
may attempt to transfer and guarantee it on a different
machine using a load-sharing algorithm. Note that conven-
tional admission control schemes (which do not support
negotiated QoS degradation) would always incur the
request rejection penalty whenever an arrived task makes
the set of current tasks unschedulable. By offering QoS
degradation as an alternative to rejection and by using
admission control rules, we can show that the reward sum
(or perceived utility) achieved using our scheme is lower
bounded by that achieved using conventional admission
control schemes given the same schedulability analysis and
load sharing algorithms. Thus, in general, our proposed
scheme achieves higher perceived utility.

Fig. 3 gives an example of the local QoS-optimization
heuristic. The heuristic implements a gradient descent
algorithm, terminating when it finds a set of QoS levels
that keeps all tasks schedulable, or when it finds the task set
unschedulable even at the lowest QoS level of each task, in
which case the request is rejected. This heuristic degrades
the tasks' QoS in a way to locally minimize the resulting
decrease in local reward. Note that, unless all tasks are
executed at their highest QoS level, the machine suffers
from unfulfilled potential reward. The unfulfilled potential
reward, UPRj, on machine Nj, is the difference between the
total reward achieved by the current QoS levels selected on
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the machine and the maximum possible reward that would

be achieved if all local tasks were executed at their highest

QoS level. This difference can be thought of as a fractional

loss to the mission. Often, this loss is unavoidable because

of resource limitations. However, such loss may also be

caused by poor load distribution, in which case it can be

improved by proper load sharing.
RTPOOL employs a load-sharing algorithm that imple-

ments a distributed QoS-optimization protocol. The protocol

uses a hill climbing approach to maximize the global sum of

rewards across all clients in the distributed pool. It is

activated between two machines Ni and Nj when the

difference UPRi ÿ UPRj exceeds a certain threshold V . The

protocol is given in Fig. 4.
Close examination of the local QoS optimization heur-

istic and the distributed QoS optimization protocol reveals

that neither makes assumptions about the nature of the

client and the semantics of its QoS levels.1 For RTPOOL this

means complete independence between the task model

used by the feasibility assessment module and the QoS-

negotiation mechanism. As a result, it is easier to enhance

RTPOOL to handle more elaborate task models, con-

straints, and QoS-level parameters/semantics without

affecting its QoS-negotiation mechanism. The disadvantage

of this separation of concerns compromises optimality

somewhat, as illustrated by example in Section 7.

5 IMPLEMENTATION AND API

In this section, we highlight implementation details of the

RTPOOL service, particularly those related to its QoS-

negotiation API. RTPOOL is currently running on a PC

platform using the MK7.2 microkernel from the Open

Group2 The microkernel is a derivative of CMU RT-Mach.

RTPOOL is implemented as a user-level library which

exports the abstraction of tasks, threads, QoS levels, and

rewards. Highlighted below are the components of the

implemented prototype.

5.1 Support for Scheduling and QoS Negotiation

Our scheduling and QoS negotiation support is implemen-
ted as a thread package called qthreads. The OG MK7.2
microkernel provides support for creating thread pools that
can be time-shared, scheduled FIFO, or scheduled round-
robin. Threads can be assigned fixed priorities within a
given range. In order to use other scheduling policies, such
as deadline monotonic or EDF, we implemented a user-
level local scheduler that runs on each machine on top of
kernel threads. The local scheduler supports periodic thread
creation with a period that can be changed at run-time in
response to changes in the QoS level.

The qthreads package is novel in that it exports the
abstraction of tasks with associated QoS levels and rewards.
Its API permits the user to create tasks, create threads
within each task, define QoS levels for the task, and specify
rewards. It also permits the user to specify, for a given
thread, the QoS levels in which the thread is eligible to
execute. The package exports a force_negotiation() primitive
to initiate QoS negotiation. When new load (i.e., task or a set
of tasks) arrives and is to be admitted into the system, the
requesting thread invokes QoS negotiation by calling
force_negotiation(). As a result, the QoS levels of already-
admitted tasks are recalculated and a new value for
unfulfilled potential reward is computed. The overhead of
the force_negotiation() call is charged to the caller.

In the current implementation, all created tasks execute
in the same address space. The application is compiled into
a single executable image that is loaded in its entirety at
system start time. The code itself is thus static, although
arrival/activation times at different nodes may vary
dynamically.

5.2 Invocation Migration

On top of qthreads, we provide an invocation migration
mechanism to implement the distributed QoS optimization
protocol described in Section 4. The mechanism is com-
pletely transparent to the application. We call it invocation
migration because the transfer occurs between two succes-
sive invocations of a periodic task (i.e., when one invocation
has terminated and the next hasn't started yet). When the
distributed QoS optimization heuristic determines that a
task is to be migrated, the state variables of each thread in the
transferred task are sent to the new machine and the
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threads belonging to the task are destroyed at the source
and recreated with the transferred state at the target. In the
current implementation, state variables of a thread must be
indicated to RTPOOL using a corresponding library call at
thread initialization time. The force_negotiation() primitive is
called on source and target after the transfer to update QoS
levels accordingly. If a task must execute on a certain
machine, the task can be wired to that machine by calling a
wire_task() primitive.

5.3 Pool Membership API

A membership algorithm is used to maintain a consistent
view of the current membership of the shared resource pool.
Our group membership algorithm is a derivative of [51]. The
user interface to that algorithm is the subscribe_to_pool() call
which causes the machine on which the call is executed to
join the named pool. When a new machine subscribes
(joins), each machine in the pool adds the new member to
the group. Since the new machine does not run any
application task, its unfulfilled potential reward is zero. In
our load-sharing heuristic, machines whose unfulfilled
potential reward is above a given threshold will attempt
to offload tasks to the new member. Task transfer will
continue until the unfulfilled potential reward is balanced
within a certain threshold, which stops the distributed QoS
optimization protocol. When a machine crashes, the group
leader (the machine with the highest number in the pool)
recreates the destroyed tasks, then the load-sharing heur-
istic redistributes the load if necessary. When the group
leader crashes, its successor (the machine with the next
highest pool number) becomes the leader. Note that this
mechanism is not an alternative to redundancy. Task state
will be lost in case of a crash, but it can be avoided by task
replication.

5.4 Communication API

An application need not be aware of where each of its tasks
is executing. The same executable application image is
started on every machine that joins the pool. The applica-
tion is composed of tasks and the decision of where to run
each task is left up to the load-sharing heuristic. This
requires location-independent send() and receive() primitives
for intertask communication. Tasks may communicate via
local communication buffers if they are colocated on the
same machine. Otherwise, an intertask message is sent
across the network to the destination. Our communication
protocol stack is implemented using xKernel 3.2 [52] and is
layered on top of a UDP/IP stack. The communication
subsystem architecture on each host is designed to support

prioritized, bounded-time message delivery. This architec-
ture has been proposed earlier in the context of implement-
ing real-time channels [53]. We adapt it to export the
abstraction of a sporadic communication server. The server
is implemented as a separate task using qthread support.
Currently, this task has only one QoS level. In the future, we
will extend this architecture so that the communication QoS
can also be negotiated.

6 APPLICATIONÐAIRCRAFT FLIGHT CONTROL

We have used RTPOOL to provide negotiable timeliness
guarantees for several real-time tasks required in our fully
automated flight control system. This system was used to
fly a simulated model of an F-16 fighter aircraft. Details of
the automated aircraft flight problem are provided in
Section 6.1, followed by a description of a method to
determine the involved task QoS levels and rewards from
application domain knowledge (Section 6.2). Section 6.3
summarizes the set of tasks, QoS levels, and rewards that
describe the application.

6.1 The Automated Flight Control System

To familiarize the reader with our application domain, this
section provides an introduction to automated flight
systems, then highlights the particular control system we
use during flight simulation experiments. Current Flight
Management Systems (FMS) perform several flight control
functions, including flight planning, navigation, guidance,
and control [54]. Fig. 5 illustrates these FMS tasks and their
interconnections; details of each module are provided in
[54] and [55]. In such an FMS, real-time execution
guarantees exist for the navigation, guidance, and control
modules, allowing critical function deadlines to be met.
Schedulability guarantees for these systems are typically
computed off-line. Our QoS-negotiation scheme will allow
the system to gracefully degrade performance when enough
resources are lost to violate the off-line guarantees. In this
paper, we consider the case where all tasks have a known
bounded execution time. Issues in dealing with potentially
unbounded on-line computations, such as run-time intelli-
gent mission planning, are discussed in [56] and [57].

An aircraft flies in three-dimensional space, but travel
within these dimensions is restricted because the aircraft is
controlled using strictly aerodynamic forces and engine
thrust. FMS aircraft guidance commands are typically
issued in terms of aircraft altitude, airspeed, and compass
heading. In our experiments, we control the aircraft using
constant climb, cruise, and descent airspeeds, then employ
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a simple ªGuidanceº function to alter commanded altitude
and heading.

To achieve the altitude (zref ) and heading (href ) specified
by the ªGuidanceº function, we employ a control loop to
compute primary actuator commands, including elevator,
ailerons, rudder, and throttle. The elevator, ailerons, and
rudder generate aerodynamic forces that directly affect
aircraft roll and pitch attitude and, via dynamic coupling,
alter aircraft heading and airspeed. The engine throttle
provides a force along the aircraft fuselage which is used in
combination with the aerodynamic forces to alter aircraft
airspeed and altitude. Our controller is also capable of
commanding a secondary set of actuators that improves
flight performance, but is not critical for flight safety.
Secondary actuators include the F-16's afterburner for extra
engine thrust, as well as wing flaps and a speed brake used
to enhance slow-airspeed control.

In a parallel research effort [2], a set of linear controllers
have been implemented to calculate the primary actuator
commands to achieve the desired reference altitude (zref )
and heading (href ) for the aircraft. Controller state includes
altitude (z), heading (h), pitch angle (p), and roll angle (r).
Equation (6.1) shows the control laws used during our
experiments, adopted from [2] and [56]. Because engine
response time is slow, the throttle was not part of these
control laws, but instead was preset based on ªphase of
flightº (e.g., throttle set to 100 percent for the departure
climb, 75 percent for cruise, etc.). When executing at higher-
performance QoS levels (see Section 6.3), the controller also
exerts control over the set of secondary actuators using
discrete-valued commands as described in [56].
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6.2 Computing QoS Levels and Rewards

Our QoS-negotiation scheme enables the application do-
main expert to express application-level semantics to
RTPOOL using QoS levels, rewards, and rejection penalty.
In this section, we briefly highlight how this support may
complement mission planning techniques in the context of
CIRCA, the Cooperative Intelligent Real-time Control
Architecture ( [1], [2]). Based on a user-specified domain
knowledge base, CIRCA's main goal is to build a set of
control plans to keep the system ªsafeº (i.e., avoid
catastrophic failures such as an aircraft crash) while
working to achieve its performance goals (e.g., arrive at
its destination on time). In order to deal successfully with
an inherently nondeterministic, perhaps poorly modeled,
environment of a complex real-time system CIRCA employs
probabilistic planning which models the system by a set of

states and transition probabilities. System failure is mod-
eled by temporal transitions to failure states (TTFs).
CIRCA's mission planner uses its domain knowledge base
to select appropriate actions (tasks) and their timing
constraints (QoS levels) so that the probability of TTFs is
reduced below a certain threshold. The reward decrease
corresponding to degrading a task from one QoS level to
another, or rejecting a task altogether, is computed from the
corresponding increase in failure probability.

For example, the planner computes a maximum period
for each task based on the notion of preempting TTFs [1].
For any state, an outgoing TTF is considered to be
preempted if its probability is below the specified prob-
ability threshold, as described in [2]. To define alternative
QoS levels, CIRCA's planner may compute different task
periods based on a set of alternative TTF probability
thresholds. For example, say a TTF has a cumulative
probability distribution that reaches the threshold value
when the preemptive task's maximum period is set to
0.2 seconds. But, suppose we need to relax the task's period
requirement under overload. The new, longer period for
degraded QoS is computed from the next higher probability
threshold level and this task is assigned a lower reward that
corresponds to the reduction in certainty that the TTF will
be preempted. A complete set of task QoS levels may be
developed by considering each TTF probability threshold.

6.3 Description of Flight Tasks

We have used the Aerial Combat (ACM) F-16 flight
simulator [58] for all flight tests. ACM runs on a Sun
workstation with a socket connection to the real-time
execution platform. We have tested the QoS-negotiation
capabilities by flying the simulated aircraft around the
lefthand pattern illustrated in Fig. 6. In this pattern, the
aircraft executes a takeoff and climb, then holds a constant
altitude as it continues around a rectangular course through
the descent and final approach to landing. By varying
periods of the controllers and sensors, we are able to
observe the degradation in flight quality (i.e., stability) as a
function of each task's selected QoS level.

In this section, we describe the tasks and associated
rewards used during our tests of the QoS negotiation
algorithms. The goals of our example mission were to
complete the flight around a rectangular pattern (illu-
strated in Fig. 6) and to destroy observed enemy targets, if
any, using the simulated F-16's onboard radar and missiles.
Four separate tasks were required to control the aircraft
during flight: ªGuidance,º ªControl,º ªSlow Navigation,º
and ªFast Navigation.º These tasks function much like
their similarly named FMS counterparts in Fig. 5. The
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ªGuidanceº task is responsible for setting the reference
trajectory of the aircraft in terms of altitude and heading.
The ªControlº task is responsible for executing the closed-
loop control functions that compute actuator commands, as
described above in (6.1). We have two ªNavigationº tasks
that read sensor values, distinguished by the required
update frequency. The navigation sensor values are used by
the ªGuidanceº task to determine when and how to alter
the commanded trajectory and are used as standard state
feedback by the ªControllerº task.

Table 1 shows the set of QoS levels present for all tasks,
including the associated reward, execution time, period,
and version. In our simple tests, we set each task deadline
equal to its period, although there are no such requirements
in our QoS negotiation protocol. Also, because each of these
tasks is considered critical to execute (at least at a degraded
QoS level), we set all task rejection penalties sufficiently
high that all tasks are always accepted by the QoS
negotiator.

In addition to the basic flight control tasks discussed
above, we simulate a function necessary during military
operation: ªMissile Control.º The ªMissile Controlº task is
composed of two precedence-constrained threads: ªRead
Radarº and ªFire Missile.º The ªRead Radarº thread
monitors aircraft radar to detect approaching enemy
targets, then, if a target has been detected, the ªFire Missileº
thread is used to launch a missile at the enemy target. As
shown in Table 1, the simulated ªMissile Controlº task is
computationally expensive and has two QoS levels. If
Level 1 is possible, radar will be scanned with sufficient
frequency to allow most any enemy target to be detected

and destroyed. Otherwise (level 0), fast-moving targets may
not be destroyed. During experiments (see Section 7.3), we
varied the reward for ªMissile Controlº QoS Level 1
depending on the ªsubjectiveº relative importance of taking
down enemy targets vs. flight control performance.

As described above, the ªControllerº task is responsible
for executing the control loop. At each invocation, the
controller uses the (6.1) control law with appropriate gains
to compute primary actuator outputs. Two versions of this
function were tested, one that used the secondary actuators
(QoS levels 0, 2, and 4) and one that did not (QoS levels 1
and 3). Use of these actuators allows the aircraft to perform
better in terms of takeoff distance and climb rate, as shown
in Section 7, at the expense of a longer task execution time.
The importance of controller task period is illustrated by the
relatively high reward given to the low-period QoS levels
for the ªControllerº task. The small reward changes
between the use of the different versions (e.g., level 3 vs.
level 4) reflects the fact that version choice is not critical for
safety.3

The ªSlow Navigationº task is responsible for reading
sensors that do not require a high sampling rate. All
navigation sensors are grouped into this task because they
are used by the ªGuidanceº task to determine the high-level
altitude and heading commands, but not by the more
safety-critical ªControllerº task. The Table 1 reward/period
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TABLE 1
Flight Plan with Different QoS Levels

3. We defined a QoS ªlevel 0º for the ªControllerº and ªFast Navigationº
tasks that, as will be shown in Section 7, were so slow that the aircraft
becomes unstable during turning maneuvers. Theses levels are included
among their task's QoS negotiation options for illustrative purposes only
and would not be there otherwise.



values for ªSlow Navigationº reflect the noncritical nature
of this task. Finally, the ªFast Navigationº task is
responsible for updating all sensor data used by the
ªControllerº task. Since the system must read this data
frequently to maintain sufficient state variable accuracy, the
periods and rewards are similar to those used by the
ªControllerº task.

7 EVALUATION

In this section, we show results illustrating how QoS
negotiation can help aircraft flight control degrade grace-
fully. First, we assess the QoS negotiation heuristic for our
set of flight tasks by observing how the QoS of each task
degrades with lower machine speeds. In Section 7.2, we
study aircraft performance during flight as a function of the
ªControllerº task's QoS level, illustrating graceful perfor-
mance degradation by example. In Sections 7.1 and 7.2, we
focus on tests that use a single machine and consider only
the guidance, navigation, and control tasks. We conclude
our experiments (Section 7.3) with tests which also include
the missile control task and observe the effects of load
sharing between two machines, with processor failure used
to demonstrate graceful performance degradation.

7.1 QoS Negotiation Heuristic Testing

In Section 4, we described a simple local QoS optimization
heuristic to help a service provider select a high-reward set
of QoS levels for its clients. Using the QoS levels and
rewards listed in Table 1, we illustrate the behavior of the
presented heuristic. In this experiment, we kept the task set
fixed and decreased the underlying CPU speed (increasing
task execution times), then observed the corresponding
decrease in task QoS levels. Fig. 7 plots the observed QoS
levels versus CPU speed, normalized by the minimum CPU
speed for which the task set is schedulable.

As shown in Fig. 7, Tasks 1 and 3 immediately degrade
to QoS level 0 as soon as all ªbestº levels are no longer
possible. This results primarily because Tasks 1 and 3 are
less critical, so the penalty of their degradation is not as
great. This effect illustrates both the major strength and
weakness of the current QoS negotiation heuristic. As
should be the case based on reward structure, Tasks 1 and 3
have their QoS levels reduced first because they are less
critical. However, these tasks are degraded more than they
should be in an optimal solution because the heuristic does
not use any information about the semantics of QoS level

parameters. For example, it does not ªunderstandº the
execution time and period of a task (and, thus, the task's
computing requirements). Instead, it degrades QoS levels of
clients based only on their rewards. So, it continues
degrading tasks 1 and 3 until their minimum QoS level
eventually reduces the QoS level of task 2, the primary time-
consuming, low-period task, at which time the task set
becomes schedulable.

Had the heuristic been able to ªinterpretº the QoS
parameters of task 2, it would have been able to degrade it
earlier. Not interpreting these parameters, however, allows
complete separation between the schedulability analysis
algorithm and the QoS optimization heuristic, as noted in
Section 4. By using only reward information in its search for
a feasible set of QoS levels, the same heuristic becomes
applicable in any service that uses our QoS negotiation
scheme. Only the schedulability analysis algorithm needs to
change, in accordance with the semantics of QoS level
parameters that define the service.

The purpose of the above example is to illustrate the
compromise involved between the optimality of QoS
negotiation and the convenience of minimizing dependen-
cies between it and schedulability analysis. We also
emphasize the separation between our QoS negotiation
scheme as a general mechanism and any specific policies/
heuristics used within its framework for a particular
implementation.

7.2 Aircraft Performance

We evaluated the performance of our system by studying
its ability to control the aircraft simulator during flight. In
this section, we consider only the flight control tasks as they
execute on one machine, saving discussion of the load
sharing protocol and missile control task for the next
section. As shown in Fig. 7, since the ªControllerº and
ªFast Navigationº tasks required the smallest execution
period, these tasks are the bottlenecks for execution, so
changes in aircraft performance are most easily observed
by looking at changes in QoS levels for these tasks. Since
these tasks are tightly coupled (i.e., the ªControllerº task
uses results from ªFast Navigationº), our test matrix
included variations in the ªControllerº task QoS level
from its highest (4) to lowest (0) level and ensured that the
ªFast Navigationº level acted with at least as low a period
as was present in the ªControllerº level.

As shown in Table 1, ªControllerº task QoS levels are a
function of two variables: task period and version. We
present tests that illustrate major performance differences
due to each of these variables, specifically during the critical
takeoff/climb phase of flight. Fig. 8 illustrates differences
between the two versions of the ªControllerº task in their
ªbest performanceº case (period = 200 msec). Level 4 (with
secondary actuation) requires a larger ªControllerº task
execution time than level 3 (no secondary actuation), thus it
is harder to schedule. Climb performance with level 4 is
only slightly better than that with level 3, consistent with
their small reward difference. This example illustrates how
QoS negotiation can achieve graceful degradation. Overall
processor utilization is decreased by reducing the ªCon-
trollerº task to level 3, but safety (i.e., controller stability) is
not compromised.
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Next, we performed tests with varying ªControllerº task
period. We isolated version from period effects by exclu-
sively selecting QoS levels with secondary actuation (levels 0,
2, and 4), although similar trends result with the other task
version. To illustrate performance changes as a function of
task period, we consider three different QoS levels: level 4
with a period of 0.2 seconds (200 msec), level 2 with a
period of 1 second, and level 0 with a period of 5 seconds.
We include level 0 among the Controller's negotation
options as a comparative example illustrating controller
instability. Of course, no unstable QoS levels should be
defined among a client's negotiation options since the client
should not ªaskº for instability.

Figs. 9, 10, 11, and 12 show state variables as a function of
time from takeoff, climb, and a turn to East after reaching
FIX 1 (see the pattern in Fig. 6). Fig. 9 shows the aircraft
altitude for the different controller periods. As period
increases, climb performance gracefully degrades between
levels 4 and 2, but then becomes unstable in level 0 (period
= 5 sec), illustrating the necessity of real-time response for
the ªControllerº task. Fig. 10 shows aircraft heading as a
function of time for the three different ªControllerº task
periods during the same phases of flight. Again, heading
control performance between ªControllerº task levels 4 and
2 degrades, but remains stable, while level 0 results in an
unstable response.

Figs. 11 and 12 show aircraft pitch angle and roll angle,
respectively, for the two stable ªControllerº QoS levels.
Note that we do not include ªControllerº level 0 here

because the instability obscures the other plots. Since pitch
angle and altitude are coupled, the pitch angle has largest
magnitude whenever the altitude is climbing (or descend-
ing) and, as illustrated in this plot, the increase in period to
one second causes a large pitch angle to be required for a
longer time, a stable, but undesirable, performance trait. Roll
angle (Fig. 12) also shows a delay and longer roll angle
deviation from zero for the slower-period control cycle, as
well as significant overshoot when the task period increases.

7.3 Load SharingÐFlight with Missile Control

Load sharing capabilities are implemented in RTPOOL and
we performed a final set of tests which included both the
flight control tasks (with performance characteristics shown
above) and a missile control task, as described in Section 6.3.
In these tests, we start the system with two machines
available for task execution. Because, as defined in Table 1,
the missile control task was computationally expensive, the
load sharing protocol places all flight control tasks on one
machine and the missile control task (both the ªRead
Radarº and ªFire Missileº threads) on the other machine.

When the two machines function normally, both the
flight and missile control tasks run in their maximum
performance levels. In this case, enemy targets are quickly
detected and fired upon, while flight control is identical to
the best performance profiles in the Section 7.2 plots. For the
next test set, we began operation with two functioning
machines, then shut one down (simulating machine failure)
just after takeoff. This requires the load sharing algorithm to
function dynamically such that the one functional machine
now has to execute both the flight and missile control tasks.
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Fig. 8. Aircraft altitude performance with and without secondary control

actuation.

Fig. 9. Aircraft altitude performance for different controller task levels.

Fig. 10. Aircraft heading performance for different controller task levels.

Fig. 11. Aircraft pitch performance for different controller task levels.



To illustrate the importance of the relative rewards assigned
to flight vs. missile control functions, we varied the missile
control reward for QoS level 1 as shown in Table 1 and then
ran the simulation for each of these two rewards. With the
relatively low ªMissile Controlº reward, the system chooses
to degrade the ªMissile Control,º ªGuidance,º and ªSlow
Navigationº functions to level 0, but manages to keep the
ªControllerº and ªFast Navigationº tasks safe levels (i.e.,
levels 2 and 1, respectively). In this manner, the flight
control is a bit sluggish, but stable (as illustrated in
Section 7.2). The aircraft is unable to launch missiles at
most targets since it only scans its radar (in the ªMissile
Controlº task) once every 10 seconds.

Alternatively, this system may be aboard an expendable
drone whose most important function is to destroy a target
or attack enemy aircraft. In this case, the reward set may be
structured such that the missile control task takes pre-
cedence over accurately maintaining flight control.4 To
illustrate such changes in the task reward set, we altered the
reward for QoS level 1 of the ªMissile Controlº task to 200
(as shown in Table 1). Now, when the second machine shuts
down, the QoS negotiator reduces all flight control levels
to 0 since the missile controller is perceived as the most
important task. After one machine fails, the aircraft
eventually becomes unstable, but it is still able to quickly
detect and respond to enemy targets that appear on radar.

It is important to note that, had we used traditional
algorithms for schedulability analysis which do not allow
negotiated QoS degradation, the system would have failed
to guarantee/accept the entire task set on the same
processor, leading to complete mission failure. Our QoS
negotiation scheme allows our system to continue after
processor failure at a set of degraded task QoS levels which
correspond to the relative importance placed on each task.

8 SUMMARY AND FUTURE WORK

In this paper, we presented a novel scheme for QoS
negotiation in real-time applications. This scheme is
applicable for the design of real-time service providers,
extending the interface of such services in that 1) it adopts a
modified notion of request guarantees that allows for

defining QoS compromises and supports graceful QoS
degradation and 2) it provides a generic means to express
application-level semantics to control how application QoS
is to be degraded under overload or failure conditions. Our
QoS negotiation method improves the guarantee ratio over
traditional admission control algorithms and increases the
application-level perceived utility of the system.

The proposed QoS-negotiation architecture has been
incorporated into RTPOOL, an example middleware
service which implements a computing resource manager
for a pool of processors. The synergy between components
of the service and the QoS-negotiation support has been
illustrated. RTPOOL is used for a flight control application
to demonstrate the efficacy of QoS negotiation. We
demonstrated that the application does have negotiable
parameters/constraints and can thus benefit from the
added flexibility of negotiation. We also outlined a method
by which application task QoS levels and their respective
rewards can be analytically derived from system failure
probability. QoS-negotiation support, while guaranteeing
maximum QoS levels during normal operation, is shown to
provide graceful QoS degradation in case of resource loss.

We have demonstrated how an application can benefit
from the proposed QoS-negotiation scheme, but we have
not analyzed the performance of different QoS optimization
policies nor the general scope of their applicability. We are
currently studying alternative QoS-optimization methodol-
ogies and the scalability of our QoS-negotiation approach.
We are also considering ways to implement negotiable fault
tolerance QoS, perhaps as an extension to RTPOOL.
Finally, we are considering the development of generic
schemes for quantifying perceived utility to compute
reward and penalty values. Possible approaches include
adapting performability analysis and using economic
models for computing utility/costs.
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