
Proceedings of the 1999 IEEE
International Confennce on Robotics & Automation

Detroit, Michigan May 1999

Open Architecture Controller Software for Integration of Machine
Tool Monitoring

Shige Wang, C.V Ravishankar, Kang G. Shin
Real-Time Computing Labroatory

Department of Electrical Engineering & Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

email: {wangsg,ravi,kgshin}@eecs.umich.edu

Abstract

I n contemporary machine control systems, the mon-
itoring functions are developed and tested separately,
requiring additional t ime and effort f o r their integra-
tion into a machine control system. Also, the software
for most contemporary controllers is fixed and very
application-dependent, so the system m a y not run cor-
rectly after such integration since the algorithms are
time-sensitive. I n this paper, we show how to modular-
ize machine tool control systems with object-oriented
concepts. We define a set of software components and
system services for reuse, present some system guide-
lines based on simulations and test analyses to help
users implement controllers that satisfy real-tame con-
straints.

We present the integration of broken tool detection
functionality into an existing three axis motion con-
troller, and demonstrate that the integration requires
minimal effort and skill, and that the hard real-time
constraints f o r broken tool signal processing can be
satisfied with our software architecture.

Key Words: Machine tool monitoring, real-
time control, software architecture, open architecture
controller

1 Introduction

Machine tool monitoring improves economy and
safety when used on-line to monitor run-time status.
To facilitate integration of machine tool monitoring,
the machine control systems software must be well
modularized [12], have public interfaces to system in-
ternal information [4,6], and have the ability to specify
control flow [6, lo]. Integration of machine tool mon-

itoring is difficult in current machine control systems
since the software modules are designed for specific ap-
plications and implemented so that no internal compo-
nent, variable or algorithm is accessible [4,8]. While
such isolation has advantages, the machine tool mon-
itoring modules cannot work with other modules to
control a machine correctly without exchanging some
internal information. Fixed software also reduces the
flexibility and portability of a system, and makes it
difficult to change the control flow after integration.
Currently, all the control flow information is embed-
ded in the application code, and such information can
be extremely hard to understand [6].

Machine tool monitoring applications also have
stringent hard real-time constraints. Since most con-
trol algorithms are sensitive to time variations [2,7], it
is important to sample, process and pass data around
the system in a timely fashion. Such constraints may
include bounds on signal passing delays and on the
variances of execution intervals of real-time execution
modules [5,11,12]. No previous research in this do-
main addresses this problem at the software architec-
ture level.

It is widely agreed that open architecture con-
trollers can help solve the above problems and en-
able quick and easy integration of new functionality
[6,8,12]. But the open architecture controller prod-
ucts currently in use have very limited capabalities,
mainly because they only provide ad-hoc openness [9].
The software is usually application-specific, and has to
be modified after integrating machine tool monitoring

Our software architecture includes components to
describe machines, infrastructures to define execution
environments, and mechanisms to specify the control
flow. These features distinguish our research from oth-
ers’ in this domain.

[4,6,81.

0-7803-51 80-0-5199 $10.00 0 1999 IEEE 1152

mailto:wangsg,ravi,kgshin}@eecs.umich.edu

The rest of this paper is organized as follows: Sec-
tion 2 describes our software architecture and its or-
ganization. Section 3 presents how machine tool mon-
itoring can be integrated into a system with our soft-
ware architecture. Section 4 provides a detailed exam-
ple implemented on The University of Michigan Open
Architecture Controller (UMOAC) testbed. Finally,
we give our conclusion in Section 5 .

Figure 2: Hierarchical organization of software classes

2 Software Architecture

The software components in our architecture can
be classified into two categories: generic components
for machine definitions and standard sys tem services
for platform descriptions.

Figure 1 shows relationships among these software
sets, machines, platforms and applications.

Application Application P Application Programming Interfaces

Generic Components Standard system
for Machines Services

I \

Figure 1: Relationship between software, application,
machine and platform

2.1 Generic Components

A machine control system can be subdivided into
many smaller components such as axes, spindles and
sensors. Each component can be represented as an ob-
ject with the appropriate functionality. A generic com-
ponent can execute operations defined as its member
functions to drive a machine component. Machine op-
eration is a matter of the order these functions will be
called. We can thus separate the definition of the be-
havior of a machine from its functionality, and change
its operation without changing its control software.

Our generic components are organized hierarchi-
cally. Blocks on the left in Figure 2 describe the
hierarchical organization of these generic components.

2.2 Standard System Services

Standard system services define a virtual execution
environment where a generic component can run as de-

sired, and meet its real-time requirements. Our stan-
dard system services include definitions of execution
units, communication mechanisms, and real-time ser-
vices.

Execution units. An execution unit is a container
in which generic components can reside and execute as
separate processes or threads on a processor. Execu-
tion units are classified into periodic tasks, aperiodic
tasks and pseudo-periodic tasks.

Communication mechanisms. Communication
mechanisms define how a component exchanges infor-
mation with other components. We define three kinds
of basic communication services: shared memory, mes-
sage passing and signals.

Real-time related services. Real-time services
include timing and scheduling services, which pro-
vide a high-resolution timer and mechanisms for defin-
ing the scheduling policy (e.g., preemptive or run-to-
complete, FIFO or Round-Robin) and priority man-
agement. The platform specifications determine which
services are available and how they are implemented.

The blocks on the right of Figure 2 present the or-
ganization of standard system services in our architec-
ture.

2.3 Control Flow Specifications

Control flow defines how to sequence the operations
or commands that a machine control system will exe-
cute at runtime. In many cases, integration of machine
tool monitoring will not change the setup of the exist-
ing machine, but only the control flow. The definition
of appropriate generic components makes it possible
to specify control flow separately. A Finite State Ma-
chine (FSM) based mechanism is used as an engine
to execute a user-specified control flow. A user can
define and modify the system control flow using this
mechanism without changing source code. A user can
also split the FSM for a complex system into several
small FSMs for subsystems, define and test the control
flow specifications for each subsystem and put them
together. Details are available in [lo]

1153

3 Adding Monitoring F'unctions

The open architecture software described above
provides modularity and openness for machine
tool controllers, and enables machine tool moni-
toring software to be integrated into an existing
control system at different levels. This section de-
scribes how the machine tool monitoring is integrated.

Defining Functionality. To integrate machine
tool monitoring, both new and current functionality
for machine tool controllers must be defined with
generic components. The machine tool monitoring
modules can either be built from scratch using the
generic components and services, or purchased as a
software package.

For existing control software, we assume that the
interfaces to exchange information with the machine
tool monitoring module are present. These interfaces
enable the machine tool monitoring module to read
the necessary internal states and data from the
system and send its commands.

Defining Execution Model on a Platform.
To execute the machine controller on the selected
platform, the modules in the system are grouped
into one or more execution units, and mapped to an
implementation on the platform.

Timing services are also defined with the execu-
tion units. Users can select a timer for each execution
unit o r for a set of closely-coupled units to obtain bet-
ter performance. Scheduling parameters for execution
units must also be assigned if the platform supports
multiple choices.

Communication channels are created to support
information exchange both within a single execu-
tion unit and across different execution units. The
selection of a communication mechanism depends
on both system time constraints and the execution
environment.

Changing Control Flow Changing the control
flow involves defining new events for machine tool
monitoring, modifying the state table of FSM, and
invoking corresponding the member functions of
generic components.

The new events serve to notify the control system
of abnormal tool states that a tool monitoring module
may detect, such as tool wear or breakage. A user de-
fines a new event by giving it a global unique identifier
(for example, a name or a number). A control module
to react to the event may have its own definition of
the same event, called a local event.

The FSM state table specifies how to map an
event to member functions of the generic components.
Integration of machine tool monitoring may require a
machine to operate in a different way, which implies
changing state table.

Verifying Real-Time Constraints. Real-time
constraints must be verified after the machine control
modules are defined and allocated to a selected
platform.

Two parameters of each execution unit must be
checked: execution interval consistency and confor-
mance t o deadlines. Consistent execution intervals en-
sure that information on systems and environmental
states is collected at the right time. Deadline checking
ensures that an execution unit can finish the compu-
tation within the given time slot.

Time delays for data transfer also must be veri-
fied. Time delays for message passing are determined
mainly by three factors: number of execution units in
the message-passing path, the scheduling parameters
for these execution units (periods, priorities, etc.), and
the communication mechanisms used.

Real-time performance must be verified both for
the newly-integrated machine tool monitoring mod-
ules and for old software modules. After integration,
the behavior of existing modules may have changed
due to the increased workload and communication in
the system.

4 A Case Study

To demonstrate that our open architecture software
meets the requirements of machine tool monitoring in-
tegration, we integrated a broken tool detection mod-
ule into a motion controller on the UMOAC testbed.
We study and analyze the effort for integration as well
as system performance after integration.

4.1 UMOAC Testbed

UMOAC testbed is built on a three-axis milling ma-
chine. The controller software runs in a distributed
environment on three computers connected point-to-
point with 10-Base T Ethernet, as shown in Figure
3. Two Intel/386-based VME machines run the real-
time operating system QNX, and the third Pentium
machine runs Windows NT. The existing motion con-
troller software consists of force acquisition, force su-
pervisory control and motion control modules. Mo-
tion control consists of four execution units: the Ax-
isGroup Control unit to coordinate the motion of the

1154

three axes, and one Axis unit each for controlling mo-
tion of X, Y and Z axis. The execution units of each
module and their allocation are shown in Figure 4.

(Tasks)
Force Acquisition
Force Supervisory
Motion Control
AxisX Control
AxisY Control
AxisZ Control

Figure 3: UMOAC testbed

m.)
Periodic 1 20 V M E l
Periodic 40 16 VME a
Periodic 10 a0 VME 2
Periodic 10 21 VME 2
Periodic 10 21 VME 2
Periodic 10 21 VME 2

4.2 Requirements and Design

The broken tool detection algorithm uses force val-
ues to determine the status of a tool. A tool breakage
signal is sent to the motion control module to trigger a
timely stoppage when an abnormal value is detected.
The broken tool signal is a real-time signal subject to
the constraints that the signal passing delay be within
two execution cycles of motion controller.

A new module with two execution units is added
to process the force values and generate a broken tool
signal. The control flow of the motion controller is
changed to react the broken tool signal.

To evaluate performance with different integration
granularities and accessibility, we integrate the broken
tool detection module at two different levels. In the
case of motion control level integration, the signal is
sent to motion controller. In the other case, the signal
is sent to each axis control module.

4.3 Implementation

Figure 4 shows the modules, execution units and
the communications in our testbed.

1 - 1
VMEZ Penlium I

Figure 4: Execution units in the experimental system

Table 1 describes characteristics of execution units.
Since non-real-time modules are allocated on a sepa-

rate computer and do not effect the performance of
real-time modules, we exclude them from the analy-
sis.

Execution Unit I Type I Period I Priorityl Location

Task Coordinator I Aperiodic I N/A I 17 I VME 2

Signs1 Procc.. I Periodic 1 10 I 18 I VME 1

New execution unit. for broken tool detection

Ti01 Status 1 Periodic 1 10 I 18 1 VME 2

Table 1: Execution units

The execution units that interact with the external
world (including force acquisition and Axis X , Y,Z con-
trol) and running control algorithms to generate com-
mands (include force supervisory control, AxisGroup
Control, signal process, and tool s ta tus) execute peri-
odically. Execution units are scheduled using the rate-
monotonic algorithm [5]. Units with the same priority
are scheduled and executed first-in-first-out.

A new event, Ebroken, is introduced into the sys-
tem to represent a tool breakage status. This event
is generated by the tool status to the motion control
module.

A new state, bstop, and a transition from the mov-
ing state to bstop are added into the machine control
FSM. Figure 5 shows the state diagram changes before
and after integrating broken tool detection module.

Figure 5: Simple state diagrams before and after in-
tegration

Only the FSM specifications for the machine con-
trol FSM in the motion control module need changes.
Other FSM specifications, including the higher level
and lower level of the machine control FSM, need no
changes.

4.4 Experimental Results

We no discuss the effort needed to integrate the
broken tool detection module, and examine real-time
performance of individual execution units, signal pro-
cessing, and message passing.

1155

Building a system with our proposed software ar-
chitecture reduces the skill and effort required. Ac-
cording to our experience from graduate students and
undergraduate students, integrating a simple machine
monitoring function, such as broken tool detection as
described above, using our open architecture software
takes significantly less time than using unstructured
software. For instance, it took tens of hours less to in-
tegrate a broken tool detection module into a motion
control system using our proposed open software ar-
chitecture than to integrate the broken tool detection
in a traditional way.

We analyze real-time performance in terms of two
parameters: stability of execution intervals and per-
centage of missed deadlines, both before and after in-
tegration. We also examine the time delay for passing
and processing an emergency message, such as a bro-
ken tool signal. We use a special hardware device, the
VME Stopwatch, to collect the elapsed time of each
execution.

Communication
From I T o mechaninm

Elapsed
time

Execution Average

Unit Execution
(Task) Interval

(m.)
Force Acquisition 0.998
Force Supervimory 39.976
AxisGroup Control 9.976
AxiiX Control 9.965
AxisY Control 9.943
Axin2 Control 9.971

Worst- Standar Deadline
Ca.=
Execution Deviation Missing
Interval (%)
(m.
2.182 0.085 0.11
42.365 0.132 0.35
14.668 0.186 0.27
12.384 0.085 0.24
14.132 0.068 0.11)
12.379 0.073 0.21

Table 3: Performance of units after integration

Signal pansing path
From I T o

We observe no significant difference between aver-
age execution intervals for execution units before and
after integration. Similarly, there is no significant dif-
ference observed for missed deadlines. But both the
worst-case execution times and standard deviations of
intervals are slightly increased after the broken tool
detection modules are integrated.

Communication Elrpred
mechanism t ime(ms)

Based on these observations and real-time schedu-
lability analysis [5] , we can ensure that whenever new
execution units integrated into our system are schedu-
lable, their real-time constraints can be satisfied. The
operating system overheads can be assumed to be con-
stant. However, the execution intervals become in-
consistent as the number of execution units increases.
Thus, if a module assigned to a processor requires
more consistent execution intervals, the number of ex-
ecution units on that processor should be reduced.

Average Worst-
Ca.=

Execution Execution Execution
Unit Interval Interval

Force Acquisition 0.998 2.834
ms (m.

Force Sunervisorv 39.961) 48.766

4.4.2 Signal processing and transportation

Tables 4 and 5 shows the signal passing times in our
experimental system.

Standard Deadline

Dcviaticn Miming
(X)

0.332 0.33
0.086 0.15

Axi*Group Control
AxisX Control
AxiiY Control
AxisZ Control
Signal Proces.
Tool Stat-.

Case Force Acquisi- Signal Process 0.357

Signal Proce.. Tool Status as78

Total 14.3~8

6.176 Tool Statu.
Motion Control Aixs Control 5.217

0.675

Signal Process Tool Statu. MQ 3.152
Tool Statu. Motion Control MQ 8.157
Motion Control Axis Control MQ 7.392
Total 18.896

Table 4:
whole)

Signal passing time (Motion controller as a

9.972 16.731 0.241 0.29
9.965 16.925 0.133 0.15
9.958 15.332 0.12s 0.21
9.971 15.784 0.142 0.21
19.963 25.429 0.103 0.35
19.974 27.471 0.177 0.18

S i p s 1 Process
Tool Statu.

Tool Statu. 1 1 2.762
7.r16a Axis Control
10.71

Signal Proce.. 0.584

Tool Status 2.835
Axim Control 9.073

12.492

Table 5: Signal passing time (Axis controller is accessible)

Comparing cases 1 and 2 in Tables 4 and 5, the
time cost of communication using shared-memory is
shown to be less than that using message queues. This
is because the message queue mechanism invokes more
service calls of the operating system, introducing more
unpredictability and delay. Therefore, shared-memory
should be preferred when a short delay is required
and the receiver needs to access the message imme-
diately. The most significant disadvantage of using
shared-memory mechanism is that it can only be used
within the same node. If the communication is across
computers, other communication mechanism has to be
used.

Another observation from Tables 4 and 5 is that
a finer granularity of accessibility increases message

1156

passing times. The total elapsed times are much
shorter in Table 5 than in Table 4 for both cases.
This shows that fewer execution units on the com-
munication path will shorten the signal passing time.
Thus, better accessibility will help satisfy real-time
constraints. However, a better accessibility may in-
volve more execution units in the system, which will
also increase the overheads of the whole system and
make executions of each unit inconsistent.

5 Conclusion

Integrating process monitoring functionality into an
existing controller requires more effort and skill in cur-
rent manufacturing practice. In this paper, we pro-
pose PC-based open architecture software that can
make this integration easier. The software consists
of building blocks with standard interfaces that are
used to define the machine, the execution platform,
and the control flow. We also describe how to in-
tegrate process monitoring at different system levels
with different granularities. Our software is shown to
be flexible enough to support integration with vari-
ous kinds of controllers. Our case study of integrating
broken tool detection into a motion controller on the
UMOAC testbed demonstrates t h a t our software can
be used to integrate process monitoring functionality,
satisfying openness and real-time requirements.

Acknowledgments

The work reported in this papaer was supported
in part by the National Science Foundation (Grant #
EEC-9529125) Engineering Research Center for Re-
configurable Machining Systems. We would also like
to thank Sushi1 Birla of General Motors, and Mike
Washburn at the University of Michigan for their as-
sistance.

References

S. Birla, ”Software modeling for reconfigurable ma-
chine tool controllers” Ph. D. Thesis, Department
of Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor, June 1997

R. Du, M.A. Elbestawi, and S.M. Wu, ”Automated
monitoring of manufacturing processes, Part 1: Mon-
itoring Methods,” Journal of Engineering for Indus-
try, Transactions of the ASME, ~01.117, No.2, pp.
121-132, May 1995.

[3] ESPRIT Consortium AMICS, CIMOSA, Open Sys-
tem Architecture f o r CIM, 2nd revised and extended
edition, Springer-Verlag, 1989.

[4] Y. Koren, F. Jovane, and G. Pritschow, Open Archi-
tecture Control Systems: Summary of Global Activity,
ITIA series, vol. 2, 1998

[5] C. M. Krishna, and K. G. Shin, Real-Time Systems,
The McGraw-Hill Companies, Inc, 1997

[6] OMAC working group, OMAC A P I Documentation,
version 0.18, 1998.

[7] S.M. Pandit, S.M. Wu, Time Series And System
Analysis With Applications, John Wiley and Sons,
1983.

[8] F.M. Proctor, and J.S. Albus, ”Open architecture
controllers,” IEEE Spectrum, vol. 34 no. 6, pp. 60-
64, Jun 1997.

[9] G. Rice, R. Moreno, and M. King, ”Process data ac-
quisition: Real-time and historical interfaces,’’ Pro-
ceedings of SPIE Open Architecture Control Systems
and Standards, Boston, Ma, pp. 196-206, Nov. 1996.

[lo] C. Shiu, et al, ”Specifying reconfigurable control
flow for open architecture controllers,” Proceedings of
1998 Japan- USA Symposium on Flexible Automation,
Vol.2, Otsu, Japan, pp. 659-666, July 1998.

[ll] J. Xu, and D. Parnas, ”On satisfying timing con-
straints in hard real-Time systems,” IEEE Transac-
tions on Software Engineering, Vol 19, No.1, pp. 70-
86, Juan. 1993.

[12] L. Zhou, M. Washburn, K. G. Shin, and E. A. Run-
densteiner, ”Performance evaluation of modular real-
time controllers,” Proceedings of the ASME Dynamic
Systems and Control Division, DSC-vol. 58, Atlanta,
GA, pp. 299-306, Nov. 1996.

1157

