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Abstract 

EMERALDS (Extensible Microkernel for Embedded, REAL- 
time, Distributed Systems) is a real-time microkernel de- 
signed for small-memory embedded applications. These ap- 
plications must run on slow (15-25MHz) processors with 
just 32-128 kbytes of memory, either to keep production 
costs down in mass-produced systems or to keep weight and 
power consumption low. To be feasible for such applica- 
tions, the OS must not only be small in size (less than 20 
kbytes), but also have low-overhead kernel services. Unlike 
commercial embedded OSs which rely on carefully-crafted 
code to achieve efficiency, EMERALDS takes the approach 
of  re-designing the basic OS services of  task scheduling, syn- 
chronization, communication, and system call mechanism 
by using characteristics found in small-memory embedded 
systems, such as small code size and a priori knowledge of 
task execution and communication patterns. With these new 
schemes, the overheads of various OS services are reduced 
20--40% without compromising any OS functionality. 

1 Introduction 

Real-time computing today is no longer limited to large, 
high-powered, expensive applications. Increasingly, real- 
time embedded controllers are being used in a wide variety 
of small control applications, from engine control in auto- 
mobiles, to voice compression in cellular phones and im- 
age stabilization in camcorders. As real-time systems, these 
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embedded controllers execute multiple concurrent computa- 
tion tasks with strict time constraints (deadlines) that must 
be met in a predictable manner. Furthermore, these tasks are 
executed on systems with very minimal hardware - -  slow 
processors (15-25MHz) with small memories (tens of kilo- 
bytes), often having the entire system on a single integrated 
circuit. Such restricted hardware is needed to keep produc- 
tion costs down in mass-produced items, and to keep weight 
and power consumption low in portable and hand-held de- 
vices. The combined requirements of real-time computing 
and low-cost, small-memory platforms has created a need for 
real-time operating systems (RTOSs) optimized specifically 
for the small-memory computing devices. 

Unfortunately, most conventional RTOSs are not appli- 
cable to small-memory embedded controllers. Commer- 
cial RTOSs like pSOS [31], QNX [9], and VxWorks [35], 
as well as research RTOSs like HARTOS [27], the Spring 
Kernel [29], Harmony [7], and RT-Mach [33] collectively 
cover a wide range of platforms, from stand-alone systems 
to multiprocessors and distributed systems. However, most 
of these RTOSs were designed with relatively powerful sys- 
tems in mind: processors with several megabytes of memory 
and networks with at least tens of Mbit/s bandwidth. Even 
Windows CE, designed for small, hand-held machines, re- 
quires over 200KB ROM for a minimal kernel [23]. As a 
result, most conventional RTOSs are not applicable to small- 
memory embedded controllers. 

Some vendors have targeted small-memory embedded 
applications with products like RTXC [6], pSOS Select, and 
a dozen other small, real-time kernels. These RTOSs not 
only provide predictable services, but also are efficient and 
small in size, with kernel code size under 20 kbytes. Their 
approach is to take a core set of OS services (task schedul- 
ing, semaphores, timers, interrupt handling, etc.), implement 
them using optimized, carefully-crafted code, and package 
them into an OS. 

EMERALDS is an RTOS designed specifically for small- 
memory embedded systems. Like the above-mentioned 
commercial RTOSs, EMERALDS also provides a core set 
of OS services in a small-sized kernel, but our approach 
for achieving efficiency in EMERALDS is to rely not on 
carefully-crafted code, but on new OS schemes and al- 
gorithms. We focus primarily on real-time task schedul- 
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ing, task synchronization through semaphores, and intra- 
node message-passing, l We use some basic characteristics 
common to all small-memory embedded systems such as 
small kernel and application code size and a priori  knowl- 
edge of task communication and execution patterns to lower 
OS overheads without compromising OS functionality, thus 
making more computational resources available for the ex- 
ecution of application tasks. Some of these characteristics 
are also found in other real-time applications, so some of the 
schemes we present (such as the task scheduler) have appli- 
cability beyond small-memory embedded systems. 

In the next section, we describe the general characteris- 
tics of small-memory embedded systems and the constraints 
they place on RTOSs. We then provide a brief overview of 
EMERALDS and show how it differs from other RTOSs. 
Sections 5-7 describe and evaluate our real-time scheduling, 
synchronization, and message-passing schemes, before con- 
cluding in Section 8. 

2 Application requirements 

Our target embedded applications use single-chip micro- 
controllers with relatively slow processing cores running at 
15-25 MHz. Typical examples are the Motorola 68332, In- 
tel i960, and Hitachi SH-2 controllers. All ROM and RAM 
are on-chip which limits memory size to 32-128 kbytes, thus 
limiting useful RTOS kernels to around 20 kbytes code-size. 
These applications are either uniprocessor (such as cellular 
phones and home electronics) or distributed, consisting of 5 -  
10 nodes interconnected by a low-speed (1-2 Mbit/s) field- 
bus network (such as automotive and avionics control sys- 
tems). 

We expect a typical workload on these systems to consist 
of 10-20 concurrent, periodic 2 real-time tasks, with a mix 
of short (< 10ms), medium (10-100ms), and long (> 100ms) 
period tasks. As with all embedded control applications, 
interrupt and I/O services must be provided by the RTOS. 
Small-memory embedded systems do not use disks, so file 
system support is not needed in the RTOS. Most other OS 
services, including task synchronization, task communica- 
tions, and clock services must be provided. 

3 Overview of EMERALDS 

EMERALDS is a microkernel RTOS written in the C++ 
language. Following are EMERALDS' salient features as 
shown in Figure I. 

• Multi-threaded processes: 

- Full memory protection for threads. 

- Threads are scheduled by the kernel. 

• IPC based on message-passing, mailboxes, and shared- 
memory. 

1 Inter-node networking issues are discussed in [37, 40] and axe 
not covered in this paper. 

2Periodic tasks axe the major workload of most real-time sys- 
tems. 
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Figure 1. EMERALDS'  archi tecture. 

• Semaphores and condition variables for synchroniza- 
tion, with priority inheritance. 

• Support communication protocol stacks [41]. 

• Highly optimized context switching and interrupt han- 
dling. 

• Support for user-level device drivers. 

Of these basic services, the last two deal with hardware de- 
vices such as the on-chip timer and the processor's interrupt 
handling mechanism, so their overhead is dictated primar- 
ily by the hardware, and there is little that the OS designer 
can do to reduce overhead. The remaining services, how- 
ever, present opportunities for innovative optimizations. The 
thrust of EMERALDS is to come up with new optimized so- 
lutions for embedded systems for the well-known problems 
of scheduling, synchronization, and communication. 

To provide all these services in a small-size kernel, we 
make use of certain characteristics of embedded applica- 
tions. First of all, our target applications are in-memory. 
Moreover, embedded application designers know which re- 
sources (threads, mailboxes, etc.) reside at which node, so 
naming services are not necessary, allowing considerable 
savings in code size. Also, nodes in embedded applica- 
tions typically exchange short, simple messages over field- 
buses. Threads can do so by talking directly to network de- 
vice drivers, so EMERALDS does not have a built-in pro- 
tocol stack. Further details regarding protocol stacks, de- 
vice drivers, EMERALDS system calls, and other techniques 
used to reduce code size in EMERALDS can be found in 
[38]. With these techniques, EMERALDS provides a rich 
set of OS services in just 13 kbytes of code (on Motorola 
68040). 
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4 How is EMERALDS different? 

Microkernel optimization has been an active area of research 
in recent years, but little effort has been made in addressing 
the needs of real-time systems, let alone small-memory em- 
bedded ones. In microkernels designed for general-purpose 
computing such as Mach [1], L3 [20], and SPIN [3], re- 
searchers focused on optimizing kernel services such as 
thread management [5, 2], [PC [19], and virtual memory 
management [25]. Virtual memory is not a concern in our 
target applications. Thread management and [PC are im- 
portant, but sources of overhead are different for embedded 
real-time systems, necessitating different optimization tech- 
niques. 

Thread management is a concern in typical microkernels 
because either the kernel itself has a large number of threads 
and switching overhead, and stack use by these threads must 
be minimized [5], or, in case of user-level threads, the kernel 
must export the correct interface to these threads [2]. Neither 
of these apply here, since although EMERALDS has kernel- 
managed threads, the kernel itself uses no threads, and user 
threads enter protected kernel mode to simply call kernel 
procedures, simplifying interfaces. So, in EMERALDS, op- 
timizing thread management takes the form of ensuring low- 
overhead transition between user and kernel modes and pro- 
viding efficient real-time scheduling of threads. 

[PC is important in most microkernels because R.PC is 
used to communicate with user-level servers. Frequently- 
accessed services such as file systems and virtual memory 
are implemented as user-level servers. But embedded sys- 
tems do not need these services. In EMERALDS, only inter- 
node networking is implemented at the user-level and even 
this server is accessed only infrequently (because nodes are 
loosely-coupled). Instead, [PC is important in embedded 
systems for intra-node, inter-task communication and this is 
what we address in EMERALDS. 

Task synchronization has not received much attention 
in the design of most microkernels, but it is of crucial im- 
portance in embedded systems. The little research done in 
this area has focused primarily on multiprocessors [22, 34], 
whereas we are interested in uniprocessor locking. 

In summary, design of an optimized OS for small- 
memory real-time embedded applications is a largely under- 
explored area of research. With embedded systems quickly 
becoming part of everyday life, designing OSs targeted 
specifically toward embedded applications has become im- 
portant, and EMERALDS is a first step in this direction. 

5 CSD scheduler 

Scheduling real-time tasks to ensure that all tasks meet their 
deadlines is an important part of any RTOS. In small embed- 
ded systems, the efficiency of this scheduling takes on great 
importance, since processing resources are so limited. Until 
recently, embedded application programmers have primar- 
ily used cyclic time-slice scheduling techniques in which the 
entire execution schedule is calculated off-line, and at run- 
time, tasks are switched in and out according to the fixed 
schedule. This eliminates run-time scheduling decisions and 

minimizes run-time overhead, but introduces several prob- 
lems as follows: 

• Entire schedules must be calculated offline, often 
by hand, and are difficult and costly to modify as 
task characteristics change through the design process. 
Heuristics can be used [12], but result in non-optimal 
solutions (i.e., feasible workloads may get rejected). 

• High-priority aperiodic tasks receive poor response- 
time because their arrival times cannot be anticipated 
off-line. 

• Workloads containing short and long period tasks (as 
is common in control systems) or relatively prime pe- 
riods, result in very large time-slice schedules, wasting 
scarce memory resources. 

As embedded systems use increasingly-complex task 
sets, cyclic schedulers are no longer suitable for task 
scheduling. The alternative is to turn to priority-driven 
schedulers like rate-monotonic (RM) [17, 21] and earliest- 
deadline-first (EDF) [28, 21] which use task priorities to 
make run-time scheduling decisions. They do not require 
any costly off-line analysis, can easily handle changes in the 
workload during the design process, and can handle aperi- 
odic tasks as well. However, they do incur some overheads, 
which we seek to minimize in EMERALDS. 

The task scheduler's overhead can be broken down 
into two components: run-time overhead and schedulability 
overhead. The run-time overhead is the time consumed by 
the execution of the scheduler code, and is primarily due 
to managing the queues of tasks and selecting the highest- 
priority task to execute. Schedulability overhead refers to 
the theoretical limits on task sets that are schedulable under 
a given scheduling algorithm, in the ideal case where run- 
time overheads are not considered. Together, these over- 
heads limit the amount of useful real-time computation that 
can be run on a processor. 

We analyze the sources of these overheads in RM (which 
statically assigns higher priority to shorter period tasks [ 17, 
21]) and EDF (which dynamically changes priority, giving 
highest priority to the earliest-deadline task [28, 21]), and 
devise a hybrid scheduler that gives better performance than 
both. 

5.I Run-t ime overhead 

The run-time overhead (At) has to do with parsing queues of 
tasks and adding/deleting tasks from these queues. 

When a running task blocks, the OS must update some 
data structures to identify the task as being blocked and then 
pick a new task for execution. We call the overheads asso- 
ciated with these two steps the blocking overhead Atb and 
the selection overhead Ats, respectively. Similarly, when a 
blocked task unblocks, the OS must again update some inter- 
nal data structures, incurring the unblocking overhead Ate. 
The OS must also pick a task to execute (since the newly- 
unblocked task may have higher priority than the previously- 
executing one), so the selection overhead is incurred as well. 
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Each task blocks and unblocks at least once each period 
(unblocks at the beginning of the period, and blocks after 
executing ci time), incurring Atb + At~ + 2Ats overhead 
per period. Overhead is greater if blocking system calls are 
used; although it is task-dependent, for simplicity, we as- 
sume half the tasks use one blocking call per period, thus 
incurring an average per-period scheduler run-time overhead 
of At = 1.5(Atb + Ate, + 2AG). The workload utilization 

n is now calculated as U = ~i=l(ci + At)/Pi. 
Now, we calculate At for both EDF and RM policies. 

In EMERALDS, we have implemented EDF as follows. All 
blocked and unblocked tasks are placed in a single, unsorted 
queue) A task is blocked and unblocked by changing one 
entry in the task control block (TCB), so Atb and Ate, are 
O(1). To select the next task to execute, the list is parsed and 
the earliest-deadline ready task is picked, so Ats is O(n). 

RM schedulers usually have a queue of ready tasks, 
sorted by task priority, and blocking/unblocking involves 
deleting/inserting tasks into this sorted queue. In EMER- 
ALDS, we use a different implementation that permits some 
semaphore optimizations (Section 6), while maintaining 
similar run-time costs. All (blocked and unblocked) tasks 
are kept in a queue sorted by task priority. A pointer high- 
e s t P  points to the first (highest-priority) task on the queue 
that is ready to execute, so AG is O(1). Blocking a task 
requires modifying the TCB (as in EDF) and setting h i g h -  
e s t P  to the next ready task. The latter involves scanning 
the list, so in the worst case Atb is O(n). Unblocking, on 
the other hand, only requires updating the TCB and com- 
paring the task's priority with that of the one pointed to by 
highestP, changing the pointer if needed. Thus, At~ is 
o0). 

For RM, Atb = O(n) whereas for EDF, Ats = O(n). 
Atb is counted only once for every task block/unblock op- 
eration while At,  is counted twice, which is why At = 
1.5(Atb + At,, + 2AG) is significantly less for RM than 
it is for EDF, especially when n is large (15 or more). 

The EDF and RM run-time overheads for EMERALDS 
measured on a 25MHz Motorola 68040 processor are shown 
in Table 1. Also shown for comparison is an implementation 
of RM using a sorted heap. Unless n is very large (58 in 
this case), the total run-time overhead At for a heap is more 
than for a queue. As most real-time workloads do not have 
enough tasks, heap implementations are avoided in scheduler 
structures. 

5.2 Schedulability overhead 

The schedulability overhead is defined as 1 - U*, where U* 
is the ideal schedulable utilization. For a given workload 
and a given scheduler, U* is the highest workload utiliza- 
tion that the scheduler can feasibly schedule under the ideal 
conditions that the scheduler's run-time overhead is ignored. 

Consider a workload of n tasks, {vi : i = 1 , 2 , . . . ,  n}, 
where each task 7"/ has a period Pi and an execution time 

3Simple sorted queues have O(n) insert/delete times, and per- 
form poorly as priorities change often due to semaphore use (Sec- 
tion 6). Heaps have long mn times due to code complexity despite 
O(log n) insert/remove times since n is rarely very large. 

t _ _ ] ]  EDF- queue I RM- queue I RM- sorted heap ] 

~ 1.6 ] 1 . 0 + ~  1.4 
1.2 [ ~..~ I 1.9 + 0.7llog2(n + 1)[ 

1.2 + 0.25n 

Table 1. Run-time overheads for EDF and RM (values are 
in ps; n is the number of tasks). Also shows measurements 
for RM when a heap is used instead of a linked list. Measure- 
ments made using a 5MHz on-chip timer. 
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Figure 2. RM scheduling of the workload in Table 2. 

ci (assume that a task's relative deadline equals its period). 
Then, this workload has a utilization U = ~ i ~ 1  ci/Pi. EDF 
can schedule all workloads with U < 1 (ignoring run-time 
overheads)[21], so U* = 1 for EDF. Thus, EDF has zero 
schedulability overhead. 

RM, on the other hand, can have U* < 1. Previous work 
has shown that for RM, U* = 0.88 on average [17]. As 
an illustration of nonzero schedulability overhead, consider 
the workload shown in Table 2. Each task ri has deadline 
d i =  1°/. 

i 1 2 3 4 5 6 7 8 9 10 
Pi(ms) 4 : 5 6 7 8 20 30 50 100 130 
ci (ms) 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 

Table 2. A typical task workload with U = 0.88. It is feasible 
under EDF, but not under RM. 

Figure 2 shows what happens if this workload is sched- 
uled by RM. In the time interval [0, 4), tasks vl-r4 execute, 
but before 7-5 can run, 7-1 is released again. Under RM, rl-V4 
have higher priority than r5 (because of their shorter Pi), so 
the latter cannot run until all of the former execute for the 
second time, but by then 7-5 has missed its deadline. This 
makes the workload infeasible under RM and illustrates why 
RM has a non-zero schedulability overhead. 

On the other hand, if EDF is used to schedule the same 
workload, r~ will run before r l-v4 run for the second time 
(because d5 = 8 is earlier than the deadlines of  second invo- 
cations of rl-7-4) and the workload will be feasible. 

5.3 CSD: a balance between EDF and RM 

Going back to the workload in Table 2, notice that 7"5 is the 
"troublesome" task, i.e., because of this task the workload is 
infeasible under RM. Tasks r6-rl0 have much longer peri- 
ods, so they can be easily scheduled by any scheduler, be it 
RM or EDF. 
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We used this observation as the basis of the combined 
static/dynamic (CSD) scheduler. Under CSD, rl-r5 will be 
scheduled by EDF so that 7-5 will not miss its deadline. The 
remaining tasks r6-r l  0 will use the low-overhead RM policy. 
The run-time overhead is less than that of EDF (since the 
EDF queue's length has been halved), and since in the worst 
case, CSD simply reduces to EDF, schedulability overhead 
is same as for EDF (i.e., zero, hence much better than RM). 
Thus, the total scheduling overhead of CSD is significantly 
less than that of both EDF and RM. 

The CSD scheduler maintains two queues of tasks. The 
first queue is the dynamic-priority (DP) queue which con- 
tains the tasks to be scheduled by EDE The second queue 
is the fixed-priority (FP) queue which contains tasks to 
be scheduled by RM (or any fixed-priority scheduler such 
as deadline-monotonic [18], but for simplicity, we assume 
RM). 

Given a workload {7-i : i = 1, 2 , . . . ,  n} sorted by RM- 
priority (shortest-period-first), let rr be the "troublesome" 
task, the longest period task that cannot be scheduled by RM. 
Then, tasks 7-1-rr are placed in the DP queue while r r + l -  
r,~ are in the FP queue. Priority is given to the DP queue, 
since these tasks have higher RM-priority (shorter periods) 
than those in the FP queue. A counter keeps track of the 
number of ready tasks in the DP queue. When the sched- 
uler is invoked, if the counter is non-zero, the DP queue is 
parsed to pick the earliest-deadline ready task. Otherwise, 
the DP queue is skipped completely and the scheduler picks 
the highest-priority ready task from the FP queue (pointed to 
by highestP). 

5.4 Run-time overhead of CSD 

The run-time overhead of CSD depends on whether the task 
being blocked or unblocked is a DP or FP task. There are 
four possible cases to consider: 

1. DP task blocks: Atb is O(1) (same as for EDF). The 
worst case Ats occurs when there are other ready tasks 
in the DP queue, requiring a scan through the DP queue 
to select the next task. So, Ats = O(r).  

2. DP task unblocks: Ate, is O(1). At least one ready task 
is in the DP queue (the one that was just unblocked), 
always requiring a parse of the r-long DP queue, so 
Ats = O(r). 

3. FP task blocks: ,5,tb is the same as for RM, but with 
a shorter queue, so Atb = O(n -- r). Since an FP 
task was executing and all DP tasks have higher prior- 
ity, the DP queue cannot have any ready tasks at this 
point. The scheduler just selects h i g h e s t P  from the 
FP queue, so Ats = O(1) (same as for RM). 

4. FP task unblocks: At~ is O(1) (same as for RM). The 
DP queue may or may not have ready tasks, but for 
the worst-case Ats, we must assume that it does, so 
,~ts = O(r).  

From this analysis, the total scheduler overhead for 
CSD is Atb + Ats_btock + Atu + Ats_unbtock per task 

block/unblock operation. For DP tasks, this becomes O (1) + 
O(r) + O(1) + O(r) = 20( r ) ,  equivalent to an r-long 
list parsed twice, whereas the overhead for FP tasks equals 
O(n - r) + O(1) + O(1) + O(r)  = O(n) (n-long list 
parse once). Therefore, overhead of CSD is significantly less 
than that of EDF (n-long list parsed twice) and only slightly 
greater than that of RM (n-long list parsed once), as is cor- 
roborated by performance measurements in Section 5.7. 

With lower total overheads, CSD can schedule some task 
sets that are not schedulable under EDF or RM when run- 
time overheads are included. A detailed analysis of workload 
schedulability tests for CSD, EDF, and RM that take into 
account run-time overheads is presented in [36]. 

5.5 Reducing CSD run-time overhead 

The CSD's main advantage is that even though it uses EDF 
to deliver good schedulable utilization, it reduces run-time 
overhead by keeping the DP queue short. As the number of 
tasks in the workload increases, the DP queue length also in- 
creases thus degrading CSD performance. We need to mod- 
ify CSD to keep run-time overhead under control as the num- 
ber of tasks n increases. 

5.5.1 Controlling DP queue run-time overhead 

Under CSD, the execution time of each task in the DP queue 
increases by At(DP)  which depends on length of the DP 
queue r. A t (DP)  increases rapidly as r increases, which 
degrades performance of CSD. 

Our solution is to split the DP queue into two queues 
DP1 and DP2. DP1 has tasks with higher RM-priority, so the 
scheduler gives priority to DP1. Both DP1 and DP2 are ex- 
pected to be significantly shorter than the original DP queue 
so that the run-time overhead of the modified scheme (called 
CSD-3 for its three queues) should be well below that of the 
original CSD scheme (henceforth called CSD-2). 

5.5.2 Run-time overhead of  CSD-3 

The run-time overheads for CSD-3 can be derived using the 
same reasoning as used for CSD-2 in Section 5.4. The over- 
heads for different cases are shown in Table 3, where q is 
the length of the DP1 queue and r is the total number of 
DP tasks (so r - q is the length of DP2 queue). The run- 
time overhead associated with DP1 tasks is O(r),  a signifi- 
cant improvement over O(2r)  for CSD-2. Since DP1 tasks 
have the shortest periods in the workload, they execute most 
frequently, and the reduction in their overheads greatly im- 
proves CSD-3 performance over CSD-2. 

The run-time overhead of DP-2 tasks is reduced as well 
from O(2r) in CSD-2 to O(2r  - q). Similarly, the overhead 
for FP tasks is reduced from O(n) to O(n - q). 

5.5.3 Allocating tasks to DP1 and DP2 

I f  all DP tasks had the same periods, we could split them 
evenly between DP1 and DP2. Each queue's length will be 
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I [ DP1 I DP2 I FP I 
Task Atb O(1) O(1) O(n -- r) 
Blocks At ,  O(r -- q) O(r) 0(1) 
Task At.  0(1) 0(1) 0(1) 
Unblocks Ate, O(q) O(r -- q) O(r -- q) 
Total Overhead I O(r) [ O(2r - q) I O(n - q) I 

T a b l e  3. Run-time 
sume that the DP2 
(max(q, r - q) = r - 

overheads for CSD-3. The values as- 
queue is longer than the DP1 queue 
q) which is typically the case. 

half that of the original DP queue, cutting the run-time over- 
head of scheduling DP tasks in half. 4 When tasks have dif- 
ferent periods, two factors must be considered when dividing 
tasks between DP1 and DP2: 

• Tasks with the shortest periods are responsible for the 
most scheduler run-time overhead. For example, sup- 
pose At _-- 0.1 ms. A t a s k w i t h P i  = 1 ms will be 
responsible for A t / P i  = 10% CPU overhead, whereas 
a task with Pi -- 5 ms will be responsible for only 
2%. We should keep only a few tasks in DP1 to keep 
A t ( D P 1 )  small. DP2 will have more tasks making 
A t ( D P 2 )  > A t ( D P 1 ) ,  but since DP2 tasks execute 
less frequently, ~ i  A t / P i  for the two queues will be 
approximately balanced. 

• Once the DP tasks are split into two queues, they no 
longer incur zero schedulability overhead. Although 
tasks within a DPz queue are scheduled by EDF, the 
queues themselves are scheduled by RM (all DP 1 tasks 
have statically higher priorities than DP2 tasks), so 
CSD-3 has non-zero schedulability overhead. Task al- 
location should minimize the sum of the run-time and 
schedulability overheads. For example, consider the 
workload in Table 2. Suppose the least run-time over- 
head results by putting tasks r l -r4  in DP1 and the rest 
of the DP tasks in DP2, but this will cause 7-5 to miss 
its deadline (see Figure 2). Putting 7-5 in DP1 may lead 
to slightly higher run-time overhead, but will lower 
schedulability overhead so that 7-5 will meet its dead- 
line. 

At present, we use an off-line exhaustive search (using 
the schedulability test described in [36]) to find the best pos- 
sible allocation of tasks to DP1, DP2, and FP queues. The 
search runs in O(n 2) time for three queues, taking 2-3 min- 
utes on a 167MHz Ultra-1 Sun workstation for a workload 
with 100 tasks. 

5.6 Beyond CSD-3 
The general scheduling framework of CSD is not limited to 
just three queues. It can be extended to have 4, 5 , . . . ,  n 

4 Increasing the number of queues also increases the overhead of 
parsing the prioritized list of queues, but our measurements showed 
this increase to be negligible (less than a microsecond on Motorola 
68040) when going from two to three queues. 

queues. The two extreme cases (one queue and n queues) 
are both equivalent to RM while the intermediate cases give 
a combination of RM and EDE 

We would expect CSD-4 to have slightly better perform- 
ance than CSD-3 and so on (as confirmed by evaluation re- 
sults in Section 5.7), although the performance gains are ex- 
pected to taper off once the number of queues gets large and 
the increase in schedulability overhead (from having multi- 
ple EDF queues) starts exceeding the reduction in run-time 
overhead. 

For a given workload, the best number of queues and the 
best number of tasks per queue can be found through an ex- 
haustive search, but this is a computationally-intensive task 
and is not discussed further in this paper. We demonstrated 
the usefulness of the general CSD scheduling framework and 
how it can be beneficial in real systems. 

5.7 CSD performance 
We evaluate the usefulness of CSD in scheduling a wide vari- 
ety of workloads by comparing CSD to EDF and RM. In par- 
ticular, we want to know which is the best scheduler when all 
scheduling overheads (run-time and schedulability) are con- 
sidered. Table 1 shows run-time overhead for EDF and RM 
on a 25MHz Motorola 68040 processor; the same overheads 
apply to CSD DP and FP queues respectively, though fewer 
tasks are in these queues (only n -  r in FP queue, etc.). CSD- 
x also requires an additional z ,  0.55#s to parse the list of 
queues to find a queue with ready tasks. 

Our test procedure involves generating random task 
workloads, then for each workload, scaling the execution 
times of tasks until the workload is no longer feasible for 
a given scheduler. The utilization at which the workload be- 
comes infeasible is called the breakdown utilization [ 13]. We 
expect that with scheduling overheads considered, CSD will 
have the highest breakdown utilization. 

Because scheduling overheads are a function of the num- 
ber of tasks (n) in the workload, we tested all schedulers for 
workloads ranging from n = 5 to n = 50. For each n, we 
generate 500 workloads with random task periods and exe- 
cution times. We scale the execution times until the work- 
loads becomes infeasible to find the average breakdown uti- 
lizations. 

The run-time overhead of priority-based schedulers de- 
pends not only on the number of tasks, but on the periods 
of tasks as well (since the scheduler is invoked every time a 
task blocks or unblocks). Short period tasks lead to frequent 
invocation of the scheduler, resulting in high run-time over- 
head, whereas long-period tasks produce the opposite result. 
In our tests, we vary not only the number of tasks, but the pe- 
riods of tasks as well. For each base workload (with a fixed 
n), we produce two additional workloads from it by divid- 
ing the periods of tasks by a factor of 2 and 3. This allows 
us to evaluate the impact of varying task periods on various 
scheduling policies. 

To mimic the mix of short and long period tasks expected 
in real-time embedded systems, we generate the base task 
workloads by randomly selecting task periods such that each 
period has an equal probability of being single-digit (5-9ms), 
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RM for base workloads. 

Figure 5. Average breakdown utilizations for CSD, EDF, and 
RM when task periods are scaled down by a factor of 3. 
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Figure 4. Average breakdown utilizations for CSD, EDF, and 
RM when task periods are scaled down by a factor of 2. 

double-digit (10-99ms), or triple-digit (100-999ms). Fig- 
ures 3-5 show breakdown utilizations for base workloads 
and when task periods are divided by 2 and 3, respectively. 
Each point represents the average breakdown utilization for 
500 workloads with a fixed n. In Figure 3, task periods are 
relatively long (5ms-Is).  The run-time overheads are low 
which allows EDF to perform close to its theoretical lim- 
its. Even then, CSD performs better than EDE CSD-4 has 
17% lower total scheduling overhead for n = 15 and this 
increases to more than 40% for n = 40 as EDF's strong de- 
pendency on n begins to degrade its performance. 

Figure 4 is for periods in the 2.5-500ms range. For these 
moderate length periods, initially EDF is better than RM, 
but then EDF's run-time overhead increases to the point that 
RM becomes superior. For n = 15, CSD-4 has 25% less 
overhead than EDF, while for n = 40, CSD-4 has 50% lower 
overhead than RM (which in turn has lower overhead than 
EDF for this large n). 

Figure 5 shows similar results. Task periods range from 
1.67-333ms, and these short periods allow RM to quickly 
overtake EDF. Nevertheless, CSD continues to be superior 
to both. 

Figures 3-5 also show a comparison between three vari- 
eties of CSD. They show that even though a significant per- 
formance improvement is seen from CSD-2 to CSD-3 (espe- 
cially for large n), only a minimal improvement is observed 

from CSD-3 to CSD-4. This is because even though the run- 
time overhead continues to decrease, the increase in schedul- 
ability overhead almost nullifies the reduction in run-time 
overhead. 

CSD-4 could be expected to give significantly better 
breakdown utilization than CSD-3 only if workloads can 
be easily partitioned into four queues without increasing 
schedulability overhead, but this is rarely the case. DPI 
tasks have statically higher priority than DP2 tasks, DP2 
tasks have higher priority than DP3 tasks, and so on. As 
the number of queues increases, the schedulability overhead 
starts increasing from that of EDF to that of RM. This is why 
we would expect that as z increases, performance of CSD- 
x will quickly reach a maximum and then start decreasing 
because of reduced schedulability and increased overhead of 
managing z queues (which increases by 0.55#s per queue). 
Eventually, as z approaches n, performance of CSD-z will 
degrade to that of RM. 

The results presented here confirm the superiority of the 
CSD scheduling framework as compared to EDF and RM. 
The results show that even though CSD-2 suffers from high 
run-time overhead for large n, CSD-3 overcomes this prob- 
lem without any significant increase in schedulability over- 
head. This way, CSD-3 delivers consistently good perform- 
ance over a wide range of task workload characteristics. 
Increasing the number of queues gives some further im- 
provement in performance, but the schedulability overhead 
starts increasing rapidly so that using more than three queues 
yields only a minimal improvement in performance. 

6 Efficient semaphore implementation 
Object-oriented (OO) programming is ideal for designing 
real-time software, as it models nicely the real-world enti- 
ties, such as sensors, actuators, and controllers, that real-time 
systems deal with: the object's internal data represents the 
physical state (temperature, pressure, position, RPM, etc.) 
and the object's methods allow the state to be read or modi- 
fied. These notions of encapsulation and modularity greatly 
simplify the software design process reducing real-time soft- 
ware to a collection of threads of execution, that invoke the 
methods of various objects [11]. 
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Conceptually, the OO paradigm is very appealing, but 
does incur some costs. Object methods must synchronize 
access to object data and ensure mutual exclusion, typically 
done through semaphores [4, 8, 10]). As semaphore calls 
are made in every method invocation, semaphore operations 
are among the most heavily-used OS primitives when OO 
design is used. This calls for new and efficient schemes for 
implementing semaphore locking in EMERALDS. 

Previous work in lowering the overhead of semaphore 
operations has focused on either relaxing the semaphore se- 
mantics to get better performance [30] or coming up with 
new semantics and new synchronization policies [32]. The 
problem with this approach is that such new/modified se- 
mantics may be suitable for some particular applications, but 
usually do not have wide applicability. 

We take an approach of providing full semaphore seman- 
tics (with priority inheritance [26]), but optimizing the im- 
plementation of these semaphores by exploiting certain fea- 
tures of embedded applications. We note that the follow- 
ing discussion primarily deals with semaphores used as bi- 
nary mutual-exclusion locks (mutexes), but is more generally 
applicable to counting semaphores as well. 

6.1 Standard implementation 

The standard procedure to lock a semaphore can bc summa- 
rized as follows: 

if (sem locked) { 
do priority inheritance; 
add caller thread to wait queue; 
block; /* wait for sem to be 

released */ 
} 
lock sem; 

Priority inheritance [26] is needed in real-time systems 
to avoid unbounded priority inversion [32]. Without it, 
a medium-priority task may indefinitely block a higher- 
priority task waiting for some low-priority task holding a 
needed semaphore. 

We are most interested in worst-case overheads, which 
occur when some thread T2 invokes the a c q u ± r e _ s e m (  ) 
call on a semaphore already locked by some lower priority 
thread T1. Figure 6 shows a typical scenario for this situa- 
tion. Thread T2 wakes up (after completing some unrelated 
blocking system call) and then calls a c q u i r e _ s e m  ( ). This 
results in priority inheritance and a context switch to T1, the 
current lock holder. After T1 releases the semaphore, its pri- 
ority returns to its original value and a context switch occurs 
to T2. These steps are outlined in Figure 7. 

Two context switches (C~ and Ca) are directly due to the 
a c q u i r e _ s e r e  ( ) call. As context switches incur a signif- 
icant overhead, eliminating some of these context switches 
will greatly reduce run-time overhead. Another area of im- 
provement is in the priority inheritance (PI) steps. For DP 
tasks, the PI steps take O(1) time, since the DP tasks are 
not kept sorted. However, for tasks in the FP queue, each 
of the two PI steps will take O ( n  - r) time, since the tasks 
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Figure 6. A typical scenario showing thread T~ attempting 
to lock a semaphore already held by thread TI. 7"= is an un- 
related thread which was executing while T2 was blocked. 

(T2 

(T1 

unblock T2 
context switch Ca (T= to T2) 
executes and calls acquire.sem0) 
do priority inheritance (T2 to T1 ) 
block T2 
context switch (?2 (T2 to T1) 
executes and calls release_sem0) 
undo priority inheritance of T1 
unblock T2 
context switch Ca (T1 to T2) 

Figure 7. Operations involved in locking a semaphore for 
the scenario shown in Figure 6 

must be removed and reinserted according to their new prior- 
ity. We have addressed both context switch elimination and 
optimization of the PI step in EMERALDS. 

6.2 Implementation in EMERALDS 
Going back to Figure 7, we want to eliminate context switch 
C2 [39]. We can do this by letting T1 execute, rathcr than 
switching to T~ immediately following the unblocking event 
E. T1 will go on to release the semaphore and T2 can be acti- 
vated at this point, saving C2 (Figure 8). This is implemented 
as follows. As part of the blocking call just preceding a c -  
q u ± r e _ s e r a  ( ) ,  we instrument the code (using a code parser 
described later) to add an extra parameter indicating which 
semaphore T~ intends to lock. When event E occurs and T2 
is to be unblocked, the OS checks if S is available or not. 
If  S is unavailable, then priority inheritance from T2 to the 
current lock holder T1 occurs right here. T~ is added to the 
waiting queue for S and it remains blocked. As a result, the 
scheduler picks Ta to execute - -  which eventually releases S 
- -  and T2 is unblocked as part of this r e l e a s e _ s e m  ( ) call 
by T1. Comparing Figure 8 to Figure 6, we see that context 
switch C2 is eliminated. The semaphore lock/unlock pair of 
operations now incur only one context switch instead of two, 
resulting in considerable savings in execution time overhead 
(Section 6.4). 

We also want to optimize the two PI steps for FP tasks, 
each of which takes O ( n  - r) time with normal queue ma- 
nipulation. The first PI step (7'1 inherits T2's priority) is eas- 
ily optimized by using the observation that, according to 711 's 
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Figure 8. The new semaphore implementation scheme. 
Context switch C'2 is eliminated. 

new priority, its position in the FP queue should be just ahead 
of T2's position. So, instead of parsing the FP queue to find 
the correct position to insert T1, we insert T1 directly ahead 
of T2, reducing overhead to O(1). 

We want to reduce the overhead of the second PI step (T1 
returns to its original priority) to O(1) as well. In EMER- 
ALDS, we accomplish this by switching the positions of T1 
and T2 in the queue as part of the first PI operation when T1 
inherits T2's priority. This puts T1 in the correct position ac- 
cording to its new priority while T2 acts as a "place-holder" 
keeping track of Tl ' s  original position in the queue. Then 
the question is: is it safe to put T2 in a position lower than 
what is dictated by its priority? The answer is yes. As long 
as T2 stays blocked, it can be in any position in the queue. T2 
unblocks only when T1 releases the semaphore, and at that 
time, we switch the positions of T1 and T2 again, restoring 
each to their original priorities. With this scheme, both PI 
operations take O (1) time. 

One complication arises if T1 first inherits T2's priority, 
then a third thread Ta attempts to lock this semaphore and T1 
inherits T3's priority. For this case, T3 becomes Tl ' s  place- 
holder and T2 is simply put back to its original position in the 
queue. This involves one extra step compared to the simple 
case described initially, but the overhead is still O(1). 

Note that these optimizations on the PI operations were 
possible because our scheduler implementation keeps both 
ready and blocked tasks in the same queue. Had the FP queue 
contained only ready tasks, we could not have kept the place- 
holder task in the queue. 

6.2.1 Code parser 

In EMERALDS, all blocking calls take an extra parameter 
which is the identifier of the semaphore to be locked by the 
upcoming a c q u ± r e _ s e m (  ) call. This parameter is set to 
- 1 if the next blocking call is not acquS_re_sem () .  

Semaphore identifiers are statically defined (at compile 
time) in EMERALDS as is commonly the case in OSs for 
small-memory applications, so it is fairly straightforward 
to write a parser which examines the application code and 
inserts the correct semaphore identifier into the argument 
list of blocking calls just preceding a c q u i r e _ s e m  ( ) calls. 
Hence, the application programmer does not have to make 
any manual modifications to the code. 

6.2.2 Analysis o f  new scheme 

From the viewpoint of schedulability analysis, there can be 
two concerns regarding the new semaphore scheme (refer 
back to Figure 8): 

i. What if thread 7'2 does not block on the call preceding 
a c q u i r e _ s e m  ( ) ? This can happen if event E has 
already occurred when the call is made. 

2. Is it safe to delay execution of T2 even though it may 
have higher priority than T1 (by doing priority inheri- 
tance earlier than would occur otherwise)? 

Regarding the first concern, if T2 does not block on the 
call preceding a c q u i r e _ s e m  ( ), then a context switch has 
already been saved. For such a situation, T2 will continue 
to execute until it reaches a c q u i r e _ s e m ( )  and a con- 
text switch will occur there. What our scheme really pro- 
vides is that a context switch will be saved either on the 
a c q u i r e _ s e m ( )  call or on the preceding blocking call. 
Where the savings actually occur at run-time do not really 
matter to the calculation of worst-case execution times for 
schedulability analysis. 

For the second concern, the answer is yes, it is safe to 
let 7"1 execute earlier than it would otherwise. The concern 
here is that T2 may miss its deadline. But this cannot hap- 
pen because under all circumstances, T2 must wait for T1 to 
release the semaphore before T2 can complete. So, from the 
schedulability analysis point of view, all that really happens 
is that chunks of execution time are swapped between T1 and 
T2 without affecting the completion time of T2. 

6.3 Applicability of  the new scheme 

Going back to Figure 8, suppose the lock holder T1 blocks 
after event E,  but before releasing the semaphore. With stan- 
dard semaphores, T2 will then be able to execute (at least, 
until it reaches a c q u f . r e _ s e m  ( ) ), but under our scheme, 
T2 stays blocked. This gives rise to the concern that with 
this new semaphore scheme, 7"2 may miss its deadline. 

In Figure 8, T1 had priority lower than that of T2 (call 
this case A). A different problem arises if T1 has higher pri- 
ority than T2 (call it case B). Suppose semaphore S is free 
when event E occurs. Then, T2 will become unblocked and 
it will start execution (Figure 9). But before T2 can call a c -  
q u i r e _ s e m ( ) ,  T1 wakes up, preempts T2, locks S, then 
blocks for some event. T2 resumes, calls a c q u i r e _ s e m  ( ) ,  
and blocks because S is unavailable. The context switch 
is not saved and no benefit comes out of our semaphore 
scheme. 

Both of these problems occur when a thread blocks while 
holding a semaphore. These problems can be resolved 
as follows. First, by making a small modification to our 
semaphore scheme, we can change the problem in case B 
to be the same as the problem in case A. This leaves us with 
only one problem to address. By looking at the larger pic- 
ture and considering threads other than just T1 and T2, we 
can then show that this problem is easily circumvented and 
our semaphore scheme works for all blocking situations that 
occur in practice, as discussed next. 
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Figure 9. If a higher priority thread T1 preempts T2, locks 
the semaphore, and blocks, then T2 incurs the full overhead 
of acquS.re_sem ( ) and a context switch is not saved. 

6.3.1 Modification to the semaphore scheme 

The problem illustrated in Figure 9 necessitates a small mod- 
ification to our scheme. We want to somehow block 7"2 when 
the higher-priority thread T1 locks S, and unblock T2 when 
T1 releases S. This will prevent T2 from executing while S 
is locked, which makes this the same as the situation in case 
A. 

Recall that when event E occurs (Figure 9), the OS first 
checks if S is available or not, before unblocking T2. Now, 
let's extend the scheme so that the OS adds T2 to a spe- 
cial queue associated with S. This queue holds the threads 
which have completed their blocking call just preceding a c -  
q u i r e _ s e m  ( ), but have not yet called a c q u i r e _ s e r e  ( ). 

Thread T1 will also get added to this queue as part of 
its blocking call just preceding a c q u i r e _ s e m  () .  When 
T1 calls a c q u i r e _ s e m  ( ) ,  the OS first removes T1 from 
this queue, then puts all threads remaining in the queue in a 
blocked state. Then, when Ta calls r e l e a s e _ s e m  ( ) ,  the 
OS unblocks all threads in the queue. 

With this modification, the only remaining concern (for 
both cases A and B) is: if execution ofT2 is delayed like this 
while other threads (of possibly lower priority) execute, then 
T2 may miss its deadline. This concern is addressed next. 

6.3.2 Applicability under various blocking situations 

There can be two types of blocking: 

• Wait for an internal event, i.e., wait for a signal from 
another thread after it reaches a certain point. 

• Wait for an external event from the environment. This 
event can be periodic or aperiodic. 

Blocking for  internal events: This case includes waiting 
on all events generated directly by some executing threads, 
including releasing semaphores and messaging. The typical 
scenario for this type of blocking is for thread T1 to enter 
an object (and lock semaphore S) then block waiting for a 
signal from another thread Ts. Meanwhile, T2 stays blocked 
(Figure 10). But it is perfectly safe to delay T2 like this (even 
if T~ is lower in priority than T2) because T2 cannot lock 
5: until T1 releases it, and T1 will not release it until it re- 
ceives the signal from T,. Letting T, execute earlier leads to 
T1 releasing S earlier than it would otherwise, which leaves 
enough time for T2 to complete by its deadline. 
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Figure 10. Situation when the lock holder 7"1 blocks for a 
signal from another thread T,. 

Blocking for  external events: This includes all triggers 
not generated by executing code, such as interrupts and ex- 
ternal hardware status. External events can be either periodic 
or aperiodic. For periodic events, polling is usually used 
to interact with the environment and blocking does not oc- 
cur. Blocking calls are used to wait for aperiodic events, 
but it does not make sense to have such calls inside an ob- 
ject. There is always a possibility that an aperiodic event 
may not occur for a long time. If  a thread blocks waiting 
for such an event while inside an object, it may keep that 
object locked for a long time, preventing other threads from 
making progress. This is why the usual practice is to not 
have any semaphores locked when blocking for an aperiodic 
event. In short, dealing with external events (whether pe- 
riodic or aperiodic) does not affect the applicability of our 
semaphore scheme under the commonly-established ways of 
handling external events. 

6.4 Semaphore scheme performance 
Our semaphore scheme eliminates one context switch and 
optimizes the priority inheritance mechanism for FP tasks, so 
the performance of our scheme depends on whether the rele- 
vant tasks are in the DP or FP queue, as well as on the num- 
ber of tasks in the queue. Figure ! 1 shows the semaphore 
overheads for tasks in the DP queue as the number of tasks 
in the queue are varied from 3 to 30. Since the context switch 
overhead is a linear function of the number of tasks in the DP 
queue (because of Ats), the acquire/release times increase 
linearly with the queue length. But the standard implementa- 
tion's overhead involves two context switches while our new 
scheme incurs only one, so the measurements for the stan- 
dard scheme have a slope twice that of our new scheme. For 
a typical DP queue length of 15, our scheme gives savings 
of 1 l#s  over the standard implementation (a 28% improve- 
ment), and these savings grow even larger as the DP queue's 
length increases. 

For the FP queue, the standard implementation has a lin- 
early increasing overhead while with the new implementa- 
tion, the overhead is constant (because both priority inheri- 
tance and scheduler task selection overhead are O(1) time). 
Also, one context switch is eliminated. As a result, the ac- 
quire/release overhead stays constant at 29.4#s. For an FP 
queue length of 15, this is an improvement of 10.4#s or 26% 
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Figure 11. Worst-case performance measurements for DP 
tasks. The overhead for the standard implementation in- 
creases twice as rapidly as for the new scheme. 
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Figure 12. Worst-case performance measurements for FP 
tasks. The overhead for the standard implementation in- 
creases linearly while new scheme has a constant overhead. 

over the standard implementation. 
In general, our improved semaphore scheme gives per- 

formance improvements of  20-30%, depending on whether 
the tasks involved in locking and unlocking the semaphore 
are in the DP or FP queue and the length of  the queue. 

7 State messages for inter-task 
communication 

The traditional mechanism for exchange of  information be- 
tween tasks is message-passing using mailboxes. Under this 
scheme, one task prepares a message, then invokes a system 
call to send that message to a mailbox, from which the mes- 
sage can be retrieved by the receiver task. While this scheme 
is suitable for certain purposes, it has two major disadvan- 
tages. 

• Passing one message may take 50-100 #s on a proces- 
sor such as the Motorola 68040. Since tasks in em- 
bedded applications usually need to exchange several 
thousand messages per second, this overhead is unac- 
ceptable. 

• I f  a task needs to send the same message to multiple 
tasks, it must send a separate message to each. 

Because of  these disadvantages, application designers 
are typically forced to use global variables to exchange in- 
formation between tasks. This is an unsound software de- 
sign practice because reading and writing these variables is 
not regulated in any way and can introduce subtle, hard-to- 
trace bugs in the software. 

The state message paradigm [14] provides the perform- 
ance of  global variables while avoiding the pitfalls. State 
messages use global variables to pass messages between 
tasks, but these variables are managed by code generated 
automatically by a software tool, not by the application de- 
signer. In fact, the application designer does not even know 
that global variables are being used: the interface presented 
to the programmer is almost the same as the mailbox-based 
message-passing interface. 

We have implemented state messages in EMERALDS, 
optimizing the basic scheme to reduce execution overhead 
and memory consumption. EMERALDS includes mailbox 
based message passing as well, since state messages are not 
meant to replace traditional message-passing, but are meant 
as an efficient alternative in a wide range of  situations. 

7.1 State message semantics 

State messages solve the single-writer, multiple-reader com- 
munication problem. One can imagine that state message 
"mailboxes" are associated with the senders, not with the re- 
ceivers: only one task can send a state message to a "mail- 
box" (call this the writer task), but many tasks can read 
the "mailbox" (call these the reader tasks). This way, state 
message mailboxes behave very differently from traditional 
mailboxes, so we will henceforth call them SMmailboxes. 
The differences are summarized below. 

• SMmailboxes are associated with the writers. Only one 
writer may send a message to an SMmailbox, but mul- 
tiple readers can receive this message. 

• A new message overwrites the previous message. 

• Reads do not consume messages, unlike standard mail- 
boxes for which each read operation pops one message 
off the message queue. 

• Both reads and writes are non-blocking. This reduces 
the number of  context switches suffered by application 
tasks. 

7.2 Usefulness 

In real-time systems, a piece of  data such as a sensor reading 
is valid only for a certain duration of  time, after which a new 
reading must be made. Suppose task vl reads a sensor and 
supplies the reading to task ~-2. I f r l  sends two such messages 
to 7-2, then the first message is useless because the second 
message has a more recent and up-to-date sensor reading. I f  
traditional mailboxes with queues are used for communica- 
tion, then 7"2 must first read the old sensor reading before 
it can get the new one. Moreover, if multiple tasks need 
the same sensor reading, vl must send a separate message 
to each. 
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State messages streamline this entire process. An SM- 
mailbox SM 1 will be associated with 7"1 and it will be known 
to all tasks that SM 1 contains the reading of a certain sen- 
sor. Every time 7"1 reads the sensor, it will send that value 
to SM 1. Tasks which want to receive the sensor value will 
perform individual read operations on SM 1 to receive the 
most up-to-date reading. Even if rl has sent more than one 
message to SM 1 between two reads by a task, the reader 
task will always get the most recent message without hav- 
ing to process any outdated messages. More importantly, ifa 
reader does two or more reads between two writes by rl, the 
reader will get the same message each time without block- 
ing. This makes perfect sense in real-time systems because 
the data being received by the reader is still valid, up-to-date, 
and useful for calculations. 

The single-writer, multiple-reader situation is quite com- 
mon in embedded real-time systems. Any time data is pro- 
duced by one task (may it be a sensor reading or some cal- 
culated value) and is to be sent to one or more other tasks, 
state messages can be used. But in some situations, blocking 
read operations are still necessary such as when a task must 
wait for an event to occur. Then, traditional message-passing 
and/or semaphores must be used. Hence, state messages do 
not replace traditional message-passing for all situations, but 
they do replace it for most inter-task communication require- 
ments in embedded applications. 

7.3 Previous work on state messages 

Theoretical work on data sharing without synchronization 
was first presented by Lamport [16]. State messages were 
first used in the MARS OS [14] and have also been imple- 
mented in ERCOS [24]. The state message implementation 
used in these systems as described in [15] is as follows. The 
problem with using global variables for passing messages is 
that a reader may read a half-written message since there is 
no synchronization between readers and writers. This prob- 
lem is solved by using an N-deep circular buffer for each 
state message. An associated pointer is used by the writer 
to post messages, and used by readers to retrieve the latest 
message. With a deep enough buffer, the scheme can guar- 
antee that data will not be corrupted while it is being read by 
a reader, but a large N can make state messages infeasible 
for our limited-memory target applications. 

The solution presented in [15] limits N by having read- 
ers repeat the read operation until they get uncorrupted data. 
This saves memory at the cost of increasing the read time 
by as much as several hundred microseconds, even under the 
assumption that writers and readers run on separate proces- 
sors with shared memory. With such an architecture, it is not 
possible for a reader to preempt a writer. But we want to 
use state messages for communication between readers and 
writers on the same CPU without increasing the read over- 
heads. For this situation, depending on the relative deadlines 
of readers and writers, N may have to be in the hundreds to 
ensure correct operation. 

Our solution to the problem is to provide OS support for 
state messages to reduce N to no more than 5-10 for all pos- 
sible cases. In what follows, we describe our implementation 

for state messages including the calculation of N for the case 
when both readers and writers are residing on the same CPU. 
Then, we describe a system call included in EMERALDS to 
support state messages. 

7.4 State message implementation 

Let B be the maximum number of bytes the CPU can read 
or write in one instruction. For most processors, B = 4 
bytes. The tool MessageGen produces customized code for 
the implementation of state messages depending on whether 
the message length L exceeds B or not. 

The case for L _< B is simple. MessageGen assigns 
one L-byte global variable to the state message and provides 
macros through which the writer can write to this variable 
and readers can read from it. Note that for this simple case, 
it is perfectly safe to use global variables. The only com- 
plication possible for a global variable of length < B is to 
have one writer accidentally overwrite the value written to 
the variable by another writer. But this problem cannot oc- 
cur with state messages because, by definition, there is only 
one writer. 

For the case of L > B, MessageGen assigns an N-deep 
circular buffer to each state message. Each slot in the buffer 
is L bytes long. Moreover, each state message has a 1-byte 
index I which is initialized to 0. Readers always read slot I ,  
the writer always writes to slot I + 1, and I is incremented 
only after the write is complete. In this way readers always 
get the most recent consistent copy of the message. 

Calculating buffer depth N:  Now, we address the issue 
of how to set N,  the depth of the buffer. It is possible that 
a reader starts reading slot i of the buffer, is preempted after 
reading only part of the message, and resumes only after the 
writer has done x number of write operations on this mes- 
sage. Then, N must be greater than the largest value z can 
take: 

N = max(2, Xr~a~ + 1). 

Let maxReadTime be the maximum time any reader can take 
to execute the read operation (including time the reader may 
stay preempted). Because all tasks must complete by their 
deadlines (ensured by the scheduler), the maximum time any 
task can be preempted is d - c, where d is its deadline and 
c its execution time. If cr is the time to execute the read 
operation, then maxReadTime = d - (c - cr). 

The largest number of write operations possible during 
maxReadTime occur for the situation shown in Figure 13 
when the first write occurs as late as possible (just before 
the deadline of the writer) and the remaining writes occur 
as soon as possible after that (right at the beginning of the 
writer's period). Then, 

maxReadTime - d~o) J xmo~-z= [ P~ (P~o- 

where Pw and d~ are the writer's period and deadline, re- 
spectively. Then, N can be calculated using Xrnax. 
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i q m a x R e a d T i m e  =i 

: ~ :x Ix :x :~ : 
= : ~ : t i m e  

dw ew 

Figure 13. Calculation of x . . . .  Write operations 
are denoted by X. Excluding the first write, there are 
[ ( m a x  R e a d T  i m e  - ( P= - M~, ) ) / P= J = 4 writes, so x,~,= = 5. 

[[ State messages 

s e n d  (8 bytes) II 24 s 
r e c e i v e  (8 bytes) 2.0ps 
r e c e i v e _ s l o w  (8 bytes) 4.4#s 

Mailboxes I 

16.0ps I 
7.6/ts 

Table 4. Overheads for sending and receiving 8-byte mes- 
sages. 

Slow readers: If  it turns out that one or more readers have 
long periods/deadlines (call them slow readers) and as a re- 
sult, xma= is too large (say, 10 or more) and too much mem- 
ory will be needed for the buffer, then EMERALDS provides 
a system call which executes the same read operation as de- 
scribed above, but disables interrupts so that copying the 
message from the buffer becomes an atomic operation. This 
call can be used by the slow readers while the faster readers 
use the standard read operation. By doing this, N depends 
only on the faster readers and memory is saved. The disad- 
vantage is that the system call takes longer than the standard 
read operation. But this system call is invoked only by slow 
readers, so it is invoked infrequently and the extra overhead 
per second is negligible. Note that the write operation is un- 
changed no matter whether the readers are slow or fast. 

7.5 State  message  p e r f o r m a n c e  

Table 4 shows a comparison between the overheads for 
state messages and for mailbox-based message-passing on 
a 25MHz Motorola 68040. The measurements are for mes- 
sage sizes of 8 bytes which are enough to exchange sensor 
readings and actuator commands in embedded control appli- 
cations. 

Most of the overhead for the state message operations 
is due to copying the message to and from the SMmailbox, 
whereas mailbox-based IPC has many other overheads as 
well (allocation/deallocation of kernel data structures, ma- 
nipulation of message queues, etc.), which is why state 
messages clearly outperform mailboxes for small message 
lengths typical in embedded applications. For example, if an 
application exchanges 5000 8-byte messages per second (as- 
sume 1000 of these are received by tasks with long periods, 
i.e., they must use r e c e i v e _ s l o w ) ,  then mailboxes give 
an overhead of 118ms/s or 11.8% whereas using state mes- 
sages results in an overhead of only 24ms/s or 2.4%. This 
overhead decreases even further if one message has multi- 
ple recipients: for mailboxes, a separate s e n d  is needed for 
each recipient while only one s e n d  is enough for state mes- 
sages. 

8 C o n c l u s i o n s  

Small-memory embedded applications are not only be- 
coming more commonplace (automotive, home electronics, 
avionics, etc.), but the complexity of these applications is in- 
creasing as well. As a result, embedded applications which 
previously managed the hardware resources directly now 
need embedded RTOSs to handle the increased complex- 
ity of the application. These RTOSs must be efficient and 
small in size to be feasible on the slow/cheap processors 
used in small-memory applications. Commercial embed- 
ded RTOSs rely on optimized code for achieving efficiency, 
but in the design of EMERALDS, we took a different ap- 
proach. We identified key OS services which are respon- 
sible for a large portion of the OS overhead seen by appli- 
cations and re-designed these services using new schemes 
which exploit certain characteristics common to all embed- 
ded applications. In the area of task scheduling, we pre- 
sented the CSD scheduler which creates a balance between 
static and dynamic scheduling to deliver greater breakdown 
utilization through a reduction in scheduling overhead of as 
much as 40% compared to EDF and RM. For task synchro- 
nization, we presented a new implementation for semaphores 
which eliminates one context switch and reduces priority 
inheritance overhead to achieve 20-30% improvement in 
semaphore lock/unlock times. For message-passing, EMER- 
ALDS uses the state-message paradigm which incurs 1/4 to 
1/5 the overhead of mailbox-based message passing for mes- 
sage sizes typical in embedded applications. Unlike previous 
schemes for state messages, our scheme bounds the RAM 
overhead by providing OS support for state messages. All of 
this has been implemented within just 13 Kbytes of code. 

EMERALDS has been developed and evaluated primar- 
ily on the Motorola 68040 processor. We have also ported 
it to the PowerPC 505, the Super Hitachi 2 (SH-2), and the 
Motorola 68332 microcontroller, the last two of which are 
popular in automotive control applications. EMERALDS is 
also being evaluated by the Scientific Research Laboratory of 
Ford Motor Company for use in automotive engine control. 
They are comparing EMERALDS and various commercial 
RTOSs, focusing on basic OS overheads related to interrupt 
handling, context switching, event signaling, and timer ser- 
vices. 

In the future, we plan to focus on networking issues. We 
have already investigated fieldbus networking among a small 
number (5-10) of nodes [37, 40]. Next, we will investigate 
ways to efficiently and cheaply interconnect a large number 
(10-100) of clusters of embedded processors. Each cluster 
can be a small number of nodes connected by a fieldbus. The 
clusters must be interconnected using cheap, off-the-shelf 
networks and new protocols must be designed to allow ef- 
ficient, real-time communication among the clusters. This 
type of networking is needed in aircraft, ships, and facto- 
ries to allow various semi-independent embedded controllers 
(some of which may be small-memory while others may not 
be) to coordinate their activities. 
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