
99PC332

EMERALDS-OSEK: A Small Real-Time Operating System for
Automotive Control and Monitoring

Khawar M. Zuberi, Padmanabhan Pillai, Kang G. Shin
University of Michigan

Takaaki Imai, Wataru Nagaura, Shoji Suzuki
Hitachi, Ltd.

Copyright © 1998 Society of Automotive Engineers, Inc.

ABSTRACT

Increasingly, microcontrollers are being used in
automotive systems to handle sophisticated control and
monitoring activities. As applications become more
sophisticated, their design and development becomes
complex, necessitating the use of an operating system
to manage the complexity and provide an abstraction for
improving portability of code. This paper presents
EMERALDS-OSEK, an operating system we have
designed and implemented based on OSEK/VDX, an
open industry standard. We present some of the
features and optimizations that make EMERALDS-
OSEK appropriate for small, low-cost microcontrollers
typically found in automotive applications. We also
present measurements of operating system
performance. We find EMERALDS-OSEK to be
efficient, both in terms of processing overheads and
memory usage. However, we also find some parts of
the OSEK standard that may be improved, and present
our ideas for such improvements.

INTRODUCTION

Contemporary automobiles use a vast array of modern
technologies to improve performance and reliability, and
reduce costs. In particular, the use of embedded
microprocessors has allowed for the cost-effective
replacement of many antiquated control circuits, use of
sophisticated and adaptive control algorithms, and
greatly improved monitoring and diagnostics.

The general-purpose microprocessors used in personal
computers today are far too expensive for use in
automotive applications. The typical microcontroller
used in embedded automotive applications must cost
just a few dollars and is limited to very small, low-speed
CPUs (few megahertz) with minimal code memory (tens
of kilobytes of ROM), and very little RAM (few hundred
to few thousand bytes), all on a single chip. Increasing
speed or memory will require upgrading to a more

powerful processor, or increasing component count,
resulting in cost increases. With the volumes dealt with
in the automotive industry, an increase in component
cost of a few dollars translates into millions of dollars
added to the bottom line, so the controllers are cost-
limited to the very low end of the processor spectrum.

Despite the relatively low computing power of the
microcontrollers, the controllers are being called upon to
perform increasingly complex tasks. The increasing
sophistication and shear quantity of tasks greatly
increases the complexity of the system and of system
development. To manage this complexity, it is becoming
more and more desirable to use operating systems in
embedded automotive microcontrollers. An operating
system will perform task management, abstracting away
task switching and synchronization from the application
code and simplifying application development and
verification. However, such an operating system must be
very efficient, both in terms of processing overheads and
RAM usage, since upgrading to more powerful
controllers is not a viable option.

Open industry standards for software allow multiple
parties to develop applications and subsystems that can
work together and easily be integrated. With this and
portability as the primary goals, a consortium led by
automotive and microcontroller corporations has recently
developed the OSEK/VDX (Open systems and
corresponding interfaces for automotive electronics /
Vehicle Distributed eXecutive) standard, which includes
specifications for an embedded operating system,
communication subsystem, and an embedded network
management system. Based upon our prior work on
embedded operating systems [4] and the OSEK
operating system specification [2], we have developed a
small, efficient operating system called EMERALDS-
OSEK, and implemented it on the Hitachi SH-2
microprocessor. We present an overview of
EMERALDS-OSEK in the next section, followed by
some of the optimizations we have incorporated. Based

on our implementation experiences, we then describe
how the OSEK standard can be improved. We present
some measurements of operating system performance,
and introduce a collision avoidance testbed application
[3] being developed by Hitachi on EMERALDS-OSEK for
further evaluation. We draw some conclusions and state
future work.

OVERVIEW OF EMERALDS-OSEK

EMERALDS-OSEK is a small embedded operating
system designed to meet the OSEK/VDX 2.0
specifications [2]. It has been developed at the
University of Michigan (UM) Real-Time Computing
Laboratory (RTCL) for the Hitachi SH-2 microprocessor.
It incorporates the major features of OSs, namely task
management, scheduling, resource management, and
interrupt handling. As it is designed for embedded
systems that are typically running on low processing
power, low-capacity systems with well-defined
applications, it does not have provisions for memory
management or dynamic modification of the task set.

TASK MANAGEMENT AND SCHEDULING

Task management is fairly limited in OSEK, since the
task set is statically defined for the system at the time of
system generation. The number of tasks in the system
remains constant, removing the need for dynamic
creation and deletion of tasks. A basic OSEK task will
switch between active states (either READY to run, or
currently RUNNING) and an inactive, or SUSPENDED
state. There is also a notion of an extended task, which
can also enter a WAITING state, and pause execution
until some event occurs (see below). Multiple
concurrent invocations of a task are not allowed, since
this would require dynamically changing the number of
tasks. Instead, if an activation call is made for a task
that is already active, the activation request will be
queued until the current invocation terminates (returns to
the SUSPENDED state).

Tasks that are ready to run are given running time on
the processor by the scheduler. The scheduling policy
uses a static priority scheme to conform to the OSEK
specification. Higher priority tasks, as specified at
system generation, are processed before any lower
priority tasks. Tasks of identical priority are served on a
first-come-first-serve (FCFS) basis. Additionally, tasks
may be preemptive or non-preemptive. In a non-
preemptive task, once the task begins running,
rescheduling occurs at only a few explicit points, and is
therefore predictable to the application programmer. In
a preemptively-scheduled task, however, rescheduling
may take place at any time due to interrupts that activate
higher priority tasks. Both types have their uses, so this
flexibility can be exploited by the application designer.

SYNCHRONIZATION

Resources in EMERALDS-OSEK are semaphores used
as mutual exclusion locks to protect critical data
(resources) shared between tasks. Only one task can
hold a resource at a given time. One potential problem
that occurs when resources are used is the priority
inversion problem. This may occur when a high priority
task tries to obtain a mutually exclusive resource being
held by a low priority task, so the high priority task must
block until the low priority task releases the resource. If
there are a large number of medium priority tasks, the
low priority task will not get to run, and the high priority
task will remain blocked. Priority inversion has occurred,
since any medium priority task can run, while the high
priority task cannot. To avoid this, OSEK specifies the
use of the priority ceiling protocol. When a task obtains
a resource, its priority is temporarily bumped up to that
of the highest priority task that will ever use the
resource, until it releases the resource. This results in
two benefits. First, any task holding a resource will have
priority at least as great as any other task that may
request the resource, so these other tasks will not run
until after the resource is released. So when a task tries
to obtain a resource, no task can possibly be holding
that resource, and hence no blocking can occur when
obtaining resources. Secondly, the protocol is inherently
deadlock-free. A deadlock occurs when two tasks that
are holding resources block trying to access those held
by the other, and thus end up blocking each other
forever. Since no blocking can occur while getting a
resource, deadlocks are inherently avoided.

OSEK additionally provides a mechanism of
synchronization through events. An extended task can
be signaled by setting an event for that task. It can
enter a waiting state and then stay blocked until one of
the specified events occur. Events can therefore be
used to synchronize multiple tasks or as a very crude
method of interprocess communication. Although only
extended tasks may wait on an event, any task or
interrupt may set them. In order to comply with the tenet
of no blocking when obtaining a resource, tasks are
prevented from entering the waiting state while holding
resources.

ALARMS

Embedded systems typically require some time-based
task activation. To facilitate this, OSEK incorporates
alarms. An alarm is tied to the system clock (or to any
counter), and is triggered when the count reaches the
alarm value. When triggered an alarm will either
activate a task, or signal that task with an event. The
alarms are defined statically at system generation, but
the time at which they are triggered is set dynamically to
either relative or absolute values. Alarms may also be
set to trigger cyclically, and may be used to activate
periodic tasks.

INTERRUPTS

Interrupt handling is an important part of any operating
system, but takes particular importance in many
embedded systems because of their need to quickly
react to real-world inputs that often drive interrupts. In
EMERALDS-OSEK, interrupt handlers written by the
application developer are linked into the system with
wrappers that preserve task and system state.
Interrupts are allowed to call a subset of the system
calls, including those for task activation, event signaling,
and setting alarms. Therefore, interrupts may activate a
higher priority task, causing a reschedule to take place.
There are system calls to enable and disable individual
and groups of interrupts, and to inquire about which
interrupts are enabled. Although not required by the
OSEK standard, EMERALDS-OSEK is a reentrant
kernel, so tasks that are executing kernel code, such as
while executing a system call, may be interrupted and
swapped off of the processor, if needed, without having
to wait until the kernel code is exited. This may help
improve the average latencies experienced in starting a
high priority task activated by an interrupt.

CONFORMANCE CLASSES

The OSEK specification also provides an organized
mechanism for implementing a subset of the full
standard. There are four partial standards, called
conformance classes, specified: BCC1, BCC2, ECC1,
and ECC2. BCC1 and BCC2 classes are limited to only
basic tasks and do not have support for events, while
ECC1 and ECC2 do support extended tasks and events.
BCC1 and ECC1 are limited to having only one task per
priority level, while BCC2 and ECC2 can support
multiple tasks of the same priority. We have developed
two versions of EMERALDS-OSEK, one that conforms
to class ECC2 and therefore implements the full
OSEK/VDX standard, and a more optimized version that
conforms to ECC1 class.

SYSTEM GENERATION

In the OSEK specification, much of the system is
statically defined at system generation. EMERALDS-
OSEK uses a system description file that specifies all of
the parameters of the application. Each task is
described by its task name, whether it is a basic or an
extended task, its scheduling priority, resources it uses,
and whether it should be preemptively scheduled. Also,
the amount of stack space needed by the task to store
its local variables and the processor state when the task
is swapped off is specified. All resources, counters,
alarms, and interrupt handlers are also declared. This
description file is processed by a system generation
script that produces a few C language and assembly
code files that are compiled with the application code
and linked with kernel code (in the form of a library) to
produce the runtime object file to be executed on the
embedded processor. The generated files perform

operating system initialization and also provide headers
to map symbolic names to the internal operating system
values, simplifying the job of the application
programmer.

OPTIMIZATIONS

Although the OSEK/VDX standard specifies the
operating system in great detail, there is still room for
innovation and optimizations. In designing EMERALDS-
OSEK, we have incorporated several optimizations that
reduce the memory requirements of the OS, since
available RAM is often the most restrictive constraint in
a low-cost embedded microcontroller.

STACK OPTIMIZATION FOR BASIC TASKS

Basic tasks differ from extended tasks in that they
cannot make blocking system calls, i.e., they cannot call
WaitEvent. EMERALDS-OSEK uses this fact to
optimize RAM usage for basic tasks in two ways:

1. If a basic task is also non-preemptive, then it is
guaranteed that once this task begins execution, it
will run to completion. No other task can preempt
this task and the task will not block itself. Therefore,
there is no need to retain the context of this task
(especially the stack) between executions. Hence,
EMERALDS-OSEK keeps just one stack for all
the non-preemptive basic tasks in the system.
The size of this stack is the maximum of the sizes of
individual non-preemptive basic task stacks that the
user specifies at system generation time. This can
lead to significant savings in RAM.

2. For basic tasks sharing the same priority level,
another stack optimization is possible. Since two
basic tasks with the same priority cannot preempt
each other, and since they will not block themselves
waiting for events, basic tasks having the same
priority share the same stack in EMERALDS-OSEK.
The size of this stack is the maximum of the sizes of
the stacks of basic tasks of the same priority as
specified by the user at system generation time.

OPTIMIZATIONS FOR xCC1 CONFORMANCE CLASS
TASKS

BCC1 and ECC1 conformance classes (together called
xCC1) allow only one task per priority. This means that if
there is only one task per priority level in the system, the
OS can use a simple scheduler, leading to low run-time
overhead.

The primary scheduler data structure used by the ECC1
version of EMERALDS-OSEK is just an array of tasks
indexed by their priority. The scheduler simply selects
the highest-priority (i.e., highest index) ready task to
execute. EMERALDS-OSEK requires that tasks be
assigned priorities from 1 to N, where N is the number of

distinct priority levels. For the xCC1 conformance
classes, N is the number of tasks in the system, thus
allowing a simple array structure to be used for
scheduling.

BCC2 and ECC2 conformance classes (together called
xCC2) allow multiple tasks per priority. This means that
if there is even a single pair of tasks sharing a priority
level in the system, the OS must use a more complex
(and higher overhead) data structure to keep track of
tasks. The resulting run-time overhead is greater than
the case when the system is limited to xCC1.
EMERALDS-OSEK uses an array of lists for this
situation. The index into the array is the priority and each
item in the array is a linked list of tasks. The scheduler
must first index into the array, and then locate the first
task in the queue, requiring one more operation and
slightly more RAM than the more restricted ECC1
conformance class version of EMERALDS-OSEK.

INTERRUPT HANDLING OPTIMIZATIONS

Some microprocessors include hardware support for an
interrupt stack. Upon interrupt, the processor switches
from the previously-active stack to this stack so it can be
used by the interrupt service routines (ISRs). Without
the interrupt stack, the ISRs would use the stack of
whatever task was running at the time the interrupt
occurred. This means that the stack for every task will
have to be b bytes larger than the stack needs for the
task, where b is the sum of the stack requirements for all
ISRs which can preempt each other (to handle nested
interrupts). So, if there are N tasks in the system, the
total stack space reserved for ISRs will be Nb bytes
which is (N-1)b bytes more than what’s needed if an
interrupt stack is available.

Unfortunately, the SH-2 microprocessor does not have
hardware support for an interrupt stack. At the same
time, reserving (N-1)b bytes extra for ISRs is simply
unacceptable in small-memory embedded systems. An
ISR that uses system calls (as is allowed in OSEK)
needs to save on the stack many processor registers,
including call return, status, and temporary registers,
and requires at least 44 bytes on the SH-2. If there are 3
levels of interrupts (i.e., interrupts can be nested 3-deep)
and the system contains 10 tasks, then (assuming no
stack sharing among the tasks) 1188 bytes will be
wasted, which is unacceptable in embedded systems
with just a few kilobytes of RAM.

Our solution to this problem is to emulate an interrupt
stack in software. When interrupts occur, EMERALDS-
OSEK --- before executing the user-supplied ISR ---
saves the stack pointer and then sets it to point to an
interrupt stack. If another ISR preempts the first ISR, the
stack is not switched, thus accurately emulating the
behavior of a hardware interrupt stack. Finally, when the
first ISR exits, the stack pointer is restored to its original
value pointing to the stack for the preempted task.

POSSIBLE IMPROVEMENTS IN OSEK STANDARD

The OSEK/VDX standard was developed with
automotive applications in mind, and as a result, it is well
suited for small automotive microcontrollers. However,
through our experiences in developing EMERALDS-
OSEK, we have found a few places that improvements
are possible in the standard.

EVENTS

In OSEK, events are a means for tasks to synchronize
with each other by sending signals to each other. OSEK
allows a task to block on multiple events. The task calls
the WaitEvent system call and passes to it an event
mask which is a bit mask indicating which events the
task wishes to wait for. When any one of these events is
signaled, the task is unblocked. However, the user has
to make another system call GetEvent to find out which
event was signaled. The OSEK specification can be
improved by allowing the WaitEvent system call to
return the event mask upon completion. This is trivial to
implement as part of the WaitEvent call, will incur
minimal extra overhead (equal to one memory copy
operation), and will save the user from having to make
an extra system call.

SYSTEM CLOCK

The notion of time is of central importance in real-time
systems. Applications often need to take actions based
on the current time. OSEK allows this in one way
through the alarm mechanism. Applications can set an
alarm to expire (and take certain actions) after a user-
specified number of clock ticks. OSEK also has the
notion of counters which are incremented every time
certain special events occur (such as a hardware clock
timer interrupt) and OSEK mandates that at least one
counter (the system clock) must exist. However, OSEK
deliberately does not provide a standardized API for
counters. This makes sense because implementation of
counters is hardware-dependent. But the downside is
that the interface for accessing the system clock is not
fixed. Considering the importance of time in real-time
systems and the need to access the current time value,
the OSEK specification can be improved by adding a
standardized system call to read the system clock
counter. Internally, this system call will use the
hardware-specific counter interface provided by the OS,
but externally, it will export a simple, standardized
interface to help in portability.

TASK SCHEDULING

The OSEK specification requires that tasks of the same
priority be executed in the order of their activation.
Moreover, once a blocked task gets unblocked, it must
be treated as the newest task among all the tasks of that

priority.

In our opinion, an OS specification should not contain
such detailed requirements of scheduler behavior
because on one hand, it prevents any innovation or
optimization, and on the other hand, it really does not
help in improving portability. In defining the OS API for
scheduling, it is sufficient to require fixed-priority
scheduling with statically-defined task priorities to ensure
portable applications. But OSEK goes beyond that and
literally fixes the internal kernel data structures. Relaxing
these scheduler requirements can improve the OSEK
specification by allowing kernel designers to optimize
internal kernel mechanisms in various ways without
affecting the API as seen by the applications.

INTERRUPT CONTROL

Often it is necessary for an application to disable some
or all interrupts around certain critical portions of code.
To do this, OSEK specifies the DisableInterrupt
and EnableInterrupt system calls. Both take a
single parameter indicating a single or multiple interrupts
to be affected. In order to be completely flexible, and
allow an arbitrary subset of interrupts to be specified, we
use a bit-mask as the parameter to select from the
Hitachi SH-2’s 32 independently maskable interrupt sets.
Although this is a very general mechanism that can
functionally satisfy any needs, scanning a bit field is
relatively slow and can cause significant performance
degradation in applications that frequently disable and
enable interrupts.

It is our opinion that a less flexible, very fast mechanism
is suitable for many common uses of interrupt control. A
very common use of interrupt control is to disable all
interrupts, perform some critical function, and then
restore the interrupts to their prior settings. This
currently requires three system calls:
GetInterruptDescriptor to obtain the current
interrupt settings, followed by DisableInterrupt and
EnableInterrupt around the critical code. What is
really needed is a pair of system calls: EnterCritical
and LeaveCritical. Since many microprocessors
(including the SH-2) provide a mechanism for disabling
all interrupt processing through a control register without
changing individual interrupts, these system calls can be
implemented very efficiently.

Because we feel this situation will occur very frequently,
the addition of the less flexible, but more efficient
interrupt control mechanism is justified.

EVALUATION AND MEASUREMENTS

We have implemented EMERALDS-OSEK on the
Hitachi SH-2 microprocessor, and measured some of
the primitive operating system performance
characteristics. In addition, Hitachi Research Lab has

been developing a collision avoidance application that
incorporates communication over a Controller Area
Network, and are evaluating the use of EMERALDS-
OSEK as the operating system for such a system [3].

TIMING MEASUREMENTS

One of the significant overheads introduced by an OS is
the task switching overhead. We measure the task
switching times for both the full version (ECC2
conformance class) and ECC1 version of EMERALDS-
OSEK running on an 8 MHz Hitachi SH-2 processor.
We look at several scenarios that result in task
switching:

1. Task Activation: When a running, preemptive task
calls ActivateTask on a task with higher priority, a
task switch occurs and the higher priority task is
allowed to run. From the start of the system call to
the beginning of the activated task on average
requires 27.4 µs for ECC2, and 23.8 µs for ECC1.

2. Task Termination: When a running task terminates
(returns to SUSPENDED state), the scheduler is
invoked to determine the next task to run. The
amount of time required depends on the number of
priority levels there are, and how far down the list is
the next task to activate. The worst-case switching
times during task termination are summarized in
Figure 1. The ECC1 version is more efficient, but is
limited to only one task per priority level.

3. Wake on Event: A high priority extended task that is
waiting for an event will be resumed immediately
when a lower priority task sets the event. The task
switch here requires 25 µs for ECC2 and 21.1 µs for
the ECC1 version of EMERALDS-OSEK.

Figure 1: Average worst-case task switch timing during
task termination.

In general, we have found that task switches that result
in running a task of higher priority will need 20 to 25 µs

with ECC1 and 24 to 30 µs with ECC2. Switching to a
lower priority task follows a pattern very similar to that of
task termination, with worst-case switching times
increasing linearly with the number of priority levels.
Because of the internal data structure optimizations
incorporated into the restricted ECC1 conformance class
version, it consistently provides lower switching times
than the full, ECC2 implementation. However, since the
xCC1 conformance classes are restricted to only one
task per priority level, switching time performance will
quickly degrade as the number of tasks increases. In
contrast, the full ECC2 implementation of EMERALDS-
OSEK will scale switching time much better with the
number of tasks since multiple tasks may share a
priority level.

Because obtaining a resource can never result in
blocking (see above), the GetResource call never
results in a task switch, and executes in just 5 µs,
including bumping up the task priority according to the
priority ceiling protocol. ReleaseResource, however,
may result in a task switch, so in the worst case requires
24.5 µs and 29 µs respectively for the ECC1 and ECC2
versions of EMERALDS-OSEK.

As mentioned earlier, the OSEK interrupt control system
calls have been implemented with the flexibility to affect
an arbitrary subset of interrupts in a single call. We
have hand-optimized the code to operate on 4 bits of the
bit-field parameter at a time, greatly improving
performance. Even though they may need to update 32
independent interrupt masks, calls to
DisableInterrupt and EnableInterrupt require
11.6 µs and 14.3 µs, respectively, in the worst case. As
we suggest in Section 4.4, if we were to implement the
restricted, non-OSEK-compliant functions,
EnterCritical and ExitCritical, they would
require 1 µs and less than 1 µs respectively. On a
related topic, the built-in clock interrupt handler, which
increments the system clock and checks if any alarms
have expired, incurs an approximately 20 µs overhead
per clock tick.

Projecting from these measured times, we can expect a
system that requires 1000 task switches and 100 clock
ticks per second will have a 2.5 to 3% operating system
overhead, primarily consumed by task switching.

MEMORY REQUIREMENTS

EMERALDS-OSEK is designed to be memory-efficient.
The ROM image of the OS requires less than 5.5 KB,
including the SH-2 processor’s 1024 byte exception
vector table. This small size is partly due to the carefully
limited feature set of the OSEK standard and partly due
to the processor instruction set architecture. Although it
is a 32-bit reduced instruction set machine, the Hitachi
SH-2 uses 16-bit long instructions that allow for good
code density.

The RAM requirements of EMERALDS-OSEK are
application dependent. The basic internal variables
require only 96 bytes, but each component of the
application will require additional OS data structures.
Requirements for various components are summarized
in Table 1. Most memory is consumed by the stacks
needed for the tasks. The minimum size stack must be
able to hold the processor context (all processor
registers and some OS state) in addition to interrupt
requirements and the task’s own requirements. In
EMERALDS-OSEK, 88 bytes are needed for context,
consisting of 21 processor registers and 1 control word.
By making use of the emulated interrupt stack, the per-
task stack overhead of interrupts can be reduced.
However, since the interrupt stack feature is emulated in
software, rather than integrated into the processor, the
overhead cannot be completely eliminated and in the
worst case, 16 bytes are needed per interrupt nesting
level used.

As discussed above, the optimizations incorporated into
EMERALDS-OSEK can conserve memory usage by
sharing stacks among tasks. To maximize the sharing
of tasks, we suggest the following guidelines in
application design:

1. Avoid using extended tasks: Since extended task
can block waiting on an event, during which the task
context must be preserved while other tasks
execute, they cannot share stacks with other tasks.

2. Use non-preemptive basic tasks as much as
possible: All non-preemptive basic tasks can share a
single stack. In addition, the rescheduling points are
all explicit, and system behavior is under better
control of the application programmer.

3. Allocate as many tasks to as few priority levels as
possible: This will improve stack sharing among
preemptive basic tasks. Additionally, fewer priority
levels results in better worst case task switching
times as we have seen earlier.

Structure RAM required (bytes)
task 36
alarm 18
counter 8
resource 2

Table 1: OS memory requirements for some application
components

HITACHI COLLISION AVOIDANCE TESTBED

Hitachi Research Labs is currently developing a
prototype for an adaptive cruise control system [3], in
which EMERALDS-OSEK will be used and evaluated.
The system is distributed on multiple controllers
connected through a Controller Area Network (CAN).
The adaptive cruise control application will reside on a
controller that will receive periodic inputs from software

on a collision avoidance radar unit. It will compute
driving or breaking force needed and communicate this
with the powertrain control software running on a
networked controller. The complexity of this system with
multiple interacting components over a network makes it
desirable to use an operating system such as
EMERALDS-OSEK to manage task complexity and
ease the development process. In addition, an open
standard communication middleware has been
developed at Hitachi based on the OSEK
Communication specification [1], and will run on top of
EMERALDS-OSEK.

At present, only very preliminary data is available
regarding the performance of the communication
primitives. A 20 MHz SH-2 drives a relatively fast
network (1 Mbit/sec CAN) with a small transmission unit
(8-byte payload per packet) in the Hitachi testbed [3].
With such small packets on a network that is fast
relative to the processor, we expect the data throughput
to be primarily restricted by processing latencies.
Indeed, the controller was capable of sustaining 394
Kbits/sec with only the communications primitives, as
compared to a theoretical maximum of 575 Kbits/sec.
Furthermore, throughput drops drastically with any
additional processing overhead, so with the addition of
the operating system, the peak throughput came down
to 285 Kbits/sec. Of course, these peak rate measures
do not take into account application code processing
overheads. In a real application, the rate of
communication will be limited by the processing
requirements of the application, hence the transmission
bandwidth drop mentioned above will not be a problem.

In the future, once the actual application code is written,
we hope to gain useful measurements of operating
system overheads in a real system, as well as profiling
measures for the types OS services most used and how
improvements can be made.

CONCLUSION

We have developed EMERALDS-OSEK, an operating
system based on the OSEK/VDX standard on the
Hitachi SH-2 microprocessor. We have found the OSEK
standard to be well suited for the low computing, power,
small memory embedded controllers used in automotive
applications. However, we have also found some parts
that can be improved in the standard and have provided
some suggestions. EMERALDS-OSEK, with the various
optimizations we have incorporated, is a small and
efficient operating system, in regard to CPU usage and
especially RAM requirements, and is well suited to the
highly-constrained world of embedded automotive
controllers. The SH-2 is also a good choice in this
regard, since it is a relatively powerful 32-bit processor,
yet uses 16-bit long instructions to produce good code
density. The availability of standard (GNU) compilers
and good emulators for this processor also helped
development greatly.

In the future, we would like to better tune the operating
system for task sets typically found on automotive
controllers today. We would also look into creating
better system generation tools that can adapt the
applications to better use the optimizations within the
OS.

ACKNOWLEDGMENTS

We would like to thank Hasdi Hashim, Jonathan Arnold,
and Ann Lockwood for their contributions to the coding,
debugging, and performance evaluation of EMERALDS-
OSEK.

CONTACT

Khawar M. Zuberi, Padmanabhan Pillai, Kang G. Shin
Real-Time Computing Laboratory
Dept. Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109-2122
{zuberi, pillai, kgshin}@eecs.umich.edu
734-936-2495 (voice); 734-763-4617 (fax)

Takaaki Imai, Wataru Nagaura, Shoji Suzuki
Hitachi Research Laboratory
1-1 Omika-cho, 7-chome, Hitachi-shi
Ibaraki-ken, 319-12 JAPAN
{timai, nagaura, suzukish}@hrl.hitachi.co.jp

REFERENCES

1. OSEK/VDX Communication Version 2.1 revision 1,
OSEK Group, June, 1998.

2. OSEK/VDX Operating System Specification 2.0, OSEK
Group, June, 1997.

3. S. Suzuki, W. Nagaura, T. Imai, S. Kuragaki, and T.
Yokoyama, “A Distributed Control System Framework for
Automotive Powertrain Control with OSEK Standard and
CAN network,” in Proc. SAE International Congress &
Exhibition, March, 1999.

4. K. M. Zuberi and K. G. Shin, “EMERALDS: A Microkernel
for Embedded Real-Time Systems,” in Proc. RTAS pp.
241-249, June, 1996.

