
Brief Contributions__

Period-Based Load Partitioning and
Assignment for Large Real-Time Applications

Tarek F. Abdelzaher, Member, IEEE, and
Kang G. Shin, Fellow, IEEE

AbstractÐWe propose a new approach to the problem of workload partitioning

and assignment for very large distributed real-time systems, in which software

components are typically organized hierarchically, and hardware components

potentially span several shared and/or dedicated links. Existing approaches for

load partitioning and assignment are based on either schedulability or

communication. The first category attempts to construct a feasible schedule for

various assignments and chooses the one that minimizes task lateness (or other

similar criteria), while the second category partitions the workload heuristically in

accordance with the amount of intertask communication. We propose, and argue

for, a (new) third category based on task periods, which, among others, combines

the ability of handling heterogeneity with excellent scalability. Our algorithm is a

recursive invocation of two stages: clustering and assignment. The clustering

stage partitions tasks and processors into clusters. The assignment stage maps

task clusters to processor clusters. A later scheduling stage will compute a

feasible schedule, if any, when the size of processor clusters reduces to one at the

bottom of the recursion tree. We introduce a new clustering heuristic and evaluate

elements of the period-based approach using simulations to verify its suitability for

large real-time applications. Also presented is an example application drawn from

the field of command and control that has the potential to benefit significantly from

the proposed approach.

Index TermsÐTask allocation, task partitioning, inhomogeneous networks, real-

time scheduling.

æ

1 INTRODUCTION

DISTRIBUTED embedded real-time systems are becoming increas-
ingly larger and more complex as the scope of real-time computing
extends to more demanding and challenging application domains.
Air defense, command and control, battle control, and space
exploration, for example, tend to be very large in problem size and
potentially extend over a large number of heterogeneous physi-
cally dispersed computers. Since violation of timing constraints in
these applications may have dire consequences, static workload
(usually periodic) must be assigned to processors before run-time
and its schedulability verified. The main workload of the above-
mentioned applications is periodic in nature. Sporadic and
aperiodic tasks can be treated as periodic by allotting them a
periodically-replenished execution budget, e.g., a deferrable server
[1] or a processor capacity reserve1 [2]. Thus, we assume that all
tasks are periodic.

We propose a new workload partitioning and assignment

algorithm for periodic tasks in large heterogeneous real-time

systems which attempts to find an assignment of tasks to

processors that results in a feasible schedule. The contributions

of our approach lie in:

1. its scalability to very large systems by taking advantage of
recursive clustering,

2. its ability of handling arbitrary-topology heterogeneous
systems,

3. its independence from the run-time scheduling policy, and
4. its use of a period-based clustering heuristic which tends

to increase feasible processor utilization bounds and
minimize total preemption overhead.

Our approach is built around solving a variant of the minimum

k-way cut problem [3] on a set of graphs defined in the subsequent

sections.2 We developed a new O�n2 lg n� heuristic for solving this

variant, where n is the number of vertices in the graph. For all the

graphs for which we were able to compute an optimal solution to

the minimum k-way cut problem using exhaustive search, our

heuristic solutions, on average, were found to be within 3 percent

of the optimal. Moreover, in 74 percent of these cases, our heuristic

algorithm yielded an optimal solution.
We propose grouping tasks by period. In embedded real-time

systems, the number of different task periods among critical tasks

(those with hard deadlines) is relatively small, with many tasks

running at each of these periods. This is because the entire

software hierarchy composing the application is driven by the

rates at which the system interacts with the environment through a

relatively small number of sensors and actuators. Having each

processor run tasks of the same or harmonically related periods

has the potential to increase its feasible utilization bound (under

fixed-priority scheduling) [4]. Moreover, such a task assignment is

likely to reduce the least common multiple (LCM) of task periods

on each machine (compared to an assignment that does not group

tasks by harmonic periods). Hence, it simplifies schedulability

analysis and requires a smaller amount of memory space for

storing a precomputed schedule. This is an important practical

consideration when one implements table-driven scheduling.

Grouping modules by period may also reduce consumed commu-

nication bandwidth. Communication occurs mostly among mod-

ules of harmonically related periods (typically the same period).

For example, in a process control or robotics application,

communicating elements of the control loop [5] would typically

run at the same period (e.g., the sampling interval), while

unrelated control loops might run at unrelated periods. Another

consideration is preemption overhead. Having each processor run

tasks of comparable periods reduces total preemption overhead,

which accumulates quickly when a short-period task keeps

preempting a larger-period one, and may reduce blocking due to

synchronization conflicts. To summarize, we propose that modules

should be grouped whenever possible if their periods are

comparable and harmonically related.
The rest of the paper is organized as follows: The next section

describes related work putting the proposed load partitioning and

task assignment in a comparative perspective. Section 3 describes

the system model. Section 4 presents the proposed partitioning and

assignment algorithm. Section 5 describes an example application.

Finally, Section 6 presents the conclusion of the paper and

directions for future work.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000 81

. T.F. Abdelzaher is with the Department of Computer Science, The
University of Virginia, Charlottesville, VA 22903.
E-mail: zaher@cs.virginia.edu.

. K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109.
E-mail: kgshin@eecs.umich.edu.

Manuscript received 1 Oct. 1996; accepted 6 Jan. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 102119.

1. Reserves can be used for periodic tasks as well.

2. The minimum k-way cut in graph is a partitioning of the graph into k
subgraphs (clusters) such that the cost of edges among the resulting clusters
is minimized, which is an NP-hard problem [3].

0018-9340/00/$10.00 ß 2000 IEEE

2 RELATED WORK

Optimal algorithms [6], [7], [8], [9], [10] have been proposed for

different variants of the hard real-time task assignment and

scheduling problem, for both homogeneous [9] and heterogeneous

[8], [10] systems. For example, in [6], [7], [8], different task-

assignment methods are presented to minimize the sum of task

execution and communication costs using an implicit enumeration

branch-and-bound (B&B) method. The optimal algorithm in [9],

while utilizing an elegant approach to reduce the complexity of the

search space, makes a fundamental assumption necessary for its

correct performance and optimality, namely that task computation

and communication delays remain constant, regardless of the

particular assignment. Thus, it can be used only for homogeneous

systems. The optimal algorithm in [10] allows heterogeneity, but

has a scalability limitation. In general, scalability is a common

concern with optimal solutions to task allocation since the problem

is NP-hard.
To overcome the scalability limitation, heuristic approaches

[11], [12], [13], [14], [15], [16] have been proposed for larger

instances of the problem. Based on their performance measures,

these approaches can be classified as schedulability-based [12],

[13], [14] or communication-based [15], [16]. One common way to

reduce the allocation search space is to cluster tasks into larger

units of allocation, then allocate the resulting task clusters, not

individual tasks, to available processors. Different flavors of this

are proposed in [9], [15], [16]. For the special case of fixed-priority

scheduling on homogeneous multiprocessor systems, rate-mono-

tonic analysis has been used to derive near-optimal task clustering

policies taking into consideration task periods [17], [18]. In general,

clustering heuristics, such as those in [9], [15], typically require the

knowledge of module execution times and intermodule commu-

nication overhead. Computing these values, which depend on

processor speed and link bandwidth, requires a priori knowledge

of task-to-processor assignment. Since the assignment is not

known in advance, these heuristics are usually applicable only to

homogeneous systems. For large distributed applications, parts of

which may span several heterogeneous platforms, this is a serious

limitation. Our approach differs from other clustering approaches

in two respects. First, while, in existing approaches, clustering is

done only once, followed by the allocation stage, we use a more

scalable recursive approach which iteratively refines the solution.

Second, our clustering algorithm can handle heterogeneous

systems efficiently.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We assume the workload is composed of a set of periodic tasks.
Each task Ti is characterized by a set of modules Mj 2 Ti, an
invocation period Pi, and a deadline Di relative to the start of the
invocation period. In this paper, we assume that Di � Pi, which is
true of most periodic tasks, since each periodic task invocation
must usually complete execution before the next invocation (i.e., it
must complete execution within its designated period Pi). Each
module Mj has a worst-case computation requirement Cj
measured in processor cycles (or other units independent of
processor speed). We assume that all invocations of the same
module run on the same processor, i.e., task reassignment is not
considered here. A module Mj may exchange messages with
another module Mk in the same or a different task. Modules Mj

and Mk are said to be independent if the start times and finish
times of their invocations can be arbitrarily interleaved. Otherwise,
the modules are said to have a synchronization constraint. The
hardware platform on which the application is to be executed is an
arbitrary-topology network, possibly composed of several dedi-
cated and shared links. Each processor Ni on the network provides
service at rate �i, measured in number of processor cycles per unit
time. Each link l has bandwidth Bl. Links may be dedicated (point-
to-point) or multiple access (e.g., an FDDI ring). A processor may
have access to more than one link.

We want to find an assignment of modules to processors, in a
distributed system, for which a feasible schedule is likely to be
found. As described in Section 4, this problem is reduced to that of
graph partitioning, where finding a suitable clustering and
assignment corresponds to finding a minimum k-way cut in a set
of graphs. Our simulation results have shown the proposed graph
partitioning heuristic to work very well.

4 SOLUTION ALGORITHM

The proposed partitioning and assignment algorithm starts by
invoking the solve function described in Fig. 1 with the total
processor set and module set as the input parameters. This
function executes both the clustering and assignment phases, then
calls itself recursively. Section 4.1 addresses processor clustering. It
deals with issues of processor heterogeneity (each processor is
assumed to have a different speed) and network topology.
Section 4.2 addresses task clustering. Section 4.3 details and
evaluates the minimum k-way cut heuristic used to solve the
clustering problem. For generality, the minimum k-way cut

82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000

Fig. 1. The assignment algorithm.

heuristic is intended to be independent of the particular way the
input graph is computed. Finally, Section 4.4 deals with assign-

ment of task clusters to processor clusters. It addresses issues of
processor utilization and presents aspects of the algorithm that

attempt to bound the utilization such that deadlines are not
missed.

4.1 Processor Clustering

The problem of processor clustering is solved by finding a

minimum k-way cut in a graph called the processor attraction graph.
In the processor attraction graph, each vertex represents a

processor and each edge represents a communication link
connecting two processors. Processor clustering attempts to
identify subgroups (clusters) of processors to be treated as single

processing units in the subsequent assignment phase. Workload
will be allocated to these units as a whole and the details of

particular module assignment to individual processors within a
cluster (unit) will be determined during later iterations. In general,

given two processors Ni and Nj of speeds �i and �j, interconnected
by a link of bandwidth Bij, the larger the ratio, Bij=��i � �j�, of

their network interconnection bandwidth to their computing
bandwidth, the more desirable it is to group them in the same

cluster. We let this ratio be the attraction force (edge cost) in the
processor attraction graph.

If more than two processors share the same communication
link, its capacity must be partitioned among these processors. In
most real-time communication technologies such as ATM or FDDI,

there exist means for communication bandwidth reservation. Thus,
if the communication bandwidth reserved for Ni and Nj is bi and

bj, respectively, then Bij � bi � bj. The approach does not apply to
technologies with no communication bandwidth reservation

capability such as Ethernet. We also do not explicitly consider
multicast and broadcast capabilities. Each message is assumed to

have a single destination, even when communicated over a
broadcast-supporting medium.

Processors on different LANs are typically interconnected via
routers. Although routers are not a target for task assignment, they

must be considered in the processor attraction graph because they
affect communication delays. Consider a leaf router Nr connecting

some subnet N to an internetwork. All communication to/from
subnet N passes through router Nr. We expect the communication

volume through Nr to be proportional to
P

i �i. Thus, we set
�r �

P
i �i, where the summation is carried over all processors Ni

in subnet N . In general, if a subnet N has n routers interfacing it to
other networks, then, assuming balanced traffic, �r for each router
is given by �r � �

P
i �i�=n. Finally, routers that are connected to

other routers inherit (the average of) their �r values.
Fig. 2 demonstrates the result of clustering 59 nodes (of which

13 are routers and 46 are processors), distributed over eight ground
defense bases, into five clusters. We used the heuristic described in
Section 4.3 to find a minimum 5-way cut in the processor attraction
graph. For simplicity of presentation, let all LANs be 100 Mbps
FDDI rings, all dedicated links be of T1-link type (1.544 Mbps
bandwidth), and all processors be identical, of speed �, except
processors at Base A whose speed is 3� and processors at Base F
whose speed is 2�. Finally, let link bandwidth be partitioned among
processors sharing the same FDDI ring in proportion to their speed.
Edge costs are then computed for the processor attraction graph. For
example, edge costs between any two processorsNi andNj on Base B
isBij=��i � �j� � �100=3Mbps�=�2��. Similarly, recalling the defini-
tion of �r (for routers), the attraction force between subnet routers
at Base A and Base C is 1:544Mbps=�9�� 4��. The minimum 5-way
cut resulting from assigning edge costs as described above is
shown in Fig. 2. We can observe the following advantageous
properties:

. Cluster boundaries coincide with LAN boundaries, which
is intuitively appealing since, in our example, processors
on a LAN are connected by higher bandwidth links
(100 Mbps) than those separated by intermediate routers
(1.544 Mbps). Cluster boundaries should run across slower
links.

. The LANs at Base A, B, and C were merged into one
cluster, which is a good choice, because these LANs are
interconnected by a complete graph (each is directly
connected to the other two). This rich interconnection
makes it less likely that any of the three point-to-point
links in the cluster will be congested and, thus. enables the
cluster to run more tightly-coupled tasks.

. The larger LAN at the Command and Control Center has
not been merged with any neighboring LANs because, by
virtue of its size, it tends to create a bottleneck at its router.
Putting this LAN in a separate cluster makes the load

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000 83

Fig. 2. The ground base resource network.

assigned to it relatively independent of that assigned to
other clusters, thus alleviating the potential bottleneck
problem.

. The LANs at Base G and D have been merged with their
neighboring ones because they have a small processor per
router ratio, which makes their routers less of a bottleneck.
The same argument applies to merging the two LANs at
Base E.

4.2 Task Clustering

We now describe how modules are clustered for the subsequent

assignment purpose. We construct a module attraction graph,

where each vertex represents a module. An edge exists between

two modules if and only if they either communicate or share a

synchronization constraint. Clustering such modules together

attempts to reduce synchronization overhead and consumed

network bandwidth. Let the total number of modules be M . We

would like to find a set of clusters that, if assigned to different

processor clusters, will minimize the following metrics:

M1. Normalized Preemption Cost:X
k

f
X

ijjPj>Pi;Mi;Mj2Cluster k
dPj=Pieg=M:

This cost refers to the worst-case number of preemptions per

module. Note that, for two modules Mi, Mj with Pi � Pj, Mi may

preempt a single invocation of Mj no more than dPj=Pie times.

M2. Normalized LCM:

AvgkfLCMijMi2Cluster kPi=AvgijMi2Cluster kPig:
It refers to the average ratio (over all clusters) between the LCM of

periods of all modules in each cluster divided by the average

period of the modules in that cluster. Ideally, this average should

be 1, meaning that each cluster contains modules of the same

period only.

M3. Intercluster communication.

Without loss of generality, let Pi and Pj be the periods of two

communicating modules Mi and Mj, respectively, with Pi � Pj
(recall that periods and deadlines are the same in our model). Let

Vij be the average communication volume between them (in bytes

per second). The following edge cost expressions were compared:

. �1 � Pi=Pj. This expression attempts to cluster modules
with closer periods (to reduce the number of preemptions).

. �2 � Pi=LCM�Pi; Pj�. This expression attempts to cluster
modules with similar periods if they are harmonic multi-
ples (in which case LCM�Pi; Pj� � Pj). Unlike �1, it
penalizes module pairs with non-harmonic periods (where
LCM�Pi; Pj� > Pj). Clustering modules of harmonic peri-
ods increases the feasible processor utilization bound [4].

. �3 � Pj=LCM�Pi; Pj�. This expression attempts to cluster
modules with periods which are harmonic multiples.
Unlike �1 and �2, it does not penalize modules for
having significantly different periods as long as they are
harmonic.

. �4 � Vij=Pi. This expression attempts to cluster modules
which consume a higher communication bandwidth. This
metric is added for comparison only.

We conducted several experiments to evaluate the edge cost
expressions �1; . . . ; �4, in terms of performance metrics M1; . . . ;M3.
To eliminate bias for a particular input generation process, we
conducted two sets of texperiments that differ in the way task
graphs are generated.

In the first set of experiments, 60 task graphs of 100 modules
and 300 edges each were generated. Module periods were
generated at random with a uniform distribution between 10 and
100. Messages sizes were chosen randomly with a discrete uniform
distribution between 1 and 1,000 bytes. Edge costs were computed
for the corresponding module attraction graph using each of
�1; . . . ; �4 and the minimum 10-way cut was found in each case for
each task graph. In the second set, we repeated the experiments
after modifying the task graph generation process. In this set, only
a small number of different module periods were used and
messages were communicated with a higher probability between
modules of the same period.

Figs. 3 and 4 compare the performance of �1 . . . �4 in terms of
our three performance metrics, namely, the normalized preemp-
tion cost (M1), normalized LCM (M2), and consumed communica-
tion bandwidths (M3) in the two sets of experiments. Each data
point is the average of 60 experiments. We can observe that the
LCM in Fig. 3 is much higher than that in Fig. 4. This is because
periods of individual modules in the first set of experiments have
been generated at random. The LCM is significantly reduced for
systems where module periods tend to be related, or the number of
different periods is small.

Period-based heuristics yielded a slightly better normalized
preemption cost and a larger improvement in normalized LCM
over the communication-based heuristic. In both figures, �2

minimizes LCM. It also performs favorably with respect to the
number of preemptions (which depend on the range of module

84 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000

Fig. 3. Comparing allocation heuristics for random task sets. (a) Preemption cost, M1. (b) Normalized LCM, M2. (c) Bandwidth, M3.

periods within a cluster), although �1 performs slightly better in
this regard. This was expected since �2 is sensitive to the increase of
period ratio as well as that of LCM, while �1 is concerned with the
period ratio only. On the other hand, �4 results in less commu-
nication bandwidth consumption since it creates higher attraction
between more heavily communicating modules, thus making them
more likely to be coallocated. The above results were obtained for
systems where intertask communication volume was not domi-
nant, which is the model we consider in this paper (i.e., only small
messages were exchanged among tasks). We use �2 for computing
edge costs. Unlike �1, it tends to separate modules with non-
harmonic periods into different clusters, even if those periods are
close. Thus, it is more likely to increase feasible utilization bounds
[4]. Note that if all periods allocated to the same processor are
made harmonic, the module set will be schedulable even at
100 percent processor utilization. For applications where intertask
communication is large, �4 should be used for computing edge-
costs since it performs best in terms of minimizing communication
cost.

4.3 The k-Way Cut Heuristic

In this section, we describe the heuristic used for clustering both
the processor attraction and module attraction graphs whose edge
costs have been computed as described in Sections 4.1 and 4.2,
respectively. This is analogous to the minimum k-way cut problem.
Several algorithms have been proposed to solve it, e.g., [19], [20],
[21] for the special case of k � 2, [22], which is specific to VLSI
design, and [23], [24], which use randomized algorithms that take a
long time to converge to a good solution. We propose a simple
heuristic that was developed with our hierarchical system model
in mind. Let us define the cost of a vertex in a graph as the sum of
the costs of all edges incident to the vertex. It can be easily shown
that, in any graph, the sum of vertex costs defined this way is
exactly twice the sum of edge costs. If each vertex represents a
cluster, the sum of edge costs is also the cost of the cut. Thus, to
minimize cut cost, we can minimize the sum of vertex costs.
Vertices are sorted in decreasing order of cost in a heap. The
highest-cost vertex is popped off the stack and merged with the
neighbor in the graph along the highest-cost incident edge. The
resulting vertex is reinserted in the heap with a single O (lg V)
operation, where V is the number of vertices. Merging is repeated
until the desired number of clusters remains. For example,
applying this heuristic to the graph in Fig. 5a, we obtain the
graphs in Fig. 5b, Fig. 5c, and Fig. 5d, yielding an optimal solution.

To demonstrate the efficiency of the proposed heuristic, we
conducted two sets of experiments. In the first experiment, we

compare the relative performances of different clustering heur-
istics (including ours) with that of an optimal algorithm. The
optimal algorithm uses exhaustive search for the minimum-cut
solution. Since this problem is NP-hard, we limit ourselves to the
special case of a two-way cut and consider graphs of 10 to 25
vertices with, on average, four to six incident edges per vertex.
Graphs are generated by first constructing the required number of
vertices, then randomly generating the required number of edges
among them. Edge costs are uniformly distributed. The following
heuristics were considered:

K and L: Kernighan and Lin bisection algorithm [19]. It starts with
a random cut then swaps vertices to improve cut cost until no
further improvement can be made.

Best Neighbor: Select vertices at random. Find the highest-cost
edge incident to the selected vertex. Join the two endpoints of
that edge. Repeat this until only two clusters remain.

The Proposed Heuristic.

Optimal Algorithm: Uses exhaustive search.

Random: Randomly cuts the graph into two subgraphs.

Table 1 summarizes comparison results for 120 different
graphs. Column 2 of the table gives the average performance of
each heuristic. It is measured by the ratio of the optimal solution to
the solution found by the heuristic, averaged over all 120 cases.
Column 3 gives the percentage of 120 cases for which the given
heuristic was able to find the exact optimal-cost solution.

As can be seen from Table 1, the proposed heuristic finds the
optimal solution an order of magnitude more often than the best of
the other heuristics compared. On average, the cost achieved by
our heuristic is within 3 percent of the optimal. The run-times of all
heuristics were found insignificant (of the order of milliseconds)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000 85

Fig. 4. Comparing allocation heuristics for harmonic task sets. (a) Preemption cost, M1. (b) Normalized LCM, M2. (c) Bandwidth, M3.

Fig. 5. A clustering example. (a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

and, hence, not measured. Given the off-line nature of our
partitioning problem, run-times of such magnitude will not
constitute an important basis for choosing one of the compared
heuristics.

In order to assess the scalability of the approach to very large
system sizes, we conducted 30 other experiments on systems of
10,000 vertices. Each system was organized into a three-layer
hierarchy. The attraction forces within a layer were set, on average,
to be an order of magnitude higher than the attraction force across
successive layers. Excessive computational requirements make it
impossible to use an optimal algorithm for systems of such size.
We compared the minimum-cut cost obtained from our heuristic to
that obtained from the best neighbor heuristic and the random cut.
Costs were averaged over all conducted experiments, and normal-
ized with respect to that of our heuristic. Table 2 shows the
approximate relative figures of cut cost obtained. It can be seen
that the cost achieved using our heuristic is far superior to the
other costs in the table. The run-time of the slowest of all compared
heuristics was of the order of seconds for this problem size, and as
such was dismissed as an insignificant factor in choosing the
heuristic to use.

4.4 Cluster Allocation

This section describes the algorithm which assigns module clusters
to processor clusters. It is invoked after the clustering phase. We
cast this problem into that of finding a minimum k-way cut in a
graph, called an assignment graph. Each node in the assignment
graph represents either a processor cluster or a module cluster.
Attraction forces are set as described below.

Processor-processor cluster force: This force is set to ÿ1 to
prevent processor clusters from being merged in the process of
assignment.

Module-module cluster force: We use �2 as the attraction force
between module clusters. In other words, the cost of an edge
between two module clusters in the assignment graph is equal
to the cost of the edge between these two clusters in the reduced
module attraction graph (the graph that results from module
clustering).

Module-processor cluster force: The force between processor
cluster N and module cluster M determines the desirability of
assigning M to N . It should account for real-time constraints

and differences in processor (cluster) speed in a heterogeneous
system, as well as be sensitive to load distribution to avoid
processing bottlenecks. Processor utilization captures both
processing speed and applied load. For schedulability, this
utilization needs to be lower than a specified bound UN . The
derivation of UN has been adequately addressed in the real-time
scheduling literature. In general, it depends on the real-time
scheduling policy used. For example, for the case of indepen-
dent tasks and EDF scheduling, UN � 1, whereas, for rate
monotonic scheduling, UN � 0:69. We choose the module-
processor cluster force to be UN ÿ U , where U is the total
utilization of the processor cluster, should the module cluster
be assigned to it. The utilization is computed by summing the
contributions of all modules already assigned to N and all
modules contained in M, i.e., U �Pi Ci=�Pi; Mi 2M [N
(where Mi 2 N if Mi has already been assigned to N) and
� �Pj �j; Nj 2 N . Note how the speed of the cluster is the
summation of its individual processor speeds, which accounts
for heterogeneity among different processors. This cost expres-
sion tends to attract module clusters to less utilized processors,
keeping processor utilization below the schedulable bound if
possible. We assume that module deadlines coincide with their
periods. Thus, deadlines are implicitly taken into consideration
in the above expression. Reducing the utilization, as defined
above, below the schedulable bound will mean that all
deadlines will be satisfied.

5 AN APPLICATION EXAMPLE

We tested the algorithm using a command and control application
where a set of sensors detect incoming threats (e.g., enemy planes
or missiles) in a battle scenario. The details of the application are
omitted for space limitations. Table 3 compares the values of the
performance metrics for task assignments generated by two
algorithms, the one proposed in this paper and the algorithm in
[15]. Each table entry gives the ratio of the metric value obtained by
the latter algorithm to that obtained by ours. Two cases are
presented. In Case 1, nonharmonic task periods chosen (LCM >>
maximum period). Fifty percent of all communication was
generated between modules of the same period. In Case 2, mostly
harmonic task periods were used (LCM = twice the maximum
period). Ninety percent of communication was generated between
modules of the same period.

86 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000

TABLE 1
Comparison of Clustering Methods

TABLE 2
Normalized Cut Costs

TABLE 3
Relative Performance

From Table 3, note that period-based clustering resulted in
roughly an order of magnitude improvement in estimated
preemption overhead because it tends to coallocate modules of
the same period. The improvement in the LCM metric was high in
Case 1, where the LCM of all task periods is very high. On the
other hand, it was low in Case 2, where the LCM of all task periods
is low, precluding further reduction. The most surprising result,
however, is the great improvement in consumed communication
bandwidth when using our heuristic. We believe this is because the
approach of [15] requires the number of vertices in each partition
to be fixed. Ours, on the other hand, allows this number to vary,
thus gaining an extra degree of freedom in searching for optimal
cuts. The improvement in consumed communication bandwidth is
greater in Case 2 because, in Case 2, there is a tighter correlation
between intermodule communication and module periods than in
Case 1.

6 CONCLUSION

In this paper, we presented a new approach to partitioning and
assignment of large real-time applications, which groups tasks by
period. The main appeal of the approach is its ability to provide
both potential for scalability and support for system heterogeneity.
Scalability is achieved by utilizing a recursive divide-and-conquer
technique which groups modules and processors into respective
clusters, then maps module clusters to processor clusters and
refines the resulting assignment recursively. Both clustering and
assignment are based around the finding of a minimum k-way cut
in appropriately defined graphs. Another contribution of this work
is a new efficient heuristic for solving the k-way cut problem. We
have shown that for the case of 2-way cut with 10-25 vertices and
four to six incident edges per vertex, our algorithm finds on
average a solution within 3 percent of the optimal and find the true
optimal solution 74 percent of the time. For systems of 10,000
modules, it performed at least two orders of magnitude better than
other heuristics. In Section 5, we presented a comparison with a
different approach performed on application data drawn from the
field of command and control. The comparison shows the promise
of our approach.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by the
Defense Advanced Research Projects Agency, monitored by the
U.S. Air Force Rome Laboratory under Grant F30602-95-1-0044.
Any opinions, findings, and conclusions or recommendations are
those of the authors and do not necessarily reflect the views of the
funding agency.

REFERENCES

[1] J.K. Strosnider, J.P. Lehoczky, and L. Sha, ªThe Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-Time
Environments,º IEEE Trans. Computers, vol. 44, no. 1, pp. 73-91, Jan. 1995.

[2] C.W. Mercer, S. Savage, and H. Tokuda, ªProcessor Capacity Reserves: An
Abstraction for Managing Processor Usage,º WWOS, pp. 129-134, 1993.

[3] W.-P. Chiang, ªOptimal Graph Clustering Problems with Applications to
Information System Design (Partitioning, Database,º PhD thesis, Univ. of
Michigan, 1984.

[4] L. Sha, R. Rajkumar, and S.S. Sathaye, ªGeneralized Rate Monotonic
Scheduling Theory: A Framework for Developing Real-Time Systems,º
Proc. IEEE, vol. 82, no. 1, pp. 68-82, Jan. 1994.

[5] M. Alfano, A. Di-Stefano, L. Lo-Bello, O. Mirabella, and J.H. Stewman, ªAn
Expert System for Planning Real-Time Distributed Task Allocation,º Proc.
Florida AI Research Symp., Key West, Fla., May 1996.

[6] C.C. Shen and W.H. Tsai, ªA Graph Matching Approach to Optimal Task
Assignment in Distributed Computing Systems Using a Minimax Criter-
ion,º IEEE Trans. Computers, vol. 34, no. 3, pp. 197-203, Mar. 1985.

[7] J.B. Sinclair, ªEfficient Computation of Optimal Assignments for Distrib-
uted Tasks,º J. Parallel and Distributed Computing, vol. 4, pp. 342-362, 1987.

[8] P.Y.R. Ma et al., ªA Task Allocation Model for Distributed Computing
Systems,º IEEE Trans. Computers, vol. 31, no. 1, pp. 41-47, Jan. 1982.

[9] K. Ramamritham, ªAllocation and Scheduling of Precedence-Related
Periodic Tasks,º IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 4,
pp. 412-420, Apr. 1995.

[10] D.-T. Peng and K.G. Shin, ªStatic Allocation of Periodic Tasks with
Precedence,º Proc. Int'l Conf. Distributed Computing Systems, pp. 190-198,
June 1989.

[11] C.-J. Hou and K.G. Shin, ªReplication and Allocation of Task Modules in
Distributed Real-Time Systems,º Proc. 24th IEEE Symp. Fault-Tolerant
Computing Systems, pp. 26-35, June 1994.

[12] S.B. Shukla and D.P. Agrawal, ªA Framework for Mapping Periodic Real-
Time Applications on Multicomputers,º IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 7, pp. 778-784, July 1994.

[13] E. Wells and C.C. Caroll, ªAn Augmented Approach to Task Allocation:
Combining Simulated Annealing with List-Based Heuristics,º Proc. Euro-
micro Workshop, pp. 508-515, 1993.

[14] Y. Oh and S.H. Son, ªScheduling Hard Real-Time Tasks with Tolerance to
Multiple Processor Failures,º Multiprocessing and Multiprogramming, vol. 40,
pp. 193-206, 1994.

[15] T.-S. Tia and J. W.-S. Liu, ªAssigning Real-Time Tasks and Resources to
Distributed Systems,º Int'l J. Minim and Microcomputers, vol. 17, no. 1,
pp. 18-25, 1995.

[16] S.S. Wu and D. Sweeping, ªHeuristic Algorithms for Task Assignment and
Scheduling in a Processor Network,º Parallel Computing, vol. 20, pp. 1-14,
1994.

[17] A. Burchad, J. Liebeherr, Y. Oh, and S. Son, ªAssigning Real-Time Tasks to
Homogeneous Multiprocessor Systems,º IEEE Trans. Computers, vol. 44,
no. 12, pp. 1,429-1,442, Dec. 1995.

[18] Y. Oh and S. Son, ªAllocating Fixed-Priority Periodic Tasks on Multi-
processor Systems,º J. Real-Time Systems, vol. 9, no. 3, Sept. 1995.

[19] W. Kernighan and S. Lin, ªAn Efficient Heuristci Procedure for Partitioning
Graphs,º Bell System Technical J., vol. 49, pp. 291-307, 1970.

[20] D.G. Schweikert and B. Kernighan, ªA Proper Model for Partitioning of
Electrical Circuits,º Proc. Ninth Design Automation Workshop, pp. 57-62, 1972.

[21] C.M. Fiduccia and R.M. Mettheyses, ªA Linear Time Heuristics for
Improving Network Partitions,º Proc. 19th Design Automation Conf.,
pp. 175-181, 1982.

[22] C. Kring and A.R. Newton, ªA Cell-Replicating Approach to Mincut-Based
Circuit Partitioning,º Proc. IEEE Int'l Conf. Computer-Aided Design, pp. 2-5,
Nov. 1991.

[23] S. Kirkpatrick, C. Gallet, and M.P. Vecchi, ªOptimization by Simulated
Annealing,º Science, vol. 220, pp. 671-680, May 1983.

[24] J. Cohoon and W. Paris, ªGenetic Placement,º Proc. IEEE Int'l Conf.
Commputer-Aided Design, pp. 422-425, 1986.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000 87

